高考一轮复习_直线与圆的方程

合集下载

高三数学一轮复习高考总复习测评卷 直线和圆的方程 章末质量检测 文 试题

高三数学一轮复习高考总复习测评卷 直线和圆的方程 章末质量检测 文 试题

·创 作人:历恰面 日 期: 2020年1月1日金版新学案?高考总复习配套测评卷——高三一轮数学『文科』卷(七)直线和圆的方程————————————————————————————————————— 【说明】 本套试卷分为第Ⅰ、Ⅱ卷两局部,请将第一卷选择题之答案填入答题格内,第二卷可在各题后直接答题,一共150分,考试时间是是120分钟.第一卷 (选择题 一共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案个选项里面,只有一项是哪一项符合题目要求的)1.下面各组方程中,表示一样曲线的是( )A .y =x 与yx=1 B .|y |=|x |与y 2=x 2C .|y |=2x +4与y =2|x |+4D.⎩⎪⎨⎪⎧x =sin θ(θ为参数)y =cos 2θ与y =-x 2+12.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是( )A .-x +2y -4=0B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=03.“a =1”是“直线x +y =0和直线x -ay =0互相垂直〞的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.过点P (5,-2),且与直线x -y +5=0相交成45°角的直线l 的方程是( )A .y =-2B .y =2,x =5C .x =5D .y =-2,x =55.假设PQ 是圆x 2+y 2=9的弦,PQ 的中点是(1,2),那么直线PQ 的方程是( )A .x +2y -3=0B .x +2y -5=0C .2x -y +4=0D .2x -y =06.假设k ,-1,b 三个数成等差数列,那么直线y =kx +b 必经过定点( )A .(1,-2)B .(1,2)C .(-1,2)D .(-1,-2)7.D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,所确定的平面区域,那么圆x 2+y 2=4在区域D 内的弧长为( )A.π4B.π2C.3π4D.3π28.A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM |+|BM |为最短,那么点M 的坐标为( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎪⎫225,0D.⎝⎛⎭⎪⎫0,2259.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,假设目的函数z =ax +by (a >0,b >0)的最大值为12,那么2a +3b的最小值为( )A.256B.83C.113D .410.在平面直角坐标系中,O 为坐标原点,A (3,1),B (-1,3),假设点C 满足|+|=|-|,那么C 点的轨迹方程是( )A .x +2y -5=0B .2x -y =0C .(x -1)2+(y -2)2=5 D .3x -2y -11=011.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=012.台风中心从A 地以每小时20千米的速度向东北方向挪动,离台风中心30千米内的地区为危险区,城B 在A 的正东40千米处,那么B 城处于危险区内的时间是为( )A .小时B .1小时C .小时D .2小时第二卷 (非选择题 一共90分)二、填空题(本大题一一共4小题,每一小题5分,一共20分.把答案填在题中横线上) 13.将直线y =x +3-1绕它上面一点(1,3)沿逆时针方向旋转15°,那么所得直线的方程为________.14.在坐标平面内,与点A (1,3)的间隔 为2,且与点B (3,1)的间隔 为32的直线一共有__________条.15.直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E ,F 两点,那么△EOF (O 为坐标原点)的面积等于________.16.在直角坐标平面上,不等式组⎩⎪⎨⎪⎧x 2+y 2-4x -6y +4≤0,|x -2|+|y -3|≥3表示的平面区域的面积是________.三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤)17.(本小题满分是10分)△ABC 的两条高所在直线的方程为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.18.(本小题满分是12分)如图,直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B 的坐标为(0,-22),顶点C 在x 轴上.(1)求BC 边所在直线的方程.(2)圆M 是△ABC 的外接圆,求圆M 的方程.19.(本小题满分是12分)△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0.AC 边上的高BH 所在直线为x -2y -5=0.求:(1)顶点C 的坐标; (2)直线BC 的方程.20.(本小题满分是12分)甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地,东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和元/吨,乙煤矿运往东车站和西车站的运费价格分别为元/吨和元/吨.要使总运费最少,煤矿应怎样编制调运方案?21.(本小题满分是12分)圆C :x 2+y 2=r 2(r >0)经过点(1,3). (1)求圆C 的方程;(2)是否存在经过点(-1,1)的直线l ,它与圆C 相交于A ,B 两个不同点,且满足=12+32(O 为坐标原点)关系的点M 也在圆C 上?假如存在,求出直线l 的方程;假如不存在,请说明理由.22.(本小题满分是12分)圆M 的方程为:x 2+y 2-2x -2y -6=0,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E 、F 两点,圆内的动点D 使得|DE |、|DO |、|DF |成等比数列,求·的取值范围;(3)过点M 作两条直线分别与圆N 相交于A 、B 两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行?请说明理由. 答案:卷(七)一、选择题1.B 用排除法做.A 、C 易排除,∵点坐标范围明显不一致.D 中前者x ∈[-1,1],y ∈[0,1],后者x ∈R ,y ∈(-∞,1],故排除D.2.D 选D.由题意知所求直线与2x -y -2=0垂直. 又2x -y -2=0与y 轴交点为(0,-2). 故所求直线方程为y +2=-12(x -0),即x +2y +4=0.3.C 当a =1时,直线x +y =0与直线x -y =0垂直成立;当直线x +y =0与直线x -ay =0垂直时,a =1.所以“a =1〞是“直线x +y =0与直线x -ay =0互相垂直〞的充要条件. 4.D (1)假设直线l 的斜率存在,设为k ,由题意,tan 45°=⎪⎪⎪⎪⎪⎪k -11+k ,得k =0,所求l 的直线方程为y =-2.(2)假设直线l 的斜率不存在,那么直线l 的方程为x =5,且与直线x -y +5=0相交成45°角.应选D.5.B 结合圆的几何性质易知直线PQ 过点A (1,2),且和直线OA 垂直,故其方程为:y -2=-12(x -1),整理得x +2y -5=0.6.A ∵k ,-1,b 成等差数列, ∴k +b =-2.∴当x =1时,y =k +b =-2. 即直线过定点(1,-2).7.B 如图阴影局部表示⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,确定的平面区域,所以劣弧AB 的弧长即为所求.∵k OB =-13,k OA =12,∴tan ∠BOA =12-⎝ ⎛⎭⎪⎫-131+12×⎝ ⎛⎭⎪⎫-13=1,∴∠BOA =π4.∴劣弧A B 的长度为2×π4=π2.8.B 点B (2,2)关于x 轴的对称点为B ′(2,-2),连接AB ′,易求得直线AB ′的方程为2x +y -2=0,它与x 轴交点M (1,0)即为所求.9.A 不等式组表示的平面区域如下图阴影局部,当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目的函数z =ax +by (a >0,b >0)获得最大值12,即4a +6b =12,即2a +3b =6,而2a +3b=⎝ ⎛⎭⎪⎫2a +3b ·2a +3b 6 =136+⎝ ⎛⎭⎪⎫b a +a b ≥136+2 =256, 应选A10.C 由|+|=|-|知⊥,所以C 点的轨迹是以两个端点A 、B 为直径的圆,圆心坐标为线段AB 的中点(1,2),半径等于5,所以C 点的轨迹方程是(x -1)2+(y -2)2=5.11.D 由条件知M 点在圆内,故当劣弧最短时,l 应与圆心与M 点的连线垂直, 设圆心为O ,那么O (2,0), ∴K OM =2-01-2=-2.∴直线l 的斜率k =12,∴l 的方程为y -2=12(x -1).即x -2y +3=0.12.B 如图,以A 为坐标原点,建立平面直角坐标系,那么B (40,0),台风中心挪动的轨迹为射线y =x (x ≥0),而点B 到射线y =x 的间隔 d =402=202<30,故l =2302-(202)2=20,故B 城处于危险区内的时间是为1小时. 二、填空题13.【解析】 直线y =x +3-1的斜率为1,故倾斜角为45°,旋转后的直线的倾斜角为60°,斜率为3,故所求直线方程为y -3=3(x -1),即3x -y =0.【答案】3x -y =014.【解析】 以A (1,3)为圆心,以2为半径作圆A ,以B (3,1)为圆心,以32为半径作圆B .∵|AB |=(1-3)2+(3-1)2=22=32-2, ∴两圆内切, 公切线只有一条. 【答案】 1 15.【解析】 如图圆心O 1(2,-3)到直线l :x -2y -3=0的间隔 为5,那么|EF |=29-5=4,O 到l 的间隔 d =35,故S △OEF =12d |EF |=655.【答案】65516.【解析】 区域为圆面(x -2)2+(y -3)2=9内挖去了一个内接正方形. 【答案】 9π-18三、解答题17.【解析】 可以判断A 不在所给的两条高所在的直线上,那么可设AB ,AC 边上的高所在的直线方程分别为2x -3y +1=0,x +y =0,那么可求得AB ,AC 所在的直线方程为y-2=-32(x -1),y -2=x -1,即3x +2y -7=0,y -x -1=0.由⎩⎪⎨⎪⎧3x +2y -7=0x +y =0得B (7,-7),由⎩⎪⎨⎪⎧y -x -1=02x -3y +1=0得C (-2,-1),所以直线BC 的方程为2x +3y +7=0. 18.【解析】 (1)设C (x 0,0), 那么k AB =-220-(-2)=- 2.k BC =0+22x 0-0=22x 0. ∵AB ⊥BC ,∴k AB ·k BC =-1, 即-2×22x 0=-1,∴x 0=4,∴C (4,0),∴k BC =22, ∴直线BC 的方程为y -0=22(x -4),即y =22x -2 2. (2)圆M 以线段AC 为直径,AC 的中点M 的坐标为(1,0),半径为3, ∴圆M 的方程为x 2+y 2-2x -8=0. 19.【解析】 直线AC 的方程为:y -1=-2(x -5),即2x +y -11=0,解方程组⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得⎩⎪⎨⎪⎧ x =4,y =3,那么C 点坐标为(4,3).设B (m ,n ),那么M (m +52,n +12),⎩⎪⎨⎪⎧ 2m +52-n +12-5=0m -2n -5=0, 整理得⎩⎪⎨⎪⎧ 2m -n -1=0m -2n -5=0, 解得⎩⎪⎨⎪⎧ m =-1n =-3那么B 点坐标为(-1,-3)直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.20.【解析】 设甲煤矿向东车站运x 万吨煤,乙煤矿向东车站运y 万吨煤,那么总运费z =x +1.5(200-x )+y +1.6(300-y )(万元),即z =780-x -y . x 、y 应满足⎩⎪⎨⎪⎧x ≥0,y ≥0,200-x ≥0,300-y ≥0,x +y ≤280,200-x +(300-y )≤360, 作出上面的不等式组所表示的平面区域如下图.设直线x +y =280与y 轴的交点为M ,那么M (0,280),把直线l :x +y =0向上平移至经过点M 时,z 的值最小. ∵点M 的坐标为(0,280),∴甲煤矿消费的煤全部运往西车站,乙煤矿向东车站运280万吨、向西车站运20万吨时,总运费最少. 21.【解析】 (1)由圆C :x 2+y 2=r 2,再由点(1,3)在圆C 上,得r 2=12+(3)2=4所以圆C 的方程为 x 2+y 2=4;(2)假设直线l 存在,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0)①假设直线l 的斜率存在,设直线l 的方程为:y -1=k (x +1),联立⎩⎪⎨⎪⎧ y =k (x +1)+1x 2+y 2-4=0消去y 得,(1+k 2)x 2+2k (k +1)x +k 2+2k -3=0,由韦达定理得x 1+x 2=-2k (k +1)1+k 2=-2+2-2k 1+k 2,x 1x 2=k 2+2k -31+k 2=1+2k -41+k 2, y 1y 2=k 2x 1x 2+k (k +1)(x 1+x 2)+(k +1)2=2k +41+k 2-3, 因为点A (x 1,y 1),B (x 2,y 2)在圆C 上,因此,得x 21+y 21=4,x 22+y 22=4, 由=12+32得x 0 =x 1+3x 22,y 0=y 1+3y 22,由于点M 也在圆C 上,那么⎝ ⎛⎭⎪⎫x 1+3x 222+⎝ ⎛⎭⎪⎫y 1+3y 222 =4,整理得,x 21+y 214+3x 22+y 224+32x 1x 2+123y 1y 2=4, 即x 1x 2+y 1y 2=0,所以1+2k -41+k 2+(2k +41+k2-3)=0, 从而得,k 2-2k +1=0,即k =1,因此,直线l 的方程为 y -1=x +1,即x -y +2=0,②假设直线l 的斜率不存在,那么A (-1,3),B (-1,-3),M ⎝ ⎛⎭⎪⎫-1-32,3-32 ⎝ ⎛⎭⎪⎫-1-322+⎝ ⎛⎭⎪⎫3-322 =4-3≠4,故点M 不在圆上与题设矛盾综上所知:k =1,直线方程为x -y +2=022.【解析】 圆M 的方程可整理为:(x -1)2+(y -1)2=8,故圆心M (1,1),半径R =2 2.(1)圆N 的圆心为(0,0),因为|MN |=2<22,所以点N 在圆M 内,故圆N 只能内切于圆M .设其半径为r .因为圆N 内切于圆M ,所以有:|MN |=R -r , 即2=22-r ,解得r = 2.所以圆N 的方程为x 2+y 2=2.(2)由题意可知:E (-2,0),F (2,0).设D (x ,y ),由|DE |、|DO |、|DF |成等比数列,得|DO |2=|DE |×|DF |, 即:(x +2)2+y 2×(x -2)2+y 2=x 2+y 2,整理得:x 2-y 2=1.而=(-2-x ,-y ),=(2-x ,-y ),·=(-2-x )(2-x )+(-y )(-y )=x 2+y 2-2=2y 2-1,由于点D 在圆N 内,故有⎩⎪⎨⎪⎧ x 2+y 2<2x 2-y 2=1,由此得y 2<12,所以·∈[-1,0). (3)因为直线MA 和直线MB 的倾斜角互补,故直线MA 和直线MB 的斜率存在,且互为相反数,设直线MA 的斜率为k ,那么直线MB 的斜率为-k .故直线MA 的方程为y -1=k (x -1),直线MB 的方程为 y -1=-k (x -1),由⎩⎪⎨⎪⎧ y -1=k (x -1)x 2+y 2=2, 得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点M 在圆N 上,故其横坐标x =1一定是该方程的解,可得x A =k 2-2k -11+k 2, 同理可得:x B =k 2+2k -11+k 2, 所以k AB =y B -y A x B -x A= -k (x B -1)-k (x A -1)x B -x A= 2k -k (x B +x A )x B -x A=1=k MN . 所以,直线AB 和MN 一定平行.。

高考数学一轮复习必备:第59课时:第七章直线与圆的方程直线与圆的位置关系

高考数学一轮复习必备:第59课时:第七章直线与圆的方程直线与圆的位置关系

高考数学一轮复习必备:第59课时:第七章直线与圆的方程直线与圆的位置关系课题:直线与圆的位置关系一.复习目标:1.把握圆的标准方程及一样式方程,明白得圆的参数方程及参数θ的意义,能依照圆的方程熟练地求出圆的圆心和半径;能熟练地对圆的方程的各种形式进行相互转化。

2.把握直线与圆的位置关系,会求圆的切线方程,公共弦方程及等有关直线与圆的咨询题。

3.渗透数形结合的数学思想方法,充分利用圆的几何性质优化解题过程。

二.要紧知识: 1.圆的标准方程: ;圆的一样方程: ;圆的参数方程: 。

2.直线与圆的位置关系判定的两种方法: 代数方法: ;几何方法: ;3.弦长的运算方法:代数方法: ;几何方法: ;1.方程2222210x y ax ay a a +++++-=表示圆,那么a 的取值范畴是〔 〕()A 2a <- ()B 203a -<< ()C 20a -<< ()D 223a -<< 2.直线y x m =-+与圆221x y +=在第一象限内有两个不同交点,那么m 的取值范畴是〔 〕()A 0m <<()B 1m << ()C 1m ≤≤()D m <<3.圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是〔 〕()A 22(7)(1)1x y +++= ()B 22(7)(2)1x y +++=()C 22(6)(2)1x y +++= ()D 22(6)(2)1x y ++-=4.设M 是圆22(5)(3)9x y -+-=上的点,那么M 点到直线3420x y +-=的最短距离是 。

5.假设曲线1y =(22)x -≤≤与直线(2)4y k x =-+有两个交点时,那么实数k 的取值范畴是____ __。

四.例题分析:例1.求满足以下各条件圆的方程:〔1〕以)9,4(A ,)3,6(B 为直径的圆;〔2〕与,x y 轴均相切且过点(1,8)的圆;〔3〕求通过)2,5(A ,)2,3(-B 两点,圆心在直线32=-y x 上的圆的方程。

