(word完整版)全等三角形证明经典50题(含答案),推荐文档
(完整版)全等三角形证明中考题选(答案齐全)
智皓教育姓名:全等三角形中考证明题一.解答题1.(2013•泉州)如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.2.(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.3.(2013•大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.4.(2012•阜新)(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由.(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.5.(2009•仙桃)如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A 点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是_________;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC 的数量关系,直接写出你的猜想,不必证明.6.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE_________CF;EF_________|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件_________,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).7.(2007•绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)8.(2007•常德)如图,已知AB=AC,(1)若CE=BD,求证:GE=GD;(2)若CE=m•BD(m为正数),试猜想GE与GD有何关系.(只写结论,不证明)9.(2006•泰安)(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为_________;∠APB的大小为_________;(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD间的等量关系式为_________;∠APB的大小为10.(2005•南宁)(A类)如图,DE⊥AB、DF⊥AC.垂足分别为E、F.请你从下面三个条件中,再选出两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况).①AB=AC;②BD=CD;③BE=CF已知:DE⊥AB、DF⊥AC,垂足分别为E、F,AB=AC,BD=CD求证:BE=CF已知:DE⊥AB、DF⊥AC,垂足分别为E、F,AB=AC,BE=CF求证:BD=CD已知:DE⊥AB、DF⊥AC,垂足分别为E、F,BD=CD,BE=CF求证:AB=AC(B类)如图,EG∥AF,请你从下面三个条件中,再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况).①AB=AC;②DE=DF;③BE=CF已知:EG∥AF,AB=AC,DE=DF求证:BE=CF参考答案与试题解析一.解答题(共10小题)1.(2013•泉州)如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.考点:全等三角形的判定与性质.专题:证明题.分析:根据中线的定义可得BD=CD,然后利用“角角边”证明△BDE和△CDF全等,根据全等三角形对应边相等即可得证.解答:证明:∵AD是△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BE=CF.点评:本题考查了全等三角形的判定与性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.2.(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.考点:全等三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=AB,然后求出AC=BE,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.解答:解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF=S△BDE,过点D作DF2⊥BD,∵∠ABC=60°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=2÷=,∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.点评:本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F有两个.3.(2013•大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.考点:全等三角形的判定与性质.分析:(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,即可证得∠DHF=∠CBF=60°,从而求解.解答:(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.点评:本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.4.(2012•阜新)(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由.(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.考点:全等三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)①BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;然后在△ABD和△CDF中,由三角形内角和定理可以求得∠CFD=90°,即BD⊥CF;②BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;作辅助线(延长BD交AC于F,交CE于H)BH构建对顶角∠ABF=∠HCF,再根据三角形内角和定理证得∠BHC=90°;(2)根据结论①、②的证明过程知,∠BAC=∠DFC(或∠FHC=90°)时,该结论成立了,所以本条件中的∠BAC=∠DAE≠90°不合适.解答:解:(1)①结论:BD=CE,BD⊥CE;②结论:BD=CE,BD⊥CE…1分理由如下:∵∠BAC=∠DAE=90°∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE…1分在△ABD与△ACE中,∵∴△ABD≌△ACE(SAS)∴BD=CE…1分延长BD交AC于F,交CE于H.在△ABF与△HCF中,∵∠ABF=∠HCF,∠AFB=∠HFC∴∠CHF=∠BAF=90°∴BD⊥CE…3分(2)结论:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°…2分点评:本题考查了全等三角形的判定与性质.SSS,SAS,ASA,AAS,HL均可作为判定三角形全等的定理.注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,因为勾股定理,只要确定了斜边和一条直角边,另一直角边也确定,属于SSS),因为这两种情况都不能唯一确定三角形的形状;另外三条中线(或高、角平分线)分别对应相等的两个三角形也全等.5.(2009•仙桃)如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A 点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC 的数量关系,直接写出你的猜想,不必证明.考点:全等三角形的判定.专题:压轴题;探究型.分析:(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.解答:解:(1)①BD=CE;②AM=AN,∠MAN=∠BAC,∵∠DAE=∠BAC,∴∠CAE=∠BAD,在△BAD和△CAE中∵∴△CAE≌△BAD(SAS),∴∠ACE=∠ABD,∵DM=BD,EN=CE,∴BM=CN,在△ABM和△ACN中,∵∴△ABM≌△ACN(SAS),∴AM=AN,∴∠BAM=∠CAN,即∠MAN=∠BAC;(2)AM=k•AN,∠MAN=∠BAC.点评:本题考查三角形全等的判定方法和性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题还要会根据所求的结论运用类比的方法求得同类题目.6.(2008•台州)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).考点:直角三角形全等的判定;三角形内角和定理.专题:几何综合题;压轴题.分析:由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.解答:解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)EF=BE+AF.点评:本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.7.(2007•绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)考点:直角三角形全等的判定.专题:证明题;压轴题;开放型.分析:(1)如果:“∠B=∠D”,根据∠B与∠D互补,那么∠B=∠D=90°,又因为∠DAC=∠BAC=30°,因此我们可在直角三角形ADC和ABC中得出AD=AB=AC,那么AD+AB=AC.(2)按(1)的思路,作好辅助线后,我们只要证明三角形CFD和BCD全等即可得到(1)的条件.根据AAS可证两三角形全等,DF=BE.然后按照(1)的解法进行计算即可.解答:证明:(1)∵∠B与∠D互补,∠B=∠D,∴∠B=∠D=90°,∠CAD=∠CAB=∠DAB=30°,∵在△ADC中,cos30°=,在△ABC中,cos30°=,∴AB=AC,AD=.∴AB+AD=.(2)由(1)知,AE+AF=AC,∵AC为角平分线,CF⊥CD,CE⊥AB,∴CE=CF.而∠ABC与∠D互补,∠ABC与∠CBE也互补,∴∠D=∠CBE.∵在Rt△CDF与Rt△CBE中,∴Rt△CDF≌Rt△CBE.∴DF=BE.∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF=AC.点评:本题考查了直角三角形全等的判定及性质;通过辅助线来构建全等三角形是解题的常用方法,也是解决本题的关键.8.(2007•常德)如图,已知AB=AC,(1)若CE=BD,求证:GE=GD;(2)若CE=m•BD(m为正数),试猜想GE与GD有何关系.(只写结论,不证明)考点:全等三角形的判定与性质.专题:证明题;压轴题;探究型.分析:(1)要证GE=GD,需证△GDF≌△GEC,由已知条件可根据AAS判定.(2)若CE=m•BD(m为正数),那么GE=m•GD.解答:证明:(1)过D作DF∥CE,交BC于F,则∠E=∠GDF.∵AB=AC,∴∠ACB=∠ABC∵DF∥CE,∴∠DFB=∠ACB,∴∠DFB=∠ACB=∠ABC.∴DF=DB.∵CE=BD,∴DF=CE,在△GDF和△GEC中,,∴△GDF≌△GEC(AAS).∴GE=GD.(2)GE=m•GD.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本题的辅助线是解决题目的关键.9.(2006•泰安)(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为AC=BD;∠APB的大小为α;(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD间的等量关系式为AC=k•BD;∠APB的大小为180°﹣α.考点:全等三角形的判定;三角形内角和定理.专题:探究型.分析:(1)分析结论AC=BD可知,需要证明△AOC≌△BOD,围绕这个目标找全等的条件;(2)与图①比较,图形条件发生了变化,仍然可以证明△AOC≌△BOD,方法类似;(3)转化为证明△AOC∽△BOD.解答:解:(1)①∵∠AOB=∠COD=60°,∴∠AOB+∠BOC=∠COD+∠BOC.即:∠AOC=∠BOD.又∵OA=OB,OC=OD,∴△AOC≌△BOD.∴AC=BD.②由①得:∠OAC=∠OBD,∵∠AEO=∠PEB,∠APB=180°﹣(∠BEP+∠OBD),∠AOB=180°﹣(∠OAC+∠AEO),∴∠APB=∠AOB=60°.(2)AC=BD,α(3)AC=k•BD,180°﹣α.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.10.(2005•南宁)(A类)如图,DE⊥AB、DF⊥AC.垂足分别为E、F.请你从下面三个条件中,再选出两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况).①AB=AC;②BD=CD;③BE=CF已知:DE⊥AB、DF⊥AC,垂足分别为E、F,AB=AC,BD=CD求证:BE=CF已知:DE⊥AB、DF⊥AC,垂足分别为E、F,AB=AC,BE=CF求证:BD=CD已知:DE⊥AB、DF⊥AC,垂足分别为E、F,BD=CD,BE=CF求证:AB=AC(B类)如图,EG∥AF,请你从下面三个条件中,再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况).①AB=AC;②DE=DF;③BE=CF已知:EG∥AF,AB=AC,DE=DF求证:BE=CF友情提醒:若两题都做的同学,请你确认以哪类题记分,你的选择是A类类题.考点:全等三角形的判定与性质.专题:证明题;开放型.分析:本题是开放题,应先确定选择哪对三角形,对应三角形全等条件求解;再根据全等三角形的性质得出结论.解答:解:(A类)已知:…,AB=AC,BD=CD求证:BE=CF.证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.在△BDE和△CDF中∴△BDE≌△CDF.∴BE=CF.已知:…,AB=AC,DE=DF,求证:BE=CF.证明:∵EG∥AF,∴∠GED=∠F,∠BGE=∠BCA.∵AB=AC,∴∠B=∠BCA,∴∠B=∠BGE,∴BE=EG.在△DEG和△DFC中∴△DEG≌△DFC,∴EG=CF,∴BE=CF.点评:这是一道考查三角形全等的识别方法的开放性题目,答案可有多种.同时还考查了全等三角形的性质.。
