一元二次方程测试(遵义县枫香中学刘兵)

合集下载

人教版九年级数学上册第21 章《一元二次方程》检测题

人教版九年级数学上册第21 章《一元二次方程》检测题

第21 章《一元二次方程》检测题一.选择题1.下列关于x的方程中,一定是一元二次方程的为()A.x2﹣1=0 B.x2+2y+1=0C.x2﹣2=(x+3)2D.x22.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=03.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和1 4.方程x2=9的解是()A.x1=x2=3 B.x1=x2=9 C.x1=3,x2=﹣3 D.x1=9,x2=﹣95.若关于x的一元二次方程(m+1)x2+5x+m2+3m+2=0的常数项为0,则m的值为()A.﹣1 B.﹣2 C.﹣1或﹣2 D.06.用一条长40cm的绳子怎样围成一个面积为75cm2的矩形?设矩形的一边为x米,根据题意,可列方程为()A.x(40﹣x)=75 B.x(20﹣x)=75 C.x(x+40)=75 D.x(x+20)=75 7.如果﹣2是方程x2﹣m=0的一个根,则m的值为()A.2 B.﹣4 C.3 D.48.如图,是一个简单的数值运算程序.则输入x的值为()A.3或﹣3 B.4或﹣2 C.1或3 D.279.奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A.4元B.6元C.4元或6元D.5元10.如图,某小区有一块长为18米、宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地(图中阴影部分),它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x米,则下列所列方程正确的是()A.(18﹣2x)(6﹣2x)=60 B.(18﹣3x)(6﹣x)=60C.(18﹣2x)(6﹣x)=60 D.(18﹣3x)(6﹣2x)=60二.填空题11.已知关于x的方程(m﹣2)x2﹣2x+1=0有实数根,则实数m的取值范围是.12.如果(a2+b2+1)(a2+b2﹣1)=63,那么a2+b2的值为.13.三角形两边长分别为3和5,第三边是方程x2﹣6x+8=0的一个解,则这个三角形的面积是.14.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为.15.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价元.16.有一块长方形的土地,宽为120m,建筑商把它分成甲、乙、丙三部分,甲和乙均为正方形,现计划甲建住宅区,乙建商场,丙地开辟成面积为3200m2的公园.若设这块长方形的土地长为xm.那么根据题意列出的方程是.(将答案写成ax2+bx+c=0(a ≠0)的形式)17.对于实数a,b,定义运算“﹡”:a*b=,例如4﹡2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1*x2=.三.解答题18.解方程①(x﹣2)2﹣25=0②2x2﹣4x﹣1=0(配方法)③3(x﹣2)2=x(x﹣2)④(3x+1)(x﹣2)=10.19.在我校的周末广场文艺演出活动中,舞台上有一幅矩形地毯,它的四周镶有宽度相同的花边(如图).地毯中央的矩形图案长8米、宽6米,整个地毯的面积是80平方米.求花边的宽.20.已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且,求m的值.21.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?22.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价3元时,平均每天可多卖出6件.(1)设降价x元,则现在每天可销售衬衫件,每件的利润是元.(用x 的代数式表示)(2)若商场要求该服装部每天盈利1400元,问每件要降价多少元?(3)若商场要求该服装部每天盈利1600元,问这个要求能否实现?请说说你的理由.23.无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p (桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?参考答案一.选择题1.解:A、是一元二次方程,故A正确;B、是二元二次方程,故B错误;C、是一元一次方程,故C错误;D、是分式方程,故D错误;故选:A.2.解:A、x2﹣x﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B、x2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C、2015x2+11x﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D、x2+x+2=0,△=12﹣4×2=﹣7<0,方程没有实数根,此选项正确;故选:D.3.解:∵3x2﹣4x﹣1=0,∴方程3x2﹣4x﹣1=0的二次项系数是3,一次项系数是﹣4;故选:B.4.解:x2=9,两边开平方,得x1=3,x2=﹣3.故选:C.5.解:∵一元二次方程(m+1)x2+5x+m2+3m+2=0的常数项为0,∴m2+3m+2=0,解得,x=﹣1或﹣2,∵(m+1)x2+5x+m2+3m+2=0是一元二次方程,∴m+1≠0,即m≠﹣1,∴m=﹣2,故选:B.6.解:设长为xcm,∵长方形的周长为40cm,∴宽为=(20﹣x)(cm),得x(20﹣x)=75.故选:B.7.解:∵x=﹣2是方程的根,∴x=﹣2代入方程有:4﹣m=0,解得:m=4.故选:D.8.解:根据题意得:简单的数值运算程序为:(x﹣1)2×(﹣3)=﹣27,化简得:(x﹣1)2=9,∴x﹣1=±3,解得x=4或x=﹣2.故选:B.9.解:设每千克橙降应降价x元.根据题意,得(60﹣x﹣40)(100+×20)=2240.化简,得x2﹣10x+24=0解得:x1=4,x2=6,∵为减少库存,∴每千克脐橙应降价6元.故选:B.10.解:设人行通道的宽度为x米,根据题意可得:(18﹣3x )(6﹣2x )=60, 故选:D .二.填空题(共7小题)11.解:当m ﹣2=0,解m =2,原方程变形为﹣2x +1=0,解得x =;当m ﹣2≠0,即m ≠2,则△=4﹣4(m ﹣2)=﹣4m +12≥0, 解得:m ≤3,即当m ≤3,且m ≠2时,原方程有两个不相等实数根, 所以m 的取值范围为:m ≤3. 故答案为:m ≤3. 12.解:设a 2+b 2=x , 则(x +1)(x ﹣1)=63 整理得:x 2=64,x =±8,即a 2+b 2=8或a 2+b 2=﹣8(不合题意,舍去). 故答案为:8.13.解:解方程x 2﹣6x +8=0得:x 1=4,x 2=2,①当三角形的三边为3,4,5时,符合三角形三边关系定理, ∵32+42=52,∴此时三角形为直角三角形, ∴这个三角形的面积为=6;②当三角形的三边为3,2,5时,不符合三角形三边关系定理,此时三角形不存在; 故答案为:6.14.解:设这两年的销售额的年平均增长率为x , 由题意得,20×(1+x )2=80. 故答案为:20×(1+x )2=80.15.解:设每千克应涨价x 元,由题意列方程得: (5+x )(200﹣10x )=1500, 解得:x =5或x =10,为了使顾客得到实惠,那么每千克应涨价5元;故答案为:5.16.解:根据题意,得(x﹣120)[120﹣(x﹣120)]=3200,即x2﹣360x+32000=0.故答案为x2﹣360x+32000=0.17.解:解方程x2﹣2x﹣3=0得:x=3或﹣1,当x1=3,x2=﹣1时,x1*x2=32﹣3×(﹣1)=12;当x1=﹣1,x2=3时,x1*x2=(﹣1)×3﹣(﹣1)2=﹣4;故答案为:12或﹣4.三.解答题(共6小题)18.解:①(x﹣2)2﹣25=0,(x﹣2+5)(x﹣2﹣5)=0,x﹣2+5=0,x﹣2﹣5=0,解得:x1=﹣3,x2=7;②2x2﹣4x﹣1=0,2x2﹣4x=1,x2﹣2x=,配方得:x2﹣2x+1=+1,(x﹣1)2=,开方得:x﹣1=±,解得:x1=,x2=;③3(x﹣2)2=x(x﹣2)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)[3(x﹣2)﹣x]=0,x﹣2=0,3(x﹣2)﹣x=0,解得:x1=2,x2=3;④(3x +1)(x ﹣2)=10, 3x 2﹣5x ﹣12=0∵b 2﹣4ac =(﹣5)2﹣4×3×(﹣12)=169, ∴x =,∴x 1=3,x 2=﹣. 19.解:设花边的宽为x 米,根据题意得(2x +8)(2x +6)=80, 解得x 1=1,x 2=﹣8,x 2=﹣8不合题意,舍去.答:花边的宽为1米.20.解:(1)∵关于x 的一元二次方程 x 2+3x ﹣m =0有实数根, ∴△=b 2﹣4ac =32+4m ≥0, 解得:m ≥﹣;(2)∵x 1+x 2=﹣3、x 1x 2=﹣m , ∴x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=11, ∴(﹣3)2+2m =11, 解得:m =1.21.解:(1)过点P 作PE ⊥CD 于E .则根据题意,得EQ =16﹣2×3﹣2×2=6(cm ),PE =AD =6cm ;在Rt △PEQ 中,根据勾股定理,得PE 2+EQ 2=PQ 2,即36+36=PQ 2,∴PQ =6cm ;∴经过2s 时P 、Q 两点之间的距离是6cm ;(2)设x 秒后,点P 和点Q 的距离是10cm . (16﹣2x ﹣3x )2+62=102,即(16﹣5x )2=64, ∴16﹣5x =±8,∴x 1=,x 2=;∴经过s 或sP 、Q 两点之间的距离是10cm ;(3)连接BQ .设经过ys 后△PBQ 的面积为12cm 2. ①当0≤y ≤时,则PB =16﹣3y ,∴PB •BC =12,即×(16﹣3y )×6=12, 解得y =4; ②当<y ≤时,BP =3y ﹣AB =3y ﹣16,QC =2y ,则 BP •CQ =(3y ﹣16)×2y =12,解得y 1=6,y 2=﹣(舍去); ③<y ≤8时,QP =CQ ﹣PC =2y ﹣(3y ﹣22)=22﹣y ,则 QP •CB =(22﹣y )×6=12,解得y =18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2.22.解:(1)设降价x 元,则现在每天可销售衬衫(30+2x )件,每件的利润是(40﹣x )元;(2)由题意,得(40﹣x )(30+2x )=1400, 即:(x ﹣5)(x ﹣20)=0,解得x 1=5,x 2=20,为了扩大销售量,减少库存,所以x 的值应为20,所以,若商场要求该服装部每天盈利1400元,每件要降价20元;(3)假设能达到,由题意,得(40﹣x )(30+2x )=1600,整理,得x 2﹣25x +200=0,△=252﹣4×1×200=625﹣800=﹣175<0,即:该方程无解,所以,商场要求该服装部每天盈利1600元,这个要求不能实现.故答案为:(30+2x ),(40﹣x ).23.解:(1)设日均销售量p (桶)与销售单价x (元)的函数关系为p =kx +b ,根据题意得解得k =﹣50,b =850,所以日均销售量p (桶)与销售单价x (元)的函数关系为p =﹣50x +850;(2)根据题意得一元二次方程 (x ﹣5)(﹣50x +850)﹣250=1350, 解得x 1=9,x 2=13(不合题意,舍去),∵销售单价不得高于12元/桶,也不得低于7元/桶,∴x =13不合题意,答:若该经营部希望日均获利1350元,那么销售单价是9元.。

2020一元二次方程测试试题与答案

2020一元二次方程测试试题与答案

一元二次方程测试题时间:120分钟 满分:120分一.选择题(共10小题,满分30分,每小题3分) 1.下列方程中,是一元二次方程是( ) A .2x +3y =4B .x 2=0C .x 2﹣2x +1>0D .=x +22.关于x 的一元二次方程ax 2+bx =c 的二次项系数为a ,则常数项是( ) A .0B .bC .cD .c -3.一元二次方程x 2+4x =2配方后化为( ) A .()226x +=B .()226x -=C .()226x +=-D .()222x +=-4.一元二次方程x 2﹣5x +6=0的解为( )A .122,3x x ==-B . 122,3x x =-=C . 122,3x x =-=-D . 122,3x x == 5.若关于x 的方程x 2+ax +a =0有一个根为﹣3,则a 的值是( ) A .9B .4.5C .3D .﹣36.一元二次方程()2123x x -=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 7.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛 的球队数是( ) A .6 B .7C .8D .98.若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( )A .10B .9C .7D .59.方程22550x x ++=有( ).A .有两个相等的有理根B .有两个不等实根C .无实根D .有两个相等的无理根10.若α、β是方程x 2+2x ﹣2020=0的两个实数根,则α2+3α+β的值为( ) A .2018B .2020C .﹣2020D .4040二.填空题(共6小题,满分24分,每小题4分)11.方程5x 2﹣x ﹣3=0的二次项系数是 ;一次项是_______________。

12.已知关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 的值是 . 13.如果m 是方程x 2﹣2x ﹣6=0的一个根,那么代数式2m ﹣m 2+7的值为 . 14.设12,x x 是方程2x 2+3x ﹣4=0的两个实数根,则11x x +的值为 . 学校 班级 姓名 考号_____________密 封 线 内 不 得 答 题15.一个两位数,个位数字比十位数字小1,十位数字的平方与9的和刚好等于这个两位数,则这个两位数为 。