20高三一轮复习-圆的方程、直线与圆-教师版

20高三一轮复习-圆的方程、直线与圆-教师版

圆的方程、直线与圆⎧⎪⎧⎪⎨⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩定义:代数方程与几何曲线建立一一对应关系曲线从代数方程角度分析几何特性曲线与方程分析(数形结合)与从几何图形角度分析代数方程解的情况轨直接列式迹间接代入求方程方法方参数方程圆程待定系数的圆的标准方程 :三个了解(延伸了一个直径式方程)方一般方程:二元二次方程分析方程程位置关系问题距离、角问题数形面积问题应定值、定点问题用直线与二次曲线问题对称问题⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、知识点分布:1.曲线与方程:一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系: ①曲线C 上的点的坐标都是方程0),(=y x F 的解; ②以方程0),(=y x F 的解为坐标的点都是曲线C 上的点.此时,把方程0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线. 2..利用集合与对应的观点可以更清楚、更深刻地理解曲线方程的概念.设)}(|{M P M P =表示曲线C 上适合某种条件的点M 的集合;}0),(|),{(==y x F y x Q 表示二元方程的解对应的点的坐标的集合.于是,方程0),(=y x F 叫做曲线C 的方程等价于⎭⎬⎫⊆⊆P Q Q P ,即 Q P =.3.曲线方程的应用:交点、弦(弦长公式)、位置关系、图形性质分析 (1)图形的点的坐标与方程的解; (2)图形的交点与方程组的解;(3)用方程思想解决曲线上的交点弦问题,弦长公式;12|||AB x x =-=;12|||AB y y =-== (4)用方程思想解决曲线的位置关系;(5)用方程的代数性质分析图形的对称性、最值性等4.求曲线方程的方法:直接列式、间接转化(间接动点法,换元法、点差法)、参数方程 (1) 直接法:直接根据动点满足的几何条件或等量关系列出等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直接法.①运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程. ②借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法. (2)定义法(也叫待定系数法):其动点的轨迹符合某一基本轨迹的定义,则根据定义直接求出动点的轨迹方程.熟悉一些基本曲线的定义是用定义法求曲线方程的关键. (3)代入法(也叫间接转化):在变化过程中有两个动点,已知其中一个动点在定曲线上运动,求另一动点的轨迹方程,这里通过建立两个动点坐标之间的关系,代入到已知曲线之中,得出所要求的轨迹方程.(4)参数法:有时求动点应满足的几何条件不易得出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标),(y x 中的y x ,分别随另一变量的变化而变化,称这个变量为参数,建立轨迹的参数方程,这种方法叫参数法,如果需要得到轨迹的普通方程,只要消去参数即可;在选择参数时,选用的参变量要以具有某种物理或几何的性质,如时间、速度、距离、角度,有向线段的数量、直线的斜率,点的横、纵坐标等,也可以没有具体的意义,选定参变量还要特别注意它的取值范围的对动点坐标取值范围的影响.5.圆的一般式方程与标准方程及直径式方程(1)圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 特别地,当0==b a 时,圆心在原点的圆的方程为:222r y x =+ (2)圆的一般方程:022=++++F Ey Dx y x圆心为)2,2(ED --,半径为2422FE D r -+=,其中0422>-+F E D .(3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax ,表示圆的方程的充要条件是:①2x 项2y 项的系数相同且不为0,即0≠=C A ;②没有xy 项,即B=0;③0422>-+AF E D .(4)一个特殊:直径两个端点()11,y A x 及()22,y B x ,则0))(())((2121=--+--y y y y x x x x6.位置关系:点圆、线圆、圆圆 (1) 点与圆的位置关系圆的标准方程为(x -a )2+(y -b )2=r 2,圆心A (a ,b ),半径为r .设所给点为M (x 0,y 0),则①几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. ②代数法:根据直线与圆的方程组成的方程组解的个数来判断.③直线系法:若直线恒过定点,可通过判断点与圆的位置关系判断,但有一定的局限性,必须是过定点的直线系. (3)过圆上一点的切线方程:圆222)()(r b y a x =-+-,圆上一点为(0x ,0y ),则过此点的切线方程为200=)-)(-(+)-)(-(r b y b y a x a x ;圆的方程为x 2+y 2=r 2(r >0),点M (x 0,y 0),若点M 在⊙O 上,则过M 的切线方程为x 0x +y 0y =r 2. 7.圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r 1、r 2,两圆连心线的长为d ,则两圆的位置关系的判断方法如下: 位置关系 外离外切相交内切内含图示d 与r 1、r 2的关系d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0), C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0), 联立方程得⎩⎪⎨⎪⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数 2组 1组 0组 两圆的公共点个数 2个 1个 0个 两圆的位置关系相交内切或外切外离或内含(3)一个特殊:两圆的相交弦的直线方程 8.距离问题及垂径定理(1)圆心到直线的距离与半径比对判断直线与圆的位置关系; (2)垂径定理的三个量:圆心到直线距离、半径、弦;(3)利用圆心到直线距离判断圆上点到直线的距离最值及满足特定值的点的个数; (4)一个特殊的弦的用法:弦AB 与定点C 满足:0CA CB ⋅=,若点C 是圆心则多采用垂径定理求解,但点C 不是圆心时,只能采用联立、消元、韦达的思路(学生易粗心认定为圆心的点)。

高考数学一轮复习第九章直线和圆的方程圆的方程课件

高考数学一轮复习第九章直线和圆的方程圆的方程课件

解析 设圆心的坐标为x,41x2,据题意得14x2+1=-x,解得 x=-2,此时圆心的坐标为(-2,1),圆 的半径为 2,故所求圆的方程是(x+2)2+(y-1)2=4.
9 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3.直线 y=x-1 上的点到圆 x2+y2+4x-2y+4=0 的最近距离为( )
解法二:从形的角度,AB 为圆的弦,由平面几何知识知,圆心 P 应在 AB 中垂线 x=4 上,则由
2x-y-3=0, x=4,
得圆心 P(4,5).
∴半径 r=|PA|= 10. ∴圆的标准方程为(x-4)2+(y-5)2=10.
13 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第九章 直线和圆的方程
1 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第2讲 圆的方程及点、线、圆的位置关系
2 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3 撬点·基础点 重难点
注意点 圆的标准方程与一般方程的关系 圆的标准方程展开整理即可得到圆的一般方程,而圆的一般方程通过配方亦可转化为圆的标准方程, 二者只是形式的不同,没有本质区别.
7 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1.思维辨析 (1)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为 t 的一个圆.( × ) (2)方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆心为-a2,-a,半径为12 -3a2-4a+4的圆.( × ) (3)方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆的充要条件是 A=C≠0,B=0,D2+E2-4AF>0.( √ ) (4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+F>0.( √ ) (5)已知点 A(x1,y1),B(x2,y2),则以 AB 为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( √ )

全国版高考数学一轮复习第9章直线和圆的方程第1讲直线方程与两直线的位置关系课件理

全国版高考数学一轮复习第9章直线和圆的方程第1讲直线方程与两直线的位置关系课件理

考法1 求直线的方程
思维拓展
常见的直线系方程
(1)过定点P(x0,y0)的直线系方程:A(x-x0)+B(y-y0)=0(A2+B2≠0),还可以表示 为y-y0=k(x-x0)或x=x0. (2)平行于直线Ax+By+C=0的直线系方程:Ax+By+λ=0(λ≠C).
(3)垂直于直线Ax+By+C=0的直线系方程:Bx-Ay+λ=0.
a是直线的横截距. b是直线的纵截距.
不过原点且与两坐标轴均不 垂直的直线.
一般式 Ax+By+C=0(A2+B2≠0)
所有直线.
考点2 两直线的位置关系
1.两条直线的位置关系
斜截式
方程
相交 垂直
y=k1x+b1, y=k2x+b2.
k1≠k2. k1k2=-1.
平行
k1=k2且b1≠b2.
一般式
第九章 直线和圆的方程
第一讲 直线方程与两直线的 位置关系
考点帮·必备知识通关 考点1 直线的方程直 考点2 两直线的位置关系
考法帮·解题能力提升 考法1 求直线的方程 考法2 两直线的位置关系 考法3 两直线的交点与距离问题 考法4 对称问题
高分帮 ·“双一流”名校冲刺 明易错· 误区警示
易错 忽略斜率不存在致误
考法3 两直线的交点与距离问题
思维导引
考法3 两直线的交点与距离问题
解析 (1)易知点A到直线x-2y=0的距离不等于3,可设经过两已知直线交 点的直线系方程为(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0. (设出

高考数学一轮复习第九章直线和圆的方程直线及其方程课件

高考数学一轮复习第九章直线和圆的方程直线及其方程课件


k
不存在. ②计算公式:给定两点
P1(x1,y1),P2(x2,y2)(x1≠x2),经过
P1,P2
两点的直线的斜率公式为k=yx22--yx11
.
6 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理 2 直线方程的形式及适用条件
注意点 对直线的倾斜角和斜率的理解 每条直线都有唯一的倾斜角,但并不是每条直线都存在斜率;倾斜角和斜率都是反映直线相对于 x 轴 正方向的倾斜程度. 在设直线的斜率为 k 时,就是默认了直线的斜率存在.注意检验当斜率不存在时是否符合题意.
8 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理 2.如图中的直线 l1、l2、l3 的斜率分别为 k1、k2、k3,则( )
A.k1<k2<k3 B.k3<k1<k2 C.k3<k2<k1 D.k1<k3<k2
解析 直线 l1 的倾斜角 α1 是钝角,故 k1<0,直线 l2 与 l3 的倾斜角 α2 与 α3 均为锐角,且 α2>α3,所以 0<k3<k2,因此 k1<k3<k2,故选 D.
撬法·命题法 ·高考数学·理
[考法综述] 高考中对直线方程的考查,一种常见方式是求曲线的切线方程,也可能与其他知识(如
圆锥曲线、圆)综合考查,难度中低档.求直线方程的一种重要方法就是先设直线方程,再求直线方程中的
系数,这种方法叫做待定系数法.运用此方法,要注意各种形式的方程的适用条件,选择适当的直线方程
解析 设 P(x0,0),Q(0,y0),∵M(1,-2)为线段 PQ 中点,∴x0=2,y0=-4,∴直线 PQ 的方程为2x+ -y4=1.

高三理科数学一轮总复习第八章 直线和圆的方程

高三理科数学一轮总复习第八章 直线和圆的方程
第八章 直线和圆的方程
高考导航
考试要求
重难点击
命题展望
1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.
2.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率的计算公式.
3.能根据两条直线的斜率判定这两条直线平行或垂直.
4.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
故所求直线方程为2x-3y=0或x+y-5=0.
(2)当斜率不存在时,直线方程x-2=0合题意;
当斜率存在时,则设直线方程为y-1=k(x-2),即kx-y+1-2k=0,所以=2,解得k=-,方程为3x+4y-10=0.
故所求直线方程为x-2=0或3x+4y-10=0.
【点拨】截距可以为0,斜率也可以不存在,故均需分情况讨论.
5.掌握用解方程组的方法求两条相交直线的交点坐标.
6.掌握两点间的距离公式、点到直线的距离公式,会求两条平行线间的距离.
7.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
8.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.
9.能用直线和圆的方程解决简单的问题.
10.初步了解用代数方法处理几何问题的思想.
11.了解空间直角坐标系,会用空间直角坐标表示点的位置,会推导空间两点间的距离公式.
本章重点:1.倾斜角和斜率的概念;2.根据斜率判定两条直线平行与垂直;3.直线的点斜式方程、一般式方程;4.两条直线的交点坐标;5.点到直线的距离和两条平行直线间的距离的求法;6.圆的标准方程与一般方程;7.能根据给定直线,圆的方程,判断直线与圆的位置关系;8.运用数形结合的思想和代数方法解决几何问题.
l的倾斜角为2θ,tan2θ= ==.