完整版)全等三角形基础练习证明题
完整版)全等三角形基础练习证明题1.已知三角形ABC中,AD为中线,BE⊥AD,CF⊥AD,证明BE=CF。
2.已知四边形ACBD中,AC=BD,AE=CF,BE=DF,证明AE∥CF。
3.已知四边形ABCD中,AB=CD,BE=DF,AE=CF,证明AB∥CD。
4.已知四边形ABCD中,AB=CD,AD=CB,证明AB∥CD。
5.已知两个三角形中,∠BAC=∠DAE,∠1=∠2,BD=CE,证明三角形ABD≌三角形ACE。
6.已知四边形ABED中,CD∥AB,DF∥EB,DF=EB,证明AF=CE。
7.已知四边形BEFC中,BE=CF,AB=CD,∠B=∠C,证明AF=DE。
8.已知四边形ABED中,AD=CB,∠A=∠C,AE=CF,证明EB∥DF。
9.已知三角形ABC中,M为AB的中点,∠1=∠2,MC=MD,证明∠C=∠D。
10.已知四边形ABFE和CDFE中,AE=DF,BF=CE,AE∥DF,证明AB=CD。
11.已知四边形ABCD中,∠1=∠2,∠3=∠4,证明AC=AD。
12.已知四边形ABCD中,∠E=∠F,∠1=∠2,AB=CD,证明AE=DF。
13.已知四边形ABCDEF中,ED⊥AB,EF⊥BC,BD=EF,证明BM=ME。
14.已知三角形ABC中,高AD与BE相交于点H,且AD=BD,证明三角形BHD≌三角形ACD。
15.已知四边形ABCDE中,∠A=∠D,AC∥FD,AC=FD,证明AB∥DE。
16.已知三角形ABC和三角形ADE中,AC=AB,AE=AD,∠1=∠2,证明∠3=∠4.17.已知三角形ABC和三角形DEF中,EF∥BC,AF=CD,AB⊥BC,DE⊥EF,证明三角形ABC≌三角形DEF。
18.已知四边形ABED中,AD=AE,∠B=∠C,证明AC=AB。
19.已知三角形ABC中,AD⊥BC,BD=CD,证明AB=AC。
20.已知三角形ABC和三角形BAD中,∠1=∠2,BC=AD,证明三角形ABC≌三角形BAD。
全等三角形易错题(Word版 含答案)
一、八年级数学全等三角形解答题压轴题(难)1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5Q(厘米/秒);(2)点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得△BPD≌△CQP;②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x秒,即可列出方程1562202x x,解方程即可得到结果.【详解】(1)①因为t=1(秒),所以BP=CQ=6(厘米)∵AB=20,D为AB中点,∴BD=10(厘米)又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,故CQ =BD =10.所以点P 、Q 的运动时间84663BPt (秒), 此时107.543Q CQ V t (厘米/秒).(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程设经过x 秒后P 与Q 第一次相遇,依题意得1562202x x , 解得x=803(秒) 此时P 运动了8061603(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48, 所以点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.2.(1)如图1,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两动点,且∠DAE=45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF .(1)试说明:△AED ≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE 的长;(3)如图2,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC 所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC ≌, 得到AE AF =,BAE CAF ∠=∠,45,EAD ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=EAD DAF ∠=∠,从而得到.AED AFD ≌ ()2 由△AED AFD ≌得到ED FD =,再证明90DCF ∠=︒,利用勾股定理即可得出结论. ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+=求出AD 的长,即可求得2DE .试题解析:()1ABE AFC ≌,AE AF =,BAE CAF ∠=∠,45,EAD ∠=90,BAC ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=在AED 和AFD 中,{AF AEEAF DAE AD AD ,=∠=∠=.AED AFD ∴≌()2AED AFD ≌,ED FD ∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CGA ≌△CDA ,∴CG=CD ,∵CG=CB+BF+FG=CB+2BF=DE+2BF ,∴CD=2BF+DE .【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.4.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.【详解】(1):(1)CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,∴∠BAD=∠CAE.又 BA=CA,AD=AE,∴△ABD≌△ACE (SAS)∴∠ACE=∠B=45°且 CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE⊥BD.故答案为垂直,相等;②都成立,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠CAE,在△DAB与△EAC中,AD AEBAD CAEAB AC⎧⎪∠∠⎨⎪⎩===∴△DAB≌△EAC,∴CE=BD,∠B=∠ACE,∴∠ACB+∠ACE=90°,即CE⊥BD;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.5.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .(1)求出AFC ∠的度数;(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.【答案】(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析.【解析】【分析】(1)根据三角形的内角和性质只要求出∠FAC ,∠ACF 即可解决问题;(2)根据在图2的 AC 上截取CG=CD ,证得△CFG ≌△CFD (SAS),得出DF= GF ;再根据ASA 证明△AFG ≌△AFE ,得EF=FG ,故得出EF=FD ;(3)根据(2) 的证明方法,在图3的AC 上截取AG=AE ,证得△EAF ≌△GAF (SAS)得出∠EFA=∠GFA ;再根据ASA 证明△FDC ≌△FGC ,得CD=CG 即可解决问题.【详解】(1)解:∵∠ACB =90°,∠B =60°,∴∠BAC =90°﹣60°=30°,∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴∠FAC =15°,∠FCA =45°,∴∠AFC =180°﹣(∠FAC+∠ACF )=120°(2)解:FE 与FD 之间的数量关系为:DF =EF .理由:如图2,在AC 上截取CG =CD ,∵CE 是∠BCA 的平分线,∴∠DCF =∠GCF ,在△CFG和△CFD中,CG CDDCF GCFCF CF=⎧⎪∠=∠⎨⎪=⎩,∴△CFG≌△CFD(SAS),∴DF=GF.∠CFD=∠CFG由(1)∠AFC=120°得,∴∠CFD=∠CFG=∠AFE=60°,∴∠AFG=60°,又∵∠AFE=∠CFD=60°,∴∠AFE=∠AFG,在△AFG和△AFE中,AFE AFGAF AFEAF GAF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AFG≌△AFE(ASA),∴EF=GF,∴DF=EF;(3)结论:AC=AE+CD.理由:如图3,在AC上截取AG=AE,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA=∠GFA,AG=AE∵∠BAC+∠BCA=180°-∠B=180°-60°=120°∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-12(∠BAC+∠BCA)=180°-12×120°=120°,∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.【点睛】本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.6.综合实践如图①,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为点D E 、,2.5, 1.7AD cm DE cm ==.(1)求BE 的长;(2)将CE 所在直线旋转到ABC ∆的外部,如图②,猜想AD DE BE 、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC ∆中,,AC BC D C E =、、三点在同一直线上,并且BEC ADC BCA α∠=∠=∠=,其中α为任意钝角.猜想AD DE BE 、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE ,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE ≅,得到AD CE =,CD BE =,再根据2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;(2)先证明ACD CBE ≅,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+(3)∵BEC ADC BCA α∠=∠=∠=∴180BCE ACD a ︒∠+∠=-180BCE BCE a ︒∠+∠=-∴ACD BCE ∠=∠在ACD 与CBE △中, ADC E a ACD BCE AC BC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.7.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.【详解】(1)∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD ,在△ABD 与△CAE 中,∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,∴△ABD ≌△CAE(AAS),∴BD=AE ,AD=CE ,∵DE=AD+AE ,∴DE=CE+BD ,故答案为:DE=CE+BD ;(2)(1)中结论还仍然成立,理由如下:∵BDA AEC BAC α∠=∠=∠=,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD ,在△ADB 与△CEA 中,∵∠ABD=∠CAE ,∠ADB=∠CEA ,AB=AC ,∴△ADB ≌△CEA(AAS),∴AE=BD ,AD=CE ,∴BD+CE=AE+AD=DE ,即:DE=CE+BD ,(3)DEF ∆为等边三角形,理由如下:由(2)可知:△ADB ≌△CEA ,∴BD=EA ,∠DBA=∠CAE ,∵△ABF 与△ACF 均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF ,∴∠DBA+∠ABF=∠CAE+CAF ,∴∠DBF=∠FAE ,在△DBF 与△EAF 中,∵FB=FA ,∠FDB=∠FAE ,BD=AE ,∴△DBF ≌△EAF(SAS),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.8.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD =,且AE BE = . (1)求线段 AO 的长;(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)的条件下,点 F 是直线AC 上的一点且 CF BO =.是否存在t 值,使以点 ,,B O P 为顶 点的三角形与以点 ,,F C Q 为顶点的三角形全等?若存在,请直接写出符合条件的 t 值; 若不存在,请说明理由.【答案】(1)5;(2)①当点Q 在线段BD 上时,24QD t =-,t 的取值范围是102t <<;②当点Q 在射线DC 上时,42QD t =-,,t 的取值范围是152t <≤;(3)存在,1t =或53. 【解析】【分析】(1)只要证明△AOE ≌△BCE 即可解决问题;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD=2-4t ,②当点Q 在射线DC 上时,DQ=4t-2时;(3)分两种情形求解即可①如图2中,当OP=CQ 时,BOP ≌△FCQ .