人教版初中数学九年级上册第21章一元二次方程单元测试题含答案解析

人教版初中数学九年级上册第21章一元二次方程单元测试题含答案解析

第二十一章《一元二次方程》单元测试题一、选择题(每小题只有一个正确答案)1.下列方程中一定是一元二次方程的是( )A.B.C.D.2.已知x=1是方程x2+px+1=0的一个实数根,则p的值是()A.0B.1C.2D.﹣23.一元二次方程2x2-x+1=0的根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法判断4.已知一元二次方程,若,则该方程一定有一个根为()A.0B.1C.2D.-15.用配方法解一元二次方程x2﹣6x﹣1=0时,下列变形正确的是()A.(x﹣3)2=1B.(x﹣3)2=10C.(x+3)2=1D.(x+3)2=106.关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则整数k的最小值是( )A.1B.0C.2D.37.九年级举行篮球赛,初赛采用单循环制(每两个班之间都进行一场比赛),据统计,比赛共进行了28场,求九年级共有多少个班.若设九年级共有x个班,根据题意列出的方程是()A.x(x﹣1)=28 B.x(x﹣1)=28 C.2x(x﹣1)=28 D.x(x+1)=288.已知a、b、c是的三边长,且方程的两根相等,则为A.等腰三角形B.等边三角形C.直角三角形D.任意三角形9.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.(10﹣2x)(6﹣2x)=32C.(10﹣x)(6﹣x)=32D.10×6﹣4x2=3210.已知、是方程的两个实数根,则的值为()A.B.C.D.11.如果非零实数a是一元二次方程x2-5x+m=0的一个根,-a是方程x2+5x-m=0的一个根,那么a的值等于( )A.0B.1C.D.512.设的两实根为,,而以,为根的一元二次方程仍是,则数对的个数是()A.B.C.D.二、填空题13.请写出一个根为x=1,另一个根满足-1<x<1的一元二次方程______________.14.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.15.某药品经两次降价后,从原来每箱元降为每箱元,则平均每次的降价率为________.16.方程x2+px+q=0,甲同学因为看错了常数项,解得的根是6,-1;乙同学看错了一次项,解得的根是-2,-3,则原方程为_______________.17.定义新运算®:对于任意实数a、b都有:a®b=a2+ab,如果3®4=32+3×4=9+12=21,那么方程x®2=0的解为________.三、解答题18.解一元二次方程:(配方法);(公式法);;.19.已知关于的方程.为何值时,此方程是一元一次方程?为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.20.关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.21.已知方程x2﹣(k+1)x﹣6=0是关于x的一元二次方程.(1)求证:对于任意实数k,方程总有两个不相等的实数根;(2)若方程的一个根是2,求k的值及方程的另一个根.22.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家快递公司,今年三月份与五月份完成投递的快件总件数分别是5万件和万件,现假定该公司每月投递的快件总件数的增长率相同.求该公司投递快件总件数的月平均增长率;如果平均每人每月可投递快递万件,那么该公司现有的16名快递投递员能否完成今年6月份的快递投递任务?23.某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价1元,那么每月就可以多售出5个.降价前销售这种学习机每月的利润是多少元?经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?在的销售中,销量可好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.24.如图,,是一条射线,,一只蚂蚁由以速度向爬行,同时另一只蚂蚁由点以的速度沿方向爬行,几秒钟后,两只蚂蚁与点组成的三角形面积为?参考答案1.D【解析】【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【详解】A、是二元二次方程,故不是一元二次方程,故此选项错误;B、是一元一次方程,故此选项错误;C、是分式方程,不是一元二次方程,故此选项错误;D、是一元二次方程,故此选项正确;故选D.【点睛】此题主要考查了一元二次方程,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.D【解析】【分析】把x=1代入x2+px+1=0,即可求得p的值.【详解】把x=1代入把x=1代入x2+px+1=0,得1+p+1=0,∴p=-2.故选D.【点睛】本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.3.C【解析】【分析】先计算=b2-4ac的值,再根据计算结果判断方程根的情况即可.【详解】∵△=b 2 -4ac=1-8=-7<0,∴一元二次方程2x 2 -x+1=0没有实数根.故选C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.C【解析】【分析】将c=-a-b代入原方程左边,再将方程左边因式分解即可.【详解】依题意,得c=-a-b,原方程化为ax2+bx-a-b=0,即a(x+1)(x-1)+b(x-1)=0,∴(x-1)(ax+a+b)=0,∴x=1为原方程的一个根,故选C.【点睛】本题考查了一元二次方程解的定义.方程的解是使方程左右两边成立的未知数的值.5.B【解析】【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】x2﹣6x﹣1=0方程移项得:x2-6x=1,配方得:x2-6x+9=10,即(x-3)2=10,故选:B.【点睛】考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.6.C【解析】【分析】若一元二次方程有两不相等实数根,则根的判别式=b2-4ac>0,建立关于k的不等式,求出k的取值范围,并结合二次项系数不为0求出k的最小值.【详解】∵关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,∴△=4-4(k-1)×(-2)>0,且k-1≠0,解得k>,且k≠1,则k的最小整数值是2.故选C.【点睛】本题主要考查了根的判别式的知识,解答本题的关键是根据>0⇔方程有两个不相等的实数根列出k的不等式,此题难度不大.7.B【解析】【分析】赛制为单循环形式(每两班之间都赛一场),x个班比赛总场数=x(x-1)÷2,即可列方程求解.【详解】设九年级共有x个班,每个班都要赛(x-1)场,但两班之间只有一场比赛,故x(x-1)=28.故选B.【点睛】本题主要考查了一元二次方程的应用,根据比赛场数与参赛队之间的关系为:比赛场数=队数×(队数-1)÷2,进而得出方程是解题关键.8.C【解析】【分析】方程的两根相等,即,结合直角三角形的判定和性质确定三角形的形状.【详解】原方程整理得,因为两根相等,所以,即,所以是直角三角形,故选C.【点睛】本题考查了一元二次方程根的判别式,勾股定理的逆定理,熟练掌握根的判别式是解题的关键.总结:一元二次方程根的情况与判别式的关系:(1)>0⇔方程有两个不相等的实数根;(2)=0⇔方程有两个相等的实数根;(3)<0⇔方程没有实数根.9.B【解析】分析:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.详解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据题意得:(10−2x)(6−2x)=32.故选:B.点睛:本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.D【解析】【分析】先根据一元二次方程的解的定义得到α2=2α+4,再用α表示α3,则运算可化简为8(α+β)+14,然后利用根与系数的关系求解.【详解】∵α方程x2−2x−4=0的实根,∴α2−2α−4=0,即α2=2α+4,∴α3=2α2+4α=2(2α+4)+4α=8α+8,∴原式=8α+8+8β+6=8(α+β)+14,∵α,β是方程x2−2x−4=0的两实根,∴α+β=2,∴原式=8×2+14=30.故答案为:30.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.也考查了一元二次方程的解.11.D【解析】【分析】根据一元二次方程的解的定义得到a2-5a+m=0,a2-5a-m=0,把两式相加得2a2-10a=0,然后解关于a的一元二次方程即可得到满足条件的a的值.【详解】由题意得:a2-5a+m=0,a2-5a-m=0,所以2a2-10a=0,解得a1=0(舍去),a2=5,所以a的值为5,故选D.【点睛】本题考查了一元二次方程的解以及解一元二次方程,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.12.B【解析】【分析】利用根与系数的关系把,之间的关系找出来,利用,之间的关系,解关于,的方程,然后再代入原方程检验即可.【详解】根据题意得,①,②,③,④,由②、④可得,解之得或,由①、③可得,即,当时,,解之得,或,即,,把它们代入原方程的中可知符合题意;当时,,解之得,或,即,,把它们代入原方程的中可知不合题意舍去,所以数对的个数是对,故选.【点睛】本题考查了一元二次方程的根与系数的关系、根的判别式,有一定的难度,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-,x1•x2=.13.本题答案不唯一,如x(x-1)=0【解析】【分析】首先在-1<x<1的范围内选取x的一个值,作为方程的另一根,再根据因式分解法确定一元二次方程.本题答案不唯一.【详解】由题意知,另一根为0时,满足-1<x<1,∴方程可以为:x(x-1)=0,故答案为:x(x-1)=0(本题答案不唯一).【点睛】本题考查的是已知方程的两根,写出方程的方法.这是需要熟练掌握的一种基本题型,解法不唯一,答案也不唯一.14.±2.【解析】【分析】根据根的判别式求出=0,求出a2+b2=2,根据完全平方公式求出即可.【详解】解:∵关于x的方程x2+2ax-b2+2=0有两个相等的实数根,∴△=(2a)2-4×1×(-b2+2)=0,即a2+b2=2,∵常数a与b互为倒数,∴ab=1,∴(a+b)2=a2+b2+2ab=2+3×1=4,∴a+b=±2,故答案为:±2.【点睛】本题考查了根的判别式和解高次方程,能得出等式a2+b2=2和ab=1是解此题的关键.15.【解析】【分析】设平均每次降价的百分率是x,则第一次降价后药价为60(1-x)元,第二次在60(1-x)元的基础之又降低x,变为60(1-x)(1-x)即60(1-x)2元,进而可列出方程,求出答案.【详解】设平均每次降价的百分率是x,则第二次降价后的价格为60(1-x)2元,根据题意得:60(1-x)2=48.6,即(1-x)2=0.81,解得,x1=1.9(舍去),x2=0.1,所以平均每次降价的百分率是0.1,即10%,故答案为:10%.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.16.x2-5x+6=0【解析】【分析】根据甲得出p=−(6-1)=-5,根据乙得出q=(-2)×(-3)=6,代入求出即可.【详解】∵x2+px+q=0,甲看错了常数项,得两根6和-1,∴p=−(6-1)=-5,∵x2+px+q=0,乙看错了一次项,得两根-2和−3,∴q=(-2)×(-3)=6,∴原一元二次方程为:x2-5x+6=0.故答案为:x2-5x+6=0.【点睛】本题考查了根与系数关系的应用,解此题的关键是能灵活运用性质进行推理和计算,题目比较好.17.x1=0,x2=-2【解析】【分析】根据新定义得到x2+2x=0,然后利用因式分解法解方程即可.【详解】方程x®2=0化为x2+2x=0,则x(x+2)=0,所以x1=0,x2=-2.故答案为:x1=0,x2=-2【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.,;,;,;,.【解析】【分析】(1)先利用配方法得到(x-1)2=9,然后利用直接开平方法解方程;(2)先计算判别式的值,然后代入求根公式求解;(3)先变形得到7x(3x-2)+6(3x-2)=0,然后利用因式分解法解方程;(4)先把方程化为一般式,然后利用因式分解法解方程.【详解】,,,,所以,;,,所以,;,,或,所以,;,或,所以,.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法和公式法解一元二次方程.19.(1)时,此方程是一元一次方程;(2).一元二次方程的二次项系数、一次项系数,常数项.;【解析】【分析】利用一元二次方程的一般形式求解即可.【详解】解:根据一元一次方程的定义可知:,,解得:,答:时,此方程是一元一次方程;②根据一元二次方程的定义可知:,解得:.一元二次方程的二次项系数、一次项系数,常数项.;【点睛】理解一元二次方程的一般形式是解题的关键.20.-【解析】【分析】根据根的判别式得到=(﹣a)2﹣4(a+1)=0,即a2﹣4a=4,再将所求代数式化简为,然后整体代入计算即可.【详解】解:∵关于x的方程x2﹣ax+a+1=0有两个相等的实数根,∴△=0,即(﹣a)2﹣4(a+1)=0,∴a2﹣4a=4,,∴原式=﹣=﹣.【点睛】本题主要考查一元二次方程根的判别式,解此题的关键在于根据根的判别式得到关于a的方程,再化简所求代数式,然后整体代入求解即可.21.(1)证明见解析;(2)k的值为﹣2,方程的另一个根,为﹣3.【解析】【分析】(1)通过计算判别式的值得到△=(k+1)2+24>0,从而可判断方程根的情况;(2)设方程的另一个根为t,根据根与系数的关系得到,然后解方程组即可得到k和t的值.(1)∵△=(k+1)2﹣4×(﹣6)=(k+1)2+24>0∴对于任意实数k,方程总有两个不相等的实数根;(2)设方程的另一个根为t,根据题意得:,解得:.所以k的值为﹣2,方程的另一个根为﹣3.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.也考查了根的判别式.22.该公司投递快件总件数的月平均增长率为该公司现有的16名快递投递员不能完成今年6月份的快递投递任务【解析】【分析】设该公司投递快件总件数的月平均增长率为x,根据该公司今年三月份与五月份完成投递的快件总件数,即可得出关于x的一元二次方程,解之取其正值即可得出结论;根据6月份的快件总件数月份的快递总件数增长率,可求出6月份的快件总件数,利用6月份可完成投递快件总件数每人每月可投递快件件数人数可求出6月份可完成投递快件总件数,二者比较后即可得出结论.【详解】解:设该公司投递快件总件数的月平均增长率为x,根据题意得:,解得:,舍去.答:该公司投递快件总件数的月平均增长率为.月份快递总件数为:万件,万件,,该公司现有的16名快递投递员不能完成今年6月份的快递投递任务.【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程;根据数量关系,列式计算.23.(1)4800元;(2)降价60元;(3)应涨26元每月销售这种学习机的利润能达到10580元.【分析】根据总利润=单个利润×数量列出算式,计算即可求出值;设每个学习机应降价x元,根据题意列出方程,求出方程的解即可得到结果;设应涨y元每月销售这种学习机的利润能达到10580元,根据题意列出方程,求出方程的解即可得到结果.【详解】解:由题意得:元,则降价前商场每月销售学习机的利润是4800元;设每个学习机应降价x元,由题意得:,解得:或,由题意尽可能让利于顾客,舍去,即,则每个学习机应降价60元;设应涨y元每月销售这种学习机的利润能达到10580元,根据题意得:,方程整理得:,解得:,则应涨26元每月销售这种学习机的利润能达到10580元.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.解答本题时还应明确:利润=售价-进价,总利润=单个利润×数量.24.,,后,两蚂蚁与点组成的三角形的面积均为.【解析】【分析】设xs后两只蚂蚁与O点组成的三角形面积为450cm2,分当蚂蚁在AO上运动和蚂蚁在OB上运动两种情况列方程,解方程即可求解.【详解】有两种情况:(1)如图1,当蚂蚁在AO上运动时,设xs后两只蚂蚁与O点组成的三角形面积为450cm2,由题意,得×3x×(50-2x)=450,整理,得x2-25x+150=0,解得x1=15,x2=10.(2)如图2,当蚂蚁在OB上运动时,设x秒钟后,两只蚂蚁与O点组成的三角形面积为450cm2,由题意,得×3x(2x-50)=450,整理,得x2-25x-150=0,解得x1=30,x2=-5(舍去).答:15s,10s,30s后,两蚂蚁与O点组成的三角形的面积均为450cm2.【点睛】本题考查了一元二次方程的应用,分两种情况进行讨论是本题难点,解题时注意用运动的观点来观察事物.。

2《一元二次方程》单元测试题及答案

2《一元二次方程》单元测试题及答案

2《一元二次方程》单元测试题及答案《一元二次方程》单元测试题一、选择题 (共10题,每题3分,共30分):1.下列方程中不一定是一元二次方程的是( )A(a-3)x 2=8(a- 3) B.ax 2+bx+c=0 C.(x+3)(x-2)=x+5 D. (x+2)2=-4 2下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+23.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( ) A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 4.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( )A 、1 B 、1- C 、1或1- D 、1/25.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.196.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+= 的两个根,则这个直角三角形的斜边长是( )AB 、3C 、6D 、9 7.使分式2561x x x --+ 的值等于零的x 是( )A.6B.-1或6C.-1D.-68.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( )根的一元二次方程是___________.19.已知关于的方程x2+2x+a-1=0 的两个根为x1,x2,且x12-x1x2=0则a等于_______.20.关于x 的一元二次方程(a-1)x2-2x+3=0 有实根,则整数a的最大值是___________.三、用适当方法解方程:(每小题4分,共16分)(1) 2(x-1)2+x=1 (2)(X+2)2-4(x+2)-5=0(3) 2x2-3x-9=0( 两种方法) (4)、(x+4)(x+5)=56四、列方程解应用题:(每小题9分,共44分)22、某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数. (8分)23、瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降多少元?24.如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?25.已知关于x的方程x2-2mx+(m2+m)=0的两根的平方和为4,求m 的值26、某农场要建一个矩形养鸡场,鸡场的一边靠墙(墙长25M),另三边用木栏围成长40M.(1)鸡场的面积能达到180㎡吗?能达到200㎡吗?(2)鸡场的面积能达到250㎡吗?如果能,请你写出设计方案,如果不能请写出理由.。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(包含答案解析)(2)

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(包含答案解析)(2)