2023年高考数学(文科)一轮复习讲义——直线与圆、圆与圆的位置关系

2023年高考数学(文科)一轮复习讲义——直线与圆、圆与圆的位置关系

第4节 直线与圆、圆与圆的位置关系考试要求 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.位置关系相离相切相交图形量化方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r2.圆与圆的位置关系设两圆的半径分别为R ,r (R >r ),两圆圆心间的距离为d ,则两圆的位置关系可用下表表示: 位置关系 外离外切相交内切内含图形量的关系d >R +rd =R +rR -r <d <R +rd =R -rd <R -r公切线条数432101.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x +y0y=r2.2.直线被圆截得的弦长的求法(1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|=2r2-d2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x的一元二次方程,求出x M+x N和x M·x N,则|MN|=1+k2·(x M+x N)2-4x M·x N.1.思考辨析(在括号内打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(4)若直线平分圆的周长,则直线一定过圆心.()答案(1)×(2)×(3)×(4)√解析(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含.2.(2021·绍兴一模)设m∈R,则“1≤m≤2”是“直线l:x+y-m=0和圆C:x2+y 2-2x -4y +m +2=0有公共点”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 圆C :(x -1)2+(y -2)2=3-m ,圆心为(1,2),半径r =3-m (m <3).若直线l 与圆C 有公共点,则圆心(1,2)到直线l 的距离d =|3-m |2≤3-m ,解得1≤m <3. 因为{m |1≤m ≤2}{m |1≤m <3},所以“1≤m ≤2”是“直线l :x +y -m =0和圆C :x 2+y 2-2x -4y +m +2=0有公共点”的充分不必要条件.3.(2022·全国百校联盟质检)已知直线l :x -2y +6=0与圆C :x 2+y 2-4y =0相交于A ,B 两点,则CA →·CB →=( ) A.165 B.-165 C.125 D.-125 答案 D解析 由圆的一般方程x 2+y 2-4y =0得标准方程为x 2+(y -2)2=4,故可得圆心C (0,2),半径r =2, 联立得⎩⎪⎨⎪⎧x -2y +6=0,x 2+y 2-4y =0,解得⎩⎪⎨⎪⎧x =-2,y =2或⎩⎪⎨⎪⎧x =65,y =185.不妨设A (-2,2),B ⎝ ⎛⎭⎪⎫65,185,则CA →=(-2,0),CB →=⎝ ⎛⎭⎪⎫65,85,所以CA →·CB →=-2×65+0×85=-125.4.(2021·洛阳模拟)若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a =________. 答案 ±2解析 两圆方程作差得公共弦所在直线方程为a 2+ay -6=0,原点到a 2+ay -6=0的距离为d =⎪⎪⎪⎪⎪⎪6a -a .∵公共弦长为23, ∴a 2=(3)2+⎪⎪⎪⎪⎪⎪6a -a 2,∴a 2=4,a =±2.5.(易错题)若半径为r ,圆心为(0,1)的圆和定圆(x -1)2+(y -2)2=1相切,则r 的值等于________. 答案2+1或2-1解析 由题意,定圆(x -1)2+(y -2)2=1的圆心为A (1,2),半径R =1,半径为r 的圆的圆心为B (0,1), 所以|AB |=(1-0)2+(2-1)2= 2.因为两圆相切,所以|AB |=|R -r |或|AB |=|R +r |, 即|1-r |=2或 |1+r |=2, 解得r =1±2或r =-1±2. 因为r >0,所以r=2+1或r=2-1.6.(易错题)过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为________________.答案5x-12y+45=0或x-3=0解析化圆x2+y2-2x-4y+1=0为标准方程得(x-1)2+(y-2)2=4,其圆心为(1,2),半径为2.∵|OA|=(3-1)2+(5-2)2=13>2,∴点A(3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x-3=0.当切线斜率存在时,可设所求切线方程为y-5=k(x-3),即kx-y+5-3k=0.又圆心为(1,2),半径r=2,而圆心到切线的距离d=|3-2k|k2+1=2,即|3-2k|=2k2+1,∴k=512,故所求切线方程为5x-12y+45=0或x-3=0.考点一直线与圆的位置关系1.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是()A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)答案 C解析由题意可得,圆的圆心为(a,0),半径为2,∴|a-0+1|12+(-1)2≤2,即|a+1|≤2,解得-3≤a ≤1.2.(2022·成都诊断)直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A.相交 B.相切 C.相离D.不确定答案 A解析 法一 (代数法)由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5,消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0,因为Δ=16m 2+20>0,所以直线l 与圆相交.法二 (几何法)由题意知,圆心(0,1)到直线l 的距离d =|-m |m 2+1<1<5,故直线l 与圆相交.法三 易得直线l 过定点(1,1), 把点(1,1)代入圆的方程有1+0<5, ∴点(1,1)在圆的内部,故直线l 与圆C 相交.3.“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 若直线y =x +4与圆(x -a )2+(y -3)2=8相切,则有|a -3+4|2=22,即|a +1|=4,所以a =3或-5.故“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的充分不必要条件.感悟提升判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.考点二圆的弦长问题例1 (1)(2022·河南名校联考)已知圆C:(x-a)2+y2=4(a≥2)与直线x-y+22-2=0相切,则圆C与直线x-y-4=0相交所得弦长为()A.1B. 2C.2D.2 2(2)已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4答案(1)D(2)B解析(1)根据题意,圆C:(x-a)2+y2=4的半径r=2.圆C:(x-a)2+y2=4(a≥2)与直线x-y+22-2=0相切,则圆心C到直线x-y+22-2=0的距离为2,即|a+22-2|2=2,解得a=2或a=2-42(舍去),所以圆C的方程为(x-2)2+y2=4,则圆心C(2,0)到直线x-y-4=0的距离d=|2-4|2=2,所以圆C与直线x-y-4=0相交所得弦长为222-d2=2 2.(2)圆的方程可化为(x-3)2+y2=9,故圆心的坐标为C(3,0),半径r=3.如图,记点M(1,2),则当MC与直线垂直时,直线被圆截得的弦的长度最小,此时|MC |=22, 弦的长度l =2r 2-|MC |2=29-8=2.感悟提升 弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长. (2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2.训练1 (2022·南昌摸底测试)若直线x +ay -a -1=0与圆C :(x -2)2+y 2=4交于A ,B 两点,当|AB |最小时,劣弧AB 的长为( ) A.π2 B.πC.2πD.3π答案 B解析 圆C :(x -2)2+y 2=4的圆心为C (2,0),半径r =2.直线的方程可化为x -1+a (y -1)=0,可知直线恒过点D (1,1). 因为点D (1,1)的坐标满足(1-2)2+12<4, 所以点D (1,1)恒在圆C 内,且|CD |=2,易知,当CD ⊥AB 时,|AB |取得最小值,且最小值为2r 2-|CD |2=2 2.此时,劣弧AB 对应的圆心角为π2,所以劣弧AB 对应的弧长为π2×2=π. 考点三 圆的切线问题例2 (经典母题)过点P (2,4)引圆C :(x -1)2+(y -1)2=1的切线,则切线方程为________________.答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0.∵直线与圆相切,∴圆心到直线的距离等于半径,即d=|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0, 即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.迁移1 在例2中,若点P 坐标变为⎝ ⎛⎭⎪⎫22+1,22+1,其他条件不变,求切线方程.解 易知点P ⎝ ⎛⎭⎪⎫22+1,22+1在圆C :(x -1)2+(y -1)2=1上,则k PC =22+1-122+1-1=1,∴所求切线方程的斜率为-1,则切线方程为y -⎝ ⎛⎭⎪⎫22+1=-⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫22+1,即x +y -2-2=0.迁移2 在例2中,已知条件不变,设两个切点为A ,B ,求切点弦AB 所在的直线方程.解 由题意得,点P ,A ,C ,B 在以PC 为直径的圆上,此圆的方程为(x -2)(x -1)+(y -4)(y -1)=0,整理得x 2+y 2-3x -5y +6=0.①圆C :(x -1)2+(y -1)2=1展开得x 2+y 2-2x -2y +1=0,② 由②-①得x +3y -5=0,即为直线AB 的方程.感悟提升 求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时注意斜率不存在的切线.训练2 (1)过直线y =2x +3上的点作圆C :x 2+y 2-4x +6y +12=0的切线,则切线长的最小值为( )A.19B.2 5C.21D.555(2)(2021·晋中模拟)过点P (2,3)作圆C :x 2+y 2-2x =0的两条切线,切点分别为A ,B ,则P A →·PB →=________.答案 (1)A (2)32解析 (1)圆的方程可化为(x -2)2+(y +3)2=1,要使切线长最小,只需直线y =2x +3上的点和圆心之间的距离最短,此最小值即为圆心(2,-3)到直线y =2x +3的距离d ,d =|2×2+3+3|5=25,故切线长的最小值为d 2-r 2=19.(2)由x 2+y 2-2x =0得(x -1)2+y 2=1,所以圆心C (1,0),半径为1,所以|PC |=2,|P A |=|PB |=3,∠APB =60°, 所以P A →·PB →=|P A →||PB →|cos 60°=32. 考点四 圆与圆的位置关系例3 已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)当m =45时,求两圆的公共弦所在直线的方程和公共弦的长. 解 因为两圆的标准方程分别为 (x -1)2+(y -3)2=11, (x -5)2+(y -6)2=61-m ,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m ,(1)当两圆外切时,由(5-1)2+(6-3)2=11+61-m ,得m =25+1011.(2)当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5,所以61-m -11=5,解得m=25-1011.(3)由(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,得两圆的公共弦所在直线的方程为4x+3y-23=0,故两圆的公共弦的长为2(11)2-(|4×1+3×3-23|42+32)2=27.感悟提升 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.训练3 (1)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离(2)(2022·东北三省三校联考)圆x2-4x+y2=0与圆x2+y2+4x+3=0的公切线共有()A.1条B.2条C.3条D.4条答案(1)B(2)D解析(1)由题意得圆M的标准方程为x2+(y-a)2=a2,圆心(0,a)到直线x+y=0的距离d=a2,所以2a2-a22=22,解得a=2.圆M,圆N的圆心距|MN|=2小于两圆半径之和1+2,大于两圆半径之差1,故两圆相交.(2)x2-4x+y2=0⇒(x-2)2+y2=22,圆心坐标为(2,0),半径为2;x2+y2+4x+3=0⇒(x+2)2+y2=12,圆心坐标为(-2,0),半径为1,圆心距为4,两圆半径和为3.因为4>3,所以两圆的位置关系是外离,故两圆的公切线共有4条.阿波罗尼斯圆公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:到两定点距离之比等于已知数的动点轨迹为直线或圆.如图,点A ,B 为两定点,动点P 满足|P A |=λ|PB |.则λ=1时,动点P 的轨迹为直线;当λ>0且λ≠1时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆.证明:设|AB |=2m (m >0),|P A |=λ|PB |,以AB 的中点为原点,直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系(图略),则A (-m ,0),B (m ,0).又设P (x ,y ),则由|P A |=λ|PB |得(x +m )2+y 2=λ(x -m )2+y 2, 两边平方并化简整理得(λ2-1)x 2-2m (λ2+1)x +(λ2-1)y 2=m 2(1-λ2).当λ=1时,x =0,轨迹为线段AB 的垂直平分线;当λ>0且λ≠1时,⎝ ⎛⎭⎪⎪⎫x -λ2+1λ2-1m 2+y 2=4λ2m 2(λ2-1)2,轨迹为以点⎝ ⎛⎭⎪⎪⎫λ2+1λ2-1m ,0为圆心,⎪⎪⎪⎪⎪⎪2λm λ2-1为半径的圆. 例1 如图所示,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =x -1,y =2x -4,得圆心为C (3,2). 由题意知切线的斜率存在,设切线方程为y =kx +3,圆心C 到切线的距离d =|3k +3-2|1+k2=r =1,得k =0或k =-34. 故所求切线方程为y =3或3x +4y -12=0.(2)设点M (x ,y ),由|MA |=2|MO |, 知x 2+(y -3)2=2x 2+y 2,化简得x 2+(y +1)2=4,即点M 的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D .又因为点M 也在圆C 上,故圆C 与圆D 的关系为相交或相切,故1≤|CD |≤3,其中|CD |=a 2+(2a -3)2, 解得0≤a ≤125. 即圆心C 的横坐标a 的取值范围是⎣⎢⎡⎦⎥⎤0,125. 例2 在平面直角坐标系xOy 中,设点A (1,0),B (3,0),C (0,a ),D (0,a +2),若存在点P ,使得|P A |=2|PB |,|PC |=|PD |,则实数a 的取值范围是________. 答案 [-22-1,22-1]解析设P(x,y),则(x-1)2+y2=2·(x-3)2+y2,整理得(x-5)2+y2=(22)2,即动点P在以(5,0)为圆心,22为半径的圆上运动. 另一方面,由|PC|=|PD|知动点P在线段CD的垂直平分线y=a+1上运动,因而问题就转化为直线y=a+1与圆(x-5)2+y2=(22)2有交点.所以|a+1|≤2 2.故实数a的取值范围是[-22-1,22-1].1.(2022·兰州质检)“k=33”是“直线l:y=k(x+2)与圆x2+y2=1相切”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若直线l与圆相切,则有|2k|k2+1=1,解得k=±33,所以“k=33”是“直线l:y=k(x+2)与圆x2+y2=1相切”的充分不必要条件.2.(2021·福州调研)已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得的弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8答案 B解析将圆的方程化为标准方程为(x+1)2+(y-1)2=2-a,所以圆心为(-1,1),半径r=2-a,圆心到直线x+y+2=0的距离d=|-1+1+2|2=2,故r2-d2=4,即2-a-2=4,所以a=-4.3.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为2的点共有()A.1个B.2个C.3个D.4个答案 C解析圆的方程可化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线的距离d=|-1-2+1|=2,半径是22,结合图形(图略)可知有3个符合条件的点.24.(2021·南昌模拟)已知圆O:(x-1)2+(y-1)2=1,则下列选项所对应的图形中,与圆O相切的是()A.x2+y2=1B.(x-4)2+(y-5)2=16C.x+y=1D.x-y=2答案 B解析圆O:(x-1)2+(y-1)2=1的圆心坐标为(1,1),半径r=1.对于选项A,x2+y2=1表示的是圆心坐标为(0,0),半径r1=1的圆,此圆与圆O的圆心距为12+12=2<r+r1=2,所以两圆不相切,不符合题意.对于选项B,(x-4)2+(y-5)2=16表示的是圆心坐标为(4,5),半径r2=4的圆,此圆与圆O的圆心距为(4-1)2+(5-1)2=5=r+r2=5,所以两圆相切.对于选项C,圆心(1,1)到直线x+y=1的距离为22<1,故直线x+y=1与圆O 相交.对于选项D,圆心(1,1)到直线x-y=2的距离为2>1,故直线x-y=2与圆O 相离.5.过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB 所在直线的方程为()A.y=-34 B.y=-12C.y=-32 D.y=-14答案 B解析由题意知,点P,A,C,B在以PC为直径的圆上,易求得这个圆为(x-1)2+(y+1)2=1,此圆的方程与圆C的方程作差可得AB所在直线的方程为y=-12.6.(2022·宜宾诊断)已知直线l:y=3x+m与圆C:x2+(y-3)2=6相交于A,B 两点,若∠ACB=120°,则实数m的值为()A.3+6或3- 6B.3+26或3-2 6C.9或-3D.8或-2答案 A解析由题意知圆心C(0,3)到直线l的距离d=|0-3+m|3+1=|m-3|2.因为∠ACB=120°,所以|m-3|2×2=6,解得m=3±6.7.已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=________,r=________.答案-2 5解析根据题意画出图形,可知A(-2,-1),C(0,m),B(0,3),则|AB|=(-2-0)2+(-1-3)2=25,|AC|=(-2-0)2+(-1-m)2=4+(m+1)2,|BC |=|m -3|.∵直线2x -y +3=0与圆C 相切于点A ,∴∠BAC =90°,∴|AB |2+|AC |2=|BC |2.即20+4+(m +1)2=(m -3)2,解得m =-2.因此r =|AC |=4+(-2+1)2= 5.8.(2021·长春模拟)已知点P (1,2)和圆C :x 2+y 2+kx +2y +k 2=0,过点P 作圆C 的切线有两条,则实数k 的取值范围是________.答案 ⎝⎛⎭⎪⎫-233,233 解析 因为C :x 2+y 2+kx +2y +k 2=0为圆, 所以k 2+4-4k 2>0,解得-233<k <233.又过点P 作圆C 的切线有两条,所以点P 在圆的外部,故1+4+k +4+k 2>0,解得k ∈R ,综上可知-233<k <233.故k 的取值范围是⎝⎛⎭⎪⎫-233,233. 9.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为______.答案 10 2解析 圆的标准方程为(x -1)2+(y -3)2=10,则圆心(1,3),半径r =10,圆心(1,3)与E (0,1)距离(1-0)2+(3-1)2=5.由题意知AC ⊥BD ,且|AC |=210,|BD |=210-5=25,所以四边形ABCD 的面积为S =12|AC |·|BD |=12×210×25=10 2.10.已知圆M :x 2+y 2-2ax +10ay -24=0,圆N :x 2+y 2+2x +2y -8=0,且圆M 上任意一点关于直线x +y +4=0的对称点都在圆M 上.(1)求圆M 的方程;(2)证明圆M 和圆N 相交,并求两圆公共弦的长度l .(1)解 圆M :x 2+y 2-2ax +10ay -24=0的圆心为M (a ,-5a ),∵圆M 上任意一点关于直线x +y +4=0的对称点都在圆M 上,∴直线x +y +4=0经过M ,则a -5a +4=0,解得a =1.∴圆M 的方程为x 2+y 2-2x +10y -24=0.(2)证明 ∵圆M 的圆心M (1,-5),半径r 1=52,圆N 的圆心N (-1,-1),半径r 2=10,∴|MN |=(1+1)2+(-5+1)2=2 5.∵52-10<25<52+10,∴圆M 和圆N 相交.由圆M ,圆N 的方程左右两边分别相减,得x -2y +4=0,∴两圆公共弦的直线方程为x -2y +4=0.∵M 到直线x -2y +4=0的距离d =|1+10+4|5=35, ∴公共弦长度l =2h 2-d 2=2 5.11.已知圆C 经过(2,4),(1,3)两点,圆心C 在直线x -y +1=0上,过点A (0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,求出该定值,若不是,请说明理由;②若OM →·ON →=12(O 为坐标原点),求直线l 的方程.解 (1)设圆C 的方程为(x -a )2+(y -b )2=r 2,依题意,得⎩⎪⎨⎪⎧(2-a )2+(4-b )2=r 2,(1-a )2+(3-b )2=r 2,a -b +1=0,解得⎩⎪⎨⎪⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1.(2)①AM →·AN →为定值,理由如下:过点A (0,1)作直线AT 与圆C 相切,切点为T ,易得|AT |2=7,∴AM →·AN →=|AM →|·|AN →|cos 0°=|AT |2=7.根据圆的弦切角定理及相似三角形,∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1,并整理,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2, ∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12,即4k (1+k )1+k 2=4,解得k =1.又当k =1时,Δ>0,∴k =1,∴直线l 的方程为y =x +1.12.(2022·宝鸡模拟)过点P (x ,y )作圆C 1:x 2+y 2=1与圆C 2:(x -2)2+(y -2)2=1的切线,切点分别为A ,B ,若|P A |=|PB |,则x 2+y 2的最小值为( )A. 2B.2C.2 2D.8 答案 B解析 由(x 2+y 2-1)-(x 2+y 2-4x -4y +7)=0得x +y -2=0,则P 点在直线l :x +y -2=0上,原点到直线l 的距离d =2,所以(x 2+y 2)min =d 2=2.13.(2022·南阳联考)阿波罗尼斯(约公元前262~公元前190年)证明过这样一个命题:平面内到两定点距离之比为常数k (k >0,且k ≠1)的点的轨迹是圆,后人将此圆称为阿氏圆.若平面内两定点A ,B 间的距离为4,动点P 满足|P A ||PB |=3,则动点P 的轨迹所围成的图形的面积为________;P A →·PB →的最大值是________. 答案 12π 24+16 3解析 以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系, 则A (-2,0),B (2,0).设P (x ,y ),∵|P A ||PB |=3,∴(x +2)2+y 2(x -2)2+y 2=3,得x 2+y 2-8x +4=0,即(x -4)2+y 2=12,所以点P 的轨迹为圆,其面积为12π.P A →·PB →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=|OP |2-4,如图,当P 位于点D 时,|OP |2最大,|OP |2的最大值为(4+23)2=28+163, 故P A →·PB →的最大值是24+16 3.14.(2021·北京海淀区模拟)已知A (2,0),直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,且P 为圆C 上任意一点.(1)求|P A |的最大值与最小值;(2)圆C 与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径. 解 (1)∵直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,∴圆心到直线的距离d =|-12+3m +1|5=(13)2-(23)2=1.∵m <3,∴m =2,∴|AC |=(-3-2)2+(2-0)2=29, ∴|P A |的最大值与最小值分别为29+13,29-13.(2)由(1)可得圆C 的方程为(x +3)2+(y -2)2=13,令x =0,得y =0或4; 令y =0,得x =0或-6,∴圆C 与坐标轴相交于三点M (0,4),O (0,0),N (-6,0),∴△MON为直角三角形,斜边|MN|=213,∴△MON内切圆的半径为4+6-2132=5-13.。

高考数学一轮复习第八章第二节第1课时系统知识__圆的方程直线与圆的位置关系圆与圆的位置关系讲义含解析

高考数学一轮复习第八章第二节第1课时系统知识__圆的方程直线与圆的位置关系圆与圆的位置关系讲义含解析

第二节圆与方程第1课时系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系1.圆的定义及方程点M(x0,y0),圆的标准方程(x-a)2+(y-b)2=r2.[提醒] 不要把形如x2+y2+Dx+Ey+F=0的结构都认为是圆,一定要先判断D2+E2-4F的符号,只有大于0时才表示圆.[谨记常用结论]若x2+y2+Dx+Ey+F=0表示圆,则有:当F=0时,圆过原点.当D=0,E≠0时,圆心在y轴上;当D≠0,E=0时,圆心在x轴上.当D=F=0,E≠0时,圆与x轴相切于原点;E=F=0,D≠0时,圆与y轴相切于原点.当D2=E2=4F时,圆与两坐标轴相切.[小题练通]1.[人教A版教材P124A组T4]圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为____________.答案:(x-2)2+y2=102.[教材改编题]经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的方程为________________.答案:(x -1)2+(y -1)2=13.[教材改编题]圆心为(1,1)且过原点的圆的方程是________. 答案:(x -1)2+(y -1)2=24.[易错题]已知圆的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过定点A 的圆的切线有两条,则a 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-233,2335.若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是________. 答案:(-2,2)6.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________. 答案:x 2+y 2-2x =01.直线与圆的位置关系(半径r ,圆心到直线的距离为d )2.圆的切线(1)过圆上一点的圆的切线①过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程是x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点M (x 0,y 0)的切线方程是(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(2)过圆外一点的圆的切线过圆外一点M (x 0,y 0)的圆的切线求法:可用点斜式设出方程,利用圆心到直线的距离等于半径求出斜率k ,从而得切线方程;若求出的k 值只有一个,则说明另一条直线的斜率不存在,其方程为x =x 0.(3)切线长①从圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)外一点M (x 0,y 0)引圆的两条切线,切线长为 x 20+y 20+Dx 0+Ey 0+F .②两切点弦长:利用等面积法,切线长a 与半径r 的积的2倍等于点M 与圆心的距离d 与两切点弦长b 的积,即b =2ard.[提醒] 过一点求圆的切线方程时,要先判断点与圆的位置关系,以便确定切线的条数. 3.圆的弦问题直线和圆相交,求被圆截得的弦长通常有两种方法:(1)几何法:因为半弦长L2、弦心距d 、半径r 构成直角三角形,所以由勾股定理得L =2r 2-d 2.(2)代数法:若直线y =kx +b 与圆有两交点A (x 1,y 1),B (x 2,y 2),则有: |AB |=1+k 2|x 1-x 2|= 1+1k2|y 1-y 2|.[谨记常用结论]过直线Ax +By +C =0和圆x 2+y 2+Dx +Ey +F =D 2+E 2-4F >交点的圆系方程为x 2+y 2+Dx +Ey +F +λAx +By +C =0.,[小题练通]1.[教材改编题]若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案:C2.[教材改编题]直线y =ax +1与圆x 2+y 2-2x -3=0的位置关系是( ) A .相切 B .相交C .相离D .随a 的变化而变化解析:选B ∵直线y =ax +1恒过定点(0,1),又点(0,1)在圆(x -1)2+y 2=4的内部,故直线与圆相交.3.[教材改编题]已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是________.解析:由题意知点M 在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b 2<1,故直线与圆相交.答案:相交4.[易错题]过点(2,3)且与圆(x -1)2+y 2=1相切的直线的方程为________________. 解析:当切线的斜率存在时,设圆的切线方程为y =k (x -2)+3,由圆心(1,0)到切线的距离为1,得k =43,所以切线方程为4x -3y +1=0;当切线的斜率不存在时,易知直线x=2是圆的切线,所以所求的直线方程为4x -3y +1=0或x =2.答案:x =2或4x -3y +1=05.以M (1,0)为圆心,且与直线x -y +3=0相切的圆的方程是________. 答案:(x -1)2+y 2=86.直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 解析:由x 2+y 2+2y -3=0,得x 2+(y +1)2=4.∴圆心C (0,-1),半径r =2.圆心C (0,-1)到直线x -y +1=0的距离d =|1+1|2=2,∴|AB |=2r 2-d 2=24-2=2 2. 答案:2 2圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)[提醒] 涉及两圆相切时,没特别说明,务必要分内切和外切两种情况进行讨论.[谨记常用结论]圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与C 2:x 2+y 2+D 2x +E 2y +F 2=0相交时:将两圆方程直接作差,得到两圆公共弦所在直线方程; 两圆圆心的连线垂直平分公共弦;x 2+y 2+D 1x +E 1y +F 1+λx 2+y 2+D 2x +E 2y +F 2=0表示过两圆交点的圆系方程不包括C 2[小题练通]1.[人教A 版教材P133A 组T9]圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦的长为________.答案:2 22.[教材改编题]若圆x 2+y 2=1与圆(x +4)2+(y -a )2=25相切,则实数a =________.答案:±25或03.[教材改编题]圆x2+y2=r2与圆(x-3)2+(y+1)2=r2外切,则半径r=________.解析:由题意,得2r=32+-2,所以r=10 2.答案:10 24.[易错题]若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是________.答案:[1,121]5.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( )A.21 B.19C.9 D.-11解析:选C 圆C1的圆心为C1(0,0),半径r1=1,因为圆C2的方程可化为(x-3)2+(y -4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=25-m(m<25).从而|C1C2|=32+42=5.由两圆外切得|C1C2|=r1+r2,即1+25-m=5,解得m=9,故选C.6.与圆C1:x2+y2-6x+4y+12=0,C2:x2+y2-14x-2y+14=0都相切的直线有( ) A.1条 B.2条C.3条 D.4条解析:选A 两圆分别化为标准形式为C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则两圆圆心距|C1C2|=7-32+[1--2]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.。

