河南省洛阳市新安县2019-2020学年九年级(上)期中数学试卷
人教版2019--2020学年第一学期九年级期中考试数学试卷
∴∠BPC=90°(____________)(填推理的依据). ∴OP⊥PC. 又∵OP 是⊙O 的半径, ∴PC 是⊙O 的切线(____________)(填推理的依据).
得 分 评卷人 22.(本小题满分 9 分)
要组织一次篮球比赛,赛制为单循环形式(每两队之间都赛一场),计划安排 15 场比赛,应邀请多少个球队参加比赛?
连接 AD,若∠B=65°,则∠ADE 等于( )
A.30°
B.25°
C.20°
D.15°
九年级数学第二次月考试题 第 1 页(共 9 页) 图 1
5. 如图 2,点 A,B,C,在 e O 上,∠AOB=60°,
则∠C 的度数是
A.60°
B.50°
C.40°
D.30°
A
B C
O
6. 关于 x 的一元二次方程 kx2 2x 4 0 的一个根是 1,则 k 的值
感.按此比例,如果雕像的高为 2m,那么它的下部应设计为多高?
在解决这个问题时,设雕像下部高为 xm,则下列方程正确的是
A.x2=2(2+x)
B.x2=4
C.x2=2(2-x)
D.x2=2(x-2)
D
图5
12.若关于 x 的一元二次方程 x2+bx+c=0 的两个根分别为 x1=1,x2=2,那么抛物线 y=x2+bx+c 的对称轴为直线
在 Rt△ABC 中,∠C=90°AC=3cm,BC=4cm,以 C 为圆心 r 为半径画圆.
(1)当半径 r =3 时,点与 e O 的位置关系是
;
B
(2)当 AB 与 e O 相切时,求 e O 的半径;
2019-2020学年洛阳市新安县九年级上期中数学模拟试卷(有答案)(加精)
2019-2020学年河南省洛阳市新安县九年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分)1.下列是电视台的台标,属于中心对称图形的是()A.B.C.D.2.下列方程中,两根之和为2的是()A.x2+2x﹣3=0B.x2﹣2x﹣3=0C.x2﹣2x+3=0D.4x2﹣2x﹣3=03.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是()A.135°B.115°C.65°D.50°4.将y=x2﹣2x﹣1配方后得到的结果是()A.y=(x﹣1)2﹣1B.y=(x﹣1)2﹣2C.y=﹣(x﹣1)2+1D.y=(x﹣1)2+25.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC 经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)6.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③7.在某岛A的正东方向有台风,且台风中心B距离小岛A km,台风中心正以30km/h的速度向西北方向移动,距离中心50公里以内圆形区域(包括边界)都受影响,则小岛A受到台风影响的时间为()A.不受影响B.1小时C.2小时D.3小时8.在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)9.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.10.如图,将△ADE绕正方形ABCD(四条边都相等,四个角都是直角)的顶点A顺时针旋转90°得△ABF,连接EF交AB于点H;则下列结论:①AE⊥AF;②△ABF≌△AED;③点A在线段EF的中垂线上;④△ADE与△ABF的周长和面积分别相等;其中正确的有()A.4个B.3个C.2个D.1个二.填空题(共5小题,满分15分,每小题3分)11.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为.12.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.13.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x的方程为.14.如图,P为正方形ABCD内的一点,PC=1,将△CDP绕点C逆时针旋转得到△CBE,则PE=.15.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是度.三.解答题(共8小题,满分75分)16.(5分)用适当的方法解下列方程(1)2x2+x﹣6=0(2)(2x﹣1)2=x(3x+2)﹣7.17.(9分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:次时,摸到白球的频率将会接近;0.1)(2)假如你摸一次,你摸到白球的概率P(摸到白球)=;(3)试验估算这个不透明的盒子里黑球有多少只?18.(9分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.19.(9分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长.20.(10分)在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)21.(10分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D.点P、Q分别从B、C 两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)当x=时,PQ⊥AC,x=时,PQ⊥AB;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式为;(3)当0<x<2时,求证:AD平分△PQD的面积;(4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).22.(10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)23.(13分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:A.2.【解答】解:在方程x2+2x﹣3=0中,两根之和等于﹣2,故A不符合题意;在方程x2﹣2x﹣3=0中,两根之和等于2,故B符合题意;在方程x2﹣2x+3=0中,△=(﹣2)2﹣4×3=﹣8<0,则该方程无实数根,故C不符合题意;在方程4x2﹣2x﹣3=0中,两根之和等于﹣=,故D不符合题意,故选:B.3.【解答】解:在圆上取点P,连接PA、PB.∵OA=OB,∴∠OAB=∠OBA=25°,∴∠AOB=180°﹣2×25°=130°,∴∠P=∠AOB=65°,∴∠ACB=180°﹣∠P=115°.故选:B.4.【解答】解:y=x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,故选:B.5.【解答】解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选:A.6.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.7.【解答】解:假设D、E为刚好受影响的点,过A作AC⊥BE,连接AE、AD,可得出AE=AD=50km,∵BE为西北方向,∴∠ABE=45°,又∠ACB=90°,AB=40km,∴AC=BC=40公里,在Rt△ADC中,AD=50km,AC=40km,根据勾股定理得:DC==30km,∴ED=2DC=60公里,又台风速度为30km/h,则小岛A受到台风影响的时间为60÷30=2(h).故选:C.8.【解答】解:在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是(1,2),故选:A.9.【解答】解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.10.【解答】解:根据旋转的性质可以得到:△ABF≌△AED,故②④正确;∵△ABF≌△AED∴∠DAE=∠FAF又∵BAD=90°∴∠FAE=90°∴AE⊥AF,故①正确;∵△ABF≌△AED∴AE=AF∴点A在线段EF的中垂线上,故③正确.故选:A.二.填空题(共5小题,满分15分,每小题3分)11.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.12.【解答】解:∵摸到红球、黄球、蓝球的频率为35%、25%和40%,∴摸到黄球的概率为0.25,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.13.【解答】解:一边长为x米,则另外一边长为:5﹣x,由题意得:x(5﹣x)=6,故答案为:x(5﹣x)=6.14.【解答】解:∵△CDP绕点C顺时针旋转得到△CBE,其旋转中心是点C,旋转角度是90°,∴∠PCE=90°,EC=PC=1,∴△CPE是等腰直角三角形,∴PE===.故答案为:.15.【解答】解:扇形的面积公式=lr=240πcm2,解得:r=24c m,又∵l==20πcm,∴n=150°.故答案为:150.三.解答题(共8小题,满分75分)16.【解答】解:(1)(x+2)(2x﹣3)=0,x+2=0,2x﹣3=0,x1=﹣2,x2=;(2)(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x1=2,x2=4.17.【解答】解:(1)∵摸到白球的频率为(0.65+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)盒子里黑颜色的球有40×(1﹣0.6)=16.18.【解答】解:(1)由题意得:△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1,即实数m的取值范围是m<1;(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.19.【解答】解:(1)△A1B1C如图所示.