一、选择题1.722x -=⨯是下列哪个一元二次方程的根( ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+= 2.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20 3.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0 4.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x += D .()()5011266x x ++= 5.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m < B .3m C .3m <且2m ≠ D .3m 且2m ≠ 6.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=7.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15 8.当分式2369x x x --+的值为0时,则x 等于( ) A .3B .0C .3±D .-3 9.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .810.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2C .m≤14-且m≠﹣2D .m≥14- 11.一元二次方程x 2=4x 的解是( ) A .x=4 B .x=0 C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案12.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( ) A .2,8 B .3,4 C .4,3 D .4,8二、填空题13.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.14.关于x 的方程()210x k x x -++=有两个相等的实数根,则k =_______. 15.方程230x -=的解为___________.16.已知方程2x 2+4x ﹣3=0的两根分别为出x 1和x 2,则x 1+x 2+x 1x 2=_____.17.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.18.用配方法解方程x 2+4x+1=0,则方程可变形为(x+2)2=_____.19.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.20.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____.三、解答题21.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.22.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?23.已知:关于x 的一元二次方程()232220-+++=tx t x t (0t >). (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于t 的函数,且221=⋅+y t x x ,求这个函数的解析式.24.用适当的方法解方程:(l )2(3)26x x +=+(2)2810x x -+=.25.已知关于x 的一元二次方程22210x k x k +++=()有两个不相等的实数根. (1)求k 的取值范围;(2)设方程的两个实数根分别为12,x x ,当1k =时,求2212x x +的值.26.已知一次函数y kx b =+的图象经过点()0,1和点()1,1-(1)求一次函数的表达式;(2)若点()222,a a +在该一次函数图象上,求a 的值;(3)已知点()()1122,,,A x y B x y 在该一次函数图象上,设()()1212m x x y y =--,判断正比例函数y mx =的图象所在的象限,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据求根公式逐一列出每个方程根的算式即可得出答案.【详解】A 、22730x x ++=的解为x =B 、22730x x --=的解为x =C 、22730x x +-=的解为x =D 、22730x x -+=的解为x =故选:C .【点睛】本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法. 2.B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.3.C解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a 的值即可.【详解】解:∵关于x 的一元二次方程x 2+(a 2-3a )x+a=0的两个实数根互为倒数,∴x 1•x 2=a=1.故选:C .【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 4.D解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x),∴3月份的营业额=50×(1+x)×(1+2x),∴可列方程为:50(1+x)(1+2x)=66.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.注意先求得2月份的营业额.5.D解析:D【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,然后解不等式组即可得到m的取值范围.【详解】解:∵关于x的一元二次方程(m-2)x2-2x+1=0有实数根,∴m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x,根据题意即可列出方程.【详解】解:设平均增长率为x,根据题意可列出方程为:2000(1+x)2=2880.故选:D.【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b(a<b);平均降低率问题,在理解的基础上,可归结为a(1-x)2=b(a>b).7.B解析:B【分析】利用因式分解法解方程求出x的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.8.D解析:D【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可.【详解】 依题意得:230690x x x ⎧-⎨-+≠⎩=, 解得x =−3.故选:D【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.9.D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.10.B解析:B【分析】关于x的一元二次方程(m-2)x2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x的一元二次方程(m-2)x2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0,m1 -4≥,关于x的一元二次方程(m-2)x2+3x-1=0有实数根,m的取值范围是m1-4≥且m≠2.故选:B.【点睛】本题考查关于x的一元二次方程(m-2)x2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.11.D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x2=4xx2-4x=0x(x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.12.D解析:D【分析】设方程的另一个根为t,根据根与系数的关系得到t+2=6,2t=c,然后先求出t,再计算c的值.【详解】解:设方程的另一个根为t ,根据题意得t +2=6,2t =c ,解得t =4,c =8.故选:D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 二、填空题13.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程. 14.-1【分析】根据方程有两个相等的实数根可得判别式△=0可得关于k 的一元二次方程解方程求出k 值即可得答案【详解】∵方程有两个相等的实数根∴解得:k1=k2=-1故答案为:-1【点睛】此题主要考查了根的解析:-1【分析】根据方程()210x k x x -++=有两个相等的实数根可得判别式△=0,可得关于k 的一元二次方程,解方程求出k 值即可得答案.【详解】∵方程()221(1)0x k x x x k x k -++=---=有两个相等的实数根, ∴()2140k k =-+=, 解得:k 1=k 2=-1,故答案为:-1.【点睛】此题主要考查了根的判别式,对于一元二次方程ax 2+bx+c=0(a≠0),根的判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根;熟练掌握相关知识是解题关键.15.【分析】先移项然后利用数的开方直接求出即可【详解】移项得解得:故答案为:【点睛】此题主要考查了直接开平方法解一元二次方程用直接开方法求一元二次方程的解要仔细观察方程的特点解析:x =【分析】先移项,然后利用数的开方直接求出即可.【详解】移项得,23x =,解得:x =故答案为:x =【点睛】此题主要考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.﹣【分析】根据根与系数的关系得到x1+x2=﹣=﹣2x1x2=﹣然后利用整体代入的方法计算【详解】根据题意得x1+x2=﹣=﹣2x1x2=﹣所以x1+x2+x1x2=﹣2﹣=﹣故答案为:﹣【点睛】本解析:﹣72【分析】 根据根与系数的关系得到x 1+x 2=﹣42=﹣2,x 1x 2=﹣32,然后利用整体代入的方法计算.【详解】 根据题意得x 1+x 2=﹣42=﹣2,x 1x 2=﹣32, 所以x 1+x 2+x 1x 2=﹣2﹣32=﹣72. 故答案为:﹣72.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a. 17.﹣【分析】由根与系数的关系即可求出答案【详解】解:∵一元二次方程2x2+3x ﹣1=0的两个根是x1x2∴x1x2=﹣故答案为:﹣【点睛】本题考查了根与系数的关系解题的关键是掌握根与系数的关系进行解题解析:﹣12 【分析】由根与系数的关系,即可求出答案.【详解】解:∵一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,∴x 1x 2=﹣12, 故答案为:﹣12. 【点睛】本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.18.3【分析】先移项再两边配上4写成完全平方公式即可【详解】解:∵∴即故答案为:3【点睛】本题考查了用配方法解一元二次方程掌握用配方法解一元二次方程的步骤即可解析:3【分析】先移项,再两边配上4,写成完全平方公式即可.【详解】解:∵241x x +=-,∴24414x x ++=-+,即()223x +=,故答案为:3.【点睛】本题考查了用配方法解一元二次方程,掌握用配方法解一元二次方程的步骤即可. 19.3cm 【分析】设横彩条的宽度是xcm 竖彩条的宽度是3xcm 根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm 竖彩条的宽度是3xcm 则(30-3x )(20-2x )=解析:3cm【分析】设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30-3x )(20-2x )=20×30×(1-19%),解得x 1=1,x 2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm .故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.20.-1【分析】一元二次方程的根就是一元二次方程的解就是能够使方程左右两边相等的未知数的值即把x=1代入方程求解可得m 的值【详解】把x=1代入方程(m-2)x2+4x-m2=0得到(m-2)+4-m2=解析:-1【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x =1代入方程求解可得m 的值.【详解】把x =1代入方程(m -2)x 2+4x -m 2=0得到(m -2)+4-m 2=0,整理得:220m m --=,因式分解得:()()120m m +-=,解得:m =-1或m =2,∵m -2≠0∴m =-1,故答案为:-1.【点睛】本题考查了一元二次方程的解的定义以及因式分解法解一元二次方程,解题的关键是正确的代入求解.注意:二次项系数不为0的条件.三、解答题21.(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k-,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.22.(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.23.(1)证明见解析;(2)222 1.y t t =++【分析】(1)先求解()2242b ac t =-=+,再证明>0,即可得出结论; (2)把原方程化为:()()1220,x tx t ---=再解方程,根据0t >,12x x <,确定12,x x ,最后代入函数解析式即可得到答案.【详解】(1)证明: ()232220-+++=tx t x t , (),32,22,a t b t c t ∴==-+=+()()22=43242+2b ac t t t ∴-=-+-⎡⎤⎣⎦22912488t t t t =++--244t t =++()22t =+, t >0,()22t ∴=+>0,所以原方程有两个不相等的实数根.(2) ()232220-+++=tx t x t , ()()1220,x tx t ∴---=10x ∴-=或220,tx t --=1x ∴=或22,x t=+ 0t >,22t∴+>1, 12x x <,1221,2,x x t∴==+ ∴ 221=⋅+y t x x2221t t ⎛⎫=++ ⎪⎝⎭ 222 1.t t =++【点睛】本题考查的一元二次方程根的判别式,利用因式分解法解一元二次方程,不等式的性质,列函数关系式,掌握以上知识是解题的关键.24.(1)13x =-,21x =-;(2)1x =,24x =【分析】(1)用因式分解法求解可得;(2)用配方法求解即可.【详解】解:(1)∵(x+3)2-2(x+3)=0,∴(x+3)(x+1)=0,∴x+3=0或x+1=0,解得:x=-3或x=-1;(2)2810x x -+=281x x -=-28+1615x x -=2(4)15x -=4x -=∴1x =,24x =【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.25.(1)14k >-;(2)7 【分析】(1)根据一元二次方程根的判别式可直接进行求解;(2)根据一元二次方程根与系数的关系可求解.【详解】(1)∵一元二次方程有两个不相等的实数根,∴()2221410k k +-⨯⨯>, 解得14k >-; (2)当1k =时,原方程为2310x x ++=,∵1x ,2x 是方程的根,∴123x x +=-,121=x x ,∴()22212121227x x x x x x +=+-=. 【点睛】本题主要考查一元二次方程根的判别式及韦达定理,熟练掌握一元二次方程根的判别式及韦达定理是解题的关键.26.(1)21y x =-+;(2)a 的值是-1或-3;(3)在第二、四象限.【分析】(1)把点()0,1和点()1,1-两点坐标分别代入一次函数y kx b =+,进而求得k 、b 的值,即可求出一次函数的表达式;(2)将点()222,a a +代入一次函数21y x =-+,即可求得a 的值;(3)根据点()()1122,,,A x y B x y 在一次函数21y x =-+图象上,由()()1212m x x y y =--可得()()()212121222112m x x x x x x =--+=--+-,据此可以判断m 的取值,结合正比例函数的性质解答即可.【详解】解:(1)∵一次函数y kx b =+的图象经过点()0,1和点()1,1-,根据题意得: 11b k b =⎧⎨-=+⎩, 解得21k b =-⎧⎨=⎩, ∴一次函数的表达式为21y x =-+;(2)∵点()222,a a +在一次函数21y x =-+的图象上,∴22(22)1a a =-++,解得1a =-或3a =-,即a 的值是-1或-3;(3)正比例函数y mx =的图象在第二、四象限.理由:∵点()()1122,,,A x y B x y 在一次函数21y x =-+图象上,()()1212m x x y y =--,∴()()()212121222112m x x x x x x =--+=--+-, ∴m <0,∴正比例函数y mx =的图象在第二、四象限.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、正比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.。

人教版九年级数学上册 第21章《一元二次方程》 单元同步检测试题(稍难)含答案

人教版九年级数学上册 第21章《一元二次方程》 单元同步检测试题(稍难)含答案

第二十一章 《一元二次方程》单元检测试题考生注意: 1.考试时间90分钟.2. 全卷共三大题,满分100分.题号 一 二三总分 21 22 23 24 25 262728 分数一、选择题(每小题3分,共30分)1.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m 的值是( ) A .3或-1 B .3 C .1 D .-3或12.将一块正方形铁皮的四角各剪去一个边长为3 cm 的小正方形,做成一个无盖的盒子,已知盒子的容积为300 cm 3,则原铁皮的边长为( ) A .10 cm B .13 cm C .14 cm D .16 cm 3.当x 取何值时,代数式x 2-6x -3的值最小( )A .0B .-3C .3D .-9 4.老师出示了小黑板上的题目(如图)后,小敏回答:“方程有一根为4”,小聪回答:“方程有一根为-1”.则你认为( )已知方程x 2-3x +k +1=0,试添加一个条件,使它的两根之积为-4.A .只有小敏回答正确B .只有小聪回答正确C .小敏、小聪回答都正确D .小敏、小聪回答都不正确 5.下列方程是关于x 的一元二次方程的是( )A .ax 2+bx +c =0B .1x 2+1x=2C .x 2+2x =y 2-1D .3(x +1)2=2(x +1)6.已知关于x 的一元二次方程x 2-bx +c =0的两根分别为x 1=1,x 2=-2,则b 与c 的值分别为( )A .b =-1,c =2B .b =1,c =-2C .b =1,c =2D .b =-1,c =-2 7.一元二次方程x 2-2x +1=0的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根8.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=9 9.关于x 的方程()01452=---x x a 有实数根,则a 满足( )A . a ≥1B . a >1且a ≠5C . a ≥1且a ≠5D . a ≠510.一元二次方程0122=--x x 的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根 C.只有一个实数根D .没有实数根二、填空题(每小题4分,共24分)11.把方程3x(x -1)=(x +2)(x -2)+9化成ax 2+bx +c =0的形式为________________.12.(丽水中考)解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程__________.13.已知实数a ,b 是方程x 2-x -1=0的两根,则b a +ab的值为________.14.六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送306份小礼品,则该班有______名同学.15.(姜堰模拟)在一幅长8分米,宽6分米的矩形风景画(如图1)的四周镶上宽度相同的金色纸边,制成一幅矩形挂图(如图2),使整个挂图的面积是80平方分米,设金色纸边宽为x 分米,可列方程为________________________.16.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是__________. 三、解答题(共46分) 17.(16分)我们已经学习了一元二次方程的四种解法:因式分解法,直接开平方法,配方法和公式法.请选择合适的方法解下列方程.(1)x 2-3x +1=0;(2)(x -1)2=3;(3)x 2-3x =0;(4)x 2-2x =4.18.(8分)关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根.(1)求k 的取值范围;(2)请选择一个k 的负整数值,并求出方程的根.19.(10分) 某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?20.(12分)某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需化简).时间第一个月第二个月清仓时单价(元) 80 40销售量(件) 200(2)如果批发商希望通过销售这批T恤获利9 000元,那么第二个月的单价应是多少元?参考答案:一、选择题1.B2.D3.C4.C5.D6.D7.A8.D9.A10.B二、填空题11.2x 2-3x -5=0 12.x +3=0(或x -1=0) 13.-3 14.18 15.(2x +6)(2x +8)=80 16.6或10或12三、解答题:17.方程(1)用公式法∵a =1,b =-3,c =1,∴b 2-4ac =(-3)2-4×1×1=5>0.∴方程(1)的根为x 1=3+52,x 2=3-52.方程(2)用直接开平方法x -1=±3,∴方程(2)的根为x 1=-3+1,x 2=3+1.方程(3)用因式分解法x(x -3)=0,∴方程(3)的根为x 1=0,x 2=3.方程(4)用配方法x 2-2x +1=4+1,(x -1)2=5,x -1=±5,∴方程(4)的根为x 1=-5+1,x 2=5+1.18.(1)∵方程有两个不相等的实数根,∴Δ=(-3)2-4(-k)>0,即4k>-9.解得k>-94.(2)若k 是负整数,k 只能为-1或-2.①当k =-1时,原方程为x 2-3x +1=0.解得x 1=3+52,x 2=3-52.②当k=-2时,原方程为x 2-3x +2=0.解得x 3=2,x 4=1.19. 设降价x 元,则售价为(60-x)元,销售量为(300+20x)件,根据题意,得(60-x -40)(300+20x)=6 080,解得x 1=1,x 2=4,又因为顾客得实惠,故取x =4,即定价为56元.答:应将销售单价定为56元.20.(1)80-x 200+10x 800-200-(200+10x) (2)根据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9 000.整理,得x 2-20x +100=0,解得x 1=x 2=10.当x =10时,80-x =70>50.答:第二个月的单价应是70元.。

部编数学九年级上册第21章一元二次方程单元测试(基础)2023考点题型精讲(解析版)含答案

部编数学九年级上册第21章一元二次方程单元测试(基础)2023考点题型精讲(解析版)含答案

第21章一元二次方程单元测试(基础)一、单选题1.已知x1,x2是一元二次方程x2−2x=0的两根,则x1+x2的值是( )A.0B.2C.-2D.4【答案】B【解析】【解答】解:∵x1,x2是一元二次方程x2−2x=0的两根,∴x1+x2=2.故答案为:B.【分析】根据一元二次方程根与系数的关系x1+x2=−b a,即可求解.2.一元二次方程5x2﹣2x﹣7=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.无实数根【答案】A【解析】【解答】解:∵Δ=(﹣2)2﹣4×5×(﹣7)=144>0,∴关于一元二次方程5x2﹣6x﹣7=0有两个不相等的实数根.故答案为:A.【分析】利用一元二次方程根的判别式,得出当△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根,故确定a,b,c的值,代入公式判断出△的符号即可得出结论.3.方程x2-4x+8=0的根的情况是( )C.无实数根D.以上三种情况都有可能【答案】B【解析】【解答】∵在方程x2-4 x+8=0中,△=(-4 )2−4×1×8=0,∴有两个相等的实数根.故答案为:B.【分析】计算b2-4ac的值,根据一元二次方程的根的判别式“①当b2-4ac>0时,方程有两个不相等的实数根;②当b2-4ac=0时,方程有两个相等的实数根;③当b2-4ac<0时,方程没有实数根。

”即可判断求解.4.关于x的方程x2+5x+m=0的一个根为−2,则另一个根为( ).A.−6B.−3C.3D.6【答案】B【解析】【解答】根据题意,将x=-2代入,得(−2)2+5×(−2)+m=0,所以m=6,所以一元二次方程为x2+5x+6=0,(x+2)(x+3)=0,x1=−2,x2=−3,所以方程的另一个根为x=-3.故答案为:B.【分析】先利用方程的一个根求得m的值,即求得一元二次方程,再利用配方法解方程即可求得f方程的另一个根.5.已知a= 49m﹣1,b=m2﹣59m(m为任意实数),则a与b的大小关系为( )A.a>b B.a<b C.a=b D.不能确定【答案】B【解析】【解答】解:∵a= 49m﹣1,b=m2﹣59m(m为任意实数),∴b﹣a=m2﹣59m﹣49m+1=m2﹣m+1=(m﹣12)2+ 34>0,则a<b,故选B【分析】利用作差法比较a与b的大小即可.6.设一元二次方程x2−2x−3=0的两个实数根为x1,x2,则x1+x1x2+x2等于( ).A.1B.-1C.0D.3【答案】B【解析】【解答】∵一元二次方程x2−2x−3=0的两个实数根为x1,x2,∴x1+x2=−ba=2,x1x2=c a=-3,∴x1+x1x2+x2=2+(-3)=-1故答案为:B.【分析】直接利用根与系数的关系式:x1+x2=−ba,x1x2=c a求解即可.7.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是( ) A.①②有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解【答案】B【解析】【解答】方程①的判别式△=4-12=-8,则①没有实数解;②的判别式△=4+12=16,则②有实数解.故答案为:B.【分析】一元二次方程的根的判别式b2-4ac>0时,方程有两个不相等的实数根;,b2-4ac=0时,方程有两个相等的实数根;b2-4ac<0时,方程没有实数根。

2024-2025学年度九年级数学上册一元二次方程 单元测试卷[含答案]

2024-2025学年度九年级数学上册一元二次方程  单元测试卷[含答案]