②如图3中,当OP=CQ 时,△BOP ≌△FCQ ;【详解】解:(1)∵AD 是高,∴90ADC ∠=∵BE 是高,∴90AEB BEC ∠=∠=∴90EAO ACD ∠+∠=,90EBC ECB ∠+∠=,∴EAO EBC ∠=∠在AOE ∆和BCE ∆中,EAO EBC AE BEAEO BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE ∆≌BCE ∆∴5AO BC ==;(2)∵23BD CD =,=5BC ∴=2BD ,=3CD ,根据题意,OP t =,4BQ t =,①当点Q 在线段BD 上时,24QD t =-,∴21(24)22S t t t t =-=-+,t 的取值范围是102t <<. ②当点Q 在射线DC 上时,42QD t =-,∴21(42)22S t t t t =-=-,t 的取值范围是152t <≤ (3)存在. ①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴5-4t ═t ,解得t=1,②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴4t-5=t ,解得t=53. 综上所述,t=1或53s 时,△BOP 与△FCQ 全等. 【点睛】 本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,ABC ∆是等腰直角三角形,090BAC ∠=,点D 是直线BC 上的一个动点(点D 与点B C 、不重合),以AD 为腰作等腰直角ADE ∆,连接CE .(1)如图①,当点D 在线段BC 上时,直接写出,BC CE 的位置关系,线段,BC CD ,CE 之间的数量关系;(2)如图②,当点D 在线段BC 的延长线上时,试判断线段BC ,CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由;(3)如图③,当点D 在线段CB 的延长线上时,试判断线段,BC CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由.【答案】(1)见解析;(2)BC CE ⊥,CE BC CD =+,理由见解析;(3),BC CE CD BC CE ⊥=+,理由见解析【解析】【分析】(1)根据条件AB=AC ,∠BAC=90°,AD=AE ,∠DAE=90°,判定△ABD ≌△ACE (SAS ),利用两角的和即可得出BC CE ⊥;利用线段的和差即可得出BC CE CD =+;(2)同(1)的方法根据SAS 证明△ABD ≌△ACE ,得出BD=CE ,∠ACE=∠ABD ,从而得出结论;(3)先根据SAS 证明△ABD ≌△ACE ,得出ADB AEC ∠=∠,BD CE =,从而得出结论.【详解】(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB=AC ,AE =AD ,在△△ABD 和△ACE 中90AB AC BAC DAE AD AE ⎧⎪∠∠=︒⎨⎪⎩=== , ∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE ,BD=CE,又∵△ABC 是等腰直角三角形,∴∠B+∠ACB=90︒,∴∠ACE +∠ACB=90︒,即BC CE ⊥,∵BC=BD+CD, BD=CE ,∴BC CE CD =+;(2)BC CE ⊥,CE BC CD =+,理由如下:∵ABC ∆、ADE ∆是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC DAC DAE DAC ∠+∠=∠+∠即BAD CAE ∠=∠,在ABD ∆和ACE ∆中AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆∴BD CE =∵BD BC CD =+∴CE BC CD =+,∴ABD ACE ∠=∠,∵090ABD ACE ∠+∠=∴090ACE ACB ∠+∠=∴BC CE ⊥.(3),BC CE CD BC CE ⊥=+,理由如下:∵ABC ADE ∆∆、是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC BAE DAE BAE ∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆,∴ADB AEC ∠=∠,BD CE =,∵CD BD BC =+,∴CD CE BC =+,∵090ADE AED ∠+∠=,即090ADB CDE AED ∠+∠+∠=∴090AEC CDE AED ∠+∠+∠=,∴090DCE ∠=,即BC CE ⊥.【点睛】考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,解题关键是根据利用两边及其夹角分别对应相等的两个三角形全等判定三角形全等.10.综合与实践:我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.(1)请你用所学知识判断乐乐说法的正确性.如图,已知ABC ∆、111A B C ∆均为锐角三角形,且11AB A B =,11BC B C =,1C C ∠=∠. 求证:111ABC A B C ∆∆≌.(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.【答案】(1)见解析;(2)钝角三角形或直角三角形.【解析】【分析】(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出△ABC ≌△A 1B 1C 1即可.(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证.【详解】(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒.在BDC ∆和111B D C ∆中,1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,∴111BDC B D C ∆∆≌,∴11BD B D =.在Rt BDA ∆和111Rt B D A ∆中,11AB A B =,11BD B D =,∴111Rt Rt (HL)BDA B D A ∆∆≌,∴1A A ∠=∠.在ABC ∆和111A B C ∆中,1C C ∠=∠,1A A ∠=∠,11AB A B =,∴111(AAS)ABC A B C ∆∆≌.(2)如图,当这两个三角形都是直角三角形时,∵11AB A B =,11BC B C =,190C C ∠==∠︒.∴Rt ABC ∆≌111Rt A B C ∆(HL );∴当这两个三角形都是直角三角形时,它们也会全等;如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =,再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠,再利用AAS 证明111ABC A B C ∆∆≌;∴当这两个三角形都是钝角三角形时,它们也会全等;故答案为:钝角三角形或直角三角形.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.。
(完整版)全等三角形证明经典50题(含答案)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CDAB B A CDF2 1 EAC D E F 21 A D BC A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB15. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BED C B A FE PD A CB16. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA20.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.F AEDCB P E D CB A DC B A23.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .证明:25、如图:DF=CE ,AD=BC ,∠D=∠C 。
(完整版)全等三角形练习题及答案
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
(完整版)八年级上册——全等三角形证明题题型归类训练
《全等三角形》证明题题型归类训练题型1:全等+等腰性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .题型2:两次全等1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CFFDCBA2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分O C E BDAA B E O F D C3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型3:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.AFCBDEG3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AE4、在△ABC 中,=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.5、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。
全等三角形易错题(Word版 含答案)
一、八年级数学全等三角形解答题压轴题(难)1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5Q(厘米/秒);(2)点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得△BPD≌△CQP;②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x秒,即可列出方程1562202x x,解方程即可得到结果.【详解】(1)①因为t=1(秒),所以BP=CQ=6(厘米)∵AB=20,D为AB中点,∴BD=10(厘米)又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,故CQ =BD =10.所以点P 、Q 的运动时间84663BP t (秒), 此时107.543Q CQ V t (厘米/秒).(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程设经过x 秒后P 与Q 第一次相遇,依题意得1562202x x , 解得x=803(秒) 此时P 运动了8061603(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48, 所以点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.2.如图1,等腰△ABC中,AC =BC =∠ACB=45˚,AO 是BC 边上的高,D 为线段AO 上一动点,以CD 为一边在CD 下方作等腰△CDE ,使CD =CE 且∠DCE=45˚,连结BE .(1) 求证:△ACD ≌△BCE ;(2) 如图2,在图1的基础上,延长BE 至Q , P 为BQ 上一点,连结CP 、CQ,若CP =CQ =5,求PQ 的长.(3) 连接OE ,直接写出线段OE 的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C 作CH ⊥BQ 于H ,∵△ABC 是等腰三角形,∠ACB=45˚,AO 是BC 边上的高,45DAC ∴∠=,ACD BCE ≌,45PBC DAC ∴∠=∠=,∴在Rt BHC 中,2242422CH BC =⨯=⨯=, 54PC CQ CH ===,,3PH QH ∴==,6.PQ ∴=()3OE BQ ⊥时,OE 取得最小值.最小值为:42 2.OE =-3.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立(3)△DEF 为等边三角形【解析】解:(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA=900.∵∠BAC =900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD .又AB="AC" ,∴△ADB ≌△CEA (AAS ).∴AE=BD ,AD=CE .∴DE="AE+AD=" BD+CE .(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE . ∵∠BDA=∠AEC=α,AB=AC ,∴△ADB ≌△CEA (AAS ).∴AE=BD ,AD=CE .∴DE=AE+AD=BD+CE .(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.4.在四边形ABCD 中,E 为BC 边中点.(Ⅰ)已知:如图,若AE 平分∠BAD,∠AED=90°,点F 为AD 上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD(Ⅱ)已知:如图,若AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点F,G 均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+12BC+CD.【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS 证明△ABE ≌AFE 即可;(2)由(1)得出∠AEB=∠AEF ,BE=EF ,再证明△DEF ≌△DEC (SAS ),得出DF=DC ,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE ≌△AFE (SAS ),△DGE ≌△DCE (SAS ),由全等三角形的性质得出BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,进而证明△EFG 是等边三角形;(2)由△EFG 是等边三角形得出GF=EE=BE=12BC ,即可得出结论. 