(2)由图可知A1(0,6).(3)∵BC==,∠BCB1=90°,弧BB1的长为=π.20.【解答】解:(1)当h=﹣1时,y=x2+2x﹣1=(x+1)2﹣2,则顶点D的坐标为(﹣1,﹣2);(2)∵y=x2﹣2hx+h=(x﹣h)2+h﹣h2,∴x=h时,函数有最小值h﹣h2.①如果h≤﹣1,那么x=﹣1时,函数有最小值,此时m=(﹣1)2﹣2h×(﹣1)+h=1+3h;②如果﹣1<h<1,那么x=h时,函数有最小值,此时m=h﹣h2;③如果h≥1,那么x=1时,函数有最小值,此时m=12﹣2h×1+h=1﹣h.21.【解答】解:(1),当Q在AB上时,显然PQ不垂直于AC,当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4﹣x;∵AB=BC=CA=4,∴∠C=60°;若PQ⊥AC,则有∠QPC=30°,∴4﹣x=2×2x,∴x=;当x=(Q在AC上)时,PQ⊥AC;如图:①当PQ⊥AB时,BP=x,BQ=,AC+AQ=2x;∵AC=4,∴AQ=2x﹣4,∴2x﹣4+x=4,∴x=,故x=时PQ⊥AB;综上所述,当PQ⊥AB时,x=或.(2)y=﹣x2+x,如图②,当0<x<2时,P在BD上,Q在AC上,过点Q作QN⊥BC于N;∵∠C=60°,QC=2x,∴QN=QC×sin60°=x;∵AB=AC,AD⊥BC,∴BD=CD=BC=2,∴DP=2﹣x,∴y=PD•QN=(2﹣x)•x=﹣x2+x;(3)当0<x<2时,在Rt△QNC中,QC=2x,∠C=60°;∴NC=x,∴BP=NC,∵BD=CD,∴DP=DN;∵AD⊥BC,QN⊥BC,∴OP=OQ,=S△DQO,∴S△PDO∴AD平分△PQD的面积;(4)显然,不存在x的值,使得以PQ为直径的圆与AC相离,当x=或时,以PQ为直径的圆与AC相切,当0≤x<或<x<或<x≤4时,以PQ为直径的圆与AC相交.22.【解答】解:(1)由题意,得:w=(x﹣20)•y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,即w=﹣10x2+700x﹣10000(20≤x≤32)(2)对于函数w=﹣10x2+700x﹣10000的图象的对称轴是直线.又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W随着X的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,﹣10x2+700x﹣10000=2000解这个方程得:x1=30,x2=40.∵a=﹣10<0,抛物线开口向下.∴当30≤x≤40时,w≥2000.∵20≤x≤32∴当30≤x≤32时,w≥2000.设每月的成本为P(元),由题意,得:P=20(﹣10x+500)=﹣200x+10000∵k=﹣200<0,∴P随x的增大而减小.∴当x=32时,P的值最小,P最小值=3600.答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.23.【解答】解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).。
2019-2020学年九年级数学上学期期中原创卷A卷(河南)(考试版)【测试范围:人教版九上全册】
2019-2020学年上学期期中原创卷A 卷九年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版九上全册。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .2.若关于x 的一元二次方程22(1)10a x x a +++-=的一个根是0,则a 的值为 A .1B .1-C .1或1-D .123.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为A .35°B .45°C .55°D .65°4.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为 A .15B .14C .13D .125.如图,在AOC △中,3cm 1cm OA OC =,=,将△AOC 绕点O 顺时针旋转90后得到BOD △,则AC 边在旋转过程中所扫过的图形的面积为A .2cm 2πB .22cm πC .2178cm πD .2198cm π 6.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是A .1k >-B .1k <且0k ≠C .1k -…且0k ≠D .1k >-且0k ≠7.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是 A .122y y >> B .212y y >>C .122y y >>D .212y y >>8.如图,ABC △中,63∠=︒CAB ,在同一平面内,将ABC △绕点A 旋转到AED △的位置,使得DC AB ∥,则BAE ∠等于A .54︒B .56︒C .64︒D .66︒第8题图 第9题图 第10题图9.如图,P A 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是 A .P A =PBB .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD10.如图为二次函数y =ax 2+bx +c 的图象,给出下列说法:①ab <0;②方程ax 2+bx +c =0的根为1213x x =-=,;③a +b +c >0;④当x <1时,y 随x 值的增大而增大;⑤当y >0时,1x <-或3x >.其中,正确的说法有 A .①②④ B .①②⑤C .①③⑤D .②④⑤第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 11.方程2(1)(1)x x -=-的根为____________.12.若二次函数y =(x -1)2+k 的图象过A (-1,1y )、B (2,2y )、C (5,3y )三点,则1y 、2y 、3y 的大小关系正确的是____________.13.一个口袋中有若干个白球,不许将球倒出来数,为了估计出其中的白球数,把袋子中的9个白球拿出来染成黑色,再放回袋中,然后从口袋中随机摸出一球,记下颜色后,再把它放回袋中,不断重复,共摸了100次,其中有20次摸到黑球,由此估计袋中原来有____________个白球.14.如图,△ABC 中,∠BAC =90°,将ABC △绕点A 按顺时针方向旋转一定角度得到△ADE,点B 的对应点D 恰好落在BC 边上,若AC,60B ∠=︒,则CD 的长为____________.第14题图 第15题图15.如图,AB 是半圆O 的直径,BC ⊥AB ,过点C 作半圆的切线,切点为D ,射线CD 交BA 的延长线于点E ,若CD =ED ,AB =4,则EA =____________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)(1)解方程:2610x x +-=;(2)解方程:()16x x +=.17.(本小题满分9分)如图,在边长为1个单位长度的小正方形组成的网格中,ABC △的顶点均在格点上,点A 的坐标为(2,3),点B 的坐标为(3,0),点C 的坐标为(0,2).(1)以点C 为旋转中心,将ABC △旋转180︒后得到11A B C △,请画出11A B C △; (2)平移ABC △,使点A 的对应点2A 的坐标为(0,1)-,请画出222A B C △; (3)若将11A B C △绕点P 旋转可得到222A B C △,则点P 的坐标为___________.18.(本小题满分9分)现有一个六面分别标有数字1,2,3,4,5,6,且质地均匀的正方体骰子,另有三张正面分别标有1,2,3的卡片(卡片除数字外,其他都相同),先由小明掷骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或树状图的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率; (2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢;问小明和小王谁赢的可能性更大?请说明理由.19.(本小题满分9分)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E . F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BDBF =2,求⊙O 的半径.20.(本小题满分9分)如图,抛物线y =﹣12x 2﹣x +4与x 轴交于A ,B 两点(A 在B 的左侧),与y轴交于点C .(1)求点A ,点B 的坐标;(2)P 为第二象限抛物线上的一个动点,求△ACP 面积的最大值.21.(本小题满分10分)某新型高科技商品,每件的售价比进价多6元,5件的进价相当于4件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件. (1)该商品的售价和进价分别是多少元?(2)设每天的销售利润为w 元,每件商品涨价x 元,则当售价为多少元时,该商品每天的销售利润最大,最大利润为多少元?(3)为增加销售利润,营销部推出了以下两种销售方案:方案一:每件商品涨价不超过8元;方案二:每件商品的利润至少为24元,请比较哪种方案的销售利润更高,并说明理由.22.(本小题满分10分)如图,以ABC △的边BC 为直径作⊙O ,点A 在⊙O 上,点D 在线段BC 的延长线上,AD AB =,30D ∠=︒ (1)求证:直线AD 是⊙O 的切线;(2)若直径4BC =,求图中阴影部分的面积.23.(本小题满分11分)如图,在平面直角坐标系中,已知点B 的坐标为()1,0-,且4OA OC OB ==,抛物线()20y ax bx c a =++≠图象经过,,A B C 三点.(1)求,A C 两点的坐标; (2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD AC ⊥于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.。