2024-2025学年度九年级数学上册一元二次方程 单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.(八年级下·安徽阜阳·阶段练习)关于x 的一元二次方程有一个根是1,则()221202m x m m -+-=m 的值是( )A .B .2C .0D .2-2±2.(八年级下·浙江金华·期中)用配方法解一元二次方程,配方后得到的方程是( )221x x -=A .B .C .D .2(1)2x -=()212x +=2(1)0x +=2(1)0x -=3.(八年级下·浙江杭州·期中)无论x m 的取值范围是( )A .B .C .D .9m ≥9m ≤9m <9m >4.(2024·甘肃兰州·三模)一元二次方程的根的情况是( )269x x -=A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定5.(九年级下·福建福州·阶段练习)已知点的坐标为,则点到直线的距离P ()21,23m m m ---P 5y =-最小值为( )A .B .1C .2D .3126.(九年级上·福建厦门·阶段练习)解一元二次方程,则20ax bx c ++=等于( )c A .1B .C .0D .21-7.(2024八年级下·江苏·专题练习)若分式方程无解,则实数a 的取值是( )231222x a x x x x -+=--A .0或2B .4C .8D .4或88.(九年级上·江苏宿迁·阶段练习)若关于的方程的解为,,则方程x 20ax bx c ++=11x =-23x =的解为( )2(1)(1)0a x b x c ++++=A .B .1202x x ==,1222x x ,=-=C .D .1204x x ==,1202x x ,==-9.(八年级下·安徽蚌埠·期中)已知,是不为0的实数,且,若,,则m n m n ≠15m m +=15+=n n 的值为( )n m m n +A .23B .15C .10D .510.(2024·广西南宁·二模)2024年汤姆斯杯羽毛球赛于4月27日至5月5日在成都举行,根据赛制规定,所有参赛队伍先通过抽签分成若干小组进行小组赛,小组赛阶段每队都要与小组内其他队进行一场比赛,已知中国队所在的小组有n 支队伍,共安排了6场小组赛.根据题意,下列方程正确的是( )A .B .1(1)62n n +=1(1)62n n -=C .D .(1)6n n +=(1)6n n -=二、填空题(本大题共8小题,每小题4分,共32分)11.(八年级下·浙江衢州·期中)若m 是方程的一个根,则代数式的值是24270x x --=223m m -+.12.(八年级下·安徽合肥·期中)如果的值与的值相等,则 .2368x x +-221x -x =13.(九年级上·湖南怀化·期中)若点在第二象限,则关于x 的一元二次方程的根(,)P a c 20ax bx c ++=的情况是 .14.(八年级下·浙江宁波·期中)已知,则的值是 .()()2222120a b a b +++-=22a b +15.(八年级下·浙江杭州·期中)已知三角形两边长分别为7和4,第三边是方程的一211180x x -+=个根,则这个三角形的周长是 .16.(2024·四川达州·三模)已知,是一元二次方程的两根,那么的值为a b 2230x x --=22a b ab +-.17.(2024·山东淄博·二模)已知点是一次函数的图象上位于第一象限的点,其中实数(,)P m n 1y x =-,满足,则点的坐标是 .m n 2(2)4(2)m m n n m +-++8=P 18.(八年级下·广西梧州·期中)如图,中,,,,点从点出发向Rt ACB △90C =∠7AC =5BC =P B 终点以1个单位长度移动,点从点出发向终点A 以2个单位长度移动,、两点同时出发,C /s Q C /s P Q 一点先到达终点时、两点同时停止,则 秒后,的面积等于4.P Q PCQ △三、解答题(本大题共6小题,共58分)19.(8分)19.(八年级下·上海闵行·期末)解方程:.218224x x x x -=-+-20.(8分)(八年级下·山东淄博·期中)选择合适的方法解方程.(1); (2)2572x x =-()()3121x x x -=-21.(10分)(八年级下·江苏苏州·期中)已知关于x 的方程.()()21210x m x m -++-=(1)求证:无论m 取何值时,方程总有实数根;(2)如果方程有两个实数根,当时,求m 的值.12x x ,()12124x x x x +-=22.(10分)(2024·湖北宜昌·模拟预测)如图,在等腰直角三角形中,,且A ,B ,C 三ABC AB BC =点的坐标分别为,,.()1,2-()1,1--()2,1-(1)求直线的解析式;AC(2)若双曲线与的边共有两个交点,求k 的取值范围.()0ky k x =>ABC23.(10分)(2024·福建福州·模拟预测)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍,(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m元,则购买的数量会比第一次购买大罗非()0m >的数量增加2m 斤,第二次一共购买80斤鱼共用了1340元.求m 的值.24.(12分)(九年级上·江苏无锡·阶段练习)配方法是数学中重要的一种思想方法.它是指将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.这种方法常被用到代数式的变形中,并结合非负数的意义来解决一些问题.我们定义:一个整数能表示成(a 、b 是整数)的22a b +形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为,所以5是“完美数”.22521=+【解决问题】(1)已知34是“完美数”,请将它写成(a 、b 是整数)的形式 ;22a b +(2)若可配方成(m 、n 为常数),则 ;265xx -+()2x m n-+mn =【探究问题】(1)已知,则 ;222450x y x y +-++=x y +=(2)已知(x 、y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的224412S x y x y k =++-+一个k 值,并说明理由.【拓展结论】已知实数x 、y 满足,求的最值.25502x x y -++-=2x y -参考答案:1.A【分析】本题考查一元二次方程解的定义以及一元二次方程的定义及其解法,熟练掌握定义,根据定义要求得出方程及不等式求解是解决问题的关键.根据方程解的定义,将代入求解,再结合一元二次1x =方程定义确定即可得出结论.20m -≠【详解】解:是关于x 的一元二次方程,()221202m x m m -+-=,解得,∴20m -≠2m ≠关于x 的一元二次方程有一个根是1,()221202m x m m -+-=,21202m m m ∴-+-=化简得,解得,24m =2m =±综上所述:,2m =-故选:A .2.A【分析】本题考查了配方法解一元二次方程,将方程两边同时加上一次项系数一半的平方,再写成完全平方式即可得出答案.【详解】解:∵,221x x -=∴,即,22111x x -+=+2(1)2x -=故选:A .3.A【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.【详解】解:∵,且无论x 取任何实数,代数式()222669939x x m x x m x m -+=-+-+=-+-∴,90m -≥∴.9m ≥故选:A 4.A【分析】本题考查了一元二次方程根的判别式,解题关键是掌握时方程有两个不相等的实数根,0∆>时方程有两个相等的实数根,时,方程没有实数根.将方程化为一般式,再利用判别式求解Δ0=Δ0<即可.【详解】解:将方程化为一般形式,269x x -=2690x x --=其中,,,,1a =6b =-9c =-,()()2246419720b ac ∴∆=-=--⨯⨯-=>方程有两个不相等的实数根,∴故选:A .5.B【分析】考查了配方法的应用,非负数的性质,坐标与图形性质,关键是得到点到直线的距离是P 5y =-.223(5)m m ----点到直线的距离是,利用配方法即可得到点到直线的最小值.P 5y =-()2235m m ----P 5y =-【详解】解:点到直线的距离是,P 5y =-()2235m m ----22|22||(1)1|m m m =-+=-+当时,点到直线的最小值为1.10m -=P 5y =-故选:B .6.B【分析】本题主要考查用公式法解一元二次方程,牢记求根公式:,利用求根公式可x =直接求解c 的值.【详解】解:已知一元二次方程;20ax bx c ++=直接利用公式法可得:;x =;可得,,;1a =2244b ac b -=+即,;1ac =-∴;1c =-故选:B .7.D【分析】本题考查的是分式方程的增根,增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0叫做原方程的增根.先把分式方程化为整式方程,确定分式方程的增根,代入计算即可.【详解】解:231222x a x x x x-+=--去分母,得,()322x a x x -+=-去括号、移项、合并同类项,得,24x a =-两边同时除以2,得.42a x -=若原分式方程无解,则,()20x x -=解得或2.0x =当时,,解得;0x =42a -=4a =当时,,解得.2x =422a -=8a =∴或8.4a =故选:D .8.B【分析】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.设方程中,,根据已知方程的解,即可求出关于t 的方程的解,然后根据2(1)(1)0a x b x c ++++=1t x =+即可求出结论.1t x =+【详解】解:设方程中,2(1)(1)0a x b x c ++++=1t x =+则方程变为2at bt c ++=∵关于的方程的解为,,x 20ax bx c ++=11x =-23x =∴关于的方程的解为,,t 20at bt c ++=11t =-23t =∴对于方程,或,2(1)(1)0a x b x c ++++=11+=-x 13x +=解得:,,12x =-22x =故选B .9.A【分析】本题考查了一元二次方程的解的意义,以及根与系数的关系,熟练掌握解的意义和根与系数的关系是解决问题的关键.将,进行变形可知,为方程的两个不相等15m m +=15+=n n m n 2510x x -+=实根,然后利用根与系数的关系得到,的值,利用完全平方公式对代数式进行变形即可求得其m n +mn 值.【详解】解: ,是不为0的实数,m n 由,,得,,∴15m m +=15+=n n 2510m m -+=2510n n -+=又,m n ≠ ,为一元二次方程的两个不相等实根,∴m n 2510x x -+=,,∴551m n -+=-=1mn = ,∴222()2252231n m n m m n mn m n mn mn ++--+====故选:A .10.B【分析】本题考查了一元二次方程的应用,正确理解题意、找准相等关系是解题的关键.每一支队伍都要和另外的支队伍进行比赛,于是比赛总场数每支队的比赛场数参赛队伍重复的场数,即可()1n -=⨯÷解答.【详解】解:共有n 支队伍参加比赛,根据题意,可列方程为;1(1)62n n -=故选:B .11. 12-【分析】本题考查了代数式求值,一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.先根据一元二次方程解的定义得到,则,再把变形为,24270m m --=2722m m -=223m m -+2(2)3m m --+然后利用整体代入的方法计算.【详解】解:是方程的一个根,m 24270x x --=,24270m m ∴--=,2722m m ∴-=.227123(2)3322m m m m ∴-+=--+=-+=-故答案为:.12-12.或17-【分析】本题主要考查解一元二次方程,解一元一次方程,等式的性质等知识,根据题意得到方程,求出方程的解即可.2236821x x x +-=-【详解】解:根据题意得:,2236821x x x +-=-∴,2670x x +-=分解因式得:,(7)(1)0x x +-=∴,,70x +=10x -=解方程得:,.17x =-21x =故答案为:或1.7-13.有两个不相等的实数根【分析】本题考查了根的判别式以及点的坐标,由点P 在第二象限,可得出,,进而可得出a<00c >,结合,进而可得出关于x 的一元二次方程有两个不相等的实数根.0ac <240b ac =-> 20ax bx c ++=【详解】解:点在第二象限,,,,()P a c <0a ∴0c >,0ac ∴<,240∴=-> b ac关于x 的一元二次方程有两个不相等的实数根.20ax bx c ++=故答案为:有两个不相等的实数根.14.2【分析】本题考查了换元法解一元二次方程,令,根据换元法求解方程作答即可.22a b t +=【详解】令,即,22a b t +=0t ≥∵,()()2222120a b a b +++-=∴,()()120t t +-=又∵,11t +≥∴,20t -=∴,2t =即,222a b +=故答案为:.215.20【分析】本题考查解一元二次方程及三角形的三边关系,利用因式分解法解一元二次方程,再利用三角形的三边关系确定符合题意的x 的值,然后计算其周长即可.【详解】211180x x -+=因式分解得:(2)(9)0x x --=解得:122,9x x ==∵247+<∴舍去2x =∴这个三角形的周长是74920++=故答案为:20 .16.7【分析】本题主要考查了根与系数的关系,先根据根与系数的关系得到,,再把原式变2a b +=3ab =-形得到,然后利用整体代入的方法计算.()222a b ab a b ab+-=+-【详解】解:根据题意得,,2a b +=3ab =-22a b ab ∴+-()2a b ab =+-()223=⨯--.7=故答案为:.717.31,22⎛⎫ ⎪⎝⎭【分析】本题考查了一次函数的性质,解一元二次方程,根据题意已知等式可得,根据点2()4m n +=是一次函数的图象上位于第一象限的点,得出,且,,联立解方程,(,)P m n 1y x =-1n m =-0m >0n >即可求解.【详解】,2(2)4(2)8m m n n m +-++=化简,得,2()4m n +=点是一次函数的图象位于第一象限部分上的点,(,)P m n 1y x =-,∴1n m =-,∴()241m n n m ⎧+=⎪⎨=-⎪⎩解得,或,3212m n ⎧=⎪⎪⎨⎪=⎪⎩1232m n ⎧=-⎪⎪⎨⎪=-⎪⎩点是一次函数的图象位于第一象限部分上的点,(,)P m n 1y x =-,,∴0m >0n >故点的坐标为,P 31,22⎛⎫ ⎪⎝⎭故答案为.31,22⎛⎫ ⎪⎝⎭18.1【分析】本题主要考查了一元二次方程的应用,根据图形正确列出一元二次方程成为解题的关键设t 秒后的面积等于4,然后根据三角形面积公式列出一元二次方程求解即可.PCQ △【详解】解:设t 秒后的面积等于4,PCQ △由题意得:,则,2,BP t CQ t ==5CP t =-∵,12PCQ CQ CP S =⋅△∴,整理得:,()14252t t =⨯⨯-2540t t -+=解得:,,11t =24t =∵点从点C 到点A 的时间为,Q 7s 2∴,不合题意,舍去,24t =∴1秒后,的面积等于4.PCQ △故答案为:1.19.3x =-【分析】本题考查解分式方程和解一元二次方程,熟练掌握解分式方程和解一元二次方程的方法是解题的关键.根据解分式方程的步骤化简,再解一元二次方程,注意要验根.【详解】解:,218224x x x x -=-+-去分母,得:,()()228x x x +--=去括号,得:,2228x x x +-+=移项,得:,260x x +-=因式分解,得,()()230x x -+=解得:,,12x =23x =-∵,且,20x -≠20x +≠∴或,2x ≠2-∴.3x =-20.(1)12715x x =-=,(2)12213x x =-=,【分析】本题考查了因式分解解一元二次方程,正确掌握相关性质内容是解题的关键.(1)先移项,再进行因式分解,得,令每个因式为0,进行计算,即可作答.()()5710x x +-=(2)先移项,提公因式得,令每个因式为0,进行计算,即可作答.()()3210x x +-=【详解】(1)解:2572x x=-25270x x +-=()()5710x x +-=解得12715x x =-=(2)解:()()3121x x x -=-()()31210x x x ---=()()31210x x x -+-=()()3210x x +-=解得12213x x =-=,21.(1)见解析(2)1-【分析】本题考查了根与系数的关系:若是一元二次方程的两根时,12x x ,()200ax bx c a ++=≠.也考查了根的判别式.1212b c a x x x x a +=-=,(1)先计算根的判别式的值得到,则,于是根据根的判别式的意义得到结论;()2Δ3m =-0∆≥(2)先利用根与系数的关系得,,再利用得到121x x m +=+()1221x x m =-()12124x x x x +-=,然后解一次方程即可.12(1)4m m +--=【详解】(1)证明:∵()()2Δ1421m m =+-⨯-22188m m m =++-+269m m =-+,()230m =-≥∴无论m 取何值时,方程总有实数根;(2)解:根据根与系数的关系得,,121x x m +=+()1221x x m =-∵,()12124x x x x +-=∴,12(1)4m m +--=解得,1m =-即m 的值为.1-22.(1)1y x =-+(2)114k <<【分析】本题考查了求一次函数解析式,反比例函数的图形和性质,解题的关键是熟练掌握用待定系数法求解函数解析式的方法和步骤,以及反比例函数的图象和性质.(1)设直线的解析式为,将,代入求出k 和b 的值,即可得出函数解析式;AC y kx b =+()1,2A -()2,1C -(2)联立双曲线和直线的解析式,求出当直线与双曲线只有一个交点时k 的值,再求出当双曲AC AC 线经过点B 时k 的值,即可解答.【详解】(1)解:设直线的解析式为,AC y kx b =+将,代入得:()1,2A -()2,1C -,212k bk b =-+⎧⎨-=+⎩解得:,11k b =-⎧⎨=⎩∴直线的解析式为;AC 1y x =-+(2)解:联立和得:1y x =-+ky x =,1y x ky x =-+⎧⎪⎨=⎪⎩整理得:,20x x k -+=当直线与双曲线只有一个交点时:,AC 140k ∆=-=解得:,14k =当双曲线经过点B 时,把代入得:()1,1B --ky x =,11k-=-解得:,1k =∵双曲线与的边共有两个交点,()0ky k x =>ABC ∴.114k <<23.(1)桂花鱼的单价是14元,大罗非的单价是21元;(2)m 的值为2【分析】本题考查了分式方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元二次方程.(1)设桂花鱼的单价是x 元,则大罗非的单价是元,利用数量=总价÷单价,结合用840元买的桂1.5x 花鱼的数量比用同样价钱买大罗非的数量多20斤,可列出关于x 的分式方程,解之经检验后,可得出桂花鱼的单价,再将其代入中,即可得出大罗非的单价;1.5x (2)利用数量=总价÷单价,可求出第一次购买大罗非的数量,再利用总价=单价×数量,可列出关于m 的一元二次方程,解之取其符合题意的值,即可得出结论.【详解】(1)解:设桂花鱼的单价是x 元,则大罗非的单价是元,1.5x 根据题意得: ,840840201.5x x -=解得:,14x =经检验,是所列方程的解,且符合题意,14x =∴(元).1.5 1.51421x =⨯=答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是(斤).8402140÷=根据题意得:,()()()1480402214021340m m m --+-+=整理得:,213300m m +-=解得:,(不符合题意,舍去).12m =215m =-答:m 的值为2.24.解决问题:(1);(2);探究问题:(1);(2)当时,为“完美数”,理由2235+12-1-13k =S 见解析;拓展结论:当时,最大,最大值为32x =2x y -112-【分析】本题主要考查了配方法的应用,非负数的性质,熟知完全平方公式是解题的关键.[解决问题](1)把34分为两个整数的平方即可;(2)原式利用完全平方公式配方后,确定出与的值,即可求出的值;m n mn [探究问题](1)已知等式利用完全平方公式配方后,根据非负数的性质求出与的值,即可求出x y 的值;+x y (2)根据为“完美数”,利用完全平方公式配方,确定出的值即可;S k [拓展结论]由已知等式表示出,代入中,配方后再利用非负数的性质求出最大值即可.y 2x y -【详解】解:解决问题:(1)根据题意得:;223435=+故答案为:;2235+(2)根据题意得:,()()2226569434x x x x x -+=-+-=--,,3m ∴=n =-4∴;4312mn =-⨯=-故答案为:;12-探究问题:(1)∵,222450x y x y +-++=∴,()()2221440x x y y -++++=∴,()()22120x y -++=,,()210x -≥ ()220y +≥,,10x ∴-=20y +=解得:,,1x ==2y -∴;121x y +=-=-故答案为:;1-(2)当时,为“完美数”,理由如下:13k =S 22441213S x y x y =++-+()()22444129x x y y =+++-+,()()22223x y =++-,是整数,x y ,也是整数,2x ∴+23y -是一个“完美数”;S ∴拓展结论:,25502x x y -++-= ,即,2552y x x ∴-=-+-222510y x x -=-+-,222510x y x x x ∴-=-+-22610x x =-+-299231042x x ⎛⎫=--++- ⎪⎝⎭,2311222x ⎛⎫=--- ⎪⎝⎭∵,2302x ⎛⎫-≥ ⎪⎝⎭∴,23202x ⎛⎫--≤ ⎪⎝⎭∴2311112222x ⎛⎫---≤- ⎪⎝⎭∴当时,最大,最大值为.32x =2x y -112-。

遵义四中九年级数学上册第二十一章《一元二次方程》测试题(含答案)

遵义四中九年级数学上册第二十一章《一元二次方程》测试题(含答案)