【详解】(Ⅰ)(1)∵AE 平分∠BAD ,∴∠BAE=∠FAE ,在△ABE 和△AFE 中, AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG 是等边三角形,(2)∵△EFG 是等边三角形,∴GF=EF=BE=12BC , ∵AD=AF+FG+GD , ∴AD=AB+CD+12BC . 【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.5.如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F(1)证明:PC=PE ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明6.如图1,Rt△ABC中,∠A=90°,AB=AC,点D是BC边的中点连接AD,则易证AD=BD=CD,即AD=12BC;如图2,若将题中AB=AC这个条件删去,此时AD仍然等于12BC.理由如下:延长AD到H,使得AH=2AD,连接CH,先证得△ABD≌△CHD,此时若能证得△ABC≌△CHA,即可证得AH=BC,此时AD=12BC,由此可见倍长过中点的线段是我们三角形证明中常用的方法.(1)请你先证明△ABC≌△CHA,并用一句话总结题中的结论;(2)现将图1中△ABC折叠(如图3),点A与点D重合,折痕为EF,此时不难看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若图2中△ABC也进行这样的折叠(如图4),此时线段BE、CF、EF还有这样的关系式吗?若有,请证明;若没有,请举反例.(3)在(2)的条件下,将图3中的△DEF绕着点D旋转(如图5),射线DE、DF分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.【解析】【分析】(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.(3)图5,图6中,上面的关系式仍然成立.【详解】(1)证明:如图2中,∵BD=DC,∠ADB=∠HDC,AD=HD,∴△ADB≌△HDC(SAS),∴∠B=∠HCD,AB=CH,∴AB∥CH,∴∠BAC+∠ACH=180°,∵∠BAC=90°,∴∠ACH=∠BAC=90°,∵AC=CA,∴△BAC≌△HCA(SAS),∴AH=BC,∴AD=DH=BD=DC,∴AD=12 BC.结论:直角三角形斜边上的中线等于斜边的一半.(2)解:有这样分关系式.理由:如图4中,延长ED到H山顶DH=DE.∵ED=DH,∠EDB=∠HDC,DB=DC,∴△EDB≌△HDC(SAS),∴∠B=∠HCD,BE=CH,∵∠B+∠ACB=90°,∴∠ACB+∠HCD=90°,∴∠FCH=90°,∴FH2=CF2+CH2,∵DF⊥EH,ED=DH,∴EF=FH,∴EF2=BE2+CF2.(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.证明方法类似(2).【点睛】本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.7.(1)在等边三角形ABC中,①如图①,D ,E 分别是边AC ,AB 上的点,且AE CD =,BD 与EC 交于点F ,则BFE ∠的度数是___________度;②如图②,D ,E 分别是边AC ,BA 延长线上的点,且AE CD =,BD 与EC 的延长线交于点F ,此时BFE ∠的度数是____________度;(2)如图③,在ABC ∆中,AC BC =,ACB ∠是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,且AE CD =,BD 与EC 的延长线交于点F ,若ACB α∠=,求BFE ∠的大小(用含法α的代数式表示).【答案】(1)60;(2)60;(3)BFE α∠=【解析】【分析】(1)①只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD ,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD=∠DCF ,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC ≌△CDB ,可得∠E=∠D ,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∵AE=CD ,∴△ACE ≌△CBD ,∴∠ACE=∠CBD ,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点O是AC边的垂直平分线与BC的交点,∴=,OC OA∴∠=∠=OAC ACOα=-,∴∠=∠︒180EAC DCBα=,AE CDAC BC=,∴∆≅∆,AEC CDB∴∠=∠,E D∴∠=∠+∠=∠+∠=∠=.BFE D DCF E ECA OACα【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.∆是等边三角形,点D在边AC上(“点D不与,A C重合),点E是射线8.如图,ABCBC上的一个动点(点E不与点,B C重合),连接DE,以DE为边作作等边三角形DEF∆,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且,C F在直线DE的同侧时,过点D作//DG AB,DG交BC于点G,求证:CF EG=;(2)如图2,当DE反向延长线与AB的反向延长线相交,且,C F在直线DE的同侧时,求证:CD CE CF=+;(3)如图3,当DE反向延长线与线段AB相交,且,C F在直线DE的异侧时,猜想CD、CE、CF之间的等量关系,并说明理由.【答案】(1)证明见详解;(2)证明见详解;(3)CF=CD+CE,理由见详解.【解析】【分析】(1)由ABC∆是等边三角形,//DG AB,得∠CDG=∠A=60°,∠ACB=60°,CDG∆是等边三角形,易证∆ GDE≅∆ CDF(SAS),即可得到结论;(2)过点D作DG∥AB交BC于点G,易证∆ GDE≅∆ CDF(SAS),即可得到结论;(3)过点D作DG∥AB交BC于点G,易证∆ GDE≅∆ CDF(SAS),即可得到结论.【详解】(1)∵ABC∆是等边三角形,//DG AB,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG∆是等边三角形,∴DG=DC.∵DEF∆是等边三角形,∴DE=DF,∠EDF=60°,∴∠CDG-∠GDF=∠EDF-∠GDF,即:∠GDE=∠CDF,在∆ GDE和∆ CDF中,∵DE DFGDE CDFDG DC=⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE≅∆ CDF(SAS),∴CF EG=;(2)过点D作DG∥AB交BC于点G,如图2,∵ABC∆是等边三角形,//DG AB,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG-∠CDE=∠EDF-∠CDE ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF GE =,∴CD CG CE GE CE CF ==+=+(3)CF =CD +CE ,理由如下:过点D 作DG ∥AB 交BC 于点G ,如图3,∵ABC ∆是等边三角形,//DG AB ,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC=GC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG+∠CDE=∠EDF+∠CDE ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF GE ==GC+CE=CD+CE.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.9.已知:4590ABC A ACB ∆∠=∠=,,,点D 是AC 延长线上一点,且22AD =+,,M 是线段CD 上一个动点,连接BM ,延长MB 到H ,使得HB MB =,以点B 为中心,将线段BH 逆时针旋转45,得到线段BQ ,连接AQ .(1)依题意补全图形;(2)求证:ABQ AMB ∠=∠;(3)点N 是射线AC 上一点,且点N 是点M 关于点D 的对称点,连接BN ,如果QA BN =, 求线段AB 的长.【答案】(1)见解析;(2)证明见解析;(3)22AB =【解析】【分析】(1)根据题意可以补全图形;(2)根据三角形外角的性质即可证明;(3)作QE ⊥AB ,根据AAS 证得QEB BCM ≅,根据HL 证得Rt QEA Rt BCN ≅,设法证得2AB CD =,设AC BC x ==,则2AB x =,22CD x =,结合已知22AD =+,构建方程即可求解. 【详解】(1)补全图形如下图所示:(2)解:∵∠ABH 是ABM 的一个外角,∴ ABH BAM AMB ∠=∠+∠∵ABH HBQ ABQ ∠=∠+∠ 又∵45HBQ BAM ∠=∠=︒∴ABQ AMB∠=∠(3)过Q 作QE⊥AB,垂足为E,如下图:∵⊥QE AB∴90QEB BCM∠=∠=︒,在QEB和BCM 中,QEB BCMQBE BMCQB BM∠=∠⎧⎪∠=∠⎨⎪=⎩∴QEB BCM≅(AAS)∴EB CM=,QE BC=,在Rt QEA和Rt BCN中∵QE BC=,Q A BN=∴Rt QEA Rt BCN≅ (HL)∴AE CN CM MD DN==++∵点N是点M关于点D的对称点,∴MD DN=∴22AE CM MD EB MD=+=+∴()2222AB AE EB EB MD EB MD CD=+=+=+=设AC BC x==,则2AB x=,22CD x=,又∵22AD=,22AD AC CD x x=+=+∴222x x+=解得:2x=∴22AB=【点睛】本题主要考查了全等三角形的判定与性质、三角形外角定理、等腰直角三角形的判定与性质等知识点.熟悉全等三角形的判定方法以及正确作出辅助线、构建方程是解答的关键.10.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,如图1,求t的值;(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.【答案】(1)4;(2)∠OA′B的度数不变,∠OA′B=45 ,理由见解析;(3)点M的坐标为(6,﹣4),(4,7),(10,﹣1)【解析】【分析】(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP为等腰直角三角形,从而求得答案;(2)根据对称的性质得:PA=PA'=PB,由∠PAB+∠PBA=90°,结合三角形内角和定理即可求得∠OA'B=45°;(3)分类讨论:分别讨论当△ABP≌△MBP、△ABP≌△MPB、△ABP≌△MPB时,点M的坐标的情况;过点M作x轴的垂线、过点B作y轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M的坐标即可.【详解】(1)∵AB∥x轴,△APB为等腰直角三角形,∴∠PAB=∠PBA=∠APO=45°,∴△AOP为等腰直角三角形,∴OA=OP=4.∴t=4÷1=4(秒),故t的值为4.(2)如图2,∠OA′B的度数不变,∠OA′B=45°,∵点A 关于x 轴的对称点为A ′,∴PA =PA ',又AP =PB ,∴PA =PA '=PB ,∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,又∵∠PAB +∠PBA =90°,∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '=180()PAB PBA ∠∠︒-+180=︒-90°=90°,∴∠AA 'B =45°,即∠OA 'B =45°;(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等,①如图3,若△ABP ≌△MBP ,则AP =PM ,过点M 作MD ⊥OP 于点D ,∵∠AOP =∠PDM ,∠APO =∠DPM ,∴△AOP ≌△MDP (AAS ),∴OA =DM =4,OP =PD =3,∴M 的坐标为:(6,-4).②如图4,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PGB ≅∴34BG OP PG AO ====,∵BG ⊥x 轴BF ,⊥y 轴∴四边形BGOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OG OP PG ==+=+=在Rt ABF 和Rt PME 中∠BAF =45︒+1∠,∠MPE =45︒+2∠,∴∠BAF =∠MPE∵AB PM =∴Rt ABF Rt PME ≅∴71ME BF PE AF ====,∴M 的坐标为:(4,7),③如图5,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PEB ≅∴34BE OP PE AO ====,∵BE ⊥x 轴BF ,⊥y 轴∴四边形BEOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OE OP PE ==+=+=在Rt ABF 和Rt PMD 中∵BF ⊥y 轴∴42∠=∠∵42ABF PMD ∠∠∠+=∠+∴ABF PMD ∠∠=∵AB PM =∴Rt ABF Rt PMD ≅∴17MD AF PD BF ====,∴M 的坐标为:(10,﹣1).综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.。
(完整word版)全等三角形难题集锦(整理)
34、在等边 的两边AB,AC所在直线上分别有两点M,N,D为 外一点,且 , , ,探究:当点M,N分别爱直线AB,AC上移动时,BM,NC,MN之间的数量关系及 的周长与等边 的周长L的关系.