2019—2020年最新人教版九年级上学期-期中数学上册试卷及答案解析(试卷).docx
九年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是正确的)1.用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是()A.(x﹣1)2=4 B.(x+1)2=4 C.(x﹣1)2=16 D.(x+1)2=162.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形3.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.4.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根5.下面性质中菱形有而矩形没有的是()A.邻角互补B.内角和为360°C.对角线相等D.对角线互相垂直6.如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A.5.5 B.5 C.4.5 D.47.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A.B.C.D.8.如图,“L”形纸片由五个边长为1的小正方形组成,过A点剪一刀,刀痕是线段BC,若阴影部分面积是纸片面积的一半,则BC的长为()A.B.4 C.D.二、填空题(本大题共10小题,每小题3分,共30分.只要求填出最后结果)9.▱ABCD中,∠A=50°,则∠B= 度,∠C= 度.10.一元二次方程x2﹣2x﹣3=0的解是.11.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.12.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是.13.若的值为零,则x的值是.14.如图,乐器上一根弦固定在乐器面板上A、B两点,支撑点C是靠近点B的黄金分割点,若AB=10cm,则AC= cm.(结果精确到0.1)15.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)16.如图,在对角线长分别为12和16的菱形ABCD中,E、F分别是边AB、AD的中点,H是对角线BD上的任意一点,则HE+HF的最小值是.17.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n l2+1,将所得结果记为a1;第二步:算出a1的各位数字之和得n2,计算n22+1,结果为a2;第三步:算出a2的各位数字之和得n3,再计算n32+1,结果为a3;…依此类推,则a2008= .18.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.20.已知:如图中,AD是∠BAC的角平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.21.如图,在等腰梯形ABCD中,E为底BC的中点,连接AE、DE.求证:△ABE≌△DCE.22.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.23.小明有2枚黑棋子,小亮有2枚白棋子,两人随机将4枚棋子放在如图的格子中(每格只放一枚).若4枚棋子黑白相间排列,就算小明赢,否则就算小亮赢.这个游戏对双方公平吗?请说明理由.24.为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m 的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)25.阅读下列材料:将图1的平行四边形用一定方法可分割成面积相等的八个四边形,如图2,再将图2中的八个四边形适当组合拼成两个面积相等且不全等的平行四边形.(要求:无缝隙且不重叠)请你参考以上做法解决以下问题:(1)将图4的平行四边形分割成面积相等的八个三角形;(2)将图5的平行四边形用不同于(1)的分割方案,分割成面积相等的八个三角形,再将这八个三角形适当组合拼成两个面积相等且不全等的平行四边形,类比图2,图3,用数字1至8标明.26.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.27.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.28.E、F为平行四边形ABCD的对角线DB上三等分点,连AE并延长交DC于P,连PF并延长交AB于Q,如图①(1)在备用图中,画出满足上述条件的图形,记为图②,试用刻度尺在图①、②中量得AQ、BQ 的长度,估计AQ、BQ间的关系,并填入下表:(长度单位:cm)AQ长度B Q长度AQ、BQ间的关系图①中图②中由上表可猜测AQ、BQ间的关系是AQ=3QB;(2)上述(1)中的猜测AQ、BQ间的关系成立吗?为什么?(3)若将平行四边形ABCD改为梯形(AB∥CD)其他条件不变,此时(1)中猜测AQ、BQ间的关系是否成立?(不必说明理由)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是正确的)1.用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是()A.(x﹣1)2=4 B.(x+1)2=4 C.(x﹣1)2=16 D.(x+1)2=16考点:解一元二次方程-配方法.专题:计算题.分析:在本题中,把常数项﹣3移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:把方程x2﹣2x﹣3=0的常数项移到等号的右边,得到x2﹣2x=3,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=3+1,配方得(x﹣1)2=4.故选A.点评:本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形考点:平行四边形的判定;三角形中位线定理.分析:顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.解答:解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.点评:本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、是轴对称图形,不是中心对称图形,故本选项正确;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选A.点评:此题考查了中心对称及轴对称的知识,关键是掌握中心对称图形与轴对称图形的概念,属于基础题.4.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根考点:解一元二次方程-直接开平方法.分析:根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.解答:解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.点评:此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.5.下面性质中菱形有而矩形没有的是()A.邻角互补B.内角和为360°C.对角线相等D.对角线互相垂直考点:菱形的性质;矩形的性质.分析:本题要熟知菱形以及矩形的性质方能解答要对比两者之间的相同点以及不同点.解答:解:A、∵平行四边形的邻角互补,∴矩形的邻角互补.故矩形和菱形的邻角均互补,故A错;B、平行四边形的内角和为360,矩形内角和为360度.故矩形和菱形的内角和都是360°,故B错;C、矩形的对角线相等,菱形的对角线互相垂直且平分,故C错;D、菱形对角线互相垂直,矩形的对角线不互相垂直.故选D.点评:根据菱形对角线互相垂直和矩形对角线相等的性质解答.6.如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A.5.5 B.5 C.4.5 D.4考点:三角形中位线定理;解一元二次方程-因式分解法;三角形三边关系.专题:压轴题.分析:首先解方程求得三角形的两边长,则第三边的范围可以求得,进而得到三角形的周长l的范围,而连接这个三角形三边的中点,得到的三角形的周长一定是l的一半,从而求得中点三角形的周长的范围,从而确定.解答:解:解方程x2﹣8x+15=0得:x1=3,x2=5,则第三边c的范围是:2<c<8.则三角形的周长l的范围是:10<l<16,∴连接这个三角形三边的中点,得到的三角形的周长m的范围是:5<m<8.故满足条件的只有A.故选A.点评:本题考查了三角形的三边关系以及三角形的中位线的性质,理解原来的三角形与中点三角形周长之间的关系式关键.7.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A.B.C.D.考点:列表法与树状图法.专题:转化思想.分析:列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.解答:解:∴一共有12种情况,有2种情况两次都摸到红球,∴两次都摸到红球的概率是=.故选:C.点评:列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.如图,“L”形纸片由五个边长为1的小正方形组成,过A点剪一刀,刀痕是线段BC,若阴影部分面积是纸片面积的一半,则BC的长为()A.B.4 C.D.考点:相似三角形的判定与性质;正方形的性质.专题:综合题;压轴题.