一、选择题1.方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±l B .m≥-l 且m≠1 C .m≥-lD .m >-1且m≠12.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ). A .()40012900x += B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++=3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( ) A .10 B .17 C .20 D .17或20 4.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( )A .k-4且k≠0B .k≥-4C .k>-4且k≠0D .k>-45.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .166.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( ) A .12B .16C .l2或16D .157.下列一元二次方程中,有两个不相等实数根的是( ) A .2104x x -+= B .2390x x ++= C .2250x x -+= D .25130x x -=8.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六12345abcdef6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728293031ghi图1图2A .17B .18C .19D .209.当分式2369x x x --+的值为0时,则x 等于( ) A .3B .0C .3±D .-310.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( ) A .a <-2 B .a >-2C .-2<a <0D .-2≤a <011.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( )A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根12.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .713.不解方程,判断方程23620x x --=的根的情况是( )A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确14.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m >15.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( ) A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定二、填空题16.将方程2630x x +-=化为()2x h k +=的形式是______. 17.写出有一个根为1的一元二次方程是______. 18.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____. 19.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______. 20.已知关于x 的方程2x m =有两个相等的实数根,则m =________.21.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.22.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根. 23.当m =___________时,方程(2150m m xmx --+=是一元二次方程.24.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.25.若a 是方程210x x ++=的根,则代数式22020a a --的值是________. 26.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____. 三、解答题27.已知关于x 的一元二次方程kx 2+6x ﹣1=0有两个不相等的实数根. (Ⅰ)求实数k 的取值范围;(Ⅱ)写出满足条件的k 的最小整数值,并求此时方程的根.28.5月10日,重庆正式启动“加快发展直播带货行动计划”,以推动直播带货和“网红经济”发展,已知云阳桃片糕每盒12元,仙女山红茶每盒50元,第一次直播期间,共卖出云阳桃片糕和仙女山红茶共计2000盒.(1)若卖出桃片糕和红茶的总销售额不低于54400元,则至少卖出仙女山红茶多少盒? (2)第一次直播结束,为了回馈顾客,在第二次直播期向,桃片糕每盒降价10%3a ,红茶每盒降价4a %,桃片糕数量在(1)问最多的数量下增加6a %,红茶数量在(1)问最少的数量下增加4a %,最终第二次直播总销售额比第一次直播的最低销售额54400元少80a 元,求a 的值.29.阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件200元出售,一个月可卖出100件,通过市场调查发现,售价每件每降低1元,月销售件数就增加2件.(1)已知该农产品的成本是每件100元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元;(2)小红发现在附近线下超市也有该农产品销售,并且标价为每件200元,买五送一,在(1)的条件下,小红想要用最优惠的价格购买38件该农产品,应选择在线上购买还是线下超市购买?30.已知12,x x 是关于x 的一元二次方程()222110x m x m --+-=两个实数根.(1)求m 取值范围; (2)若()12210x x x -+=,求实数m 的值.。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(答案解析)(2)

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(答案解析)(2)

一、选择题1.已知4是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .7或10C .10或11D .112.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x +=C .220++=ax bx cD .223x x +=3.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x += B .()238x += C .()2310x -= D .()238x -= 4.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m < B .3m C .3m <且2m ≠ D .3m 且2m ≠ 5.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=6.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根 7.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15 8.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++= 9.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A .12B .15C .12或15D .1810.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( )A .(1)81x x x ++=B .2181x x ++=C .1(1)81x x x +++=D .(1)81x x +=11.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3 B .6 C .8 D .912.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14- 二、填空题13.已知12,x x 是一元二次方程21402x mx m -+-=的两个实数根且12111x x +=,则m 的值为______.14.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.15.关于x 的方程()210x k x x -++=有两个相等的实数根,则k =_______. 16.一元二次方程-+=(5)(2)0x x 的解是______________.17.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______18.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.19.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.20.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.三、解答题21.火锅是重庆人民钟爱的美食之一;解放碑某老火锅店为抓住“十一黄金周”这个商机,通过网上广告宣传和实地派发传单等一系列促销手段吸引了不少本地以及外地游客,火锅店门庭若市.据店员统计;仅“十一黄金周”前来店内就餐选择红汤火锅和清汤火锅的游客共2500人,其中红汤火锅和清汤火锅的人均消费分别为80元和60元.(1)“十一”期间,若选择红汤火锅的人数不超过清汤火锅人数的1.5倍,求至少有多少人选择清汤火锅?(2)随着“十一”的结束,前来店内就餐的人数逐渐减少,据接下来的第二周统计数据显示,与(1)选择清汤火锅的人数最少时相比,选择红汤火锅的人数下降了a %,选择清汤火锅的人数不变,但选择红汤火锅的人均消费增长了a %,选择清汤火锅的人均消费增长了1%5a ,最终第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等,求a 的值.22.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元? 23.已知:关于x 的一元二次方程()232220-+++=tx t x t (0t >). (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于t 的函数,且221=⋅+y t x x ,求这个函数的解析式.24.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.25.解方程:(1)2x 2+1=3x (配方法)(2)(2x-1)2=(3-x)2(因式分解法)26.解方程:(1)2237x x +=;(2)x(2x+5)=2x+5.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】把x=4代入已知方程求得m 的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【详解】解:把x=4代入方程得16-4(m+1)+2m=0,解得m=6,则原方程为x 2-7x+12=0,解得x 1=3,x 2=4,因为这个方程的两个根恰好是等腰△ABC 的两条边长,①当△ABC 的腰为4,底边为3时,则△ABC 的周长为4+4+3=11;②当△ABC 的腰为3,底边为4时,则△ABC 的周长为3+3+4=10.综上所述,该△ABC 的周长为10或11.故选C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.2.D解析:D【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误;C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误;D 223x x +=符合一元二次方程的定义,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.A解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.D解析:D【分析】根据一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac 的意义得到m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,然后解不等式组即可得到m 的取值范围.【详解】解:∵关于x 的一元二次方程(m-2)x 2-2x+1=0有实数根,∴m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,解得m≤3,∴m 的取值范围是 m≤3且m≠2.故选:D .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 5.D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).6.D解析:D【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边,∴a+b >c .∴c+a+b >0,c-a-b <0,∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根.故选:D .本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.7.B解析:B【分析】利用因式分解法解方程求出x 的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.8.D解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.9.B解析:B首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意.【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6,当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15.故选:B .【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.10.C解析:C【分析】平均一人传染了x 人,根据有一人患病,第一轮有(x+1)人患病,第二轮共有x+1+(x+1)x 人,即81人患病,由此列方程求解.【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得,x+1+(x+1)x=81故选:C .【点睛】本题考查了一元二次方程的应用,关键是得到两轮传染数量关系,从而可列方程求解. 11.D解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.12.B解析:B【分析】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x 2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0, m 1-4≥, 关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m 的取值范围是m 1-4≥且m≠2. 故选:B .【点睛】本题考查关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x 的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.二、填空题13.-8【分析】先利用根与系数的关系得到再把变形为从而代入得到方程解之即可【详解】解:∵是一元二次方程的两个实数根∴∵∴即解得:m=-8故答案为:-8【点睛】本题考查了根与系数的关系根据根与系数的关系找解析:-8【分析】先利用根与系数的关系得到12x x m +=,12142x x m ⋅=-,再把12111x x +=变形为1212x x x x +=,从而代入得到方程,解之即可.【详解】解:∵12,x x 是一元二次方程21402x mx m -+-=的两个实数根, ∴12x x m +=,12142x x m ⋅=-, ∵12111x x +=, ∴1212x x x x +=,即142m m =-, 解得:m=-8,故答案为:-8.【点睛】本题考查了根与系数的关系,根据根与系数的关系,找出12x x m +=,12142x x m ⋅=-是解题的关键. 14.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 15.-1【分析】根据方程有两个相等的实数根可得判别式△=0可得关于k 的一元二次方程解方程求出k 值即可得答案【详解】∵方程有两个相等的实数根∴解得:k1=k2=-1故答案为:-1【点睛】此题主要考查了根的解析:-1【分析】根据方程()210x k x x -++=有两个相等的实数根可得判别式△=0,可得关于k 的一元二次方程,解方程求出k 值即可得答案.【详解】∵方程()221(1)0x k x x x k x k -++=---=有两个相等的实数根, ∴()2140k k =-+=, 解得:k 1=k 2=-1,故答案为:-1.【点睛】此题主要考查了根的判别式,对于一元二次方程ax 2+bx+c=0(a≠0),根的判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根;熟练掌握相关知识是解题关键.16.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方解析:x 1=5,x 2=-2【分析】直接利用因式分解法得出方程的根.【详解】解:∵(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x 1=5,x 2=-2,故答案为:x 1=5,x 2=-2.【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键. 17.1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的 解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.18.【分析】此题是平均增长率问题一般用增长后的量=增长前的量×(1+增长率)参照本题如果设平均每年增产的百分率为x 根据粮食产量在两年内从3000吨增加到3630吨即可得出方程求解【详解】解:设平均每年增解析:10%【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程求解.【详解】解:设平均每年增产的百分率为x ;第一年粮食的产量为:3000(1+x );第二年粮食的产量为:3000(1+x )(1+x )=3000(1+x )2;依题意,可列方程:3000(1+x )2=3630;解得:x=-2.1(舍去)或x=0.1=10%故答案为:10%.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 19.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程 解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.20.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.三、解答题21.(1)至少有1000人选择清汤火锅;(2)a 的值为10【分析】(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据选择红汤火锅的人数不超过清汤火锅人数的1.5倍列出一元一次不等式,然后解不等式取其最小值即可; (2)根据第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等列出关于a 的一元二次方程,然后解方程取其正值即可解答.【详解】解:(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据题意, 得:2500﹣x≤1.5x ,解得:x≥1000,答:至少有1000人选择清汤火锅;(2)根据题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+15a%)×1000=80×(2500﹣1000)+60×1000,整理,得:12x 2﹣120a=0,解得:a 1=10,a 2=0(不合题意,舍去),答:a 的值为10.【点睛】本题考查一元一次不等式的应用、一元二次方程的应用,解答的关键是理解题意,找准数量间的关系,正确列出不等式和方程.22.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+ (2)由题意得:()()64300150450x x --+=解得:112x =,21x = 当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键. 23.(1)证明见解析;(2)222 1.y t t =++【分析】(1)先求解()2242b ac t =-=+,再证明>0,即可得出结论; (2)把原方程化为:()()1220,x tx t ---=再解方程,根据0t >,12x x <,确定12,x x ,最后代入函数解析式即可得到答案.【详解】(1)证明: ()232220-+++=tx t x t , (),32,22,a t b t c t ∴==-+=+()()22=43242+2b ac t t t ∴-=-+-⎡⎤⎣⎦22912488t t t t =++--244t t =++()22t =+, t >0,()22t ∴=+>0,所以原方程有两个不相等的实数根.(2) ()232220-+++=tx t x t , ()()1220,x tx t ∴---=10x ∴-=或220,tx t --=1x ∴=或22,x t=+ 0t >,22t∴+>1, 12x x <,1221,2,x x t∴==+ ∴ 221=⋅+y t x x2221t t ⎛⎫=++ ⎪⎝⎭ 222 1.t t =++【点睛】本题考查的一元二次方程根的判别式,利用因式分解法解一元二次方程,不等式的性质,列函数关系式,掌握以上知识是解题的关键.24.(13;(21+;(3)4;(4)12x =,24x =-. 【分析】(1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可; (3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可; (4)移项,利用直接开平方法即可求解.【详解】(133=+3=;(2|11)=-1=1=;(3)102(1)-++121=+-4=-(4)2(1)90x+-=,移项得:2(1)9x+=,∴13x+=或13x+=-,12x=,24x=-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.25.(1)11x=,212x=;(2)12x=-,243x=【分析】(1)首先把方程移项变形为2x2-3x=-1的形式,二次项系数化为1,再进行配方即可;(2)根据平方差公式可以解答此方程.【详解】(1)解:移项,得2x2-3x=-1二次项系数化为1,得x2-32x =12-配方,得x2-32x+234⎛⎫⎪⎝⎭=12-+234⎛⎫⎪⎝⎭231416x⎛⎫-=⎪⎝⎭解得11x=,212x=.(2)解:原方程化为:()()222130x x---=()()2132130x x x x-+---+=()()2340x x+-=20x +=或340x -=解得 12x =-,243x =. 【点睛】 此题考查了解一元二次方程-因式分解法(公式法),配方法,熟练掌握各种解法是解本题的关键.26.(1)112x =,23x =;(2)11x =,252x =- 【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用因式分解法求解.【详解】解:(1)2x 2-7x+3=0,(2x-1)(x-3)=0,2x-1=0或x-3=0,所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0,因式分解得,(2x+5)(x-1)=0,∴x-1=0,2x+5=0,∴11x =,252x =-; 【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。