27、已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF
28、已知BE,CF是 的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系
29、已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE。求证:
30、已知PA= ,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧。
①当 旋转至如图②位置,点 , , 在同一直线上时, 与 的数量关系是.
②当 继续旋转至如图③位置时,(1)中的结论还成立吗? 与 存在怎样的数量关系?请说明理由.
10、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);
20、如图1、图2、图3,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90º,
(1)在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由。
(2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗?为什么?
(3)若△COD绕点O顺时针旋转一定角度后,到达图3的位置,请问AC与BD还相等吗?还具有上问中的位置关系吗?为什么?
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证 ≌ ,所以 .
(完整版)全等三角形证明经典50题(含答案)
证明:连接 BF 和 EF T BC=ED,CF=DF, / BCF= / EDF 三角形BCF 全等于三角形 EDF (边角边)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 ADD • BF=EF, / CBF= / DEF 连接 BE 在三角形 BEF 中,BF=EF • / EBF= / BEF 。
: / ABC= / AED 。
二 / ABE= / AEB 。
• AB=AE 。
在三角形 ABF 和三角形 AEF 中AB=AE,BF=EF, / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF • 三角形 ABF 和三角形 AEF 全等。
•/ BAF= / EAF ( /仁/ 2)4.已知:/ 1 = / 2, CD=DE , EF//AB ,求证:EF=AC解:延长 AD 到E,使AD=DE •/ D 是BC 中点二BD=DC 在厶 ACD 和^ BDE 中 AD=DE / BDE= / ADCBD=DC /•△ ACD ◎△ BDE ••• AC=BE=2 •••在△ ABE 中 AB-BE V AE V AB+BE •/ AB=4 即 4-2 V 2AD V 4+21 V AD V 3 • AD=21 2.已知:D 是 AB 中点,/ ACB=90 °,求证:CD —AB 2A CG// EF ,可得,/• △ EFD ^A CGD•,/ EFD =Z 1过C 作CG // EF 交AD 的延长线于点GEFD = CGDDE = DC / FDE =Z GDC (对顶角) EF = CG / CGD =Z EFD 又,EF // AB / 1= / 2 •/ CGD =Z 2 • △ AGC 为等腰三角形, AC = CG 又 EF = CG 「. EF = AC 延长CD 与P ,使D 为CP 中点。
连接 AP,BP •/ DP=DC,DA=DB • ACBP 为平行四边形又/ ACB=90 •平行四边形 ACBP 为矩形 • AB=CP=1/2AB 3.已知:BC=DE ,/ B= / E ,Z C=Z D , F 是 CD 中点,求证:/ 1 = / 2 5.已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C证明:延长 AB 取点E ,使AE = AC ,连接DE •/ AD 平分/ BAC• / EAD =Z CAD•/ AE = AC , AD = AD • △ AED 也厶 ACD ( SAS )•••/ E = Z C•/ AC = AB+BD •AE = AB+BD•/ AE = AB+BE •BD = BE •••/ BDE =Z E •••/ ABC =Z E+ / BDE •••/ ABC = 2 / E •••/ ABC = 2 / C ••• AE = AF + FE = AD + BE12.如图,四边形ABCD中,AB 在AD上。
(完整word版)全等三角形的判定HL经典练习题
全等三角形的判断HL练习题1.在 Rt △ABC和 Rt △ DEF中,∠ ACB=∠DFE=90 ,AB=DE,AC=DF,那么 Rt △ ABC与 Rt △ DEF (填全等或不全等)2.如图,点 C 在∠ DAB的内部, CD⊥ AD于 D,CB⊥AB 于 B,CD=CB那么 Rt △ ADC≌ Rt △ ABC的原因是()A. SSS B. ASA C. SAS D. HLDCB CA┎ FB ME ┘A B┐ACD2 题图3 题图 6 题图3.如图,CE⊥ AB,DF⊥ AB,垂足分别为E、F,AC∥DB,且 AC=BD,那么 Rt △ AEC≌ Rt △ BFC的原因是().A. SSS B. AAS C. SAS D. HL4.以下说法正确的个数有().①有一角和一边对应相等的的两个直角三角形全等;②有两边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个直角三角形全等;④有两角和一边对应相等的两个直角三角形全等.A . 1 个 B. 2 个 C. 3 个 D. 4 个5.过等腰△ ABC的极点 A 作底面的垂线,就获得两个全等三角形,其原因是.90 ,AM均分∠ CAB,CM=20cm,那么 M到 AB的距离是cm.6.如图,△ ABC中,∠ C=7.在△ ABC和△A B C中,假如 AB=A B,∠ B=∠B,AC=A C,那么这两个三角形().A .全等 B. 不必定全等 C. 不全等 D. 面积相等,但不全等8.已知,如图,△ ABC中, AB=AC, AD是角均分线, BE=CF,则以下说法正确的有几个()(1) AD均分∠ EDF;( 2)△ EBD≌△ FCD;( 3) BD=CD;( 4) AD⊥ BC.A. 1 个B.2个C.3个D.4个C AA BE FB CDD 8题图10题图11题图12题图9. 以下命题中正确的有()①两直角边对应相等的两直角三角形全等;②两锐角对应相等的两直角三角形全等;③斜边和一条直角边对应相等的两直角三角形全等;④一锐角和斜边对应相等的两直角三角形全等.A. 2 个B.3个C.4个D.1个10.如图,ABC 和EDF 中,B D 90 ,A E ,点 B 、 F 、C、 D 在同一条直线上,再增添一个条件,不可以判断ABC ≌EDF 的是()A.AB ED B.AC EF C.AC // EF D.BF DC11.如图,AB AC , BD AC 于D, CE AB 于E,图中全等三角形的组数是()A. 2B.3C.4D.512.如图,在△ABC和△ ABD中,∠ C=∠ D=90°,若利用“ AAS”证明△ ABC≌△ ABD,则需要加条件_______或;若利用“ HL”证明△ ABC≌△ ABD,则需要加条件或.113.已知如图,AB⊥ BD,CD⊥ BD,AB=DC,求证:AD∥ BC.DACB14. 如图,△ ABC 中, D 是 BC上一点, DE⊥AB,DF⊥AC,E、F 分别为垂足,且AE=AF,试说明: DE=DF,AD均分∠ BAC.15.如图, B、 E、 F、 C在同向来线上, AE⊥ BC, DF⊥ BC, AB=DC, BE=CF,试判断 AB 与 CD的地点关系,并证明 .AF ┐EB ┘ CD16.如图, AD是△ ABC的高, E 为 AC上一点, BE交 AD于 F,且有 BF=AC, FD=CD,尝试究 BE 与 AC的地点关系 .AEFBCD17.如图,在△ ABC中,∠ ACB=90,AC=BC,直线 DN经过点 C,且 AD⊥DN于 D,BE⊥DN于E,求证: DE=AD+BE.BAD CE N218. 如图, AB=CD, DF⊥ AC于 F, BE⊥ AC于 E, DF=BE,求证: AF=CE. DFA19.如图,△ ABC中,∠ C=90°, AB=2AC, M是 AB的中点,点 N 在 BC上, MN⊥ AB。
完整版)全等三角形经典例题(含答案)
完整版)全等三角形经典例题(含答案)全等三角形证明题精选1.在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F。
证明:△ADE≌△CBF;若AC与BD相交于点O,证明:AO=CO。
2.已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D。
证明:AC∥DE;若BF=13,EC=5,求BC的长。
3.在△ABC中,BD⊥AC于点D,CE⊥AB于点E,AD=AE。
证明:BE=CD。
4.点O是线段AB和线段CD的中点。
证明:△AOD≌△BOC;AD∥BC。
5.点C是AE的中点,∠A=∠ECD,AB=CD。
证明:∠B=∠D。
6.已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC。
证明:AE=BC。
7.在△ABE和△DEF中,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF。
证明:AF=DF。
8.点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF。
证明:AB∥DE。
9.在△ABC中,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB。
证明:AE=CE。
10.点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF。
证明:DE=CF。
11.点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD。
证明:AE=FB。
12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.证明:BD=CE;∠M=∠N。
13.在△ABC中,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD。
证明:AB=AC。
14.在△ABC和△CED中,AB∥CD,AB=CE,AC=CD。
证明:∠B=∠E。
15.在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F。
证明:AB=AC;若AD=2,∠DAC=30°,求AC的长。