分析:设DB为x,FC为y,由正方形的两边平行得到AD与EC平行,所以得到三角形BDA与三角形BEC相似,所以得到BD比BE与AD比EC的比值相等,即可列出关于x与y的方程,记作①,然后根据阴影部分的面积等于是纸片面积的一半,而纸片的面积为5个小正方形的面积等于5,所以三角形BEC的面积等于5的一半,根据直角三角形的面积公式表示出关于x与y的关系式,记作②,联立①②即可求出x与y的值,然后利用勾股定理即可求出BC的长.解答:解:设BD=x,CF=y,∵AD∥EC,∴∠BDA=∠E,∠ABD为公共角,∴△BDA∽△BEC,∴=①,由题意可得:△BEC的面积S=(x+1)(y+3)=②,联立①②,由①得:xy=1﹣2x,代入②得:y=1﹣x③,将③代入①得:x2﹣3x+1=0,解得:x=,x=(舍去),将x=代入③解得:y=,根据勾股定理得:BC===.故选C点评:此题考查了相似三角形及正方形的性质,考查了利用消元法解方程的数学思想,是一道综合题.二、填空题(本大题共10小题,每小题3分,共30分.只要求填出最后结果)9.▱ABCD中,∠A=50°,则∠B= 130 度,∠C= 50 度.考点:平行四边形的性质.分析:根据“平行四边形的两组对角分别相等”可知∠C=∠A=50°;∠B=180﹣50=130°.解答:解:在▱ABCD中∠A=∠C,∠B=∠D,∠A+∠D=180°∴∠C=50°,∠B=130°故答案为130和50.点评:主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.10.一元二次方程x2﹣2x﹣3=0的解是x1=3,x2=﹣1 .考点:解一元二次方程-因式分解法.专题:计算题;压轴题.分析:根据方程的解x1x2=﹣3,x1+x2=2可将方程进行分解,得出两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.解答:解:原方程可化为:(x﹣3)(x+1)=0,∴x﹣3=0或x+1=0,∴x1=3,x2=﹣1.点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.11.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是20 cm2.考点:菱形的性质.专题:计算题.分析:根据菱形的面积等于两对角线乘积的一半即可求得其面积.解答:解:由已知得,菱形面积=×5×8=20cm2.故答案为20.点评:本题主要考查了菱形的面积的计算公式.12.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是﹣1 .考点:一元二次方程的解;一元二次方程的定义.分析:把x=1代入原方程,借助解一元一次方程来求m的值.注意:二次项系数不等于零.解答:解:∵1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,∴(m﹣1)×12+1+1=0,且m﹣1≠0,解得,m=﹣1.故答案是:﹣1.点评:本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.13.若的值为零,则x的值是﹣3 .考点:分式的值为零的条件.专题:计算题.分析:若分式的值为0,则其分子为0,而分母不能为0.解答:解:由分子|x|﹣3=0,得x±3,而当x=3时,分母x2﹣2x﹣3=0,此时该分式无意义,所以当x=﹣3,故若的值为零,则x的值是﹣3.点评:由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.14.如图,乐器上一根弦固定在乐器面板上A、B两点,支撑点C是靠近点B的黄金分割点,若AB=10cm,则AC= 6.2 cm.(结果精确到0.1)考点:黄金分割.专题:计算题.分析:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.根据黄金分割点的定义,知AC是较长线段,运用黄金分割的比值进行计算即可.解答:解:由于点C是线段AB的黄金分割点,支撑点C是靠近点B的黄金分割点.则AC=10×=5 ﹣5≈6.2cm.故答案为:6.2.点评:考查了黄金分割点的概念.特别注意这里的AC是较长线段;熟记黄金分割的比值进行计算.15.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1= S2;(填“>”或“<”或“=”)考点:矩形的性质;三角形的面积.专题:证明题;几何综合题;压轴题.分析:根据矩形的性质,可知△ABD的面积等于△CDB的面积,△MBK的面积等于△QKB的面积,△PKD的面积等于△NDK的面积,再根据等量关系即可求解.解答:解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为S1=S2.点评:本题的关键是得到△ABD的面积等于△CDB的面积,△MBK的面积等于△QKB的面积,△PKD 的面积等于△NDK的面积,依此即可求解.16.如图,在对角线长分别为12和16的菱形ABCD中,E、F分别是边AB、AD的中点,H是对角线BD上的任意一点,则HE+HF的最小值是10 .考点:轴对称-最短路线问题;菱形的性质.分析:要求HE+HF的最小值,HE、HF不能直接求,可考虑通过作辅助线转化HE、HF的值,从而找出其最小值求解.解答:解:如图:作EE′⊥BD交BC于E′,连接E′F,连接AC交BD于O.则E′F就是HE+HF的最小值,∵E、F分别是边AB、AD的中点,∴E′F AB,而由已知△AOB中可得AB====10,故HE+HF的最小值为10.故答案为:10.点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.17.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n l2+1,将所得结果记为a1;第二步:算出a1的各位数字之和得n2,计算n22+1,结果为a2;第三步:算出a2的各位数字之和得n3,再计算n32+1,结果为a3;…依此类推,则a2008= 26 .考点:规律型:数字的变化类.专题:压轴题;规律型.分析:根据题意,进行计算a1=26;因为2+6=8,所以a2=65;因为6+5=11,所以a3=122;因为1+2+2=5,所以a4=a1.发现:每3个一循环,则2008÷3=669…1,则a2008=a1=26.解答:解:∵26,65,122每3个数一循环,2008÷3=669…1,∴a2008=a1=26.点评:此类题主要应根据要求进行正确计算,发现几个一循环,找到规律,再进行计算.18.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为.考点:线段垂直平分线的性质;矩形的性质.专题:计算题;压轴题.分析:本题首先利用线段垂直平分线的性质推出△AOE≌△COE,再利用勾股定理即可求解.解答:解:EF垂直且平分AC,故AE=EC,AO=CO.所以△AOE≌△COE.设CE为x.则DE=AD﹣x,CD=AB=2.根据勾股定理可得x2=(3﹣x)2+22解得CE=.故答案为.点评:本题考查的是线段垂直平分线的性质以及矩形的性质.关键是要设所求的量为未知数利用勾股定理求解.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.考点:分式的化简求值;一元二次方程的解.专题:计算题.分析:先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x﹣1=0的根,那么m2+3m﹣1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.解答:解:原式=÷=•==;∵m是方程x2+3x﹣1=0的根.∴m2+3m﹣1=0,即m2+3m=1,∴原式=.点评:本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入.20.已知:如图中,AD是∠BAC的角平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.考点:菱形的判定.专题:证明题.分析:由DE∥AC,DF∥AB,可证得四边形AEDF是平行四边形,∠1=∠4,又由AD是∠BAC的角平分线,易证得AF=DF,即可得四边形AEDF是菱形.解答:证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠1=∠4,∵AD是∠BAC的角平分线,即∠1=∠2,∴∠2=∠4,∴AF=DF,∴四边形AEDF是菱形.点评:此题考查了菱形的判定、平行四边形的判定以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.21.如图,在等腰梯形ABCD中,E为底BC的中点,连接AE、DE.求证:△ABE≌△DCE.考点:等腰梯形的性质;全等三角形的判定.专题:证明题.分析:等腰梯形的腰相等,同一底上的两个角相等,容易知道AB=DC,∠B=∠C,又BE=CE,所以容易证明△ABE≌△DCE.解答:证明:∵四边形ABCD是等腰梯形,∴AB=DC,∠B=∠C.(4分)∵E为BC的中点,∴BE=EC.(6分)∴△ABE≌△DCE.(8分)点评:此题主要考查学生对等腰梯形的性质及全等三角形的判定的理解及运用.22.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.考点:根的判别式;一元二次方程的解;解一元二次方程-公式法.专题:计算题.分析:(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,经检验即可得到满足题意k的值.解答:解:(1)根据题意得:△=4﹣4(2k﹣4)=20﹣8k>0,解得:k<;(2)由k为正整数,得到k=1或2,利用求根公式表示出方程的解为x=﹣1±,∵方程的解为整数,∴5﹣2k为完全平方数,则k的值为2.点评:此题考查了根的判别式,一元二次方程的解,以及公式法解一元二次方程,弄清题意是解本题的关键.23.小明有2枚黑棋子,小亮有2枚白棋子,两人随机将4枚棋子放在如图的格子中(每格只放一枚).若4枚棋子黑白相间排列,就算小明赢,否则就算小亮赢.这个游戏对双方公平吗?请说明理由.考点:游戏公平性.专题:压轴题;分类讨论.