遵义市初中数学方程与不等式之一元二次方程专项训练

遵义市初中数学方程与不等式之一元二次方程专项训练

遵义市初中数学方程与不等式之一元二次方程专项训练一、选择题1.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 【答案】A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14; 当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a 的取值范围为a≥1.故选A .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.某型号手机原来销售单价是4000元,经过两次降价促销,现在的销售单价是2560元,若两次降价的百分率相同,则平均每次降价( )A .10%B .15%C .20%D .25%【答案】C【解析】【分析】根据原来售价是4000元,经过两次降价且降价百分率相同后销售单价为2560元,设两次降价的百分率为x ,一次降价为()40001x -,两次降价为()240001x -得出 ()240001x -=2560,算出x .【详解】解:设两次降价的百分率为x ,由题意得:4000(1﹣x )2=2560∴(1﹣x )2=256400∴1﹣x =±0.8∴x 1=1.8(舍),x 2=0.2=20%故选:C .【点睛】熟悉一元二次方程的增长率和下降率的相关题型,注意分析是一次增长(下降),还是二次增长(下降)问题.3.已知直角三角形的两条边长分别是方程x 2-14x+48=0的两个根,则此三角形的第三边是( )A .6或8B .10C .10或8D .【答案】B【解析】【分析】先解方程x 2-14x+48=0求得直角三角形的两条边长,再根据勾股定理即可求得结果.【详解】解:解方程x 2-14x+48=0得x 1=6,x 2=8当8为直角边时,第三边10==当8为斜边长时,第三边==故选B.考点:解一元二次方程,勾股定理点评:分类讨论问题是初中数学学习中的重点和难点,是中考的热点,尤其在压轴题中比较常见,一般难度较大,需特别注意.4.将方程()22230x x x m n --=-=化为的形式,指出,m n 分别是( )A .1和3B .-1和3C .1和4D .-1和4 【答案】C【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【详解】移项得x 2-2x=3,配方得x 2-2x+1=4,即(x-1)2=4,∴m=1,n=4.故选C .【点睛】用配方法解一元二次方程的步骤:(1)形如x 2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax 2+bx+c=0型,方程两边同时除以二次项系数,即化成x 2+px+q=0,然后配方.5.若代数式226(3)1x x m x ++=+-,则m =( )A .-8B .9C .8D .-9【答案】C【解析】【分析】已知等式右边利用完全平方公式化简,利用多项式相等的条件求出m 的值即可.【详解】 226(3)1x x m x ++=+-=x 2+6x+8,可得m=8,故选:C.【点睛】此题考查配方法的应用,解题关键在于掌握计算公式.6.对于一元二次方程ax 2+bx +c =0(a ≠0),下列说法:①若b =ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则方程x 2﹣bx +ac =0也一定有两个不等的实数根;③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立;④若x 0是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2ax 0+b )2,其中正确的( )A .只有①②③B .只有①②④C .①②③④D .只有③④【答案】B【解析】【分析】判断上述方程的根的情况,只要看根的判别式△=-24b ac 的值的符号就可以了.④难度较大,用到了求根公式表示0x .【详解】解:①若b =,方程两边平方得b 2=4ac ,即b 2﹣4ac =0,所以方程ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则b 2﹣4ac >0方程x 2﹣bx +ac =0中根的判别式也是b 2﹣4ac >0,所以也一定有两个不等的实数根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac 2+bc +c =0成立,当c ≠0时ac +b +1=0成立;当c =0时ac +b +1=0不成立;④若x 0是一元二次方程ax 2+bx +c =0的根,可得0x ,把x 0的值代入(2ax 0+b )2,可得b 2﹣4ac =(2ax 0+b )2,综上所述其中正确的①②④.故选:B .【点睛】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示0x ,整体代入求2204(2)b ac ax b -=+.总结:一元二次方程根的情况与判别式△的关系:(1)△0>⇔方程有两个不相等的实数根;(2)△0=⇔方程有两个相等的实数根;(3)△0<⇔方程没有实数根.7.方程x 2+x ﹣1=0的一个根是( )A .1﹣B .C .﹣1+D .【答案】D【解析】【分析】利用求根公式解方程,然后对各选项进行判断.【详解】∵a =1,b =﹣1,c =﹣1,∴△=b 2﹣4ac =12﹣4×(﹣1)=5,则x =, 所以x 1=,x 2= .故选:D .【点睛】本题考查了解一元二次方程﹣公式法,解题关键在于掌握运算法则.8.八年级()1班部分学生去春游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去春游的人数是( )A .9B .8C .7D .6【答案】A【解析】【分析】设同去春游的人数是x 人,由每人都和同行的其他每一人合照一张双人照且共照了双人照片36张,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设同去春游的人数是x 人, 依题意,得:1(1)362x x -=, 解得:19x =,28x =-(舍去).故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.9.代数式2x -4x +5的最小值是( )A .-1B .1C .2D .5【答案】B【解析】 2x -4x +5=2x -4x +4-4+5=2(2)x -+1∵2(2)x -≥0,∴2(2)x -+1≥1,∴代数2x -4x +5的最小值为1.故选B.点睛:解这类题时,通常先通过配方把原式化为“一个完全平方式”和“一个常数”的和的形式,再把完全平方式分解因式化为一个代数式的平方的形式,就可由“任何代数式的平方都是非负数”可知原式的最小值就是那个“常数”.10.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.11.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x ,则下面所列方程中正确的是( )A .22251196x (﹣)=B .21961225x (﹣)=C .22251196x (﹣)= D .21961225x (﹣)=【答案】A【解析】【分析】 可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=225,把相应数值代入即可求解.【详解】第一次降价后的价格为225×(1﹣x ),第二次降价后的价格为225×(1﹣x )×(1﹣x ),则225(1﹣x )2=196.故选A .【点睛】本题考查了一元二次方程的应用-增长率问题.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .12.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( ) A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=【答案】D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】x 1、x 2是一元二次方程x 2-2x=0的两个实数根,这里a=1,b=-2,c=0,b 2-4ac=(-2)2-4×1×0=4>0,所以方程有两个不相等的实数根,即12x x ≠,故A 选项正确,不符合题意;21120x x -=,故B 选项正确,不符合题意;12221b x x a -+=-=-=,故C 选项正确,不符合题意; 120c x x a⋅==,故D 选项错误,符合题意, 故选D.【点睛】 本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键.13.今年深圳的房价平均20000元/平方米,政府要控房价预计后年均价在16000元/平方米,若每年降价均为x%,则下列方程正确的是( )A .220000(1x%)16000+=B .220000(1x%)16000-=C .220000(12x%)16000+=D .()2200001x %16000-= 【答案】B【解析】【分析】已知今年房价及每年降价率,可依次算出降价后明年及后年的房价.【详解】解:根据每年降价均为x%,则第一次降价后房价为20000(1-x%)元,第二次在20000(1-x%)元基础上又降低x%,变为20000(1-x%)(1-x%)元,即220000(1-x%),进而可列出方程:220000(1x%)16000-=故选B【点睛】本题考查了由实际问题抽象出一元二次方程中增长率与下降率问题,关键是公式a(1x%)n b ±=的应用,理解公式是解决本题的关键.14.已知关于X 的方程x 2 +bx+a=0有一个根是-a (a ≠0),则a-b 的值为( )A .1B .2C .-1D .0【解析】【分析】由一元二次方程的根与系数的关系x 1•x 2=c a、以及已知条件求出方程的另一根是-1,然后将-1代入原方程,求a-b 的值即可.【详解】∵关于x 的方程x 2+bx+a=0的一个根是-a (a≠0),∴x 1•(-a )=a ,即x 1=-1,把x 1=-1代入原方程,得:1-b+a=0,∴a-b=-1.故选C .【点睛】本题主要考查了一元二次方程的解.解题关键是根据一元二次方程的根与系数的关系确定方程的一个根.15.下列方程中,是一元二次方程的为( )A .x 2+3x=0B .2x+y=3C .210x x -=D .x (x 2+2)=0【答案】A【解析】【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4)是整式方程. 由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A. 符合一元二次方程定义,正确;B. 含有两个未知数,错误;C. 不是整式方程,错误;D. 未知数的最高次数是3,错误.故选:A.【点睛】考查一元二次方程的定义,掌握一元二次方程的定义是解题的关键.16.设x 1,x 2是方程220160x x --=的两实数根,则31220172016x x +-的值是( ) A .2015B .2016C .2017D .2018 【答案】C【解析】采用“降次”思想,将31x 转化为120172016+x ,再利用根与系数的关系可得答案.【详解】∵x 1,x 2是方程220160x x --=的两实数根∴x 1+x 2=1,21120160--=x x∴211=2016+x x 32111111=2016=20162016=20172016++++x x x x x x∴31220172016x x +-=122017201620172016++-x x=()122017+x x=2017故选C .【点睛】 本题考查一元二次方程根与系数的关系,熟记公式12=b x x a+-,以及采用降次思想进行转化是解题的关键.17.下列方程中,是一元二次方程的是( )A .211x x +=B .10xy +=C .(x +1)(x -2)=0D .()()2112x x x x -+=+ 【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【详解】A 、是分式方程,故此选项错误;B 、是二元二次方程,故此选项错误;C 、是一元二次方程,故此选项正确;D 、整理后是一元一次方程,故此选项错误;故选:C .【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.18.若关于x 的一元二次方程ax 2+bx+6=0的一个根为x=﹣2,则代数式6a ﹣3b+6的值为A .9B .3C .0D .﹣3【答案】D【解析】分析:根据关于x 的一元二次方程260ax bx ++=的一个根为2x =-,可以求得2a b -的值,从而可以求得636a b -+的值.详解:∵关于x 的一元二次方程260ax bx ++=的一个根为x =−2,∴()()22260a b ,⨯-+⨯-+= 化简,得2a −b +3=0,∴2a −b =−3,∴6a −3b =−9,∴6a −3b +6=−9+6=−3,故选D.点睛:考查一元二次方程的解,解题的关键是明确题意,建立所求式子与已知方程之间的关系.19.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-3 【答案】D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x 2=-3x ,x 2+3x=0,x (x+3)=0,解得:x 1=0,x 2=-3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.20.方程250x x -=的解是( )A .5x =-B .5x =C .10x =,25x =-D .10x =,25x = 【答案】D【解析】【分析】提取公因式x 进行计算.【详解】提取公因式x 得:x·(x −5)=0,所以10x =,25x =. 故本题答案选D .【点睛】本题考查了一元二次方程的计算,掌握提取公因式这一知识点是解题的关键.。

一元二次方程测验卷

一元二次方程测验卷

一元二次方程测验卷姓名 学号 班级 成绩一、 选择题(每题2分,共16分)1、下列方程中,是一元二次方程的是( )A ) 212=+xx B )0402023=-x x .. C )12122=+x x D )81=x 2、方程4902.=x 的解为( )A )=x 0.7B )=x -0.7C )=x ±7D )=x ±0.73、一元二次方程()()065=+-x x 的根是 ( )A )=x -5B )=x -6C )=1x 5,=2x -6D )=1x -5,=2x 64、若一元二次方程02=++c bx ax 有一个根为1,则 ( )A)1=++c b a B)0=+-c b aC)0=++c b a D)1-=+-c b a5、用配方法将二次三项式222+-a a 变形,结果是( )A)()112+-a B)()112++a C)()112-+a D)()112--a 6、某超市一月份的营业额为200万元,一月份、二月份、三月份的营业额共1000万元,假如平均每月的增长率为x ,则由题意列方程为 ( )A)()100012002=+x B)10002200200=••+x C)10003200200=••+x D)()()[]10001112002=++++x x 7、方程0132=-+mx x 的两根互为相反数,则=m ( )A )1B )-1C )±1D )08、下列方程中,没有实数根的是( )A )0122=-+x xB )02222=++x x C )0122=++x x D )022=++-x x 二、 填空题(每题2分,共16分)1、把方程82213++=-)()(x x x 化成一样形式为 ,它的一次项系数为 ,常数项为 ;2、若关于x 的方程m x m x m 51122=---)()(是一元二次方程,则m 应满足 ;3、223)(+=++x x x ; 2234)(-=+-x x x 4、将方程0982=+-x x 的左边配成一个完全平方式为 ;5、利用墙的以便,再用13m 的铁丝围三边,围成一个面积20㎡的长方形,设宽为x m ,可得方程为 ;6、若21x x ,是方程03422=-+x x 的两根,则21x x += ,=21x x ;7、请写出有一根是2的一个一元二次方程 ;8、若关于x 的方程032=+-mx x 有两个相等的实数根,则m 的值是 ;三、 用适当的方法解下列方程(每题5分,共30分)1)、0532=--)(y 2)、 2082+=x x3)、03332=-+-)()(x x x 4) 5421=+-))((x x5)、x x =-232)( 6)、04124122=++-+)()(x x四、 解答题:(共38分)1、已知关于x 的方程0122=-++m x x 的一个根为1,求它的另一根与m 的值;(8分)2、已知21x x ,是方程04722=--x x 的两个根,不解方程,求下列各式的值:(8分)(1)2221x x + (2)2111x x +3、某商场销售商品收入款,3月份为25万元,5月份为36万元,该商场这两个月销售收入款平均每月增长的百分率是多少?(8分)4、已知竖直上抛物体离地面高度h (米)与抛出时刻t (秒)的关系式是2021gt t v h -=,其中0v 是竖直上抛的瞬时速度,常数g 取10米/秒,设0v =30米/秒,试求:(1)隔多长时刻物体高度是25米?(2)多少时刻后物体回到原处?(8分)5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500㎏,销售单价每涨价1元,月销售量就减少10㎏。

遵义市九年级数学上册第一单元《一元二次方程》检测(包含答案解析)

遵义市九年级数学上册第一单元《一元二次方程》检测(包含答案解析)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2± B .2- C .2 D .4 2.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±- 3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或204.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ).A .-1B .0C .2D .35.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x +=C .220++=ax bx cD .223x x +=6.若x=0是关于x 的一元二次方程(a+2)x 2- a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 7.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b 8.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+9.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20% 10.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( ) A .有两个相等的实数根 B .没有实数根C .有两个不相等的实数根D .无法确定 11.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14- 12.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5- B .5 C .10319- D .10319二、填空题13.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.14.已知12,x x 是一元二次方程21402x mx m -+-=的两个实数根且12111x x +=,则m 的值为______.15.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.16.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______.17.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.18.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____. 19.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.20.函数()2835m y m x -=+-是一次函数,则m =______.三、解答题21.关于x 的一元二次方程()2220x k x k -++=. (1)判断方程根的情况,并说明理由.(2)若1x =是方程的一个根,求k 的值和方程的另一根.22.解方程.(1)2560x x -+=.(2)23(21)(21)x x -=-.(3)23139x x x -=--. 23.(1)()2120x --=;(2)21212t t += (3)()22x x x -=-(4)23520.x x --=24.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.25.请回答下列各题:(1)先化简,再求值:2319369x x x xx x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x = (2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围. 26.解方程:22350x x --= (请用两种方法解方程)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键. 2.C解析:C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【详解】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.3.B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.D解析:D【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=, ∴原式211122123x x x x =-++=+=.故选:D .【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.5.D解析:D【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误;C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误;D 223x x +=符合一元二次方程的定义,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.6.B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0. 7.C解析:C【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出a b 的值即可得到a 、b 的关系式 .【详解】 解:由图可知21422S ab ab =⨯=,∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭, ∴133a ab b ==,(舍去), ∴a=3b ,故先C .【点睛】 本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.8.C解析:C【分析】把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.9.D解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 10.C解析:C【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案.【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8.∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根.故选:C .【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.11.B解析:B【分析】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x 2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0, m 1-4≥, 关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m 的取值范围是m 1-4≥且m≠2. 故选:B .【点睛】本题考查关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x 的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.12.A解析:A【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.二、填空题13.1+x+x2=91【分析】如果设每个支干分出x 个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x 个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x 2=91【分析】如果设每个支干分出x 个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x 个,小分支的数量为x•x=x 2个,然后根据主干、支干和小分支的总数是91就可以列出方程.【详解】解:依题意得支干的数量为x 个,小分支的数量为x•x=x 2个,那么根据题意可列出方程为:1+x+x 2=91,故答案为:1+x+x 2=91.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.14.-8【分析】先利用根与系数的关系得到再把变形为从而代入得到方程解之即可【详解】解:∵是一元二次方程的两个实数根∴∵∴即解得:m=-8故答案为:-8【点睛】本题考查了根与系数的关系根据根与系数的关系找解析:-8先利用根与系数的关系得到12x x m +=,12142x x m ⋅=-,再把12111x x +=变形为1212x x x x +=,从而代入得到方程,解之即可.【详解】解:∵12,x x 是一元二次方程21402x mx m -+-=的两个实数根, ∴12x x m +=,12142x x m ⋅=-, ∵12111x x +=, ∴1212x x x x +=,即142m m =-, 解得:m=-8,故答案为:-8.【点睛】 本题考查了根与系数的关系,根据根与系数的关系,找出12x x m +=,12142x x m ⋅=-是解题的关键. 15.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.16.8【分析】利用一元二次方程根与系数的关系可列出两根之和及两根之积的值再对其进行变形即可求解【详解】由题可得:∴故答案为:8【点睛】本题考查一元二次方程根与系数的关系进行变形求值熟记结论且灵活变形是解 解析:8【分析】利用一元二次方程根与系数的关系,可列出两根之和及两根之积的值,再对其进行变形即【详解】 由题可得:1212132x x x x +==,, ∴()222212121212329182x x x x x x +=+-=-⨯=-=, 故答案为:8.【点睛】 本题考查一元二次方程根与系数的关系进行变形求值,熟记结论且灵活变形是解题关键. 17.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传 解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.18.-1【分析】一元二次方程的根就是一元二次方程的解就是能够使方程左右两边相等的未知数的值即把x=1代入方程求解可得m 的值【详解】把x=1代入方程(m-2)x2+4x-m2=0得到(m-2)+4-m2=解析:-1【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x =1代入方程求解可得m 的值.【详解】把x =1代入方程(m -2)x 2+4x -m 2=0得到(m -2)+4-m 2=0,整理得:220m m --=,因式分解得:()()120m m +-=,解得:m=-1或m=2,∵m-2≠0∴m=-1,故答案为:-1.【点睛】本题考查了一元二次方程的解的定义以及因式分解法解一元二次方程,解题的关键是正确的代入求解.注意:二次项系数不为0的条件.19.-1【分析】根据新定义可得出mn为方程x2+2x−1=0的两个根利用根与系数的关系可得出m+n=−2mn=−1变形(m+2)(n+2)得到mn+2(m+n)+4然后利用整体代入得方法进行计算【详解】解析:-1【分析】根据新定义可得出m、n为方程x2+2x−1=0的两个根,利用根与系数的关系可得出m+n =−2、mn=−1,变形(m+2)(n+2)得到mn+2(m+n)+4然后利用整体代入得方法进行计算.【详解】解:∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴(m+2)(n+2)=mn+2(m+n)+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两根为x1,x2,则x1+x2=ba,x1•x2=ca.20.3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0据此求得m的值【详解】解:依题意得:m2-8=1且m+3≠0解得m=3 故答案是:3【点睛】本题考查了一次函数的定义一般地形如y=kx+b解析:3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0,据此求得m的值.【详解】解:依题意得:m2-8=1且m+3≠0,解得m=3.故答案是:3.【点睛】本题考查了一次函数的定义.一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.会利用x的指数构造方程,会解方程,会利用k限定字母的值是解题关键三、解答题21.(1)有两个实数根,证明见解析;(2)1k =,2x =【分析】(1)利用根的判别式进行判断根的情况,即可得到答案;(2)把1x =代入方程,即可求出k 的值,然后解一元二次方程,即可得到另一个根.【详解】解:(1)根据题意,在一元二次方程()2220x k x k -++=中, ∵2(2)42k k ∆=+-⨯,244k k =-+,2(2)0k =-,∴对于任意的实数k ,原方程总有两个实数根.(2)∵1x =是方程2(2)20x k x k -++=的一个根.∴1(2)120k k -+⨯+=,解得:1k =,∴原方程为2320x x -+=,解得:11x =,22x =,∴原方程的另一根为22x =.【点睛】 本题考查了解一元二次方程以及根的判别式,牢记当0∆≥时方程有两个实数根是解题的关键.22.(1)12x =,23x =;(2)112x =,22x =;(3)2x =- 【分析】(1)利用因式分解法解方程,即可得到答案;(2)先移项,然后利用因式分解法解方程,即可得到答案;(3)先把分式方程化为整式方程,然后解方程即可得到答案.【详解】解:(1)2560x x -+=, (2)(3)0x x --=,∴12x =,23x =,∴原方程的解为:12x =,23x =.(2)23(21)(21)x x -=-,∴2(21)3(21)0x x ---=,∴(21)(213)0x x ---=,∴(21)(24)0x x --=, ∴112x =,22x =. ∴原方程的解为:112x =,22x =. (3)23139x x x -=--, ∴2(3)39x x x +-=-,∴22339x x x +-=-,∴36x =-,∴2x =-,经检验:2x =-为原方程的解,∴原方程的解为2x =-.【点睛】本题考查了解一元二次方程,解分式方程,解题的关键是熟练掌握解方程的方法,注意解分式方程时组要检验.23.(1)1211==x x 2)1222t t =-=-3)1221x x ==,(4)12123x x ==-,.【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可;(3)方程整理后,利用因式分解法求出解即可;(4)利用因式分解法解方程.【详解】解:(1)()212x -=,x-1=,11x x -=-=,1211x x ∴==(2)242t t +=,()226t ∴+=2t ∴+=1222t t ∴=-=-(3)()2(2)0x x x ---=,() 1)20(x x ∴--=122,1x x ∴==(4)23520.x x --=()2310()x x -+=1212,3x x ∴==-. 【点睛】本题考查了解一元二次方程-因式分解法,配方法,以及直接开平方法,熟练掌握各种解法是解题的关键.24.不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+ 416x <<,当10x =时,白色部分面积最大为36.3664<,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.25.(1)12)13m <-. 【分析】(1)根据分式的加减乘除混合运算法则计算即可,求值时注意分母有理化.(2)根据方程没有实数根,可知∆<0,进而求得m 得取值范围.【详解】(1)由题意得:原式23193(3)x x x x x x +--⎛⎫=-÷ ⎪--⎝⎭2(3)(3)(1)(3)(3)9x x x x x x x x ⎡⎤+----=⨯⎢⎥--⎣⎦ 2229(3)(3)9x x x x x x x --+-=⨯-- 29(3)(3)9x x x x x --=⨯-- 29(3)(3)9x x x x x --=⨯--3x x-=.3x =,∴原式1===. (2)该方程没有实数根,2242430b ac m ∴∆=-=+⨯⨯<,故4120m +<,解得13m <-. 【点睛】本题考查分式的混合运算以及一元二次方程根的判别,熟练掌握分式运算法则以及根的判别公式是解题关键.26.152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴34x ±=, ∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键.。