高考数学一轮总复习课件:圆的方程及直线与

高考数学一轮总复习课件:圆的方程及直线与
所以圆的方程为x2+y2-4x-235y-5=0. 将D(a,3)代入得a2-4a-21=0. 解得a=7或a=-3(舍).
(2)(2021·辽宁大连模拟)在直线l:y=x-1上有两个点A, B,且A,B的中点坐标为(4,3),线段AB的长度|AB|=8,则过 A,B两点且与y轴相切的圆的方程为____(_x_-_4_)_2+__(y_-__3)_2=__1_6___
解析 (x+2m)2+(y-1)2=4m2-5m+1表示圆,则 4m2-5m+1>0,解得m<14或m>1.
3.(2021·成都七中月考)圆心在y轴上,且过点(3,1)的圆与
x轴相切,则该圆的方程是( B )
A.x2+y2+10y=0
B.x2+y2-10y=0
C.x2+y2+10x=0
D.x2+y2-10x=0
第3课时 圆的方程及直线与 圆的位置关系
[复习要求] 1.掌握确定圆的几何要素.2.掌握圆的标准方 程和一般方程.3.掌握直线与圆的位置关系.
课前自助餐
圆的定义 平面内到定点的距离__等_于__定_长___的点的集合(轨迹)是圆,定点 是圆心,定长是半径. 注:平面内动点 P 到两定点 A,B 距离的比值为 λ,即||PPAB||= λ, ①当 λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当 λ≠1 时,P 点轨迹是圆.
A=B≠0,
__D_2+__E_2_-_4_A_F_>_0.
圆的参数方程 圆心为(a,b),半径为 r 的圆的参数方程为xy==ab++rrcsoinsθθ,(θ 为参数).
确定圆的方程的方法和步骤 确定圆的方程的主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于 a,b,r 或 D,E,F 的方程组; (3)解出 a,b,r 或 D,E,F 代入标准方程或一般方程.

版高考数学理科一轮复习:直线方程与圆的方程

版高考数学理科一轮复习:直线方程与圆的方程

故圆心M的坐标为(m2+2,m),圆M的半径r= (m2 2)2 m2 .
由于圆M过点P(4,-2),因此
AP ·BP
=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,
即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.
由(1)可得y1y2=-4,x1x2=4.
所以2m2-m-1=0,解得m=1或m=-1 .
3.(2015广东,5,5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是 ( ) A.2x+y+5=0或2x+y-5=0 B.2x+y+ 5 =0或2x+y- 5 =0 C.2x-y+5=0或2x-y-5=0 D.2x-y+ 5 =0或2x-y- 5 =0
答案 A 切线平行于直线2x+y+1=0,故可设切线方程为2x+y+c=0(c≠1),结合题意可得 | c | =
1)2
16.
解得
x0 y0
3, 2

x0 y0
11, 6.
因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.
方法总结 有关抛物线的焦点弦问题,常用抛物线的定义进行转化求解,在求解过程中应注重 利用根与系数的关系进行整体运算.一般地,求直线和圆的方程时,利用待定系数法求解.
.
思路分析 先求出椭圆的顶点坐标,由圆心在x轴正半轴上和圆的性质确定圆心坐标,进而求 得半径得出结果. 解后反思 由弦的中垂线经过圆心这一性质确定圆心坐标,进而求圆的标准方程,本题若用圆 的一般方程求解运算量较大.

高三数学第一轮复习:圆的方程及直线与圆的位置关系知识精讲

高三数学第一轮复习:圆的方程及直线与圆的位置关系知识精讲

高三数学第一轮复习:圆的方程及直线与圆的位置关系知识精讲【本讲主要内容】圆的方程及直线与圆的位置关系圆的标准方程、圆的一般方程、圆的参数方程、直线和圆的位置关系【知识掌握】 【知识点精析】1. 圆的标准方程:()()222x a y b r -+-=,方程表示圆心为(),C a b ,半径为r 的圆。

2. 圆的一般方程:022=++++F Ey Dx y x⑴当0422>-+F E D 时,表示圆心为,22D E ⎛⎫-- ⎪⎝⎭,的圆; ⑵当2240D E F +-=时,表示一个点,22D E ⎛⎫-- ⎪⎝⎭; ⑶当0422<-+F E D 时,它不表示任何图形。

3. 圆的标准方程与一般方程的比较:圆的标准方程的优点在于它明确地指出了圆心和半径,而一般方程突出了方程形式上的特点:①2x 和2y 的系数相同,都不等于0;②没有xy 这样的二次项。

二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是:①2x 和2y 的系数相等且不为零,即0A C =≠;②没有xy 项,即0B =;③0422>-+F E D ,其中①、②是二元二次方程表示圆的必要条件,但不是充分条件。

说明:圆的标准方程和一般方程均含有三个参变量,因此必须有三个独立条件才能确定一个圆;求圆的方程的主要方法为待定系数法。

4. 圆的参数方程:在取定的坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数,即()()x f t y g t =⎧⎪⎨=⎪⎩()*,并且对于t 的每一个允许值,由方程组()*所确定的点(),M x y 都在这条曲线上,那么方程组()*就叫做这条曲线的参数方程,联系,x y 之间关系的变数叫做参变数,简称参数。

cos sin x a r y b r θθ=+⎧⎨=+⎩()θ为参数表示圆心为()a ,b ,半径为r 的圆。

5. 直线与圆的位置关系: ⑴点与圆的位置关系:若圆()()222x a y b r -+-=,那么点()000,P x y 在⎪⎪⎩⎪⎪⎨⎧>-+-⇔<-+-⇔=-+-⇔220202202022020)()()()()()(r b y a x r b y a x r b y a x 圆外圆内圆上⑵直线与圆的位置关系:直线与圆的位置关系有三种:相离、相切、相交。

2023版高考数学一轮总复习:圆的方程及直线圆的位置关系课件文

2023版高考数学一轮总复习:圆的方程及直线圆的位置关系课件文
第九章
直线和圆的方程
第二讲 圆的方程及直线、圆的位置关系
要点提炼
考点1
圆的方程
1. 圆的定义与方程
定长
(a,b)
考点1
圆的方程
规律总结
(1)若没有给出r>0,则圆的半径为|r|.

2
2
2
2
(2)在圆的一般方程中:当D +E -4F=0时,方程x +y +Dx+Ey+F=0表示一个点(- ,- );
( ✕)
( √ )
(4)如果两圆的圆心距小于两圆的半径之和,则两圆相交.
( ✕)
(5)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.
( ✕)
(6)联立两相交圆的方程,并消掉二次项后得到的二元一次方程是两圆的公共弦所在的
直线方程.
( √ )
(7)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点为A,B,则O,P,A,B四点共圆且直
R-r<d <R+r
____________
___________
d_________
>R+r ___________
_____
4
_____
3
________
2
1
0
考点3
圆与圆的位置关系
2.两圆相交时,公共弦所在直线的方程
设圆C1:x2+y2+D1x+E1y+F1=0
(*),圆C2:x2+y2+D2x+E2y+F2=0
y2=1,即x2+y2-2x=0.

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

高考数学一轮复习---直线与圆、圆与圆的位置关系知识点与题型复习

直线与圆、圆与圆的位置关系知识点与题型复习一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>02.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+221⎪⎭⎫⎝⎛l .三、考点解析考点一 直线与圆的位置关系 考法(一) 直线与圆的位置关系的判断例、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离 D .不确定[解题技法]判断直线与圆的位置关系的常见方法: (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.考法(二) 直线与圆相切的问题例、(1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0 (2)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.考法(三) 弦长问题例、(1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D.2 (2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( ) A .4π B .2π C .9π D .22π跟踪练习:1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎪⎪⎭⎫⎝⎛2222,的切线方程是________. 2.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.考点二 圆与圆的位置关系例、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离变式练习:1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-112.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.[解题技法]几何法判断圆与圆的位置关系的3步骤: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.课后作业1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3 D .±32.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条3.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6 B .-π3或π3 C .-π6或π6 D.π64.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0 D .x -2y -7=05.若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( ) A .±1 B .±24 C .± 2 D .±326.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-147.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 8.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________.10.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.11.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.提高练习1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( ) A. 2 B.3 C .2 D .32.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________. 3.已知圆C :x 2+(y -a )2=4,点A (1,0).(1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.。

9.4直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习

9.4直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习
位置关系
相离
相切
相交
方程观点
<
Δ___0
Δ___0
=
Δ___0
>
几何观点
d___r
>
d___r
=
d___r
<
图形
量化
微点拨 判断直线与圆的位置关系,常用几何法而不用代数法.
微思考 当某直线所过定点A在圆上时,该直线与圆有何位置关系?
提示:直线与圆相交或相切.
2.圆与圆的位置关系
设圆O1:(x-a1)2+(y-b1)2=12 (r1>0),圆O2:(x-a2)2+(y-b2)2=22 (r2>0).
4F2>0)相交时:
(1)将两圆方程直接作差,消去x2,y2得到两圆公共弦所在直线方程;
(2)两圆圆心的连线垂直平分公共弦;
(3)x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ∈R,λ≠-1)表示过两圆交点的圆系方
程(不包括C2).
基础诊断·自测
类型
辨析
改编
易错
高考
一组实数解
___________
1
内含
0≤d<|r1-r2|(r1≠r2)
无解
_____
0
3.直线被圆截得的弦长
(1)几何法:弦心距d、半径r和弦长|AB|的一半构成直角三角形,弦长|AB|=2 2 − 2 .
(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,代入,消去y,得关于x