分析:游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即4枚棋子黑白相间排列与不相间的概率是否相等,求出概率比较,即可得出结论.解答:解:游戏不公平.(1分)把4枚棋子分别记作黑1、黑2,白1、白2若第一个格子放黑1,所有可能出现的结果如表:格子1 格子2 格子3 格子4黑1 白1 白2 黑2黑1 白1 黑2 白2黑1 白2 黑2 白1黑1 白2 白1 黑2黑1 黑2 白1 白2黑1 黑2 白2 白1其他情况也类似,出现黑白相间的概率是=,(5分)所以游戏不公平.P(小明赢)=,P(小亮赢)=,对小亮有利.(6分)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m 的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)考点:一元二次方程的应用.专题:几何图形问题.分析:设小道进出口的宽度为x米,然后利用其种植花草的面积为532平方米列出方程求解即可.解答:解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532.整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.点评:本题考查了一元二次方程的应用,解题的关键是找到正确的等量关系并列出方程.25.阅读下列材料:将图1的平行四边形用一定方法可分割成面积相等的八个四边形,如图2,再将图2中的八个四边形适当组合拼成两个面积相等且不全等的平行四边形.(要求:无缝隙且不重叠)请你参考以上做法解决以下问题:(1)将图4的平行四边形分割成面积相等的八个三角形;(2)将图5的平行四边形用不同于(1)的分割方案,分割成面积相等的八个三角形,再将这八个三角形适当组合拼成两个面积相等且不全等的平行四边形,类比图2,图3,用数字1至8标明.考点:作图—应用与设计作图.专题:阅读型.分析:(1)易得平行四边形的面积为8,分成8份,那么每个直角三角形的面积就为1,所以两直角边应为1,2;(2)只需让直角三角形的两直角边长为1,2即可;可拼成矩形,平行四边形等情况.解答:解:.点评:把所给图形分割为面积相等的几部分,应从图形的整体面积入手分析,进而平均分割得到分成的图形的面积,关键是利用要求的图形的形状得到相应的线段的长度.26.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.考点:一元二次方程的应用.专题:增长率问题;压轴题.分析:(1)设出平均每次下调的百分率,根据从5元下调到3.2列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.解答:解(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.。
2019-2020学年河南省洛阳市九年级(上)期中数学试卷(解析版)
2019-2020学年河南省洛阳市九年级(上)期中数学试卷一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .85.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==-B .121x x ==C .11x =,21x =-D .120x x ==7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .3600(1)12000x +=B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过() A .第一象限B .第二象限C .第三象限D .第四象限10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1CD 二、填空题(每小题3分,共15分)11.计算23--= .12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 .13.二次函数224y x x =-+的顶点坐标是 .14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 个.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的值为 .三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根. 20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标; (4)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标;21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.23.如图,抛物线2y x bx c=-++交x轴于A,B两点,交y轴于点C直线122y x=-+经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.①求PBC∆面积最大值和此时m的值;②Q是直线BC上一动点,是否存在点P,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,直接写出点P的坐标.2019-2020学年河南省洛阳市九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-【解答】解:224-=-, 则比22-小1的数是5-, 故选:D .2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯【解答】解:171亿17= 100 000 10000 1.7110=⨯. 故选:B .3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒【解答】解://AB CD ,B EFC ∴∠=∠,2E EFC D B D D D D ∴∠=∠-∠=∠-∠=∠-∠=∠,22E ∠=︒, 22D ∴∠=︒,故选:A .4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .8【解答】解:连接OE ,与DC 交于点F , 四边形ABCD 为矩形,OA OC ∴=,OB OD =,且AC BD =,即OA OB OC OD ===, //OD CE ,//OC DE , ∴四边形ODEC 为平行四边形,OD OC =,∴四边形ODEC 为菱形,DF CF ∴=,OF EF =,DC OE ⊥, //DE OA ,且DE OA =, ∴四边形ADEO 为平行四边形,2AD =,2DE =,OE ∴=,即OF EF ==在Rt DEF ∆中,根据勾股定理得:1DF ==,即2DC =,则11222ODEC S OE DC =⋅=⨯=菱形.故选:A .5.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)【解答】解:观察图象可知(4,2)O '-,故选:C .6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==- B .121x x ==C .11x =,21x =-D .120x x ==【解答】解:(1)10x x x +--=,(1)(1)0x x x ∴+-+=,则(1)(1)0x x +-=, 10x ∴+=或10x -=,解得11x =-,21x =, 故选:C .7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( ) A .3600(1)12000x += B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=【解答】解:根据题意列出方程,得236003600(1)3600(1)12000x x ++++=. 故选:D .8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<【解答】解:抛物线的对称轴为直线1x =,抛物线与x 轴的一个交点坐标为(1,0)-, ∴抛物线与x 轴的另一个交点坐标为(3,0), ∴抛物线的解析式可设为(1)(3)y a x x =+-,把(0,3)-代入得31(3)a -=-,解得3a =,∴抛物线的解析式为(1)(3)y x x =+-,即223y x x =--,2(1)4y x =--,1x ∴=时,y 有最小值4-, 2x =时,2233y x x =--=-,∴当12x -<<,y 的取值范围是40y -<.故选:D .9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:点(,)m n 在坐标系中的第四象限, 0m ∴>,0n <, 20m ∴+>,40n -<,∴一次函数(2)4y m x n =++-的图象经过第一、三、四象限.故选:B .10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1 CD【解答】解:由旋转的特性可知,BM BN =, 又60MBN ∠=︒, BMN ∴∆为等边三角形. MN BM ∴=,点M 是高CH 所在直线上的一个动点,∴当BM CH ⊥时,MN 最短(到直线的所有线段中,垂线段最短). 又ABC ∆为等边三角形,且2AB BC CA ===,∴当点M 和点H 重合时,MN 最短,且有112MN BM BH AB ====. 故选:B .二、填空题(每小题3分,共15分) 11.计算23--= 12- . 【解答】解:原式93=-- 12=-.故答案为:12-.12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 2x - .【解答】解:解不等式12x-,得:2x -,解不等式74x -+>,得:3x <, 则不等式组的解集为2x -, 故答案为:2x -.13.二次函数224y x x =-+的顶点坐标是 (1,3) .