16.已知直角三角形ABC和直角三角形DBF,且它们相似,∠D=28°,求∠GBF的度数。
(完整版)全等三角形的基础和经典例题含有答案
第十一章:全等三角形一、基础知识1.全等图形的有关概念(1)全等图形的定义能够完全重合的两个图形就是全等图形。
例如:图13-1和图13—2就是全等图形图13-1图13—2(2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。
例如:图13—3和图13-4中的两对多边形就是全等多边形。
图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.(4)全等多边形的表示例如:图13—5中的两个五边形是全等的,记作五边形ABCDE≌五边形A’B’C’D’E’(这里符号“≌”表示全等,读作“全等于”)。
图13—5表示图形的全等时,要把对应顶点写在对应的位置.(5)全等多边形的性质全等多边形的对应边、对应角分别相等。
(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别 (1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。
(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等.相似三角形的识别法中有一个与(SSS )全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS )全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等.A BDC E B'A’ C ’D ’E’(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
(完整版)全等三角形题型归纳(经典完整)
1一,证明边或角相等方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等;如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2)同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角形全等,而且一般是在双垂直的图形中)1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。
求证:HB=HC 。
2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .A ED C B654321E DCBAFGE D CBAFMNE 1234134****70432EDC BA 二.证明线段和差问题 (形如:AB+BC=CD,AB=AD - CD)证明两条线段和等于另一条线段,常常使用截长补短法。
①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。
②补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。
证明两条线段差等于另一条线段,只需把差化成和来解决即可。
1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ;3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD三.证明线段的2倍或21关系 ( AB CE =2, MN BN =12) P E D CB A134****704331. 利用含30角的直角三角形的性质证明例1. 已知,如图1,∆ABC 是等边三角形,在AC 、BC 上分别取点D 、E ,且AD =CE ,连结AE 、BD 交于点N ,过B 作BM AE ⊥,垂足为M ,求证:MN BN =12(提示:先证∠=BNE 60)2. 利用等线段代换(充分利用中点)例1.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .3.转化为线段和问题,利用截长补短法例5. 已知:如图5,四边形ABCD 中,∠=D 90,对角线AC 平分∠BAD ,AC BC =,求证:AD AB =12四.证明二倍角关系利用三角形外角和定理和等量代换如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B FE DCB ADCBA134****7043 4。
(完整word版)八年级全等三角形证明经典50题(含答案).doc
1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求ADA 解:延长AD 至IJE,使AD=DE・・・D 是BC 中点BD=DC在厶ACD 和厶BDE 中AD=DEZBDE= ZADC BD=DCAA ACD A BDE•*. AC=BE=2・・•在△ ABE 中AB-BE < AE<AB+BE・・・AB=4即 4・2 <2AD < 4+21 < AD < 3・・・AD=2延长CD 与P,使D 为CP 中点。
连接VDP=DC,DA=DBA AC BP 为平行四边形又 Z ACB=90・・・平行四边形ACBP 为矩形AAB=CP=1/2AB 2.已知:D 是AB 中点,Z ACB=90 0,求证:CD [AB 2AAP,BP3.已知:BC=DE , Z B= ZE, Z C= ZD , F 是CD 中点,求证:Z 1= Z2证明:连接BF和EF・・・ BC=ED,CF=DF, Z BCF= Z EDF・・・三角形BCF全等于三角形EDF(边角边)・・・ BF=EF, ZCBF=Z DEF连接BE在三角形BEF中,BF=EF/. Z EBF=Z BEFo・・・ Z ABC= Z AED o・・・ Z ABE= Z AEBo/. AB=AE o在三角形ABF和三角形AEF屮AB=AE,BF=EF,ZABF= Z ABE+ Z EBF= ZAEB+ Z BEF= Z AEF・・・三角形ABF和三角形AEF全等。
・・・ Z BAF= Z EAF(Z 1= Z 2)o4. 己知:Z 1= Z 2 , CD=DE , EF//AB ,求证:EF=AC过C作CG〃EF交AD的延长线于点GCG// EF,可得,Z EFD= CGDDE= DCZFDE= Z GDC (对顶角)AA EFD^A CGDEF= CGZCGD = Z EFD又,EF// AB・・・,Z EFD= Z 1Z1= Z 2・・・Z CGD= Z 2・・・△ AGC为等腰三角形,AC= CG又EF=CG・・・EF= AC5.已知:AD 平分Z BAC, AC=AB+BD ,求证:Z B=2 Z C证明:延长AB取点E,使AE=AC,连接DEVAD 平分Z BACAZ EAD=Z CAD・・・AE=AC, AD = ADA A AED^A ACD ( SAS)AZ E=Z CVAC = AB+BD・・・AE= AB+BD・・・AE= AB+BEABD = BE・・・Z BDE=Z EVZ ABC=Z E+ Z BDEAZ ABC = 2 ZEAZ ABC = 2 ZC6.己知:AC 平分Z BAD , CE丄AB , Z B+ Z D=180 ° ,求证:AE=AD+BE・・・CE丄AB ・・・Z CEB=Z CEF= 90° ・・・EB=EF, CE = CE, AACEB^ACEF ・・・Z B=Z CFEVZ B+Z D= 180 ° , ZCFE+Z CFA= 180 0AZ D = Z CFAVAC 平分Z BAD・・・Z DAC = Z FACVAC = AC・・・△ ADC 竺△ AFC ( SAS)/.AD = AF ・・・AE= AF+ FE= AD + BE解:延长AD至IJE,使AD=DE・・・D是BC中点・・・BD=DC在厶ACD和厶BDE中AD=DEZBDE= Z ADCBD=DC7.已知:AB=4 , AC=2 , D是BC屮点, AD是整数,求ADA 证明:在AE上取F,使EF= EB,连接CFAAACD^ABDE•*. AC=BE=2・・•在△ ABE中AB-BE < AE<AB+BE・・・AB=4即4・2 < 2AD < 4+21 < AD < 3・・・AD=218.已知:D 是AB 中点,Z ACB=90 0,求证:CD -AB2解:延长AD到E,使AD=DE・・・D是BC屮点・・・BD=DC在厶ACD和厶BDE中AD=DEZBDE= Z ADCBD=DCAA ACD A BDE•*. AC=BE=2•・•在A ABE中9.已知:BC=DE , Z B= ZE, Z C= ZD , F 是CD 中点,求证:Z 1= Z2A证明:连接BF和EF。
(完整版)全等三角形证明经典30题
全等三角形经典题目精选1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CAD BCB ACDF21 ECD B A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
8.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C9.已知:AB=CD ,∠A=∠D ,求证:∠B=∠C10.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB11.已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE12.已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DCDC B A F E A B C DPD A CB13.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .14.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA15.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .PED CB A16.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠BD C B A17.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,F A E DCBAF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.18.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):O E DC B A19.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .FEDC B A20、如图:DF=CE ,AD=BC ,∠D=∠C 。
全等三角形证明题(完整版)