2024高考一轮复习数学重难点11九种直线和圆的方程的解题方法(核心考点讲与练含答案

2024高考一轮复习数学重难点11九种直线和圆的方程的解题方法(核心考点讲与练含答案

2024高考一轮复习专项重难点11 九种直线和圆的方程的解题方法(核心考点讲与练)能力拓展题型一:直接法求直线方程一、单选题1.(2022·全国·高三专题练习)直线l 经过两条直线10x y -+=和2320x y ++=的交点,且平行于直线240x y -+=,则直线l 的方程为()A .210x y --=B .210x y -+=C .220x y -+=D .220x y +-=2.(2022·全国·高三专题练习(文))若经过点(1,2)P --的直线与圆225x y +=相切,则该直线在y 轴上的截距为()A .52B .5C .52-D .5-3.(2022·浙江·高三专题练习)如图,圆1C 、2C 在第一象限,且与x 轴,直线2:2l y =均相切,则圆心1C 、2C 所在直线的方程为()A .2y x =B .22y x =C .24y x =D .y x=4.(2022·重庆·高三开学考试)若直线l 交圆22:420C x y x y +-+=于A 、B 两点,且弦AB 的中点为()1,0M ,则l 方程为()A .10x y --=B .10x y -+=C .10x y +-=D .10x y ++=二、多选题5.(2022·全国·高三专题练习)过点()2,3A 且在两坐标轴上截距相等的直线方程为()A .320x y -=B .230x y -=C .5x y +=D .1x y -=-6.(2022·全国·高三专题练习)已知(1,2)A ,(3,4)B -,(2,0)C -,则()A .直线0x y -=与线段AB 有公共点B .直线AB 的倾斜角大于135︒C .ABC 的边BC 上的中线所在直线的方程为2y =D .ABC 的边BC 上的高所在直线的方程为470x y -+=7.(2022·全国·高三专题练习)已知直线l 过点P (-1,1),且与直线1:230l x y -+=以及x 轴围成一个底边在x 轴上的等腰三角形,则下列结论正确的是()A .直线l 与直线l 1的斜率互为相反数B .所围成的等腰三角形面积为1C .直线l 关于原点的对称直线方程为210x y +-=D .原点到直线l 8.(2021·全国·模拟预测)已知平面上的线段l 及点P ,任取l 上一点Q ,称线段PQ 长度的最小值为点P 到线段l 的距离,记作(,)d P l .已知线段1:(122)l x y =--≤≤,21:()20l x y =-≤≤,点P 为平面上一点,且满足12(,)(,)d P l d P l =,若点P 的轨迹为曲线C ,A ,B 是第一象限内曲线C 上两点,点(10)F ,且54AF =,BF =)A .曲线C 关于x 轴对称B .点A 的坐标为1,14⎛⎫⎪⎝⎭C .点B 的坐标为35,22⎛⎫⎪⎝⎭D .FAB 的面积为1916题型二:待定系数法求直线方程一、单选题1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知抛物线C :22y px =的焦点F 的坐标为()20,,准线与x 轴交于点A ,点M 在第一象限且在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为()A .24y x =+B .24y x =--C .y =x +2D .2y x =--2.(2022·全国·高三专题练习)若直线1:2330l x y --=与2l 互相平行,且2l 过点(2,1),则直线2l 的方程为()A .3270x y +-=B .3240x y -+=C .2330x y -+=D .2310x y --=3.(2022·全国·高三专题练习)已知直线:20l ax y a +-+=在x 轴与y 轴上的截距相等,则实数a 的值是()A .1B .﹣1C .﹣2或1D .2或14.(2022·全国·高三专题练习)过点()1,2作直线l ,满足在两坐标轴上截距的绝对值相等的直线l 有()条.A .1B .2C .3D .4二、多选题5.(2021·重庆梁平·高三阶段练习)已知直线l 10y -+=,则下列结论正确的是()A .直线l 的倾斜角是3πB .若直线m:10x +=,则l m ⊥C .点到直线l 的距离是2D .过与直线l 40y --=6.(2022·全国·高三专题练习)下列命题正确的是()A .已知点3(2,)A -,(3,2)B --,若直线(1)1y k x =-+与线段AB 有交点,则34k ≥或4k ≤-B .1m =是直线1l :10mx y +-=与直线2l :()220m x my -+-=垂直的充分不必要条件C .经过点()1,1且在x 轴和y 轴上的截距都相等的直线的方程为20x y +-=D .已知直线1l :10ax y -+=,2l :10x ay ++=,R a ∈,和两点(0,1)A ,(1,0)B -,如果1l 与2l 交于点M ,则MA MB⋅的最大值是1.7.(2022·全国·高三专题练习)下列说法错误..的是()A .若直线210a x y -+=与直线20x ay --=互相垂直,则1a =-B .直线sin 20x y α++=的倾斜角的取值范围是30,,)44[πππ⎡⎤⋃⎢⎥⎣⎦C .()()()()0,1,2,1,3,4,1,2A B CD -四点不在同一个圆上D .经过点()1,1且在x 轴和y 轴上截距都相等的直线方程为20x y +-=8.(2021·全国·高三专题练习)直线l 与圆22(2)2x y -+=相切,且l 在x 轴、y 轴上的截距相等,则直线l 的方程可能是A .0x y +=B .20x y +-+=C .0x y -=D .40x y +-=三、填空题9.(2022·全国·高三专题练习(理))已知抛物线2:4C y x =的焦点为F ,过焦点F 的直线C 交于11(,)A x y ,22(,)B x y 两点,若21154x x -=,则直线AB 的方程为______.10.(2020·黑龙江·哈师大附中高三期末(理))若过点()1,1A 的直线l 将圆()()22:324C x y -+-=的周长分为2:1两部分,则直线l 的斜率为___________.四、解答题11.(2022·全国·高三专题练习)已知圆C :()()22214x y -+-=,直线l :()()423360m x m y m ----=.(1)过点()4,2P -,作圆C 的切线1l ,求切线1l 的方程;(2)判断直线l 与圆C 是否相交,若相交,求出直线l 被圆截得的弦长最短时m 的值及最短弦长;若不相交,请说明理由.12.(2022·全国·高三专题练习)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且12||2F F =,点3(1,2在椭圆C 上.(1)求椭圆C 的方程;(2)过1F 的直线l 与椭圆C 相交于,A B 两点,且2AF B ∆的面积为7,求以2F 为圆心且与直线l 相切的圆的方程.题型三:已知两直线位置关系求参数值或范围一、单选题1.(2022·四川凉山·三模(理))已知直线1:210l x y -+=,2:10l x ay +-=,且12l l ⊥,点()1,2P 到直线2l 的距离d =()A BC .5D .52.(2022·辽宁·二模)己知直线:0l ax y a ++=,直线:0m x ay a ++=,则l m ∥的充要条件是()A .1a =-B .1a =C .1a =±D .0a =二、多选题3.(2021·重庆一中高三阶段练习)下列说法正确的有()A .若m ∈R ,则“1m =”是“1l :330x my m -+=与2l :()20m x y m +--=平行”的充要条件B .当圆222110x y x +--=截直线l :()1y kx k =+∈R 所得的弦长最短时,1k =-C .若圆1C :222x y t +=+与圆2C :()()22349x y -++=有且仅有两条公切线,则()2,6t ∈D .直线l :tan 412022y x =-︒⋅+的倾斜角为139°4.(2021·广东·高三阶段练习)已知直线l 过点()1,2M 且与圆C :()2225x y -+=相切,直线l 与x 轴交于点N ,点P 是圆C 上的动点,则下列结论中正确的有()A .点N 的坐标为()3,0-B .MNP △面积的最大值为10C .当直线l 与直线10ax y -+=垂直时,2a =D .tan MNP ∠的最大值为43三、填空题5.(2022·陕西·安康市高新中学三模(理))若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线l 与直线:20g ax by a ++=平行,则直线l ,g 间的距离为______.6.(2022·天津·二模)在平面直角坐标系xOy 中,已知圆222:(62)4560C x y m x my m m +---+-=,直线l 经过点(1,2)-,若对任意的实数m ,直线l 被圆C 截得的弦长都是定值,则直线l 的方程为___________.四、解答题7.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限.(1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程.8.(2020·江苏·南京师大附中模拟预测)如图,在平面直角坐标系xOy 中,已知圆221:(4)1C x y ++=,圆222:(4)4C x y -+=,A 是第一象限内的一点,其坐标为(,)t t .(1)若1212AC AC →→⋅=-,求t 的值;(2)过A 点作斜率为k 的直线l ,①若直线l 和圆1C ,圆2C 均相切,求k 的值;②若直线l 和圆2C ,圆2C 分别相交于,A B 和,C D ,且AB CD =,求t 的最小值.题型四:求解直线的定点一、单选题1.(2022·山东滨州·二模)已知直线()22:1(32)250l m m x m y m +++---=,圆22:20C x y x +-=,则直线l 与圆C 的位置关系是()A .相离B .相切C .相交D .不确定2.(2022·陕西·榆林市教育科学研究所模拟预测(理))在平面直角坐标系xOy 中,已知圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4i P i =,过动点Pi 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅= ,则k 的取值范围为()A .4,3∞⎛⎫-- ⎪⎝⎭B .4,03⎛⎫- ⎪⎝⎭C .(,7)(4,13)--∞-- D .4(7,)1)30(,--- 二、多选题3.(2022·湖南·长沙市明德中学二模)已知O 为坐标原点,点()P a b ,在直线()40l kx y k --=∈R :上,PA PB ,是圆222x y +=的两条切线,A B ,为切点,则()A .直线l 恒过定点()04,B .当PAB △为正三角形时,OP =C .当PA PB ⊥时,k 的取值范围为()-∞+∞ ,D .当14PO PA ⋅=时,a b +的最大值为4.(2022·江苏盐城·三模)设直线l :()220mx y m m R --+=∈,交圆C :()()22349x y -+-=于A ,B 两点,则下列说法正确的有()A .直线l 恒过定点()1,2B .弦AB 长的最小值为4C .当1m =时,圆C 关于直线l 对称的圆的方程为:()()22439x y -+-=D .过坐标原点O 作直线l 的垂线,垂足为点M ,则线段MC5.(2022·重庆·高三阶段练习)在平面直角坐标系xOy 中,圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4=i P i ,过动点i P 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅= ,则k 的值可能为()A .-7B .-5C .-2D .–1三、双空题6.(2022·北京房山·二模)已知圆()()22:121C x y -+-=和直线():1l y k x =+,则圆心坐标为___________;若点P 在圆C 上运动,P 到直线l 的距离记为()d k ,则()d k 的最大值为___________.四、填空题7.(2022·河南焦作·三模(文))已知()f x 是定义在R 上的奇函数,其图象关于点(2,0)对称,当[0,2]x ∈时,2()1(1)f x x =---,若方程()(2)0f x k x --=的所有根的和为6,则实数k 的取值范围是______.五、解答题8.(2022·全国·高三专题练习)O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =,直线l 过点P 且垂直于OQ ,求证:直线过定点.9.(2022·全国·高三专题练习)在平面直角坐标系xoy 中,如图,已知椭圆22195x y+=的左、右顶点为A 、B ,右焦点为F ,设过点(,)T t m 的直线TA 、TB 与此椭圆分别交于点1(M x ,1)y 、2(N x ,2)y ,其中0m >,10y >,20y <(1)设动点P 满足()()13PF PB PF PB +-=,求点P 的轨迹方程;(2)设12x =,213x =,求点T 的坐标;(3)若点T 在点P 的轨迹上运动,问直线MN 是否经过x 轴上的一定点,若是,求出定点的坐标;若不是,说明理由.题型五:直线相关的对称问题一、单选题1.(2022·全国·高三专题练习(理))集合M 在平面直角坐标系中表示线段的长度之和记为M .若集合(){}22,925A x y xy =≤+≤,(){},B x y y x m ==+,(){},2C x y y kx k ==+-则下列说法中不正确的有()A .若AB ⋂≠∅,则实数m 的取值范围为{m m -≤≤B .存在k ∈R ,使AC ⋂≠∅C .无论k 取何值,都有A C ⋂≠∅D .A C的最大值为42.(2022·全国·高三专题练习)已知平面向量12312312,,,1,,60e e e e e e e e ︒==== .若对区间1,12⎡⎤⎢⎥⎣⎦内的三个任意的实数123,,λλλ,都有11223312312e e e e e e λλλ++++,则向量1e 与3 e 夹角的最大值的余弦值为()A .36-B .C .D .二、多选题3.(2022·全国·模拟预测)已知直线:50l x y -+=,过直线上任意一点M 作圆()22:34C x y -+=的两条切线,切点分别为A ,B ,则有()A .四边形MACB 面积的最小值为B .AMB ∠最大度数为60°C .直线AB 过定点15,22⎛⎫ ⎪⎝⎭D .AB 4.(2022·福建三明·模拟预测)已知直线l :10kx y k --+=与圆C :()()222216x y -++=相交于A ,B 两点,O 为坐标原点,下列说法正确的是()A .AB的最小值为B .若圆C 关于直线l 对称,则3k =C .若2ACB CAB ∠=∠,则1k =或17k =-D .若A ,B ,C ,O 四点共圆,则13k =-三、填空题5.(2022·全国·模拟预测)已知平面内点,05n n A ⎛⎫- ⎪⎝⎭,,05n n B ⎛⎫ ⎪⎝⎭()*n ∈N ,点n C 满足n n n n AC B C ⊥.设n C 到直线()3410x y n n +++=的距离的最大值为n a ,若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S m <恒成立,则实数m 能取的最小值是______.6.(2022·天津·南开中学模拟预测)已知圆221:(1)(2)4C x y -+-=和圆222:(2)(1)2C x y -+-=交于,A B 两点,直线l 与直线AB 平行,且与圆2C 相切,与圆1C 交于点,M N ,则MN =__________.7.(2022·广东佛山·模拟预测)已知点()1,0A ,()3,0B ,若2PA PB ⋅=,则点P 到直线l :340x y -+=的距离的最小值为____________.四、解答题8.(2022·安徽·蚌埠二中模拟预测(理))在直角坐标系xOy 中,曲线C 的参数方程为22224x t ty t ⎧=-⎨=+⎩(t 为参数).(1)求C 与坐标轴交点的直角坐标;(2)以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 与坐标轴的交点是否共圆,若共圆,求出该圆的极坐标方程;若不共圆,请说明理由.9.(2022·安徽·寿县第一中学高三阶段练习(理))已知直线:sin cos 0l x y a θθ++=,圆()()221:324C x y a +--=,圆2222:340Cx y a a +-+=(1)若4θ=,求直线l 的倾斜角;(2)设直线l 截两圆的弦长分别为12,d d ,当23πθ=时,求12d d ⋅的最大值并求此时a 的值.10.(2022·江西南昌·一模(理))已知面积为ABO (O 是坐标原点)的三个顶点都在抛物线()2:20E y px p =>上,过点(),2P p -作抛物线E 的两条切线分别交y 轴于M ,N 两点.(1)求p 的值;(2)求PMN 的外接圆的方程.题型六:几何法求圆的方程一、多选题1.(2022·广东·模拟预测)三角形的外心、重心、垂心所在的直线称为欧拉线.已知圆O '的圆心在OAB 的欧拉线l 上,O 为坐标原点,点()4,1B 与点()1,4A 在圆O '上,且满足O A O B '⊥',则下列说法正确的是()A .圆O '的方程为224430x y x y +--+=B .l 的方程为0x y -=C .圆O '上的点到l 的最大距离为3D .若点(),x y 在圆O '上,则x y -的取值范围是⎡-⎣二、填空题2.(2022·河北·模拟预测)圆心为(1,2)C -,且截直线350x y ++=所得弦长为的圆的方程为___________.3.(2022·河南·高三阶段练习(文))已知㮋圆1C :()2221024x y b b+=<<的离心率为12,1F 和2F 是1C 的左右焦点,M 是1C 上的动点,点N 在线段1F M 的延长线上,2MN MF =,线段2F N 的中点为P ,则1F P 的最大值为______.4.(2022·天津·高三专题练习)已知圆C 过点(0,1)(2,1)P Q 、两点,且圆心C 在x 轴上,经过点(1,0)M -且倾斜角为钝角的直线l 交圆C 于A ,B 两点,若0CA CB ⋅= (C 为圆心),则该直线l 的斜率为________.5.(2022·全国·高三专题练习)已知圆C :(x -2)2+y 2=2,直线l :y =k (x +2)与x 轴交于点A ,过l 上一点P 作圆C 的切线,切点为T ,若|PA |PT |,则实数k 的取值范围是______________.三、解答题6.(2022·内蒙古呼和浩特·二模(理))拋物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :2x =交C 于P ,Q 两点,且OP OQ ⊥.已知点M 的坐标为()4,0,M 与直线l 相切.(1)求抛物线C 和M 的标准方程;(2)已知点()8,4N ,点1A ,2A 是C 上的两个点,且直线1NA ,2NA 均与M 相切.判断直线12A A 与M 的位置关系,并说明理由.7.(2022·江苏·南京市第五高级中学一模)已知O 为坐标原点,抛物线E :22x py =(p >0),过点C (0,2)作直线l 交抛物线E 于点A 、B (其中点A 在第一象限),4OA OB ⋅=- 且AC CB λ= (λ>0).(1)求抛物线E 的方程;(2)当λ=2时,过点A 、B 的圆与抛物线E 在点A 处有共同的切线,求该圆的方程8.(2022·全国·高三专题练习)已知平面直角坐标系上一动点(),P x y 到点()2,0A -的距离是点P 到点()10B ,的距离的2倍.(1)求点P 的轨迹方程:(2)若点P 与点Q 关于点()1,4-对称,求P 、Q 两点间距离的最大值;(3)若过点A 的直线l 与点P 的轨迹C 相交于E 、F 两点,()2,0M ,则是否存在直线l ,使BFM S △取得最大值,若存在,求出此时的方程,若不存在,请说明理由.题型七:待定系数法求圆的方程一、单选题1.(2016·天津市红桥区教师发展中心高三学业考试)已知圆M 的半径为1,若此圆同时与x 轴和直线y =相切,则圆M 的标准方程可能是()A .22((1)1x y -+-=B .22(1)(1x y -+=C .22(1)(1x y -++=D .22((1)1x y ++=二、填空题2.(2022·四川眉山·三模(文))已知函数()()()2112819f x x x x =+--.过点()() 1,1A f --作曲线()y f x =两条切线,两切线与曲线()y f x =另外的公共点分别为B 、C ,则ABC 外接圆的方程为___________.3.(2022·安徽·高三阶段练习(文))已知抛物线2:8C x y =,过点(2,2)N -作抛物线C 的两条切线NA ,NB ,切点分别为点A ,B ,以AB 为直径的圆交x 轴于P ,Q 两点,则PQ =_______.4.(2022·天津·高三专题练习)已知抛物线C :24y x =的焦点为F ,抛物线C 上一点A 位于第一象限,且满足3AF =,则以点A 为圆心,AF 为半径的圆的方程为______.三、解答题5.(2022·全国·高三专题练习)已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x +4y +5=0被圆C 所截得的弦长为点P 为圆C 上异于A ,B 的任意一点,直线PA 与x 轴交于点M ,直线PB 与y 轴交于点N .(1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求12BA BA →→;(3)求证:|AN |·|BM |为定值.6.(2021·江西·高三阶段练习(理))已知圆C 过点(2,1)-,(6,3),(2,3)-.(1)求C 的标准方程;(2)若点(,)P x y 在C 上运动,求34x y -的取值范围.7.(2021·全国·模拟预测)已知点()1,1P 在抛物线C :()220y px p =>上,过点P 作圆E :()()22220y x r r +=->的两条切线,切点为A ,B ,延长PA ,PB 交抛物线于C ,D .(1)当直线AB 抛物线焦点时,求抛物线C 的方程与圆E 的方程;(2)证明:对于任意()0,1r ∈,直线CD 恒过定点.8.(2019·云南·二模(理))已知O 是坐标原点,抛物线C :2x y =的焦点为F ,过F 且斜率为1的直线l 交抛物线C 于A 、B 两点,Q 为抛物线C 的准线上一点,且2AQB π∠=.(1)求Q 点的坐标;(2)设与直线l 垂直的直线与抛物线C 交于M 、N 两点,过点M 、N 分别作抛物线C 的切线1l 、2l ,设直线1l 与2l 交于点P ,若OP OQ ⊥,求MON ∆外接圆的标准方程.题型八:几何法求弦长一、单选题1.(2022·全国·模拟预测)已知直线l 过点(A ,则直线l 被圆O :2212x y +=截得的弦长的最小值为()A .3B .6C .D .2.(2022·全国·模拟预测)过点()2,2A ,作倾斜角为π3的直线l ,则直线l被圆22:16O x y +=-弦长为()A.12-B.2C.3D.6-二、多选题3.(2022·广东·模拟预测)已知圆221:(1)1C x y ++=和圆222:(4)4C x y -+=,过圆2C 上任意一点P 作圆1C 的两条切线,设两切点分别为,A B ,则()A .线段ABB .线段ABC .当直线AP 与圆2C 相切时,原点O 到直线AP 的距离为65D .当直线AP 平分圆2C 的周长时,原点O 到直线AP 的距离为45三、填空题4.(2022·河北唐山·三模)直线:0+-=l x m 与圆22:480+--=C x y x 交于A 、B 两点,且6⋅=- CA CB ,则实数m =_______.四、解答题5.(2022·全国·高三专题练习)已知点()()1,0M m m ->,不垂直于x 轴的直线l 与椭圆22:143x y C +=相交于()11,A x y ,()22,B x y 两点.(1)若M 为线段AB 的中点,证明:212112y y x x ->-;(2)设C 的左焦点为F ,若M 在∠AFB 的角平分线所在直线上,且l 被圆224x y +=截得的弦长为l 的方程.6.(2021·湖北·武汉市第六中学高三阶段练习)已知圆O :x 2+y 2=2,过点A (1,1)的直线交圆O 所得的,且与x 轴的交点为双曲线E :2222x y a b -=1的右焦点F (c ,0)(c >2),双曲线E 的离心率为32.(1)求双曲线E 的方程;(2)若直线y =kx +m (k <0,k ≠m >0)交y 轴于点P ,交x 轴于点Q ,交双曲线右支于点M ,N 两点,当满足关系111||||||PM PN PQ +=时,求实数m 的值.7.(2022·全国·高三专题练习)已知椭圆()2222:10x y E a b a b+=>>0y -=过E 的上顶点A 和左焦点1F .(1)求E 的方程;(2)设直线l 与椭圆E 相切,又与圆22:4O x y +=交于M ,N 两点(O 为坐标原点),求OMN 面积的最大值,并求出此时直线l 的方程.题型九:利用点到直线的距离解决圆上点与直线上点的距离问题一、单选题1.(2022·江苏扬州·模拟预测)已知直线():130l a x y -+-=,圆22:(1)5C x y -+=.则“32a =”是“l 与C 相切”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022·重庆南开中学模拟预测)已知圆2220x y x a +-+=上仅存在一个点到直线30x -+=的距离为1,则实数a 的值为()A .-2B .C .-1D .03.(2022·全国·高三专题练习(文))圆O :222x y +=上点P 到直线l :3410x y +=距离的最小值为()A 1B .2C .2D .04.(2022·安徽·寿县第一中学高三阶段练习(理))过直线34110x y -+=上一动点P 作圆22:2210C x y x y +--+=的两条切线,切点分别为,A B ,则四边形PACB 的面积的最小值为()AB C .3D二、多选题5.(2022·湖南·长郡中学高三阶段练习)已知点P 在圆22:4O x y +=上,点()3,0A ,()0,4B ,则()A .点P 到直线AB 的距离最大值为225B .满足AP BP ⊥的点P 有2个C .过点B 作圆O 的两切线,切点分别为M 、N ,则直线MN 的方程为1y =D .2PA PB +的最小值是6.(2022·重庆·二模)已知点(),P x y 是圆()22:14C x y -+=上的任意一点,直线()):1130l m x y m ++-+=,则下列结论正确的是()A .直线l 与圆C 的位置关系只有相交和相切两种B .圆C 的圆心到直线lC .点P 到直线43160++=x y 距离的最小值为2D .点P 可能在圆221x y +=上三、填空题7.(2022·四川省泸县第二中学模拟预测(理))过直线0x y m --=上动点P 作圆2:(2)(3)1M x y -+-=的一条切线,切点为A ,若使得1PA =的点P 有两个,则实数m 的取值范围为___________.8.(2022·贵州遵义·三模(理))圆22:2O x y +=上点P 到直线3410:x y l +=距离的最小值为__________.四、解答题9.(2022·广东茂名·模拟预测)已知抛物线2:4C y x =的焦点为F ,直线2y x =-与抛物线C 交于A ,B 两点.(1)求FAB 的面积;(2)过抛物线C 上一点Р作圆()22:34M x y -+=的两条斜率都存在的切线,分别与抛物线C 交于异于点P 的两点D ,E .证明:直线DE 与圆M 相切.高考一轮复习专项。

第四讲+直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习

第四讲+直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习

(3)由(x2+y2-2x-6y+1)-(x2+y2-10x-12y+45)=0,得两 圆的公共弦所在直线的方程为 4x+3y-22=0.
故两圆的公共弦的长为
2
32-|4+34×2+3-3222|2=254.
【题后反思】 (1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间 的距离与两圆半径之间的关系,一般不采用代数法. (2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方 程作差消去 x2,y2 项得到.
解析:由 x2+y2-2x-2y+1=0 得(x-1)2+(y-1)2=1, 因为直线 x+my=2+m 与圆 x2+y2-2x-2y+1=0 相交,
所以|1+m1-+2m-2 m|<1,即 1+m2>1,
所以 m≠0,即 m∈(-∞,0)∪(0,+∞). 答案:D
【题后反思】判断直线与圆的位置关系的常见方法 (1)几何法:利用 d 与 r 的关系判断. (2)代数法:联立方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可 判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于 动直线问题.
解:由题意得圆心 C(1,2),半径 r=2. (1)∵( 2+1-1)2+(2- 2-2)2=4, ∴点 P 在圆 C 上. 又 kPC=2-2+12- -12=-1,
∴切线的斜率 k=-k1PC=1. ∴过点 P 的圆 C 的切线方程是 y-(2- 2)=x-( 2+1), 即 x-y+1-2 2=0.
如图 D72,设 P(0,-2),PA,PB 分别切圆 C 于 A,B 两点, PC= 22+22=2 2,θ=∠APB,α=π-θ.
图 D72
在 Rt△PAC 中,sin 2θ=PrC= 410, 所以 cos 2θ= 1-sin22θ= 46. 所以 sinθ=2sin 2θcos 2θ=2× 410× 46= 415,sin α=sin (π-θ) = 415.故选 B. 答案:B