(常考题)北师大版初中数学九年级数学上册第二单元《一元二次方程》检测(含答案解析)

(常考题)北师大版初中数学九年级数学上册第二单元《一元二次方程》检测(含答案解析)

一、选择题1.一元二次方程x 2=2x 的根是( ). A .0B .2C .0和2D .0和﹣22.已知方程240x x n ++=可以配方成()23x m +=,则()2015m n -=( )A .1B .-1C .0D .4 3.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +=( ) A .2- B .3-C .4-D .6-4.一元二次方程20x x +=的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根5.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( ) A .()221y x =+B .()22y x =+C .222y x =+D .()212y x =+6.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( ) A .1m < B .m 1≥ C .1m D .1m 7.关于x 的一元二次方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 8.关于x 的一元二次方程2430x x -+=的实数根有( )A .0个B .1个C .2个D .3个9.若关于x 的一元二次方程()()212110m x m x ---+=有两个相等的实数根,则m 的值是( ) A .-1或2B .1C .2D .1或210.疫情促进了快递行业高速发展,某家快递公司2020年5月份与7月份完成投递的快递总件数分别为100万件和144万件,设该快递公司5月到7月投递总件数的月平均增长率为x ,则下列方程正确的是( ) A .100(12)144x += B .2100(1)144x += C .100(12)144x -=D .2100(1)144x -=11.当3b c -=时,关于x 的一元二次方程220x bx c -+=的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法确定12.用配方法解一元二次方程29190x x -+=,配方后的方程为( )A .29524x ⎛⎫-= ⎪⎝⎭ B .29524x ⎛⎫+= ⎪⎝⎭C .()2962x -=D .()2962x +=二、填空题13.若关于x 的一元二次方程22(2)40m x x m ++-+=有一个根是0,则m =____. 14.关于x 的一元二次方程2(21)0kx k x k -++=总有两个实数根,则常数k 的取值范围是________.15.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1+x 2-x 1⋅x 2=_________. 16.如果一个直角三角形的两边长是一元二次方程27120x x -+=的两个根,那么这个直角三角形的斜边长为_______________.17.某兴趣班的同学在元旦节期间每个同学用手机给班级其他同学各发一条短信问候节日快乐.如果全班同学共发出短信90条,那么该兴趣班共有____人.18.如图,在一个长为40 m ,宽为26m 的矩形花园中修建小道(图中阴影部分),其中m AB CD EF GH x ====,每段小道的两边缘平行,剩余的地方种植花草,要使种植花草的面积为2864m ,那么x =______m .19.将一元二次方程2310x x -+=变形为()2x h k +=的形式为________.20.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是 _________%.三、解答题21.解方程:220x x +=. 22.解方程:(1)3x (x +1)=3x +3. (2)2x 2+3x ﹣1=0.23.已知关于x 的一元二次方程()22230x m x m +++=有两根α,β.(1)求m 的取值范围;(2)若()()111αβ++=,求m 的值.24.2020年年末,大丰迈入高铁时代,建设部门打算对高铁站广场前一块长为20m ,宽为8m 的矩形空地进行绿化,计划在其中间修建两块相同的矩形绿地(图中阴影部分),若它们的面积之和为102m 2,两块绿地之间及周边留有宽度相等的人行通道,问人行通道的宽度是多少米?25.解答下列各题:(1)用配方法解方程:2840x x --=;(2)已知2x =关于x 的一元二次方程()22130x m x m +--=的一个根,求m 的值及方程的另一个根.26.一商店销售某种商品,平均每天可售出12件,每件盈利20元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于15元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件. (1)若每件商品降价2元,则平均每天盈利多少元? (2)当每件商品降价多少元时,该商店每天的盈利为320元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据一元二次方程的性质,先提公因式,通过计算即可得到答案. 【详解】 移项得,x 2-2x =0, 提公因式得,x (x-2)=0, 解得,x 1=0,x 2=2, 故选:C . 【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.2.A解析:A 【分析】将配方后的方程转化成一般方程即可求出m 、n 的值,由此可求得答案. 【详解】解:由(x +m )2=3,得: x 2+2mx +m 2﹣3=0, ∴2m =4,m 2﹣3=n , ∴m =2,n =1, ∴(m ﹣n )2015=1, 故选:A . 【点睛】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.A解析:A 【分析】把1x =代入方程,得到a 与b 的式子,整体代入即可. 【详解】解:把1x =代入220x ax b ++=得,120a b ++=, ∴21a b +=-, ∴242a b +=-, 故选:A . 【点睛】本题考查了一元二次方程的解和求代数式的值,解题关键是明确方程解的意义,树立整体代入思想.4.D解析:D 【分析】确定a 、b 、c 计算根的判别式,利用根的判别式直接得出结论; 【详解】 ∵20x x += , ∴ △=1-0=1>0,∴ 原方程有两个不相等的实数根; 故选:D . 【点睛】本题考查了根的判别式、一元二次方程实数根的情况取决于根的判别式△,正确掌握△的值与根的个数的关系是解题的关键.5.A解析:A 【分析】用含有x 的代数式分别表示出每轮传染的人数和总人数即可得解. 【详解】∵每轮传染平均1人会传染x 个人, ∴2人感染时,一轮可传染2x 人, ∴一轮感染的总人数为2x+2=2(1+x)人; ∵每轮传染平均1人会传染x 个人, ∴2(1+x)人感染时,二轮可传染2(1+x)x 人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= ()221x +人;∴()221y x =+,故选A. 【点睛】本题考查了平均增长问题,准确表示每一轮传染的人数是解题的关键.6.D解析:D 【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解不等式即可. 【详解】解:∵关于x 的一元二次方程2x 2x m 0-+=无实数根, ∴△=(-2)2-4m<0, 解得m>1. 故选:D . 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.7.C解析:C 【分析】由方程有实数根可知根的判别式b 2﹣4ac ≥0,结合二次项的系数非零,可得出关于a 的一元一次不等式组,解不等式组即可得出结论. 【详解】 解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a ≥1且a ≠5, 故选:C . 【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组,由根的判别式结合二次项系数非零得出不等式组是关键.8.C解析:C 【分析】根据一元二次方程根的判别式判断即可. 【详解】解:一元二次方程2430x x -+=的根的判别式为:b 2-4ac=(-4)2-4×3×1=4>0, 所以,方程有两个不相等的实数根, 故选:C . 【点睛】本题考查了一元二次方程根的判别式,求出根的判别式的值是解题关键.9.C解析:C 【分析】关于x 的一元二次方程有两个相等的实数根,说明判别式=0,且要注意二次项系数不为0,解出m 的值即可. 【详解】关于x 的一元二次方程()()212110m x m x ---+=有两个相等的实数根,则()()22141010m m m ⎧⎡⎤∆=----=⎪⎣⎦⎨-≠⎪⎩, 解得:11m =(舍去),22m = ∴m=2, 故选:C . 【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法及根的判别式是解决本题的关键.10.B解析:B 【分析】利用7月份完成投递的快递总件数=5月份完成投递的快递总件数×(1+x )2,进而得出等式求出答案. 【详解】解:设该快递公司这两个月投递总件数的月平均增长率为x , 根据题意,得100(1+x )2=144, 故选:B . 【点睛】本题考查了一元二次方程的应用,根据题意正确用未知数表示出七月份完成投递的快递总件数是解题的关键.11.A解析:A 【分析】首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解. 【详解】解:3b c -=, 3c b ∴=-,220x bx c -+=,∴∆22()428b c b c =--⨯⨯=-28(3)b b =-- 2824b b =-+2(4)80b =-+>,∴方程有两个不相等的实数根,故选:A . 【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题.12.A解析:A 【分析】两边配上一次项系数一半的平方,写成完全平方式即可得到答案. 【详解】∵29190x x -+=, ∴2919x x -=-, 则2818191944x x -+=-+, 即29524x ⎛⎫-= ⎪⎝⎭, 故选:A. 【点睛】此题考查配方法解一元二次方程,掌握配方法的计算方法是解题的关键.二、填空题13.2【分析】先把x =0代入方程得m2﹣4=0然后解关于m 的方程后利用一元二次方程的定义确定满足条件的m 的值【详解】解:把x =0代入方程得m2﹣4=0解得m1=2m2=﹣2因为m+2≠0所以m≠-2所以解析:2 【分析】先把x =0代入方程22(2)40m x x m ++-+=得m 2﹣4=0,然后解关于m 的方程后利用一元二次方程的定义确定满足条件的m 的值. 【详解】解:把x =0代入方程22(2)40m x x m ++-+=得m 2﹣4=0,解得m 1=2,m 2=﹣2, 因为m +2≠0, 所以m≠-2 所以m 的值为2. 故答案为2. 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.且【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案【详解】解:∵关于x 的一元二次方程有两个实数根∴△=-(2k+1)2-4k k≥0且k≠0解得:且k≠0故答案为:且k≠0【点解析:14k ≥-且0k ≠ 【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案. 【详解】解:∵关于x 的一元二次方程2(21)0kx k x k -++=有两个实数根,∴△=[-(2k+1)]2-4k ⨯k≥0,且k≠0,解得:14k ≥-且k≠0. 故答案为:14k ≥-且k≠0.【点睛】本题考查一元二次方程根的判别式和一元二次方程的定义.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;注意一元二次方程的二次项系数不为0的隐含条件,避免漏解.15.3【分析】先根据根与系数的根据求得x1+x2和x1x2的值然后代入计算即可【详解】解:∵一元二次方程x2-4x +1=0的两根是x1x2∴x1+x2=4x1x2=1∴x1+x2-x1x2=4-1解析:3 【分析】先根据根与系数的根据求得x 1+x 2和x 1⋅x 2的值,然后代入计算即可. 【详解】解:∵一元二次方程x 2-4x +1=0的两根是x 1,x 2 ∴x 1+x 2=4,x 1⋅x 2=1 ∴x 1+x 2-x 1⋅x 2=4-1=3. 故答案为3.【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,则x 1+x 2=b a -、x 1⋅x 2=c a. 16.5或4【分析】解方程可得直角三角形的两边是34然后分这两边都是直角边和边长为4为直角边两种情况解答即可【详解】解:(x-3)(x-4)=0x-3=0x-4=0∴方程的根为34∴直角三角形的两边为34解析:5或4. 【分析】解方程27120x x -+=可得直角三角形的两边是3、4,然后分这两边都是直角边和边长为4为直角边两种情况解答即可. 【详解】解:27120x x -+= (x-3)(x-4)=0 x-3=0,x-4=0 ∴方程的根为3、4 ∴直角三角形的两边为3、4; 当两边有一条边是直角边时,斜边长为4. 故答案为5或4. 【点睛】本题主要考查勾股定理、解一元二次方程等知识点,正确的解一元二次方程和分类讨论成为解答本题的关键.17.10【分析】设该班级共有同学名互相发短信每两个人之间产生2条短信根据共发出90条短信可得方程然后求解即可【详解】解:设该班级共有同学名根据题意得:解之得:故答案为:10【点睛】本题考查了由实际问题抽解析:10 【分析】设该班级共有同学n 名,互相发短信,每两个人之间产生2条短信,根据共发出90条短信可得方程,然后求解即可. 【详解】解:设该班级共有同学n 名, 根据题意,得:(1)90n n ,解之得:10n = 故答案为:10. 【点睛】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.18.2【分析】设小道进出口的宽度为x 米然后利用其种植花草的面积为864m2列出方程求解即可【详解】解:设小道进出口的宽度为x 米依题意得(402x )(26x )=864整理得x246x+88=0解得x1=2解析:2 【分析】设小道进出口的宽度为x 米,然后利用其种植花草的面积为864m 2列出方程求解即可. 【详解】解:设小道进出口的宽度为x 米,依题意得(40-2x )(26-x )=864, 整理,得x 2-46x+88=0. 解得,x 1=2,x 2=44.∵44>40(不合题意,舍去), ∴x=2.答:小道进出口的宽度应为2米. 故答案为:2. 【点睛】本题考查了一元二次方程的应用,解题的关键是根据种植花草的面积为864m2找到正确的等量关系并列出方程.19.【分析】将方程常数项移到方程右边左右两边都加上左边化为完全平方式右边合并即可得到所求的结果【详解】解:移项得配方得即故答案为:【点睛】本题考查了配方法解一元二次方程利用此方法解方程时首先将二次项系数解析:23524x ⎛⎫-= ⎪⎝⎭【分析】将方程常数项移到方程右边,左右两边都加上232⎛⎫ ⎪⎝⎭,左边化为完全平方式,右边合并即可得到所求的结果. 【详解】 解:2310x x -+= 移项得 231x x -=-,配方得222333122x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭即 23524x ⎛⎫-= ⎪⎝⎭故答案为:23524x ⎛⎫-= ⎪⎝⎭【点睛】本题考查了配方法解一元二次方程,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.20.10%【分析】设平均每年下降的百分率是x 利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量列出方程解答即可【详解】设平均每年下降的百分率是x 解得x1=01=10x2=19(舍去)答:平均每解析:10%【分析】设平均每年下降的百分率是x ,利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量,列出方程解答即可.【详解】设平均每年下降的百分率是x ,250(1)40.5x -=,解得x 1=0.1=10%,x 2=1.9(舍去),答:平均每年下降的百分率是10%,故答案为:10%.【点睛】此题考查一元二次方程的实际应用—增长率问题,正确理解题意并掌握增长率问题计算公式是解题的关键.三、解答题21.120,2x x ==-【分析】方法一:根据提取公因式求解即可;方法二:根据配方法求解即可;【详解】解:方法一:原方程可化为(2)0x x +=.120,2x x ∴==-.方法二:配方,得22101x x ++=+,即2(1)1x +=.直接开平方,得11x +=±, 120,2x x ∴==-.【点睛】本题主要考查了一元二次方程的求解,准确计算是解题的关键.22.(1)x 1=1,x 2=﹣1;(2)x 1,x 2.(1)用因式分解法解方程即可;(2)用公式法解方程即可.【详解】解:(1)3x (x +1)=3x +3,3x (x +1)﹣3(x +1)=0,3(x +1)(x ﹣1 )=0,x ﹣1=0,x +1=0,x 1=1,x 2=﹣1.(2)2x 2+3x ﹣1=0.a =2,b =3,c =﹣1,∵△=9+8=17,∴x∴x 1=34-+,x 2=34-. 【点睛】本题考查了一元二次方程的解法,解题关键是采用适当的方法解方程.23.(1)3m 4≥-;(2)m 3= 【分析】(1)利用判别式得到()222340m m =+-≥,然后解不等式即可;(2)根据根与系数的关系得到()23m αβ+=-+,2m αβ=,由已知得到 0αβαβ++=,代入得到关于m 的方程,解方程即可求得m 的值.【详解】(1)由题意知:()22242340b ac m m =-=+-≥, 解得:3m 4≥-, ∴m 的取值范围是3m 4≥-; (2)由根与系数关系可知:()23m αβ+=-+,2m αβ=,∵()()111αβ++=,∴ 0αβαβ++=, 即()2230m m -+=,解得:1231m m ==-,(舍去),∴m 的值为3.本题考查了一元二次方程根的判别式以及根与系数的关系,若12x x 、是一元二次方程20ax bx c ++=(0a ≠)的两根时,12b x x a +=-,12c x x a=. 24.1【分析】 根据矩形的面积和为102平方米列出一元二次方程求解即可.【详解】解:设人行通道的宽度为x 米,根据题意得,(20﹣3x )(8﹣2x )=102,解得:x 1=1,x 2293=(不合题意,舍去). 答:人行通道的宽度为1米.【点睛】本题考查了一元二次方程的应用,利用两块矩形的面积之和为102m 2得出等式是解题关键.25.(1)14x =+24x =-;(2)2m =-,方程的另一个根3【分析】(1)先把常数项移到右边284x x -=,再添加一次项系数一半的平方配方求解;(2)将2x =代入一元二次方程()22130x m x m +--=求得m ,再将m 代入原方程求另一个根,也可设另一根为α,利用根与系数关系21223m mαα+=-⎧⎨=-⎩解方程组即可. 【详解】解:(1)284x x -=, 281620x x -+=,()2420x -=,4x -=±,∴14x =+24x =-;(2)方法1:设方程的另一个根为α,利用根与系数关系则,21223m m αα+=-⎧⎨=-⎩, 解得:32m α=⎧⎨=-⎩, 即2m =-,方程的另一个根3. 方法2:将2x =代入方程,得:()2222130m m +--=,解得:2m =-,∴2560x x -+=,解得:122,3x x ==,即2m =-,方程的另一个根3.【点睛】本题考查了根的定义、一元二次方程的解法,要熟练掌握配方法、因式分解法、公式法、直接开平方法,并能按照题目要求选择最佳解法.,也可用根与系数关系来求另一根问题. 26.(1)288元;(2)4元【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价2元,则平均每天可多售出2×2=4(件),即平均每天销售数量为20+4=24(件);(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【详解】解:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价2元, 则平均每天可多售出2×2=4(件),即平均每天销售数量12+4=16(件),利润为:18×16=288,∴平均每天盈利288元;(2)设每件商品降价x 元时,该商品每天的销售利润为320元,由题意得:(20-x )(12+2x )=320,整理得:x 2-14x+40=0,∴(x-4)(x-10)=0,∴x 1=4,x 2=10,∵每件盈利不少于15元,∴x 2=10应舍去.答:每件商品降价4元时,该商品每天的销售利润为320元.【点睛】本题考查了一元二次方程在商品利润问题中的应用,明确商品平均每天售出的件数乘以每件盈利等于每天销售这种商品利润是解决本题的关键.。