【解答】解:224y x x =-+,∴12ba-= 244144344ac b a -⨯⨯-==, 即顶点坐标为(1,3), 故答案为:(1,3).14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 3 个.【解答】解:①因为抛物线的对称轴1x =, 所以12ba-=,即20b a +=, 所以①正确;②因为(1,0)A -,对称轴1x =,所以设抛物线与x 轴的另一个交点为E , 所以(3,0)E ,所以3x =时,0y =,即3x =是20ax bx c ++=的一个根. 所以②正确; ③如图:过点B 作BD ⊥对称轴于点D ,设对称轴交x 轴于点C , AP BP ⊥, 90APB ∴∠=︒, 90APC BPD ∴∠+∠=︒, 90BPD PBD ∠+∠=︒, PBD APC ∴∠=∠,AP BP =,Rt APC Rt PBD(AAS)∴∆≅∆ 1PC BD ∴==,2DP AC ==, 3DC ∴=, 3OB ∴=,(0,3)B ∴.又(3,0)E ,(1,0)A -.设抛物线解析式为(1)(3)y a x x =+-, 把(0,3)B 代入,解得1a =-, ∴抛物线解析式为223x x -++,当1x =时,4y =, 即4a b c ++=. 所以③正确. 故答案为3.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的【解答】解:分两种情况: ①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形, 90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上, 1452BAE B AE BAD ∴∠=∠'=∠=︒,AB BE ∴=, ∴315a =, 53a ∴=; ②当点B '落在CD 边上时,如图2. 四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上, 90B AB E ∴∠=∠'=︒,1AB AB ='=,35EB EB a ='=,DB ∴'==,3255EC BC BE a a a =-=-=.90B AD EB C AB D ∠'=∠'=︒-∠', 90D C ∠=∠=︒,ADB ∴∆'∽△B CE ',∴DB AB CE B E ''='12355a =,解得1a =2a =. 综上,所求a 的值为53或故答案为53三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 【解答】解:解方程220x x -=得:0x =或2,2234(1)121x x x x x ---÷+++2(2)(2)(1)1(2)(2)x x x x x x +-+=++- 1x =+,当2x =时,原式没有意义,舍去; 当0x =时,原式1=.17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 50 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:48%50÷=(人),最喜爱戏曲的人数为:506%3⨯=(人);“娱乐”类人数占被调查人数的百分比为:18100%36%50⨯=, ∴ “体育”类人数占被调查人数的百分比为:18%30%36%6%20%----=, ∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是36020%72︒⨯=︒;故答案为:50,3,72︒.(2)20008%160⨯=(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.【解答】解:(1)对于直线y =+,令0x =,则y = 令0y =,则1x =-,故点A 的坐标为,点B 的坐标为(1,0)-,则AO =1BO =, 在Rt ABO ∆中,tan AOABO BO∠==,60ABO ∴∠=︒;(2)在ABC ∆中, AB AC =,AO BC ⊥, AO ∴为BC 的中垂线,即BO CO =,则C 点的坐标为(1,0),设直线l 的解析式为:(y kx b k =+,b 为常数),则0b k b ==+⎪⎩,解得:k b ⎧=⎪⎨=⎪⎩即函数解析式为:y =+.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根.【解答】解:(1)关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根, ∴210(2)4(1)(2)0k k k k +≠⎧⎨=--+->⎩, 解得:2k >-且1k ≠-,∴实数k 的取值范围为2k >-且1k ≠-.(2)2k >-且1k ≠-,∴满足条件的k 的最小整数值为0,此时原方程为220x -=,解得:1x =,2x =.20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标;(4)在x轴上找一点P,使PA PB+的值最小,请直接写出点P的坐标;【解答】解:(1)如图,△A B C即为所求.111(2)如图,△A B C即为所求.222(3)如图,点M即为所求,点M的坐标(1,0)-.(4)如图,点P即为所求,点P的坐标(2,0).21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;【解答】解:(1)设每箱新红星a 元,每箱红富士b 元,由题意可得: 40600.943001000.9354950a b a b +⨯=⎧⎨⨯+=⎩, 解得4050a b =⎧⎨=⎩,答:每箱新红星40元,每箱红富士50元;(2)设购置新红星x 箱,则购置红富士(120)x -箱,所需的总费用为y 元, 由题意可得:1(120)2x x -, 解得:40x , 又60x ,所以新红星箱数x 的取值范围:4060x , 当4050x <时, 40500.8(120)y x x =+⨯- 804800x =+,所以40x =时,y 有最小值80000元,当5060x 时,0.840500.8(120)724800y x x x =⨯+⨯-=+, 所以50x =时,y 有最小值8400元, 80008400<,∴购买新红星40箱,红富士80块,费用最少,最少费用为8000元.22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: 12S S = . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.【解答】解:(1)结论:12S S =.理由:如图1中,作EH BA ⊥交BA 的延长线于H ,CM AD ⊥于M .由题意CA AE =,AD AB =,90CAE DAF ∠=∠=︒, EAH CAM ∴∠=∠, sin sin CAM EAH ∴∠=∠,111sin 22S AD CM AD AC CAM ==∠,211sin 22S AB EH AB AE EAH ==∠, 12S S ∴=.故答案为12S S =.(2)结论:2BE AM =.理由:如图2中,延长AM 到T ,使得MT AM =,连接CT ,DT .CM DM =,AM MT =,∴四边形ADTC 是平行四边形,//AC DT ∴,AC DT =,180CAD ADT ∴∠+∠=︒,90CAE BAD ∠=∠=︒,180BAE CAD ∴∠+∠=︒,BAE ADT ∴∠=∠,AE AC DT ==,BA AD =,()BAE ADT SAS ∴∆≅∆,BE AT ∴=,AM MT =,2BE AM ∴=.(3)作//DT AC 交AH 的延长线于T .连接DE .=,AC AEAB AD∠=∠=︒,=,90BAD CAE∴∠=∠=︒,BAC DAE∠=∠,ABD ADB45∴∆≅∆,BAC DAE SAS()BC DE==,∴∠=∠=︒,2ADE ABC45∴∠=∠+∠=︒,BDE BDA ADE90BE∴===,∠=∠=︒,BAD CAE90∴∠+∠=︒,180CAD BAEAC DT,//∴∠+∠=︒,CAD ADT180∴∠=∠,BAE ADTAH BE⊥,∠+∠=︒,ABE BAT90DAT BAT∴∠+∠=︒,90∴∠=∠,DAT ABE=,AB AD∴∆≅∆,()ABE DAT ASA=,∴=,AE DTBE AT=,AC AE∴=,AC DT∠=∠,∠=∠,AHC DHTCAH T∴∆≅∆,()AHC THD AAS∴=,AH HT12AH BE ∴==. 23.如图,抛物线2y x bx c =-++交x 轴于A ,B 两点,交y 轴于点C 直线122y x =-+经过点B ,C .(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,设点P 的横坐标为m . ①求PBC ∆面积最大值和此时m 的值; ②Q 是直线BC 上一动点,是否存在点P ,使以A 、B 、P 、Q 为顶点的四边形是平行四边形,若存在,直接写出点P 的坐标.【解答】解:(1)直线122y x =-+经过点B ,C ,则点B 、C 的坐标分别为:(4,0)、(0,2), 将点B 、C 的坐标代入抛物线表达式并解得:72b =,2c =, 故抛物线的表达式为:2722y x x =-++; (2)①过点P 作y 轴的平行线交直线BC 于点H ,则点27(,2)2P m m m -++,点1(,2)2H m m -+, PBC ∆面积2211714(22)282222PH OB m m m m m =⨯⨯=⨯⨯-+++-=-+, 20-<,∴面积存在最大值为8,此时,2m =;②设27(,2)2P m m m -++,点1(,2)2Q n n -+,当AB 是平行四边形的边时, 点A 向右平移92个单位得到B ,同样点()P Q 向右平移92个单位得到()Q P , 则92m n ±=,2712222m m n -++=-+,解得:m =,n =当AB 是平行四边形的对角线时, 由中点公式得:4m n +=,27122222m m n -++-+=,解得:0m =或4(舍去4);综上点P 的坐标为,或,或,或或(0,2).。