高考文科数学一轮复习练习第八篇第3节 直线圆的位置关系

高考文科数学一轮复习练习第八篇第3节 直线圆的位置关系

第3节直线、圆的位置关系【选题明细表】知识点、方法题号直线与圆、圆与圆的位置关系2,8,12直线与圆相切问题1,6,7,13与圆的弦长有关问题3,4,9,10综合应用问题5,11,14,15基础巩固(时间:30分钟)1.若直线2x+y+a=0与圆x2+y2+2x4y=0相切,则a的值为( B )(A)± (B)±5 (C)3 (D)±3解析:圆的方程可化为(x+1)2+(y2)2=5,因为直线与圆相切,所以有=,即a=±5.故选B.2.(2018·四川遂宁期末)圆C1:x2+y2+2x=0与圆C2:x2+y24x+8y+4=0的位置关系是( B )(A)相交(B)外切(C)内切(D)相离解析:圆C1:x2+y2+2x=0即(x+1)2+y2=1的圆心C1(1,0),半径等于1.圆C2:x2+y24x+8y+4=0化为(x2)2+(y+4)2=16的圆心C2(2,4),半径等于4.两圆的圆心距等于=5,而5=1+4,故两圆相外切,故选B.3.(2018·广西南宁、梧州联考)直线y=kx+3被圆(x2)2+(y3)2=4截得的弦长为2,则直线的倾斜角为( A )(A)或(B)或(C)或(D)解析:由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d==1.即d==1,所以k=±,由k=tan α,得α=或.故选A.4.(2017·河南师大附中期末)已知圆的方程为x2+y26x8y=0.设该圆过点(1,4)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( B )(A)15 (B)30 (C)45 (D)60解析:圆的标准方程为(x3)2+(y4)2=25,过点(1,4)的最长弦AC所在的直线过圆心,故AC=10,过点(1,4)的最短弦BD所在直线垂直于AC,由勾股定理得BD=6,故四边形ABCD的面积为S=×6×10=30.故选B.5.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点至少有2个,则a的取值范围为( A )(A)(3,3)(B)(∞,3)∪(3,+∞)(C)(2,2)(D)[3,3 ]解析:由圆的方程可知圆心为O(0,0),半径为2,因为圆上的点到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离d<2+1=3,即d==<3,解得a∈(3,3),故选A.6.(2018·河北邯郸联考)以(a,1)为圆心,且与两条直线2xy+4=0与2xy6=0同时相切的圆的标准方程为( A )(A)(x1)2+(y1)2=5 (B)(x+1)2+(y+1)2=5(C)(x1)2+y2=5 (D)x2+(y1)2=5解析:因为两条直线2xy+4=0与2xy6=0的距离为d==2,所以所求圆的半径为r=,所以圆心(a,1)到直线2xy+4=0的距离为==,即a=1或a=4,又因为圆心(a,1)到直线2xy6=0的距离也为r=,所以a=1,所以所求的标准方程为(x1)2+(y1)2=5,故选A.7.已知圆C的圆心是直线xy+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为.解析:由题意可得圆心(1,0),圆心到直线x+y+3=0的距离即为圆的半径,故r==,所以圆的方程为(x+1)2+y2=2.答案:(x+1)2+y2=28.导学号 94626201(2018·湖南郴州质监)过点M(,1)的直线l与圆C:(x1)2+y2=4交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程为.解析:由题意得,当CM⊥AB时,∠ACB最小,k CM=2,所以k AB=,从而直线方程为y1=(x),即2x4y+3=0.答案:2x4y+3=09.(2017·深圳一模)直线axy+3=0与圆(x2)2+(ya)2=4相交于M,N两点,若|MN|≥2,则实数a的取值范围是.解析:设圆心到直线的距离为d,则d==,由r2=d2+()2知()2=4≥3,解得a≤.答案:(∞,)能力提升(时间:15分钟)10.已知圆(x2)2+(y+1)2=16的一条直径经过直线x2y+3=0被圆所截弦的中点,则该直径所在的直线方程为( D )(A)3x+y5=0 (B)x2y=0(C)x2y+4=0 (D)2x+y3=0解析:直线x2y+3=0的斜率为,已知圆的圆心坐标为(2,1),该直径所在直线的斜率为2,所以该直径所在的直线方程为y+1=2(x2),即2x+y3=0,故选D.11.导学号 94626202已知点P的坐标(x,y)满足过点P的直线l与圆C:x2+y2=14相交于A,B两点,则|AB|的最小值是( B ) (A)2 (B)4 (C) (D)2解析:根据约束条件画出可行域,如图中阴影部分所示,设点P到圆心的距离为d,则求最短弦长,等价于求到圆心的距离最大的点,即为图中的P点,其坐标为(1,3),则d==,此时|AB|min=2=4,故选B.12.(2017·河南豫北名校联盟联考)已知圆C:x2+y2+8x+15=0,若直线y=kx2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则实数k的取值范围为.解析:圆C即(x+4)2+y2=1,所以圆心为(4,0),半径r=1,直线即kxy2=0,≤2,解之得≤k≤0,即实数k的取值范围为[,0].答案:[,0]13.过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则·= .解析:由题意,圆心为O(0,0),半径为1.因为P(1,),不妨设PA⊥x 轴,PA=PB=.所以△POA为直角三角形,其中OA=1,AP=,则OP=2,所以∠OPA=30°,所以∠APB=60°.所以·=||||·cos∠APB=××cos 60°=.答案:14.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.解:(1)设圆心C(a,0)(a>),则=2⇒a=0或a=5(舍).所以圆C:x2+y2=4.(2)当直线AB⊥x轴时,x轴上任意一点都满足x轴平分∠ANB.当直线AB的斜率存在时,设直线AB的方程为y=k(x1),N(t,0),A(x1,y1),B(x2,y2),由得(k2+1)x22k2x+k24=0.所以x1+x2=,x1x2=.若x轴平分∠ANB,则k AN=k BN⇒+=0⇒+=0⇒2x1x2(t+1) (x1+x2)+2t=0⇒+2t=0⇒t=4,所以当点N为(4,0)时,能使得∠ANM=∠BNM总成立.15.(2018·广东汕头期末)在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y212x14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l 的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.解:圆M的标准方程为(x6)2+(y7)2=25,所以圆心M(6,7),半径为5.(1)由圆心在直线x=6上,可设N(6,y0),因为N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7y0=5+y0,解得y0=1,因此,圆N的标准方程为(x6)2+(y1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2xy+m=0,则圆心M到直线l的距离d==.因为BC=OA==2,而MC2=d2+()2,所以25=+5,解得m=5或m=15.故直线l的方程为2xy+5=0或2xy15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),+=,所以①因为点Q在圆M上,所以(x26)2+(y27)2=25,②将①代入②,得(x1t4)2+(y13)2=25.于是点P(x1,y1)既在圆M上,又在圆[x(t+4)]2+(y3)2=25上,从而圆(x6)2+(y7)2=25与圆[x(t+4)]2+(y3)2=25有公共点, 所以55≤≤5+5,解得22≤t≤2+2.因此,实数t的取值范围是[22,2+2].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章直线与圆的方程 §7.1 直线的方程1.设直线l 与x 轴的交点是P ,且倾斜角为α,若将此直线绕点P 按逆时针方向旋转45°,得到直线的倾斜角为α+45°,则( )A .0°≤α<180°B .0°≤α<135°C . 0°<α≤135°D . 0°<α<135°答案 D2.(2008²全国Ⅰ文)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A .30°B .45°C .60°D .120° 答案 B3.过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或4 答案 A4.过点P (-1,2)且方向向量为a =(-1,2)的直线方程为( )A .2x +y =0B .x -2y +5=0C .x -2y =0D .x +2y -5=0答案 A5.(2009²株州模拟)一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为 .答案 x +2y -2=0或2x +y+2=0例1 已知三点A (1,-1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上.证明 方法一 ∵A (1,-1),B (3,3),C (4,5), ∴k AB =1313-+=2,k BC =3435--=2,∴k AB =k BC , ∴A 、B 、C 三点共线.方法二 ∵A (1,-1),B (3,3),C (4,5), ∴|AB |=25,|BC |=5,|AC |=35, ∴|AB |+|BC |=|AC |,即A 、B 、C 三点共线. 方法三 ∵A (1,-1),B (3,3),C (4,5), ∴AB =(2,4),BC =(1,2),∴AB =2BC . 又∵AB 与BC 有公共点B ,∴A 、B 、C 三点共线. 例2已知实数x ,y 满足y =x 2-2x +2 (-1≤x ≤1).基础自测试求:23++x y 的最大值与最小值. 解 由23++x y 的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB 上任一点(x ,y )的直线的斜率k ,如图可知:k PA ≤k ≤k PB ,由已知可得:A (1,1),B (-1,5), ∴34≤k ≤8, 故23++x y 的最大值为8,最小值为34.例3 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 解 (1)方法一 设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =32x ,即2x -3y =0. 若a ≠0,则设l 的方程为1=+bya x , ∵l 过点(3,2),∴123=+aa , ∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 方法二 由题意知,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3), 令y =0,得x =3-k2,令x =0,得y =2-3k , 由已知3-k2=2-3k ,解得k =-1或k =32,∴直线l 的方程为: y -2=-(x -3)或y -2=32(x -3), 即x +y -5=0或2x -3y =0.(2)由已知:设直线y =3x 的倾斜角为α, 则所求直线的倾斜角为2α. ∵tan α=3,∴tan2α=αα2tan 1tan 2-=-43. 又直线经过点A (-1,-3), 因此所求直线方程为y +3=-43(x +1), 即3x +4y +15=0.例4 (12分)过点P (2,1)的直线l 交x 轴、y 轴正半轴于A 、B 两点,求使:(1)△AOB 面积最小时l 的方程; (2)|PA |²|PB |最小时l 的方程.解 方法一 设直线的方程为1=+b ya x (a >2,b >1), 由已知可得112=+ba .2分(1)∵2b a 12∙≤b a 12+=1,∴ab ≥8. ∴S △AOB =21ab ≥4.4分当且仅当a 2=b 1=21,即a =4,b =2时,S △AOB 取最小值4,此时直线l 的方程为24y x +=1,即x +2y -4=0. 6分(2)由a 2+b1=1,得ab -a -2b =0,变形得(a -2)(b -1)=2, |PA |²|PB |=22)01()2(-+-a ²22)1()02(b -+- =]4)1[(]1)2[(22+-⋅+-b a ≥)1(4)2(2-⋅-b a .10分当且仅当a -2=1,b -1=2,即a =3,b =3时,|PA |²|PB |取最小值4. 此时直线l 的方程为x +y -3=0.12分方法二 设直线l 的方程为y -1=k (x -2) (k <0), 则l 与x 轴、y 轴正半轴分别交于A ⎪⎭⎫ ⎝⎛-0,12k 、B (0,1-2k ).(1)S △AOB =21⎪⎭⎫⎝⎛-k 12(1-2k ) =21³⎥⎦⎤⎢⎣⎡-+-+)1()4(4k k ≥21(4+4)=4. 当且仅当-4k =-k1,即k =-21时取最小值,此时直线l 的方程为y -1=-21(x -2),即x +2y -4=0.6分(2)|PA |²|PB |=22441)1(k k ++=84422++k k≥4, 当且仅当24k=4k 2,即k =-1时取得最小值,此时直线l 的方程为y -1=-(x -2),即x +y -3=0.12分²1.设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a +b +c =0. 证明 ∵A 、B 、C 三点共线,∴k AB =k AC ,∴c a c a b a b a --=--3333,化简得a 2+ab +b 2=a 2+ac +c 2, ∴b 2-c 2+ab -ac =0,(b -c )(a +b +c )=0, ∵a 、b 、c 互不相等,∴b -c ≠0,∴a +b +c =0.2.(2009²宜昌调研)若实数x ,y 满足等式(x -2)2+y 2=3,那么xy的最大值为 ( )A .21B .33 C .23D .3答案 D3.(1)求经过点A (-5,2)且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程; (2)过点A (8,6)引三条直线l 1,l 2,l 3,它们的倾斜角之比为1∶2∶4,若直线l 2的方程是y =43x ,求直线l 1,l 3的方程.解 (1)①当直线l 在x 、y 轴上的截距都为零时, 设所求的直线方程为y =kx , 将(-5,2)代入y =kx 中, 得k =-52,此时,直线方程为y =-52x , 即2x +5y =0.②当横截距、纵截距都不是零时, 设所求直线方程为ay a x+2=1, 将(-5,2)代入所设方程, 解得a =-21, 此时,直线方程为x +2y +1=0.综上所述,所求直线方程为x +2y +1=0或2x +5y =0. (2)设直线l 2的倾斜角为α,则tan α=43. 于是tan2α=ααsin cos 1-=3153541=-, tan2α=724)43(1432tan 1tan 222=-⨯=-αα, 所以所求直线l 1的方程为y -6=31(x -8), 即x -3y +10=0,l 3的方程为y -6=724(x -8), 即24x -7y -150=0.4.直线l 经过点P (3,2)且与x ,y 轴的正半轴分别交于A 、B 两点,△OAB 的面积为12,求直线l 的方程. 解 方法一 设直线l 的方程为1=+bya x (a >0,b >0), ∴A (a ,0),B (0,b ), ∴⎪⎩⎪⎨⎧=+=.123,24b a ab 解得⎩⎨⎧==.4,6b a∴所求的直线方程为46yx +=1, 即2x +3y -12=0.方法二 设直线l 的方程为y -2=k (x -3), 令y =0,得直线l 在x 轴上的截距a =3-k2, 令x =0,得直线l 在y 轴上的截距b =2-3k . ∴⎪⎭⎫ ⎝⎛-k 23(2-3k )=24.解得k =-32.∴所求直线方程为y -2=-32(x -3). 即2x +3y-12=0.一、选择题1.直线x cos θ+y -1=0 (θ∈R )的倾斜角的范围是( ) A .[)π,0B .⎪⎭⎫⎢⎣⎡ππ43,4C .⎥⎦⎤⎢⎣⎡-4,4ππD .⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,0 答案 D2.已知直线l 过点(a ,1),(a +1,tan α +1),则( )A .α一定是直线l 的倾斜角B .α一定不是直线l 的倾斜角C .α不一定是直线l 的倾斜角D .180°-α一定是直线l 的倾斜角 答案 C3.已知直线l 经过A (2,1),B (1,m 2)(m ∈R )两点,那么直线l 的倾斜角的取值范围是( )A .[)π,0B .⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡πππ,24,0C .⎥⎦⎤⎢⎣⎡40π,D .⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡ππππ,22,4 答案 B4.过点(1,3)作直线l ,若经过点(a ,0)和(0,b ),且a ∈N *,b ∈N *,则可作出的l 的条数为( ) A .1B .2C .3D .4答案 B5.经过点P (1,4)的直线在两坐标轴上的截距都是正的,且截距之和最小,则直线的方程为( ) A .x +2y -6=0 B .2x +y -6=0 C .x -2y +7=0D .x -2y -7=0答案 B6.若点A (2,-3)是直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的公共点,则相异两点(a 1,b 1)和(a 2,b 2)所确定的直线方程是 ( )A .2x -3y +1=0B .3x -2y +1=0C .2x -3y -1=0D .3x -2y -1=0答案 A 二、填空题7.(2008²浙江理,11)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a = . 答案 1+28.已知两点A (-1,-5),B (3,-2),若直线l 的倾斜角是直线AB 倾斜角的一半,则l 的斜率是 . 答案31三、解答题9.已知线段PQ 两端点的坐标分别为(-1,1)、(2,2),若直线l :x +my +m =0与线段PQ 有交点,求m 的取值范围.解 方法一 直线x +my +m =0恒过A (0,-1)点.k AP =1011+--=-2,k AQ =2021---=23, 则-m 1≥23或-m 1≤-2, ∴-32≤m ≤21且m ≠0. 又∵m =0时直线x +my +m =0与线段PQ 有交点, ∴所求m 的取值范围是-32≤m ≤21. 方法二 过P 、Q 两点的直线方程为 y -1=1212+-(x +1),即y =31x +34,代入x+my +m =0, 整理,得x =-37+m m . 由已知-1≤-37+m m≤2, 解得-32≤m ≤21. 10.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4);(2)斜率为61. 解 (1)设直线l 的方程是y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-k4-3,3k +4,由已知,得(3k +4)(k4+3)=±6, 解得k 1=-32或k 2=-38. 直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =61x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b ²b |=6,∴b =±1. ∴直线l 的方程为x -6y +6=0或x -6y -6=0. 11.已知两点A (-1,2),B (m ,3). (1)求直线AB 的方程;(2)已知实数m ∈⎥⎥⎦⎤⎢⎢⎣⎡---13,133,求直线AB 的倾斜角α的取值范围.解 (1)当m =-1时,直线AB 的方程为x =-1, 当m ≠-1时,直线AB 的方程为y -2=11+m (x +1). (2)①当m =-1时,α=2π; ②当m ≠-1时,m +1∈(]3,00,33 ⎪⎪⎭⎫⎢⎢⎣⎡-,∴k =11+m ∈(-∞,-3]∪⎪⎪⎭⎫⎢⎢⎣⎡+∞,33,∴α∈⎥⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡32,22,6ππππ . 综合①②知,直线AB 的倾斜角α∈⎥⎦⎤⎢⎣⎡32,6ππ.12.