全等三角形证明题全等三角形证明题第一篇:全等三角形证明题全等三角形证明题1在直角坐标系中,有两个点a△ab≌△aed;ob=oe .e8.如图,在△ab和△db中,ab = d,a = db,a与db交于点m.(1)求证:△ab≌△db ;(2)过点作n∥bd,过点b作bn∥a,n与bn交于点n,试判断线段bn与n的数量关系,并证明你的结论.bn9.在⊿ab中,∠b=60。
,∠ba和∠ba的平分线ad和f交于i 点。
试猜想:af、d、a三条线段之间有着怎样的数量关系,并加以证明。
10. 在?ab中,ab=a,de∥b.(1)试问?ade是否是等腰三角形,说明理由.(2)若m为de上的点,且bm平分?ab,m平分?ab,若?ade的周长20,b=8.求?ab的周长.amdeb11. 如图, 已知: 等腰rt△oab中,∠aob=900, 等腰rt△eof 中,∠eof=900, 连结ae、bf. 求证:ae=bf;ae⊥bf.1如图,△ab中,d是b的中点,过d点的直线gf交a于点f,交a的平行线bg于点g,de⊥gf交ab于点e,连接eg。
(1)求证:bg=f;(2)请你判断be+f与ef的大小关系,并证明。
13.如图:△ab和△ade是等边三角形.证明:bd=e.bg dabde14. 如图,一艘轮船从点a向正北方向航行,每小时航行15海里,小岛p在轮船的北偏西15°,3小时后轮船航行到点b,小岛p此时在轮船的北偏西30°方向,在小岛p的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由。
北b15.如图若直线ae绕a点旋转到图若直线ae绕a点旋转到图.a. 全等三角形周长相等b. 全等三角形能够完全重合. 形状相同的图形就是全等图形d.全等图形的形状和大小都相同9.如图,已知△ab ≌△def,且ab=4,b=5,a=6,则de的长为.a.4b.5c.6d.不能确定10.如图,若△oad≌△ob,且∠0=65°,∠=20°,则∠oad等于().a. 85°b. 95°c. 65°d.105°11. 如图,已知∠1=∠2,要使△ab≌△ade,还需条件().a. ab=ad,b=deb. b=de,a=ae. ∠b=∠d,∠=∠ed.a=ae,ab=adaeebdbfbd1如图,△ab≌△aef,ab=ae,∠b=∠e,则对于结论①a=af;②∠fab=∠eab;③ef=b;④∠eab=∠fa,其中正确结论的个数是().a. 1个b. 2个. 3个d. 4个13.如图,已知△ab中,ab=a,它的周长为24,又ad⊥b于d,△abd的周长为20,则ad的长为().a. 6b.8. 10d. 12三、证明题1.已知:如图点是ab的中点,d∥be,且d=be.求证:∠d=∠e.adbe、f是ab上的两点,ae=bf,又a∥db,且a=db.求证:f=de。
(完整版)全等三角形证明经典50题(含答案)
1.已知: AB=4 , AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD解:延伸 AD 到 E,使 AD=DE ∵ D 是 BC 中点∴ BD=DC在△ ACD 和△ BDE 中 AD=DE ∠ BDE= ∠ ADCBD=DC ∴△ ACD ≌△ BDE∴AC=BE=2 ∵在△ ABE 中 AB-BE < AE <AB+BE ∵ AB=4即4-2< 2AD < 4+21< AD < 3∴AD=22. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD 1 AB2ADC B延伸 CD 与 P,使 D 为 CP 中点。
连结AP,BP∵DP=DC,DA=DB ∴ ACBP 为平行四边形又∠ ACB=90 ∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3.已知: BC=DE ,∠ B=∠ E,∠ C=∠ D ,F 是 CD 中点,求证:∠ 1=∠ 2A12B EC F D证明:连结 BF 和 EF∵ BC=ED,CF=DF, ∠ BCF= ∠ EDF∴三角形 BCF 全等于三角形 EDF( 边角边 )∴BF=EF, ∠CBF= ∠ DEF 连结 BE 在三角形 BEF 中 ,BF=EF∴∠EBF= ∠ BEF 。
∵ ∠ ABC= ∠ AED 。
∴ ∠ABE= ∠ AEB 。
∴AB=AE 。
在三角形 ABF 和三角形 AEF 中 AB=AE,BF=EF,∠ABF= ∠ ABE+ ∠ EBF= ∠ AEB+ ∠ BEF= ∠AEF∴三角形 ABF 和三角形 AEF 全等。
∴∠ BAF=∠ EAF (∠ 1=∠ 2) 4.已知:∠ 1=∠2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB过 C 作 CG∥ EF 交 AD 的延伸线于点G CG∥ EF,可得,∠ EFD= CGDDE= DC ∠ FDE=∠ GDC(对顶角)∴ △ EFD≌ △ CGD EF= CG ∠ CGD=∠ EFD 又, EF∥AB ∴,∠ EFD=∠ 1 ∠ 1= ∠2 ∴∠ CGD=∠ 2∴ △AGC 为等腰三角形,AC= CG 又 EF= CG∴ EF=AC5.已知: AD 均分∠ BAC ,AC=AB+BD ,求证:∠ B=2 ∠ C A证明:延伸AB 取点 E,使 AE = AC ,连结 DE∵AD 均分∠ BAC∴∠ EAD =∠ CAD∵AE =AC , AD = AD∴△ AED ≌△ ACD(SAS)∴∠ E=∠ C∵AC =AB+BD∴AE = AB+BD∵AE = AB+BE∴ BD =BE∴∠ BDE =∠ E∵∠ ABC =∠ E+ ∠ BDE∴∠ ABC = 2∠E∴∠ ABC = 2∠C6.已知: AC 均分∠ BAD ,CE⊥AB ,∠ B+ ∠ D=180 °,求证: AE=AD+BE证明:在AE 上取 F,使 EF=EB ,连结 CF∵ CE⊥ AB∴∠ CEB =∠ CEF= 90°∵ EB= EF, CE= CE,∴△ CEB ≌△ CEF∴∠ B =∠ CFE∵∠ B +∠ D= 180°,∠ CFE+∠ CFA = 180°∴∠ D =∠ CFA∵AC 均分∠ BAD∴∠ DAC =∠ FAC∵AC =AC∴△ ADC ≌△ AFC ( SAS)∴AD =AF ∴AE =AF + FE=AD + BE12.如图,四边形 ABCD 中, AB ∥ DC ,BE、CE 分别均分∠ ABC 、∠ BCD ,且点 E在AD 上。
(完整版)初中数学全等三角形的证明题含答案
1.已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD解:延长AD至【J E,使AD=DE• D是BC中点••• BD=DC在左ACD和左BDE中AD=DEZ BDE= Z ADCBD=DC••• A ACD^A BDE. .AC=BE=2•在△ ABE 中AB-BE < AE< AB+BE••AB=4即4-2<2AD <4+21<AD <3•••AD=21 2.已知:D是AB中点,Z ACB=90 ,求证:CD —AB延长CD与P,使D为CP中点。
连接AP.BP ••DP=DC,DA=DB• •ACBP为平行四边形又/ ACB=90平行四边形ACBP为矩形•••AB=CP=1/2AB证明:连接BF和EF. • BC=ED,CF=DF, / BCF= / EDF三角形BCF全等于三角形EDF(边角边)••• BF=EF, Z CBF= / DEF连接BE在三角形BEF中,BF=EF/ EBF= / BEF。
. • Z ABC= Z AED。
••• Z ABE= Z AEB。
AB=AE 。
在三角形ABF和三角形AEF中AB=AE,BF=EF,Z ABF= Z ABE+ Z EBF= Z AEB+ Z BEF= Z AEF三角形ABF和三角形AEF全等。
Z BAF= Z EAF ( Z 1 = Z 2)。
EF=AC 4,已知:/ 1 = Z 2, CD=DE , EF//AB ,求证:过C作CG // EF交AD的延长线于点GCG// EF,可得,/ EFD= CGDDE= DC/ FDE=Z GDC (对顶角). EFD^A CGDZCGD=Z EFD又,EF// AB. Z EFD=Z 1/ 1= / 2•••Z CGD=Z 2AGC为等腰三角形,AC= CG又EF= CGEF= AC证明:延长AB取点E,使AE = AC,连接DE . • AD 平分Z BAC••• Z EAD = Z CAD. . AE = AC , AD = AD. AED^A ACD (SAS)Z E= Z C. . AC = AB+BDAE = AB+BD. . AE = AB+BE. .BD = BE•••Z BDE = / E. Z ABC = Z E+ Z BDE•••Z ABC = 2 / E•.•Z ABC = 2 Z C6. 已知:AC 平分Z BAD , CE± AB , Z B+ / D=180 °,求证:AE=AD+BE证明:在AE上取F,使EF = EB,连接CF. • CE ± ABCEB = Z CEF = 90°. • EB = EF, CE = CE,. CEB^A CEF•••Z B=Z CFE. Z B+Z D= 180° , Z CFE + Z CFA = 180°•••Z D = Z CFA. • AC 平分Z BAD/ DAC = / FAC. . AC = AC. ADC^A AFC (SAS)AD = AFAE = AF + FE= AD + BE7, 已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD解:延长AD至ij E,使AD=DED是BC中点. . BD=DC在^ ACD和^ BDE中AD=DEZ BDE= Z ADCBD=DC. ACD^A BDE••• AC=BE=2•.•在△ ABE 中AB-BE V AE V AB+BE. . AB=4即4-2 V 2AD V 4+21 v AD v 3AD=21—8. 已知:D是AB中点,/ACB=9,求证:CD-AB2 解:延长AD至ij E,使AD=DED是BC中点. . BD=DC在^ ACD和^ BDE中AD=DE/ BDE= / ADCBD=DC. ACD^A BDE ••• AC=BE=2•.•在△ ABE 中AB-BE V AE V AB+BE . . AB=4即4-2 V 2AD V 4+2 1 v AD v 3AD=2证明:连接BF和EF。
(完整版)三角形的证明详细知识点、例题、习题),推荐文档
(完整版)三⾓形的证明详细知识点、例题、习题),推荐⽂档第⼀章三⾓形的证明⼀、全等三⾓形(1)定义:能够完全相等的三⾓形是全等三⾓形。
(2)性质:全等三⾓形的对应边、对应⾓相等。