2019-2020学年度第一学期期中考试(九年级数学)
2019-2020学年度第一学期期中考试(九年级数学)(分值120分考试时间:120分钟)一、选择题:本题共10小题,共30分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,不选或选出的答案超过一个均记零分。
1. 如图所示的几何体的主视图是()2. 下列说法正确的是( )A. 矩形都是相似图形B. 菱形都是相似图形C. 各边对应成比例的多边形是相似多边形D. 等边三角形都是相似三角形3.已知反比例函数的图象经过点(2.-3),那么下列四个点中,也在这个函数图象上的是()A. (-6,-1)B. (-2,-3)C. (3,-2)D. (1,6)4. 在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.5. 反比例函数图象上有三个点,,,其中,则,,的大小关系是()A. B. C. D.6. 函数与在同一坐标系内的图像可以是A. B. C. D.7. 如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A. B. C. D.8. 如图,在矩形ABCD中,,,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么∠的值是 A. B. C. D.( 第7题) ( 第8题) ( 第9题)9. 在阳光下,一名同学测得一根长为1米的垂直地面的竹竿的影长为 米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为 米,一级台阶高为 米,如图所示,若此时落在地面上的影长为 米,则树高为( )A. 米B. 7米C. 8米D. 12米10. 如图,正方形ABCD 的边长是3, ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论: ; ;四边形 ; 当 时, ∠,其中正确结论的个数是( )A. 1 B. 2 C. 3 D. 4二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11. 反比例函数,在每个象限内,y 随x 的增大而增大,则m 的值是______.12. 已知0)tan 3(21sin 2=-+-B A ,那么∠A+∠B= . 13. 如图, 中,D 、E 分别是AB 、AC 上的点 不平行 ,若使 与 相似,则需要添加______即可 只需添加一个条件 .14. 如图是拦水坝的横断面,斜坡 AB 的水平宽度为 12 米,斜面坡度为 1:2,则斜坡AB 的长 为 米( 第13题 ) ( 第14题 ) ( 第15题 )15. 如图△ABC 三个顶点的坐标分别为 A (2,2)、B (4,0)、C (6,4),以原点为中心,将△ABC 缩小,位似比为 1:2,则线段 AC 的中点 P 变换后对应点的坐标 .(第16题)(第17题) (第18题)16. 如图,在圆桌的正上方有一盏吊灯在灯光下,圆桌在地板上的投影是面积为π的圆已知圆桌的高度为,圆桌面的半径为1 m,则吊灯距圆桌面的高度为m.17. 如图,在△ABC 中,D、E 分别是 AB、BC 上的点,且 DE∥AC,若 S△BDE:S△CDE=1:4,则 S△BDE:S△ACD=.18. 如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (8分) (1) -2sin45°+||-()-2+()0.(2) +|2-8|-()-1-2cos30°.20.(8分)如图,在ABC中,∠A=30°,cos B=,AC=6.求AB的长.21.(8分)如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx+b-=0的解;(3)求AOB的面积;(4)观察图象,直接写出不等式kx+b-<0的解集.22.(8分)如图,在▱ABCD中过点A作AE DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:ABF∽ BEC;(2)若AD=5,AB=8,sin D=,求AF的长.23.(9分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414,1.732)24.(9分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=5,AB=7,求的值.25.(12分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:AEF∽ ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?答案和解析一、选择题1.【答案】B2.【答案】D【解析】解:A、正方形是特殊的矩形,所以矩形不都是相似图形,故本选项错误;B、菱形的内角度数不定,所以菱形不都是相似图形,故本选项错误;C、菱形和正方形可以满足边长对应成比例,但不是相似图形,故本选项错误;D、等边三角形都是相似三角形,故本选项正确.故选D.根据相似图形的三条特点相似图形的形状必须完全相同;相似图形的大小不一定相同;两个物体形状相同、大小相同时它们是全等的,全等是相似的一种特殊情况,结合选项即可判断出答案.本题考查了相似图形的定义,属于基础题,解答本题的关键是掌握相似图形的定义和特点.3.【答案】B【解析】解:反比例函数的图象经过点,反比例函数解析式为:当时,,则选项A错误;当时,,则选项B错误;当时,,则选项C正确;当时,则选项D错误;故选:B.由题意可求反比例函数解析式,将选项中点的坐标代入可求解.本题考查反比例函数图象上点的坐标特征,熟练掌握函数图象上点的坐标满足函数图象的解析式是本题的关键.4. 【答案】B【解析】【分析】本题考查了锐角三角函数的定义,勾股定理的应用,根据勾股定理列式求出BC,再根据锐角的正弦等于对边比斜边列式即可得解.【解答】解:如图,,,.故选B.5. 【答案】D【解析】【分析】此题主要考查了反比例函数的性质,熟练地应用反比例函数的性质是解决问题的关键.利用,在图象的每一支上,y随x的增大而减小,双曲线在第一三象限,分别分析即可得出答案.【解答】解:,每一象限,y随x的增大而减小,,,,,.故选D.6.【答案】B【解析】【分析】此题考查了一次函数和反比例函数的图象与性质,先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【解答】解:由函数的图象可知,由函数的图象可知,相矛盾,故A错误;B.由函数的图象可知,由函数的图象可知,故B正确;C.由函数的图象可知,由函数的图象可知,相矛盾,故C错误;D.由函数的图象可知,由函数的图象可知,相矛盾,故D错误.故选B.7.【答案】B【解析】【分析】本题考查由三视图判断几何体的形状和圆锥侧面积的计算,解题的关键是先运用勾股定理求到圆锥的母线长是2,然后根据圆锥侧面积的公式即可得到答案.【解答】解:该几何体是一个底面直径为2,高为的圆锥,可得圆锥母线长为故这个几何体的侧面积为2,故选B.8.【答案】A【解析】【分析】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了矩形的性质和勾股定理先根据矩形的性质得,,再根据折叠的性质得,,在中,利用勾股定理计算出,则,设,则,然后在中根据勾股定理得到,解方程即可得到x,进一步得到EF的长,再根据余弦函数的定义即可求解.【解答】解:四边形ABCD为矩形,,,矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,,,在中,,,设,则在中,,,解得,,∠.故选A.9.【答案】C【解析】【分析】本题考查了相似三角形的应用,难点在于把大树的影长分成三段求出假设都在地面上的长度,作出图形更形象直观作出图形,先根据同时同地物高与影长成正比求出台阶的高落在地面上的影长EH,再求出落在台阶上的影长在地面上的长,从而求出大树的影长假设都在地面上的长度,再利用同时同地物高与影长成正比列式计算即可得解.【解答】解:如图,,,,,米,故选C.10.【答案】B【解析】解:四边形ABCD是正方形,,,,, 在与∠∠, 中,∠∠, ≌ ,, ,,,故正确;,,∠∠,∽ ,,即,,,,,故错误;在与中,∠∠∠∠,≌ ,,,在与中,∠∠,≌ ,,即四边形,故正确;,,,∽ ,,,,∠∠,∠∠,∽ ,,即∠,故错误,故选:B.由四边形ABCD是正方形,得到,,根据全等三角形的性质得到∠∠,根据余角的性质得到;根据相似三角形的性质得到,由,得到;根据全等三角形的性质得到,,于是得到,即;根据相似三角形的性质得到,求得,根据 ∽ ,即可得到四边形,进而得到结论.本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义的综合运用,熟练掌握全等三角形、相似三角形的判定和性质是解题的关键.二、填空题:11.【解析】解:根据题意得:,解得:.故答案为.根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.本题考查了反比例函数的性质对于反比例函数,当时,在每一个象限内,函数值y随自变量x的增大而减小;当时,在每一个象限内,函数值y随自变量x的增大而增大.12.【答案】90 013.【解析】解:∠是公共角,如果∠∠或∠∠,∽ ;如果,∠∠,∽ ,故答案为:∠∠或∠∠或.根据相似三角形判定定理:两个角相等的三角形相似;夹角相等,对应边成比例的两个三角形相似,即可解题.本题主要考查相似三角形的判定,掌握相似三角形的判定方法是解题的关键,即有两组角对应相等的三角形相似,三边对应成比例的两个三角形相似,两组边对应成比例且夹角相等的两个三角形相似.14.【答案】【解析】【分析】本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识求解根据斜面坡度为1:2,斜坡AB的水平宽度为12米,可得,,然后利用勾股定理求出AB的长度.【解答】解:斜面坡度为1:2,,,则.故答案为.15.