过点P (3,0)作一直线,使它夹在两直线l 1:2x -y -2=0与l 2:x +y +3=0之间的线段AB 恰被点P 平分,求此直线的方程.解 方法一 设点A (x ,y )在l 1上, 由题意知⎪⎪⎩⎪⎪⎨⎧=+=+0232B By y x x ,∴点B (6-x ,-y ),解方程组⎩⎨⎧=+-+-=--03)()6(022y x y x ,得⎪⎪⎩⎪⎪⎨⎧==316311y x ,∴k =833110316=--. ∴所求的直线方程为y =8(x -3), 即8x -y -24=0.方法二 设所求的直线方程为y =k (x -3), 则⎩⎨⎧=---=022)3(y x x k y ,解得⎪⎪⎩⎪⎪⎨⎧-=--=24223k k y k k x A A ,由⎩⎨⎧=++-=03)3(y x x k y ,解得⎪⎪⎩⎪⎪⎨⎧+-=+-=16133k k y k k x B B .∵P (3,0)是线段AB 的中点, ∴y A +y B =0,即24-k k +16+-k k =0, ∴k 2-8k =0,解得k =0或k =8. 又∵当k =0时,x A =1,x B =-3, 此时32312≠-=+B A x x ,∴k =0舍去, ∴所求的直线方程为y =8(x -3), 即8x -y -24=0.§7.2两直线的位置关系1.如果直线ax +2y +2=0与直线3x -y -2=0平行,那么实数a 等于( ) A .-3B .-6C .-23D .32 答案 B2.已知直线2x +y -2=0和mx -y +1=0的夹角为4π,那么m 的值为 ( )A .-31或-3 B .31 C .-31或3D .31或-3 答案 C3.已知过点A (-2,m )和B (m ,4)的直线与直线2x +y =1平行,则m 的值为( ) A .0B .-8C .2D .10答案 B4.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =x 对称,直线l 3⊥l 2,则l 3的斜率为 ( )A .21B .-21 C .-2 D .2答案 C基础自测5.(2009²岳阳模拟)若直线l 经过点(a -2,-1)和(-a -2,1)且与经过点(-2,1),斜率为-32的直线垂直,则实数a 的值为 . 答案 -32例1 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0, (1)试判断l 1与l 2是否平行; (2)l 1⊥l 2时,求a 的值.解 (1)方法一 当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3, l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为 l 1:y =-x a 2-3,l 2:y =x a-11-(a +1), l 1∥l 2⇔⎪⎩⎪⎨⎧+-≠--=-)1(3112a a a ,解得a =-1,综上可知,a =-1时,l 1∥l 2,否则l 1与l 2不平行. 方法二 由A 1B 2-A 2B 1=0,得a (a -1)-1³2=0, 由A 1C 2-A 2C 1≠0,得a (a 2-1)-1³6≠0,∴l 1∥l 2⇔⎪⎩⎪⎨⎧≠⨯--=⨯--061)1(021)1(2a a a a⇔⎪⎩⎪⎨⎧≠-=--6)1(0222a a a a ⇒a =-1,故当a =-1时,l 1∥l 2,否则l 1与l 2不平行. (2)方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立.当a ≠1时,l 1:y =-2ax -3, l 2:y =x a-11-(a +1),由⎪⎭⎫⎝⎛-2a ²a-11=-1⇒a =32.方法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0⇒a =32.例2 求过两直线l 1:x +y +1=0,l 2:5x -y -1=0的交点,且与直线3x +2y +1=0的夹角为4π的直线方程.解 设所求直线方程为x +y +1+λ(5x -y -1)=0, 即(1+5λ)x +(1-λ)y +1-λ=0. 因为所求直线与直线3x +2y +1=0的夹角为4π, 所以tan 4π=.123·115123115=⎪⎭⎫ ⎝⎛--++⎪⎭⎫⎝⎛---+λλλλ 解得λ=-132. ∴所求直线方程为x +5y +5=0.又直线l 2:5x -y -1=0与直线3x +2y +1=0的夹角θ满足tan θ=.12351235=⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛--∴θ=4π,故直线l 2也是符合条件的一解. 综上所述,所求直线方程为 x +5y +5=0或5x -y -1=0.例3 (12分)已知直线l 过点P (3,1)且被两平行线l 1:x +y +1=0,l 2:x +y +6=0截得的线段长为5,求直线l 的方程.解 方法一 若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1,l 2的交点分别是 A (3,-4),B (3,-9),截得的线段长|AB |=|-4+9|=5,符合题意.4分若直线l 的斜率存在时, 则设直线l 的方程为y =k (x -3)+1, 分别与直线l 1,l 2的方程联立,由⎩⎨⎧=+++-=011)3(y x x k y ,解得A ⎪⎭⎫ ⎝⎛+-+-141,123k k k k .8分由⎩⎨⎧=+++-=061)3(y x x k y ,解得B ⎪⎭⎫ ⎝⎛+-+-191173k k ,k k ,由两点间的距离公式,得2173123⎪⎭⎫ ⎝⎛+--+-k k k k +2191141⎪⎭⎫⎝⎛+--+-k k k k =25, 解得k =0,即所求直线方程为y =1. 10分 综上可知,直线l 的方程为x =3或y =1.12分方法二 设直线l 与l 1,l 2分别相交于A (x 1,y 1),B (x 2,y 2),则x 1+y 1+1=0,x 2+y 2+6=0, 两式相减,得(x 1-x 2)+(y 1-y 2)=5 ①6分又(x 1-x 2)2+(y 1-y 2)2=25②联立①②可得⎩⎨⎧=-=-052121y y x x 或⎩⎨⎧=-=-502121y y x x ,10分由上可知,直线l 的倾斜角分别为0°和90°, 故所求的直线方程为x =3或y =1.12分例4 求直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程.解 方法一 由⎩⎨⎧+=+=132x y x y知直线l 1与l 的交点坐标为(-2,-1), ∴设直线l 2的方程为y +1=k (x +2), 即kx -y +2k -1=0.在直线l 上任取一点(1,2),由题设知点(1,2)到直线l 1、l 2的距离相等, 由点到直线的距离公式得 221122kk k +-+-=22)1(2322-++-,解得k =21(k =2舍去), ∴直线l 2的方程为x -2y =0.方法二 设所求直线上一点P (x ,y ),则在直线l 1上必存在一点P 1(x 0,y 0)与点P 关于直线l 对称. 由题设:直线PP 1与直线l 垂直,且线段PP 1的中点P 2⎪⎪⎭⎫ ⎝⎛++2,200y y x x 在直线l 上. ∴⎪⎪⎩⎪⎪⎨⎧++=+-=∙--122110000x x y y x x yy ,变形得⎩⎨⎧+=-=1100x y y x ,代入直线l 1:y =2x +3,得x +1=2³(y -1)+3, 整理得x -2y =0.所以所求直线方程为x -2y=0.1.已知两条直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8.当m 分别为何值时,l 1与l 2: (1)相交?(2)平行?(3)垂直? 解 当m=-5时,显然,l 1与l 2相交; 当m ≠-5时,易得两直线l 1和l 2的斜率分别为 k 1=-43m +,k 2=-m+52,它们在y 轴上的截距分别为b 1=435m -,b 2=m+58. (1)由k 1≠k 2,得-43m +≠-m+52,m ≠-7且m ≠-1.∴当m ≠-7且m ≠-1时,l 1与l 2相交. (2)由⎩⎨⎧≠=,,2121b b k k ,得⎪⎪⎩⎪⎪⎨⎧+≠-+-=+-m m mm584355243,m =-7.∴当m =-7时,l 1与l 2平行. (3)由k 1k 2=-1, 得-43m +²⎪⎭⎫ ⎝⎛+-m 52=-1,m =-313. ∴当m =-313时,l 1与l 2垂直. 2.某人在一山坡P 处观看对面山顶上的一座铁塔,如图所示,塔高BC =80(米),塔所在的山高OB =220(米),OA =200(米),图中所示的山坡可视为直线l ,且点P 在直线l 上,l 与水平地面的夹角为α,tan α=21.试问,此人距水平地面多高时,观看塔的视角∠BPC 最大(不计此人的身高)?解 如图所示,建立平面直角坐标系,则A (200,0),B (0,220),C (0,300). 直线l 的方程为y =(x -200)tan α,则y =2200-x . 设点P 的坐标为(x ,y ),则P (x , 2200-x )(x >200). 由经过两点的直线的斜率公式 k PC =x x x x 28003002200-=--,k PB =xx x x 26402202200-=--.由直线PC 到直线PB 的角的公式得tan ∠BPC =xx x x x k k k k P CP B P CP B 2640·280012160·1--+=+-=2886401606464016028864-⨯+=⨯+-2xx x x x (x >200).要使tan ∠BPC 达到最大,只需x +x640160⨯-288达到最小,由均值不等式 x +x640160⨯-288≥2640160⨯-288, 当且仅当x =x640160⨯时上式取得等号. 故当x =320时,tan ∠BPC 最大. 这时,点P 的纵坐标y 为y =2200320-=60. 由此实际问题知0<∠BPC <2π,所以tan ∠BPC 最大时,∠BPC 最大.故当此人距水平地面60米高时,观看铁塔的视角∠BPC 最大.3.已知三条直线l 1:2x -y +a =0(a >0),直线l 2:4x -2y -1=0和直线l 3:x +y -1=0,且l 1与l 2的距离是5107. (1)求a 的值;(2)能否找到一点P ,使得P 点同时满足下列三个条件: ①P 是第一象限的点;②P 点到l 1的距离是P 点到l 2的距离的21;③P 点到l 1的距离与P 点到l 3的距离之比是2∶5.若能,求P 点坐标;若不能,说明理由. 解 (1)l 2即为2x -y -21=0, ∴l 1与l 2的距离d =1057)1(2)21(22=-+--a , ∴521+a =1057,∴21+a =27, ∵a >0,∴a =3.(2)假设存在这样的P 点.设点P (x 0,y 0),若P 点满足条件②,则P 点在与l 1、l 2平行的直线l ′:2x -y +C =0上,且53-C =52121+C ,即C =213或C =611,∴2x 0-y 0+213=0或2x 0-y 0+611=0;若P 点满足条件③,由点到直线的距离公式53200+-y x =52³2100-+y x ,即|2x 0-y 0+3|=|x 0+y 0-1|, ∴x 0-2y 0+4=0或3x 0+2=0;由于P 点在第一象限,∴3x 0+2=0不满足题意.联立方程⎪⎩⎪⎨⎧=+-=+-042021320000y x y x , 解得⎪⎩⎪⎨⎧=-=,21,300y x (舍去).由⎪⎩⎪⎨⎧=+-=+-,042,061120000y x y x 解得⎪⎪⎩⎪⎪⎨⎧==18379100y x ∴假设成立,点P ⎪⎭⎫⎝⎛1837,91即为同时满足三个条件的点.4.光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 方法一 由⎩⎨⎧=+-=+-.0723,052y x y x得⎩⎨⎧=-=.2,1y x∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点),(00y x P ',由P P '⊥l 可知, k PP ′=-32=500+x y . 而PP ′的中点Q 的坐标为⎪⎭⎫⎝⎛-2,2500y x ,Q 点在l 上,∴3²250-x -2²20y+7=0. 由⎪⎪⎩⎪⎪⎨⎧=+---=+.07)5(23,3250000y x x y 得⎪⎪⎩⎪⎪⎨⎧-=-=.1332,131700y x 根据直线的两点式方程可得l 的方程为 29x -2y +33=0.方法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ), 则3200-=--x x y y , 又PP ′的中点Q ⎪⎭⎫ ⎝⎛++2,200y y x x 在l 上,∴3³20x x +-2³2y y ++7=0, 由⎪⎪⎩⎪⎪⎨⎧=++-+⨯-=--07)(23320000y y x x x x yy 可得P 点的坐标为x 0=1342125-+-y x ,y 0=1328512++y x ,代入方程x -2y +5=0中, 化简得29x -2y +33=0,即为所求反射光线所在的直线方程.一、 选择题1.(2008²全国Ⅱ文)原点到直线x +2y -5=0的距离为( )A .1B .3C .2D .5答案 D2.A 、B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程为( )A .2x -y -1=0B .x +y -5=0C .2x +y -7=0D .2y -x -4=0答案 B3.已知直线l 1的方向向量a =(1,3),直线l 2的方向向量b =(-1,k ),若直线l 2经过点(0,5),且l 1⊥l 2,则直线l 2的方程为 ( )A .x +3y -5=0B .x +3y -15=0C .x -3y +5=0D .x -3y +15=0答案 B4.已知三条直线l 1:y =3x -1,l 2:y =1,l 3:x +y +1=0,l 1与l 2的夹角为α,l 2与l 3的夹角为β,则α+β的值为( ) A .75° B .105° C .165°D .195° 答案 B5.曲线f (x ,y )=0关于直线x -y -2=0对称的曲线方程是( )A .f (y +2,x )=0B .f (x -2,y )=0C .f (y +2,x -2)=0D .f (y -2,x +2)=0答案 C6.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线方程分别为x =0,y =x ,则直线BC 的方程是( )A .y =2x +5B .y =2x +3C .y =3x +5D .y =-21x +25答案 A 二、填空题7.设直线l 经过点A (-1,1),则当点B (2,-1)与直线l 的距离最远时,直线l 的方程为 . 答案 3x -2y +5=08.直线2x +3y -6=0关于点M (1,-1)对称的直线方程是 . 答案 2x +3y +8=0 三、解答题9.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得: (1)l 1与l 2相交;(2)l 1⊥l 2;(3)l 1∥l 2;(4)l 1,l 2重合.解(1)由已知1³3≠m (m -2), 即m 2-2m -3≠0, 解得m ≠-1且m ≠3.故当m ≠-1且m ≠3时,l 1与l 2相交. (2)当1²(m -2)+m ²3=0, 即m =21时,l 1⊥l 2. (3)当21-m =3m ≠m 26,即m =-1时,l 1∥l 2. (4)当21-m =3m =m26, 即m =3时,l 1与l 2重合.10.已知A (0,3)、B (-1,0)、C (3,0),求D 点的坐标,使四边形ABCD 为直角梯形(A 、B 、C 、D 按逆时针方向排列).解 设所求点D 的坐标为(x ,y ),如图所示,由于k AB =3,k BC =0, ∴k AB ²k BC =0≠-1,即AB 与BC 不垂直,故AB 、BC 都不可作为直角梯形的直角边. (1)若CD 是直角梯形的直角边,则BC ⊥CD ,AD ⊥CD , ∵k BC =0,∴CD 的斜率不存在,从而有x =3. 又k AD =k BC ,∴xy 3-=0,即y =3. 此时AB 与CD 不平行. 故所求点D 的坐标为(3,3). (2)若AD 是直角梯形的直角边, 则AD ⊥AB ,AD ⊥CD , k AD =x y 3-,k CD =3-x y. 由于AD ⊥AB ,∴xy 3-²3=-1. 又AB ∥CD ,∴3-x y=3. 解上述两式可得⎪⎪⎩⎪⎪⎨⎧==,59,518y x此时AD 与BC 不平行.故所求点D 的坐标为⎪⎭⎫⎝⎛59,518,综上可知,使ABCD 为直角梯形的点D 的坐标可以为(3,3)或⎪⎭⎫⎝⎛59,518.11.一条光线经过P (2,3)点,射在直线l :x +y +1=0上,反射后穿过Q (1,1). (1)求光线的入射方程; (2)求这条光线从P 到Q 的长度.解 (1)设点),(y x Q '''为Q 关于直线l 的对称点且Q Q '交l 于M 点,∵k l =-1,∴k QQ ′=1. ∴Q Q '所在直线方程为y -1=1²(x -1) 即x -y =0.由⎩⎨⎧=-=++,0,01y x y x 解得l 与QQ ′的交点M 的坐标为⎪⎭⎫⎝⎛--21,21.又∵M 为QQ ′的中点, 由此得⎪⎪⎩⎪⎪⎨⎧-=+-=+21212121''yx .解之得⎪⎩⎪⎨⎧-=-=.2,2''y x ∴Q '(-2,-2).设入射线与l 交点N ,且P ,N ,Q '共线. 则P (2,3),Q '(-2,-2),得入射线方程为222232++=++x y ,即5x -4y +2=0. (2)∵l 是QQ ′的垂直平分线,因而|NQ |=||'NQ . ∴|PN |+|NQ |=|PN |+|NQ ′|=||'PQ =22)22()23(+++=41, 即这条光线从P 到Q 的长度是41.12.已知直线l 经过两条直线l 1:x +2y =0与l 2:3x -4y -10=0的交点,且与直线l 3:5x -2y +3=0的夹角为4π,求直线l 的方程.解 由,0104302⎩⎨⎧=--=+y x y x解得l 1和l 2的交点坐标为(2,-1). 设所求直线l 的方程为y +1=k (x -2). 又253=l k ,由l 与l 3的夹角为4π 得tan4π=,·133ll k k k k +-, 即1=371255225125-=⇒±=+-⇒+-k k k k k 或k =73. 故所求的直线l 的方程为 y +1=-37(x -2)或y +1=73(x -2),即7x +3y -11=0或3x -7y-13=0.§7.3 简单的线性规划基础自测1.已知点A (1,-1),B (5,-3),C (4,-5),则表示△ABC 的边界及其内部的约束条件是 .答案 ⎪⎩⎪⎨⎧≥-+≤--≤++01340132012y x y x y x2.(2008²天津理,2)设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-,y x ,y x ,y x 1210则目标函数z =5x +y 的最大值为( )A .2B .3C .4D .5答案 D3.若点(1,3)和(-4,-2)在直线2x +y +m =0的两侧,则m 的取值范围是( )A .m <-5或m >10B .m =-5或m =10C .-5<m <10D .-5≤m ≤10答案 C4.(2008²北京理,5)若实数x ,y 满足⎪⎩⎪⎨⎧≤≥+≥+-,0,0,01x y x y x 则z =3x +2y的最小值是( )A .0B .1C .3D .9答案 B5.(2008²福建理,8)若实数x 、y 满足,001⎩⎨⎧>≤+-x y x 则x y的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)答案 C例1 画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域,并回答下列问题:(1)指出x ,y 的取值范围; (2)平面区域内有多少个整点?解 (1)不等式x -y +5≥0表示直线x -y +5=0上及右下方的点的集合.x +y ≥0表示直线x +y =0上及右上方的点的集合, x ≤3表示直线x =3上及左方的点的集合.所以,不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x .表示的平面区域如图所示. 结合图中可行域得x ⎥⎦⎤⎢⎣⎡-∈325,,y ∈[-3,8].(2)由图形及不等式组知 ⎩⎨⎧∈≤≤-+≤≤-Z,325x x x y x 且 当x =3时,-3≤y ≤8,有12个整点; 当x =2时,-2≤y ≤7,有10个整点; 当x =1时,-1≤y ≤6,有8个整点; 当x =0时,0≤y ≤5,有6个整点; 当x =-1时,1≤y ≤4,有4个整点; 当x =-2时,2≤y ≤3,有2个整点; ∴平面区域内的整点共有 2+4+6+8+10+12=42(个).