贵州省遵义市枫香镇中学2019-2020学年高一数学文测试题含解析

贵州省遵义市枫香镇中学2019-2020学年高一数学文测试题含解析

贵州省遵义市枫香镇中学2019-2020学年高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设全集,集合,,则=()A. B. C. D.参考答案:D略2. 不等式的解集是:A. (-1,0)B.(-∞,-1)∪(0,+∞)C. (0,1)D. (-∞,0)∪(1,+∞)参考答案:C【分析】把不等式转化为不等式,即可求解,得到答案.【详解】由题意,不等式,等价于,解得,即不等式的解集为(0,1),故选C.【点睛】本题主要考查了一元二次不等式的求解,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.3. (5分)函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=,若关于x的方程2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是()A.(﹣,﹣)B.(﹣,﹣)C.(﹣,﹣)∪(﹣,﹣)D.(﹣,﹣)参考答案:B考点:根的存在性及根的个数判断;函数奇偶性的性质.专题:计算题;作图题;数形结合;函数的性质及应用.分析:作函数f(x)的图象,从而可化条件为方程x2+ax+b=0有两个根,且x1=,0<x2<;从而求a的取值范围.解答:由题意,作函数f(x)的图象如下,由图象可得,0≤f(x)≤f(2)=;∵关于x的方程2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,∴方程x2+ax+b=0有两个根,不妨设为x1,x2;且x1=,0<x2<;又∵﹣a=x1+x2,∴a∈(﹣,﹣);故选:B.点评:本题考查了函数的图象的作法与数形结合的思想应用,同时考查了二次方程的根与系数的关系应用,属于中档题.4. 已知,则().A.B.C.D.参考答案:B∵,∴,故选:.5. 下列函数中,既不是奇函数也不是偶函数的是()A. B. C. D.参考答案:D【分析】利用奇函数偶函数的判定方法逐一判断得解.【详解】A.函数的定义域为R,关于原点对称,,所以函数是偶函数;B.函数的定义域为,关于原点对称. ,所以函数是奇函数;C.函数的定义域为R,关于原点对称,,所以函数是偶函数;D. 函数的定义域为R,关于原点对称,,,所以函数既不是奇函数,也不是偶函数.故选:D【点睛】本题主要考查函数的奇偶性的判断,意在考查学生对该知识的理解掌握水平,属于基础题.6. 设对任意实数,不等式恒成立,则实数的取值范围是()A. B. C. 或 D.参考答案:A7. 已知集合A=, B=,则=()A.( 0 , 1 )B.( 0 ,)C.(, 1 )D.参考答案:B8. 函数f(x)=x5+x﹣3的零点所在的区间是()A.[0,1] B.[1,2] C.[2,3] D.[3,4]参考答案:B【考点】函数零点的判定定理.【分析】利用函数的单调性和函数零点的判定定理即可得出.【解答】解:由函数f(x)=x5+x﹣3可知函数f(x)在R上单调递增,又f(1)=1+1﹣3=﹣1<0,f(2)=25+2﹣3>0,∴f(1)f(2)<0,因此函数f(x)在(1,2)上存在唯一零点.故选B.9. 函数的零点所在区间是 ( ));););)参考答案:B略10. (5分)已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),则f(4)的值是()A.﹣1 B.0 C. 1 D.2参考答案:B考点:函数的周期性.专题:函数的性质及应用.分析:根据奇函数f(x),得出f(0)=0,再f(x+2)=﹣f(x),得出周期为4,即可求解;f(4)=f(0)=0,解答:∵定义在R上的奇函数f(x),∴f(﹣x)=﹣f(x),∴f(0)=0,∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),∴f(x)的周期为4,∴f(4)=f(0)=0,故选:B点评:本题考察了函数的性质,解析式的运用,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11. 若二次函数在区间上单调递减,则的取值范围为;参考答案:略12. 若函数f(x)的图象关于原点对称,且在(0,+∞)上是增函数,,不等式的解集为__________.参考答案:(-3,0)∪(0,3)13. 定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么a18的值为________,且这个数列的前21项的和S21的值为________.参考答案:352根据定义和条件知,an+an+1=5对一切n∈N*恒成立,因为a1=2,所以an=于是a18=3,S21=10(a2+a3)+a1=52.14. 若函数f(x)=a x-1(a>0,a≠1)的定义域和值域都是[0,2],则实数a等于____;参考答案:15. (3分)函数的定义域为.参考答案:(,2]考点:对数函数的图像与性质.专题:不等式的解法及应用.分析:由0<2x﹣1≤3,即可求得不等式log3(2x﹣1)<1的解集.解答:解:∵log3(2x﹣1)≤1,∴0<2x﹣1≤31=3,∴<x≤2,∴不等式log3(2x﹣1)≤1的解集为(,2],故答案为:(,2].点评:本题考查对数不等式的解法,掌握对数函数的性质是关键,属于基础题.16. 已知定义在R上的函数,若f(x)在(﹣∞,+∞)上单调递增,则实数a的取值范围是.参考答案:(﹣∞,2]【考点】函数单调性的性质.【专题】计算题.【分析】由已知中定义在R上的函数,若f(x)在(﹣∞,+∞)上单调递增,我们易得函数f(x)在各段上均为增函数,且当X=0时,函数右边一段的值不小于左边的值.【解答】解:∵定义在R上的函数,∴当f(x)在(﹣∞,+∞)上单调递增,∴当X=0时,x2+1≥x+a﹣1即1≥a﹣1∴a≤2故答案为:(﹣∞,2]【点评】本题考查的知识点是函数单调性的性质,其中处理分界点处函数值的大小关系,是解答本题的关键.17. 已知求(1)(2).参考答案:(1)将两边平方得:而(2)略三、解答题:本大题共5小题,共72分。

数学人教版九年级上册 第21章 一元二次方程 单元检测卷(解析版)

数学人教版九年级上册 第21章 一元二次方程 单元检测卷(解析版)

数学人教版九年级上册第21章一元二次方程单元检测卷(解析版)时间:120分钟总分值:120分一、选择题〔每题3分,共30分〕1. 绿苑小区在规划设计是,预备在两栋楼之间,设置一块面积为900m2的矩形绿地,且长比宽多10m,设绿地的宽为x m,依据题意,可列方程为〔〕A. ;B. ;C. ;D. ;2. 关于x的二次方程的一个根是0,那么a的值为〔〕A. 1B.C. 1或D. 0.53. 一元二次方程的左边配成完全平方式后所得的方程为( )A. B. C. D. 以上答案都不对4. 是方程的两根,那么的值为〔〕A. B. 3 C. 7 D.5. 某种童鞋原价为100元,由于店面转让要清仓,经过延续两次降价处置,现以64元销售,两次降价的百分率相反,那么每次降价的百分率为〔〕A. 19%B. 20%C. 21%D. 22%6. 假定关于x的一元二次方程x2+bx+c=0的两个实数根区分为x1=﹣2,x2=4,那么b+c的值是〔〕A. ﹣10B. 10C. ﹣6D. ﹣17. 设—元二次方程的两个实根为和,那么以下结论正确的选项是〔〕.A. B. C. D.8. a,b,c为常数,且点Q〔b,a〕在第三象限,那么关于x的方程bx2﹣cx﹣a=0的根的状况是〔〕A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定9. 三角形的两边长区分为3和6,第三边的长是方程x2-6x+8=0的一个根,那么这个三角形的周长是〔〕A. 9B. 11C. 13D. 1410. 在直角坐标系xOy中,点P(m,n),m,n满足(m2+1+n2)(m2+3+n2)=8,那么OP的长为〔〕A. B.1 C.5 D.或1二、填空题〔每题3分,共24分〕11. 请给出一元二次方程________=0的一个常数项,使这个方程有两个相等的实数根.12. 刘谦的魔术扮演风行全国,小明也学起了刘谦发明了一个魔术盒,当恣意实数对进入其中时,会失掉一个新的实数:,例如把放入其中,就会失掉.现将实数对放入其中,失掉实数2,那么m=________.13. 设m,nx区分为一元二次方程的两个实数根,那么=________.14. 假设α,β〔α≠β〕是一元二次方程x2+2x﹣1=0的两个根,那么α2+α﹣β的值是________.15. 一个长100m宽60m 的游泳池扩建成一个周长为600 m的大型水下游乐场,把游泳池的长添加x m,那么x等于多少时,水下游乐场的面积为20210㎡?列出方程________,能否求出x的值________〔能或不能〕。

一元二次方程单元测试ab卷.doc

一元二次方程单元测试ab卷.doc

一元二次方程单元测试A/B 卷班级—— —— 姓名—— — — 得分—— ———A 型题一。

填空题(每题4分,共32分)1. 把一元二次方程x x x 2)1)(1(=-+化成二次项系数大于零的一般形式是 ,其中二次项系数是 ,一次项的系数是 ,常数项是 ; 2. 方程)0(02≠=++a c bx ax 的判别式是 ,求根公式是 ; 3. 适合于方程x x 3122=-的的解法是 ,其两根是 ;4. 一元二次方程12)1(2=-+mx x m 的一个根是3,则=m ;5. 方程022=-x x 的根是 ,方程05022=-x 的根是 ;6. 已知方程032=+-mx x 的两个实根相等,那么=m ;7. 方程)34(342-=x x 中,⊿= ,根的情况是 ; 8.已知322--x x 与7+x 的值相等,则x 的值是 ; 二、按指定的方法解方程(每小题10分,共40分)1.02522=-+)(x (直接开平方法) 2. 0542=-+x x (配方法)3.025)2(10)2(2=++-+x x (因式分解法) 4. 03722=+-x x (公式法)三、选择适当的解法解下列两个方程:(每小题10分,共20分) 1.x x 3122=- 2、3x(x+1)-2(x+1)=0四、如图利用墙的一边,再用13米长的铁丝挡三边围成一个面积是20平方米的长方形,问长方形长和宽各是多少才能刚好合适?(8分)B 型题: 一、 填空题:(每小题4分,共20分) 1. 方程0812=-x 的根是 ;2. 若实数x 、y 满足0)1)(2(=-+++y x y x ,则y x +的值为 ;3. 关于x 的一元二次方程6275)3(2-=+--mx m mx x m 的二次项系数为 ;一次项为 ;常数项为 ;4、如果二次三项式16)122++-x m x (是一个完全平方式,那么m 的值是_______________. 5、一批学生组织春游,预计共需费用120元,后来又有2人参加过来,费用不变,这样每人可少分摊3元,原来这批学生的人数是 人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册第二十二章《一元二次方程》整章测试题
总分150 时间 120分钟 姓名
一、
选择题(每题3分,共30分)
1. (2009山西省太原市)用配方法解方程2
250x x --=时,原方程应变形为( ) A .()2
16x += B .()2
16x -= C .()229x +=
D .()2
29x -=
2 (2009成都)若关于x 的一元二次方程2
210kx x --=有两个不相等的实数根,则k 的取值范围是( )
A .1k >-
B 。

1k >-且0k ≠ C.。

1k < D 。

1k <且0k ≠
3.(2009年潍坊)关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6
B .7
C .8
D .9
4. (2009青海)方程2
9180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12 B .12或15
C .15
D .不能确定
5(2009年烟台市)设a b ,是方程2
20090x x +-=的两个实数根,则2
2a a b ++的值为( )
A .2006
B .2007
C .2008
D .2009
6. (2009江西)为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( ) A .()60.051263%x += B .()60.051263x += C .()2
60.05163%x += D .()2
60.05163x +=
7. (2009襄樊市)如图5,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是
一元二次方程2230x
x +-=的根,则ABCD 的周长为( )
A .422+
B .1262+
C .222+
D .221262++或
8.(2009青海)在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A .2
13014000x x +-= B .2
653500x x +-= C .213014000x x --=
D .2
653500x x --=
9.等腰三角形的底和腰是方程2
680x x -+=的两个根,则这个三角形的周长是( ) A .8
B .10
C .8或10
D . 不能确定
10.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a+b)x+
4
c
=0的根的情况是( ). A .没有实数根 B .有两个不相等的正实数根 C .有两个不相等的负实数根 D .有两个异号实数根
二、填空题:(每题4分,共32分)
11. (2009重庆綦江)一元二次方程x 2=16的解是 .
12. (2009威海)若关于x 的一元二次方程2
(3)0x k x k +++=的一个根是2-,则另一个根是 .
13. (2009年包头)关于x 的一元二次方程2
210x mx m -+-=的两个实数根分别是
12x x 、,且22
127x x +=,则212()x x -的值是 .
14. (2009年甘肃白银)(6分)在实数范围内定义运算“⊕”,其法则为:22
a b a b ⊕=-,则方程(4⊕3)⊕24x =的解为 .
15 . (2009年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 是 cm 2.
16. (2009年兰州)阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a
.根据该材料填空:已知x 1、x 2是方程
x 2+6x +3=0的两实数根,则
21x x +1
2
x x 的值为 . A D
C
E B

5
图5
17. (2009年甘肃白银)(6分)在实数范围内定义运算“⊕”,其法则为:22
a b a b ⊕=-,则方程(4⊕3)⊕24x =的解为 .
18. (2009年广东省)小明用下面的方法求出方程230x -=的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.
方程
换元法得新方
程 解新方程
检验
求原方程的解
230x -=

x t =,
则230t -=
3
2
t =
302
t =
> 32x =,
所以9
4
x =
230x x +-=
三、解答题:(88分)
19.解方程(每小题4分,共8分)
(1)x 2-4x -3=0 (2)(x -3)2+2x(x -3)=0
20.(2010北京)已知关于x 的一元二次方程x ²-4x +m -1=0有两个相等实数根,求的m 值(6分)
21.(2010广东茂名)已知关于x 的一元二次方程2
2
60x x k --=(k 为常数).(8分) (1)求证:方程有两个不相等的实数根;
(2)设1x ,2x 为方程的两个实数根,且12214x x +=,试求出方程的两个实数根和k 的值.
22. (2009年鄂州)22、关于x 的方程04
)2(2
=+
++k
x k kx 有两个不相等的实数根.(10分) (1)求k 的取值范围。

(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由
23.一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽。

(8分)
24.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿化面积不断增加(如图所示)(10分)
(1)根据图中所提供的信息,回答下列问题:2001年的绿化面积为 公顷,比2000年增加了 公顷。

在1999年,2000年,2001年这三年中,绿化面积增加最多的 是 年。

(2)为满足城市发展的需要,计划到2003年使城区绿化地总面积
达到72.6公顷,试求这两年(2001~2003)绿地面积的年平均
增长率。

城区每年年底绿地面积统计图
绿地面积(公顷)60
5651
48
年份
2001
2000
1999
1998
25.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物—“福娃”平均每天可售出20套,每件盈利40元。

为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。

经市场调查发现:如果每套降价4元,那么平均每天就可多售出8套。

要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?(12分)
26. 经营一批进价为2元一件的小商品,•在市场营销中发现此商品的日销售单价x(元)与日销售量y(件)之间关系为y=-2x+24,而日销售利润P(元)与日销售单价x(元)之间的关系为P=xy-2,当日销售单价为多少时,每日获得利润48元,且保证日销售量不低于10件?(12分)
27. 用24m长的篱笆围成一面靠墙(墙长12m),大小相等且彼此相连的三个矩形鸡舍(如图).(14分)
(1)鸡场的面积能够达到32m2吗?若能,给出你的方案?若不能,请说明理由;
(2)鸡场的面积能够达到80m2吗?若能,给出你的方案?若不能,请说明理由.。

相关文档
最新文档