(3)判定:SAS、SSS、ASA、AAS、HL注:SSA,AAA不能作为判定三⾓形全等的⽅法,判定两个三⾓形全等时,必须有边的参与,若有两边⼀⾓相等时,⾓必须是两边的夹⾓证题的思路:)找任意⼀边()找两⾓的夹边(已知两⾓)找夹已知边的另⼀⾓()找已知边的对⾓()找已知⾓的另⼀边(边为⾓的邻边任意⾓(若边为⾓的对边,则找已知⼀边⼀⾓)找第三边()找直⾓()找夹⾓(已知两边AASASAASAAASSASAASSSSHLSAS例题解析:⼆、等腰三⾓形1. 性质:等腰三⾓形的两个底⾓相等(等边对等⾓).2. 判定:有两个⾓相等的三⾓形是等腰三⾓形(等⾓对等边).3. 推论:等腰三⾓形顶⾓的平分线、底边上的中线、底边上的⾼互相重合(即“三线合⼀”).4. 等边三⾓形的性质及判定定理性质定理:等边三⾓形的三个⾓都相等,并且每个⾓都等于60°;等边三⾓形是轴对称图形,有3条对称轴.判定定理:有⼀个⾓是60°的等腰三⾓形是等边三⾓形;三个⾓都相等的三⾓形是等边三⾓形.5. 含30°的直⾓三⾓形的边的性质定理:在直⾓三⾓形中,如果⼀个锐⾓等于30°,那么它所对的直⾓边等于斜边的⼀半.例题解析:三、.直⾓三⾓形1. 勾股定理及其逆定理定理:直⾓三⾓形的两条直⾓边的平⽅和等于斜边的平⽅.逆定理:如果三⾓形两边的平⽅和等于第三边的平⽅,那么这个三⾓形是直⾓三⾓形.2. 命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3. 直⾓三⾓形全等的判定定理定理:斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等要点诠释:①勾股定理的逆定理在语⾔叙述的时候⼀定要注意,不能说成“两条边的平⽅和等于斜边的平⽅”,应该说成“三⾓形两边的平⽅和等于第三边的平⽅”例题解析四、线段的垂直平分线1. 线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到⼀条线段两个端点距离相等的点在这条线段的垂直平分线上. 2.三⾓形三边的垂直平分线的性质三⾓形三条边的垂直平分线相交于⼀点,并且这⼀点到三个顶点的距离相等3. 如何⽤尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆⼼,以⼤于1/2AB的长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意⼆者的应⽤范围;②利⽤线段的垂直平分线定理可解决两条线段的和距离最短问题.例题解析五、.⾓平分线1. ⾓平分线的性质及判定定理性质:⾓平分线上的点到这个⾓的两边的距离相等;判定:在⼀个⾓的内部,且到⾓的两边的距离相等的点,在这个⾓的平分线上2. 三⾓形三条⾓平分线的性质定理性质:三⾓形的三条⾓平分线相交于⼀点,并且这⼀点到三条边的距离相等.3. 如何⽤尺规作图法作出⾓平分线要点诠释:①注意区分⾓平分线性质定理和判定定理,注意⼆者的应⽤范围;③⼏何语⾔的表述,这也是证明线段相等的⼀种重要的⽅法.遇到⾓平分线时,要构造全等三⾓形例题解析:【课堂练习】1、△ABC中,∠A∶∠B∶∠C=1∶2∶3,最⼩边BC=4 cm,最长边AB的长是()A.5 cmB.6 cmC.5cmD.8 cm2、如图,已知∠1=∠2,则不⼀定...能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CDC.∠B=∠C D.∠BDA=∠CDA3 、如上图,点,,,B C F E 在同⼀直线上, 12∠=∠,BC FE =,1∠(填“是”或“不是”) 2∠的对顶⾓,要使ABC DEF ,还需添加⼀个条件,这个条件可以是(只需写出⼀个). 4、已知实数x ,y 满⾜,则以x ,y 的值为两边长的等腰三⾓形的周长是()A . 20或16B . 20C . 16D .以上答案均不对5、如图所⽰的正⽅形⽹格中,⽹格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ?为等腰三⾓形.....,则点C 的个数是 A .6 B .7C .8D .96、⼀个等腰三⾓形静的两边长分别为5或6,则这个等腰三⾓形的周长是.7、等腰三⾓形的周长为16,其⼀边长为6,则另两边为_______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 12
B
E
CFBiblioteka D证明:连接 BF 和 EF∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形 BCF 全等于三角形 EDF(边角边)
∴ BF=EF,∠CBF=∠DEF 连接 BE 在三角形 BEF 中,BF=EF ∴ ∠EBF=∠BEF。∵ ∠ABC=∠AED。∴ ∠ABE=∠AEB。 ∴ AB=AE。在三角形 ABF 和三角形 AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形 ABF 和三角形 AEF 全等。∴ ∠BAF=∠EAF (∠1=∠2) 4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
A 12
F C
D E B
过 C 作 CG∥EF 交 AD 的延长线于点 G CG∥EF,可得,∠EFD=CGDDE=DC ∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF=CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2 ∴△AGC 为等腰三角形, AC=CG 又 EF=CG∴EF=AC 5. 已知:AD 平分∠BAC,AC=AB+BD,求证:∠B=2∠C
CE 平分∠BCD CE=CE
∴⊿DCE≌⊿FCE(AAS) ∴CD=CF ∴BC=BF+CF=AB+CD
在 BC 上截取 BF=AB,连接 EF ∵BE 平分∠ABC
13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
E
D
C F
A
B
AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180 度, ∵∠EAB=∠BDE, ∴∠AED=∠ABD, ∴四边形 ABDE 是平行四边形。 ∴得:AE=BD,
∴AGE 全等 BDE
∴AG=BD=5
∴AGF∽CDF AF=AG=5
∴DC=CF=2
18.如图,在△ABC 中,BD=DC,∠1=∠2,求证:AD⊥BC.
解:延长 AD 至 BC 于点 E, ∵BD=DC ∴△BDC 是等腰三角形 ∴∠DBC=∠DCB 又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2 即∠ABC=∠ACB ∴△ABC 是等腰三角形 ∴AB=AC 在△ABD 和△ACD 中 {AB=AC ∠1=∠2 BD=DC ∴△ABD 和△ACD 是全等三角形(边角边) ∴∠BAD=∠CAD ∴AE 是△ABC 的中垂线
∴点 E 一定在直线 BD 上, 在等腰三角形 ABD 中,AB=AD,AE 垂直 BD ∴点 E 也是 BD 的中点 ∴BD=2BE ∵BD=CD=AC-AB ∴AC-AB=2BE
17. 已知,E 是 AB 中点,AF=BD,BD=5,AC=7,求 DC D
F
C
A
E
B
∵作 AG∥BD 交 DE 延长线于 G
1. 已知:AB=4,AC=2,D 是 BC 中点,AD 是整数,求 AD A
B
C
D
解:延长 AD 到 E,使 AD=DE∵D 是 BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE
∴AC=BE=2∵在△ABE 中 AB-BE<AE<AB+BE∵AB=4 即 4-2<2AD<4+21<AD<3∴AD=2
∴AD=AF ∴AE=AF+FE=AD+BE
12. 如图,四边形 ABCD 中,AB∥DC,BE、CE 分别平分∠ABC、∠BCD,且点 E 在 AD 上。求证:BC=AB+DC。
∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE≌⊿FBE(SAS) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180º ∵∠BFE+∠CFE=180º ∴∠D=∠CFE 又∵∠DCE=∠FCE
∵AF=CD,EF=BC, ∴三角形 AEF 全等于三角形 DBC,
∴∠F=∠C。 14. 已知:AB=CD,∠A=∠D,求证:∠B=∠C
A
D
C
A
P
D
B
在 AC 上取点 E, 使 AE=AB。 ∵AE=AB
AP=AP ∠EAP=∠BAE, ∴△EAP≌△BAP ∴PE=PB。 PC<EC+PE ∴PC<(AC-AE)+PB ∴PC-PB<AC-AB。
A
证明:延长 AB 取点 E,使 AE=AC,连接 DE ∵AD 平分∠BAC ∴∠EAD=∠CAD ∵AE=AC,AD=AD ∴△AED≌△ACD (SAS)
∴∠E=∠C ∵AC=AB+BD ∴AE=AB+BD ∵AE=AB+BE ∴BD=BE ∴∠BDE=∠E ∵∠ABC=∠E+∠BDE ∴∠ABC=2∠E ∴∠ABC=2∠C
15. P 是∠BAC 平分线 AD 上一点,AC>AB,求证:PC-PB<AC-AB
16. 已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE
证明: 在 AC 上取一点 D,使得角 DBC=角 C ∵∠ABC=3∠C ∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C; ∵∠ADB=∠C+∠DBC=2∠C; ∴AB=AD ∴AC – AB =AC-AD=CD=BD 在等腰三角形 ABD 中,AE 是角 BAD 的角平分线, ∴AE 垂直 BD ∵BE⊥AE
B
C
证明:设线段 AB,CD 所在的直线交于 E,(当 AD<BC 时,E 点是射线 BA,CD 的交 点,当 AD>BC 时,E 点是射线 AB,DC 的交点)。则: △AED 是等腰三角形。 ∴AE=DE 而 AB=CD ∴BE=CE (等量加等量,或等量减等量) ∴△BEC 是等腰三角形 ∴∠B=∠C.
6. 已知:AC 平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
证明: 在 AE 上取 F,使 EF=EB,连接 CF ∵CE⊥AB ∴∠CEB=∠CEF=90° ∵EB=EF,CE=CE, ∴△CEB≌△CEF ∴∠B=∠CFE ∵∠B+∠D=180°,∠CFE+∠CFA=180° ∴∠D=∠CFA ∵AC 平分∠BAD ∴∠DAC=∠FAC ∵AC=AC ∴△ADC≌△AFC(SAS)
2. 已知:D 是 AB 中点,∠ACB=90°,求证: CD 1 AB 2
A
D
C
B
延长 CD 与 P,使 D 为 CP 中点。连接 AP,BP
∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形 ACBP 为矩形
∴AB=CP=1/2AB
3. 已知:BC=DE,∠B=∠E,∠C=∠D,F 是 CD 中点,求证:∠1=∠2