例2 (2008²湖南理,3)已知变量x 、y 满足条件,09201⎪⎩⎪⎨⎧≤-+≤-≥y x y x x 则x +y 的最大值是( )A .2B .5C .6D .8答案 C例3 (12分)某工厂生产甲、乙两种产品,计划每天每种产品的生产量不少于15吨,已知生产甲产品 1吨,需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨,需煤4吨,电力5千瓦时,劳力10个;甲产品每吨的利润为7万元,乙产品每吨的利润为12万元;但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天生产甲、乙两种产品各多少吨,才能使利润总额达到最大? 解 设每天生产甲、乙两种产品分别为x 吨、y 吨,利润总额为z 万元, 1分则线性约束条件为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+1515,3001032005430049y x y x y x y x4分目标函数为z =7x +12y , 6分 作出可行域如图,8分作出一组平行直线7x +12y =t ,当直线经过直线4x +5y =200和直线3x +10y =300的交点A (20,24)时,利润最大.10分 即生产甲、乙两种产品分别为20吨、24吨时,利润总额最大,z max =7³20+12³24=428(万元). 答 每天生产甲产品20吨、乙产品24吨,才能使利润总额达到最大.12分1.(2008²浙江理,17)若a ≥0,b ≥0,且当⎪⎩⎪⎨⎧≤+≥≥1,00y x y x 时,恒有ax +by ≤1,则以a ,b 为坐标的点P (a ,b )所形成的平面区域的面积等于 . 答案 12.(2008²全国Ⅰ理,13)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+30,030x y x y x 则z =2x -y 的最大值为 .答案 93.某家具公司制作木质的书桌和椅子两种家具,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8 000个工作时;漆工平均两小时漆一把椅子,一个小时漆一张书桌,该公司每星期漆工最多有1 300个工作时.又已知制作一把椅子和一张书桌的利润分别是15元和20元,根据以上条件,怎样安排生产能获得最大利润? 解 依题意设每星期生产x 把椅子,y 张书桌, 那么利润p =15x +20y .其中x ,y 满足限制条件⎪⎪⎩⎪⎪⎨⎧∈≥∈≥≤+≤+**N ,0N ,030012000884y y x x y x y x . 即点(x ,y )的允许区域为图中阴影部分,它们的边界分别为4x +8y =8 000 (即AB ),2x +y =1 300(即BC ),x =0(即OA )和y =0(即OC ).对于某一个确定的p =0p 满足0p =15x +20y ,且点(x ,y )属于 解x ,y 就是一个能获得0p 元利润的生产方案. 对于不同的p ,p =15x +20y 表示一组斜率为-43的平行线,且p 越大,相应的直线位置越高;p 越小,相应的直线位置越低.按题意,要求p 的最大值,需把直线p =15x +20y 尽量地往上平移,又考虑到x ,y 的允许范围,当直线通过B 点时,处在这组平行线的最高位置,此时p 取最大值.由⎩⎨⎧=+=+30012000884y x y x ,得B (200,900), 当x =200,y =900时,p 取最大值, 即p max =15³200+20³900=21 000,即生产200把椅子、900张书桌可获得最大利润21 000元.一、选择题1.(2008²全国Ⅱ理,5)设变量x ,y 满足约束条件:,222⎪⎩⎪⎨⎧-≥≤+≥x y x x y 则z =x -3y 的最小值为( )A .-2B .-4C .-6D .-8答案 D2.若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-,,0,22,0a y x y y x y x 表示的平面区域是一个三角形,则a 的取值范围是( )A .a ≥34 B .0<a ≤1C .1≤a ≤34 D .0<a ≤1或a ≥34 答案 D3.已知平面区域D 由以A (1,3)、B (5,2)、C (3,1)为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点(x ,y )可使目标函数z =x +my 取得最小值,则m 等于( )A .-2B .-1C .1D .4答案 C4.(2008²山东理,12)设二元一次不等式组,0142080192⎪⎩⎪⎨⎧≤-+≥+-≥-+y x y x y x 所表示的平面区域为M ,使函数y =a x(a >0,a ≠1)的图象过区域M 的a 的取值范围是( )A .[1,3]B .[2,10]C .[2,9]D .[10,9]答案 C5.(2009²武汉模拟)如果实数x ,y 满足⎪⎩⎪⎨⎧≥≤-+≤+-1,02553034x y x y x 目标函数z =kx +y 的最大值为12,最小值为3,那么实数k 的值为 ( )A .2B .-2C .51D .不存在答案 A6.(2007²江苏,10)在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为 ( )A .2B .1C .21D .41 答案 B 二、填空题7.(2008²安徽理,15)若A 为不等式组,200⎪⎩⎪⎨⎧≤-≥≤x y y x ,表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为 . 答案47 8.设集合A ={(x ,y )|y ≥|x -2|,x ≥0},B ={(x ,y )|y ≤-x +b },A ∩B ≠∅. (1)b 的取值范围是 ;(2)若(x ,y )∈A ∩B ,且x +2y 的最大值为9,则b 的值是 . 答案 (1)[2,+∞) (2)29三、解答题9.已知实数x 、y 满足,033042022⎪⎩⎪⎨⎧≤--≥+-≥-+y x y x y x ,试求z =11++x y 的最大值和最小值.解 由于z =11++x y =)1()1(----x y , 所以z 的几何意义是点(x ,y )与点M (-1,-1)连线的斜率,因此11++x y 的最值就是点(x ,y )与点 M (-1,-1)连线的斜率的最值,结合图可知:直线MB 的斜率最大,直线MC 的斜率最小,即z max =k MB =3,此时x =0,y =2; z min =k MC =21,此时x =1,y =0.10.已知变量x ,y 满足的约束条件为⎪⎩⎪⎨⎧≤-≥-+≤-+01.033032y y x y x 若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,求a 的取值范围.解 依据约束条件,画出可行域. ∵直线x +2y -3=0的斜率k 1=-21,目标函数z =ax +y (a >0)对应直线的斜率k 2=-a ,若符合题意,则须k 1>k 2,即-21>-a ,得a >21. 11.两种大小不同的钢板可按下表截成A ,B ,C 三种规格成品:某建筑工地需A ,B ,C 三种规格的成品分别为15,18,27块,问怎样截这两种钢板,可得所需三种规格成品,且所用钢板张数最小.解 设需要第一种钢板x 张,第二种钢板y 张,钢板总数为z 张,z =x +y , 约束条件为:.Z,0Z ,027*******⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥∈≥≥+≥+≥+y y x x y x y x y x作出可行域如图所示:令z =0,作出基准直线l :y =-x ,平行移动直线l 发现在可行域内,经过直线x +3y =27和直线2x +y =15的交点A ⎪⎭⎫⎝⎛539518,可使z 取最小,由于539518,都不是整数,而最优解(x ,y )中,x ,y 必须都是整数,可行域内点A ⎪⎭⎫⎝⎛539518,不是最优解; 通过在可行域内画网格发现,经过可行域内的整点且与A ⎪⎭⎫⎝⎛539518,点距离最近的直线是x +y =12,经过的整点是B (3,9)和C (4,8),它们都是最优解.答 要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种: 第一种截法是截第一种钢板3张,第二种钢板9张; 第二种截法是截第一种钢板4张,第二种钢板8张; 两种方法都最少要截两种钢板共12张. 12.在R 上可导的函数f (x )=31x 3+21ax 2+2bx +c ,当x ∈(0,1)时取得极大值,当x ∈(1,2)时取得极小值,求点(a ,b )对应的区域的面积以及12--a b 的取值范围. 解 函数f (x )的导数为f ′(x )=x 2+ax +2b ,当x ∈(0,1)时,f (x )取得极大值,当x ∈(1,2)时,f (x )取得极小值,则方程x 2+ax +2b =0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,由二次函数f ′(x )=x 2+ax +2b 的图象与方程x 2+ax +2b =0根的分布之间的关系可以得到⎪⎩⎪⎨⎧>++<++>⇒⎪⎩⎪⎨⎧>'<'>'02,01200)2(0)1(0)0(b a b a b f f f在aOb 平面内作出满足约束条件的点(a ,b )对应的区域为△ABD (不包括边界), 如图阴影部分,其中点A (-3,1),B (-1,0),D (-2,0), △ABD 的面积为 S △ABD =21|BD |³h =21(h 为点A 到a 轴的距离). 点C (1,2)与点(a ,b )连线的斜率为12--a b ,显然12--a b ∈(k CA ,k CB ), 即12--a b .1,41⎪⎭⎫⎝⎛∈ §7.4 曲线与方程基础自测1.已知坐标满足方程F (x ,y )=0的点都在曲线C 上,那么( )A .曲线C 上的点的坐标都适合方程F (x ,y )=0B .凡坐标不适合F (x ,y )=0的点都不在C 上C .不在C 上的点的坐标有些适合F (x ,y )=0,有些不适合F (x ,y )=0D .不在C 上的点的坐标必不适合F (x ,y )=0 答案 D2.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( )A .椭圆B .AB 所在的直线C .线段ABD .无轨迹答案 C3.动点P 到两坐标轴的距离之和等于2,则点P 的轨迹所围成的图形面积是( ) A .2B .4C .8D .不存在答案 C4.(2008²北京理,4)若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线D .抛物线答案 D5.已知直线l 的方程是f (x ,y )=0,点M (x 0,y 0)不在l 上,则方程f (x ,y )-f (x 0,y 0)=0表示的曲线是( )A .直线lB .与l 垂直的一条直线C .与l 平行的一条直线D .与l 平行的两条直线答案 C例1 如图所示,过点P (2,4)作互相垂直的直线l 1、l 2.若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M 的轨迹方程.解 设点M 的坐标为(x ,y ),∵M 是线段AB 的中点,∴A 点的坐标为(2x ,0),B 点的坐标为(0,2y ). ∴PA =(2x -2,-4),PB =(-2,2y -4). 由已知²PB =0,∴-2(2x -2)-4(2y -4)=0,即x +2y -5=0.∴线段AB 中点M 的轨迹方程为x +2y -5=0.例2(5分)在△ABC 中,A 为动点,B 、C 为定点,B ⎪⎭⎫ ⎝⎛-0,2a ,C ⎪⎭⎫⎝⎛0,2a 且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程是 ( )A .2222151616a y a x -=1 (y ≠0)B .222231616a x a y -=1 (x ≠0)C .2222151616a y a x -=1(y ≠0)的左支D .222231616a y a x -=1(y ≠0)的右支 答案 D例3 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点, 且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解 设AB 的中点为R ,坐标为(x 1,y 1),Q 点坐标为(x ,y ), 则在Rt △ABP 中, |AR |=|PR |,又因为R 是弦AB 的中点,依垂径定理有 Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(2121y x +). 又|AR |=|PR |=2121)4(y x +-, 所以有(x 1-4)2+21y =36-(2121y x +). 即2121y x +-4x 1-10=0. 因为R 为PQ 的中点, 所以x 1=24+x ,y 1=2+y . 代入方程2121y x +-4x 1-10=0,得 422422-⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+y x ²24+x -10=0. 整理得x 2+y 2=56. 这就是Q 点的轨迹方程.1.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|||MP |+ ²NP =0,求动点P (x ,y )的轨迹方程.解 由题意:=(4,0),MP =(x +2,y ), NP =(x -2,y ),∵|MN ||MP |+MN ²NP =0,∴2204+²22)2(y x +++(x -2)²4+y ²0=0, 两边平方,化简得y 2=-8x .2.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.解 如图所示,设动圆M 与圆C 1及圆C 2分别外切于点A 和点B ,根据两圆外切的充要条件,得 |MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |. 因为|MA |=|MB |,所以|MC 2|-|MC 1|=|BC 2|-|AC 1|=3-1=2.这表明动点M 到两定点C 2,C 1的距离之差是常数2.根据双曲线的定义,动点M 的轨迹为双曲线的左支(点M 到C 2的距离大,到C 1的距离小),这里a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),其轨迹方程为x 2-82y =1 (x ≤-1). 3.(2009²宜昌模拟)设F (1,0),M 点在x 轴上,P 点在y 轴上,且=2MP ,PM ⊥PF ,当点P在y 轴上运动时,求点N 的轨迹方程. 解 设M (x 0,0),P (0,y 0),N (x ,y ), 由=2MP 得(x -x 0,y )=2(-x 0,y 0), ∴,22000⎩⎨⎧=-=-y y x x x 即.2100⎪⎩⎪⎨⎧=-=y y xx∵PM ⊥PF ,PM =(x 0,-y 0), PF =(1,-y 0), ∴(x 0,-y 0)²(1,-y 0)=0,∴x 0+20y =0.∴-x +42y =0,即y 2=4x .故所求的点N 的轨迹方程是y 2=4x .一、选择题1.方程x 2+y 2=1 (xy <0)的曲线形状是( )答案 C2.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于( ) A .πB .4πC .8πD .9π答案 B3.长为3的线段AB 的端点A 、B 分别在x 轴、y 轴上移动,AC =2CB ,则点C 的轨迹是( ) A .线段B .圆C .椭圆D .双曲线答案 C4.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC =λ1+λ2(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是 ( ) A .直线B .椭圆C .圆D .双曲线答案 A5.(2008²成都质检)F 1、F 2是椭圆的两个焦点,M 是椭圆上任一点,从任一焦点向△F 1MF 2顶点M 的外角平分线引垂线,垂足为P ,则P 点的轨迹为 ( )A .圆B .椭圆C .双曲线D .抛物线答案 A6.(2008²潍坊模拟)一圆形纸片的圆心为O ,点Q 是圆内异于O 的一个定点,点A 是圆周上一动点,把 纸片折叠使点A 与点Q 重合,然后抹平纸片,折痕CD 与OA 交于点P ,当点A 运动时,点P 的轨 迹为( ) A .椭圆B .双曲线C .抛物线D .圆答案 A 二、填空题7.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为 . 答案 (x -10)2+y 2=36 (y ≠0) 8.平面上有三点A (-2,y ),B (0,2y),C (x ,y ),若⊥,则动点C 的轨迹方程为 . 答案 y 2=8x 三、解答题9.如图所示,已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的 直线CB 与y 轴交于点B .设点M 是线段AB 的中点,求点M 的轨迹方程. 解 方法一(参数法):设M 的坐标为(x ,y ). 若直线CA 与x 轴垂直,则可得到M 的坐标为(1,1).若直线CA 不与x 轴垂直,设直线CA 的斜率为k ,则直线CB 的斜率为-k1,故直线CA 方程为:y =k (x -2)+2, 令y =0得x =2-k 2,则A 点坐标为⎪⎭⎫ ⎝⎛-0,22k .CB 的方程为:y =-k 1(x -2)+2,令x =0,得y =2+k2, 则B 点坐标为⎪⎭⎫ ⎝⎛+k 22,0,由中点坐标公式得M 点的坐标为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=-=+-=k k y kk x 112022112022 ① 消去参数k 得到x +y -2=0 (x ≠1), 点M (1,1)在直线x +y -2=0上, 综上所述,所求轨迹方程为x +y -2=0.方法二 (直接法)设M (x ,y ),依题意A 点坐标为(2x ,0),B 点坐标为(0,2y ). ∵|MA |=|MC |,∴,)2()2()2(2222-+-=+-y x y x x 化简得x +y -2=0. 方法三 (定义法)依题意|MA |=|MC |=|MO |,即:|MC |=|MO |,所以动点M 是线段OC 的中垂线,故由点斜式方程得到:x +y -2=0.10.如图所示,线段AB 与CD 互相垂直平分于点O ,|AB |=2a (a >0),|CD |=2b (b >0),动点P 满足|PA |²|PB |=|PC |²|PD |.求动点P 的轨迹方程.解 以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立直角坐标系, 则A (-a ,0),B (a ,0),C (0,-b ),D (0,b ), 设P (x ,y ),由题意知|PA |²|PB |=|PC |²|PD |,∴22)(y a x ++²22)(y a x +- =22)(b y x ++²22)(b y x -+, 化简得x 2-y 2=222b a -.故动点P 的轨迹方程为x 2-y 2=222b a -.11.已知两条直线l 1:2x -3y +2=0和l 2:3x -2y +3=0,有一动圆(圆心和半径都动)与l 1、l 2都相交,且l 1、l 2被圆截得的弦长分别是定值26和24,求圆心的轨迹方程.解 设动圆的圆心为M (x ,y ),半径为r ,点M 到直线l 1,l 2的距离分别为d 1和d 2. 由弦心距、半径、半弦长间的关系得, ⎪⎩⎪⎨⎧=-=-,242,262222212d r d r 即⎩⎨⎧=-=-,144,169222212d r d r 消去r 得动点M 满足的几何关系为2122d d -=25, 即13)232(13)323(22+--+-y x y x =25. 化简得(x +1)2-y 2=65.此即为所求的动圆圆心M 的轨迹方程.12.已知椭圆9222y x +=1上任意一点P ,由P 向x 轴作垂线段PQ ,垂足为Q ,点M 在线段PQ 上,且PM =2,点M 的轨迹为曲线E . (1)求曲线E 的方程;(2)若过定点F (0,2)的直线l 交曲线E 于不同的两点G ,H (点G 在点F ,H 之间),且满足=2,求直线l 的方程.解 (1)设M (x ,y ),P (x 0,y 0),∵=2,∴,300⎩⎨⎧==y y xx将其代入椭圆方程得922020y x +=1 得曲线E 的方程为:22x +y 2=1.(2)设G (x 1,y 1)、H (x 2,y 2), ∵FH =2FG ,∴x 2=2x 1①依题意,当直线l 斜率不存在时,G (0,1),H (0,-1),不满足FH =2.故设直线l :y =kx +2,代入曲线E 的方程并整理得(1+2k 2)x 2+8kx +6=0,(*)。

相关文档
最新文档