【答案】或【解析】【分析】本题考查了位似变换,坐标与图形性质,熟练掌握位似变换的性质是解题的关键,难点在于点P的对应点有两种情况,作出图形更形象直观分缩小后的三角形在第一象限和第三象限两种情况,根据网格结构分别找出点A、B、C的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点P的坐标.【解答】解:如图,,,点P的坐标为,以原点为位似中心将缩小位似比为1:2,线段AC的中点P变换后的对应点的坐标为或故答案为或16.【答案】【解析】【分析】题考查了相似三角形的应用,先通过投影的面积得出投影半径,再根据相似三角形边长的相似比,代入已知的圆桌高度,即可求得吊灯距离桌面的高度,此题中得出相似比的关系是解题关键.【解答】解:投影的面积为,投影的半径,,∽,圆桌高度,解得.吊灯距圆桌面的高度为故答案为17.1:20【分析】本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用的面积表示出的面积是解题的关键设的面积为a,表示出的面积为4a,根据等高的三角形的面积的比等于底边的比求出,然后求出和相似,根据相似三角形面积的比等于相似比的平方求出的面积,然后表示出的面积,再求出比值即可.【解答】解:::4,设的面积为a,则的面积为4a,和的点D到BC的距离相等,,,∥,∽ ,::25,,:::20.18.【解析】解:设反比例函数解析式为,一次函数解析式为,将点代入中,得,反比例函数解析式为,将点、代入中,得,解得,一次函数解析式为.设点P的坐标为,则四边形矩形矩形,四边形PMON面积的最大值是.设反比例函数解析式为,一次函数解析式为,根据点的坐标利用待定系数法求出反比例与一次函数的解析式,再利用分割图形求面积法找出四边形关于m的函数关系式,利用配方法解决最值问题.本题考查了待定系数法求函数解析式以及反比例函数与一次函数交点的问题,解题的关键是找出关于m的函数关系式本题属于中档题,难度不大,利用分割图形求面积法是解题的关键.四边形三、解答题19【答案】(1)解:原式.19.【答案】解:.【解析】本题涉及特殊角的三角函数值、负整数指数幂、二次根式化简、绝对值4个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握特殊角的三角函数值、负整数指数幂、二次根式、绝对值等考点的运算.20.【答案】解:如图,过点C作于点D.在中,,,,在中,,设,...,.【解析】本题考查解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于基础题如图,过点C作于点分别在,中,求出AD,DB即可.21.【答案】解:在上,.反比例函数的解析式为.点在上,..经过,,.解得:.一次函数的解析式为.,是一次函数的图象和反比例函数的图象的两个交点,方程的解是,.当时,.点..;不等式的解集为或.【解析】把代入反比例函数得出m的值,再把代入一次函数的解析式,运用待定系数法分别求其解析式;经过观察可发现所求方程的解应为所给函数的两个交点的横坐标;先求出直线与x轴交点C的坐标,然后利用进行计算;观察函数图象得到当或时,一次函数的图象在反比例函数图象上方,即使.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式也考查了观察函数图象的能力以及用待定系数法确定一次函数的解析式.22.【答案】证明:四边形ABCD是平行四边形,∥,∥,,,∠∠,,∠∠,∽ ;解:,∥,,在中,,在中,根据勾股定理得:,,由得: ∽ ,,即,解得:.【解析】由平行四边形的性质得出∥,∥,,得出,∠∠,证出∠∠,即可得出结论;由三角函数求出AE,由勾股定理求出BE,再由相似三角形的性质求出AF的长.此题考查了相似三角形的判定与性质,以及平行四边形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.23.【答案】解:过B作于G,中,∠,,;,,,四边形BHEG是矩形.由得:,,,中,,.中,,,..答:宣传牌CD高约米.【解析】过B作DE的垂线,设垂足为分别在中,通过解直角三角形求出BH、AH;在解直角三角形求出DE的长,进而可求出EH即BG的长,在中,,则,由此可求出CG的长然后根据即可求出宣传牌的高度.此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.24.【答案】证明:平分∠,∠∠,又,∽ ,::AB,.证明:为AB的中点,,,∠∠,∠∠,∠∠,∥;解:∥,∽ ,::CF,,,,,,.【解析】此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质,利用直角三角形斜边上中线的性质得到是解题的关键.由AC平分∠,,可证得 ∽ ,然后由相似三角形的对应边成比例,证得;由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得,继而可证得∠∠,得到∥;易证得 ∽ ,然后由相似三角形的对应边成比例,求得的值.25.【答案】解:四边形EGFH为正方形,∥,∽ ;设正方形零件的边长为x mm,则,,∥,∽ ,,,,解得.答:正方形零件的边长为48mm.设,,∽,矩形面积故当时,此时矩形的面积最大,最大面积为.【解析】根据正方形的对边平行得到∥,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”判定即可.设正方形零件的边长为xmm,则,,根据∥,得到 ∽ ,根据相似三角形的性质得到比例式,解方程即可得到结果;根据矩形面积公式得到关于x的二次函数,根据二次函数求出矩形的最大值.。
2019-2020年九年级上学期期中质量调研检测数学试题.docx
2019-2020 年九年级上学期期中质量调研检测数学试题一、选择题(本大题共 6 小题,每小题 2 分,共 12 分)1.已知 OA=4cm,以 O 为圆心,r 为半径作⊙ O.若使点 A 在⊙ O 内,则 r 的值可以是(▲)A 2cm B. 3cm C. 4cm D. 5cm.2▲)2.一元二次方程 (x- 1) =1 -x 的根为(A 0B . 1C.-1或0D.1或 0.3.某商场试销一种新款衬衫,一周内销售情况如下表所示:型号(厘米)383940414243数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是(▲).A.平均数B.众数C.中位数D.方差4.同时掷两枚质地均匀的硬币,出现结果都是“正面朝上”的概率为(▲ ).111D.1A .B .C.6 2345.下列关于 x 的一元二次方程中,有两个相等实数根的方程是(▲)A . x 2+1=0 B .x2- 1=0C.x2- 2x+ 1=0D. x2- 2x- 1=06.如图, AB 是⊙ O 的直径, CD 是⊙ O 的切线,切点为 D , CD 与 AB 的延长线交于点C,∠ A=30°,给出下面 3 个结论:① AD =CD ;② BD=BC;③ AB=2 BC.其中,正确结论的个数为(▲ )DA.3个B.2 个AOC C.1 个D.0 个二、填空题(本大题共10 小题,每小题 2 分,共 20分)( 第 6题)7.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙面试8692测试成绩(百分制)笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和 4 的权.根据两人的平均成绩,公司将录取▲.8.代数式x2+4x+1化为( x+m)2+n的形式(其中m、 n 为常数)是▲.9.如图,交警统计了某个时段在一个路口来往车辆的车速(单位:千米/ 时)情况,则该时段内来往车辆的平均速度是▲千米/时.车辆数A HB GC F车速D E(第9题)(第 11 题)10.已知一元二次方程2x2+b x+c=0 的两个实数根为- 1,3,则b=▲,c=▲.11.如图,在正八边形ABCDEFGH 中, AC 、GC 是两条对角线,则∠ ACG=▲°.12.有一个圆心角120°,半径 6cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的底面圆的半径为▲.A AEO OCB DD B C(第 13 题)(第 14题)13.如图, AB 是⊙ O 的直径, BD、 CD 分别是过⊙ O 上点 B、 C 的切线,且∠ BDC =110°.连接 AC ,则∠ A=▲°.14. 如图,在⊙ O 的内接四边形⌒ABCD 中, AB =AD ,∠ BCD =140 °.若点 E 在 AB上,则∠ E=▲°.15.某种盆栽花卉每盆的盈利与每盆种植花卉的株数有关:已知每盆种植 3 株时,平均每株可盈利 4 元;若每盆多种植 1 株,则平均每株盈利要减少0.5元.为使每盆的盈利达到 15 元,则每盆应种植花卉多少株?若设每盆种植花卉x 株,则可列得方程▲.16.如图,在正六边形ABCDEF2A F 中,四边形 ACDF 的面积为 20cm ,则正六边形的面积为▲cm2.B EC D(第 16 题)三、解答题(本大题共11 小题,共88 分.解答时应写出文字说明、证明过程或演算步骤)17.( 10 分)解方程:(1)4x2-2x— 1=0;(2) (x+1)2=9 x2.18.( 8 分)九( 2)班组织了一次朗读比赛,甲、乙两队各10 人的比赛成绩(10 分制)如下表(单位:分):甲789710109101010乙10879810109109( 1)甲队成绩的中位数是▲分,乙队成绩的众数是▲分;( 2)计算乙队成绩的平均数和方差;( 3)已知甲队成绩的方差是 1.4 分2,则成绩较为整齐的是▲队.19.( 7 分)某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.( 1)请你补全这个输水管道的圆形截面图;(要求尺规作图,保留作图痕迹,不写作法)A B(第 18 题)( 2)若这个输水管道有水部分的水面宽AB=32㎝,水最深处的地方高度为8 ㎝,求这个圆形截面的半径.20.( 9 分)已知关于x的一元二次方程x22(m 1) x m2 1 0 .(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程的一个根为 0,求出m的值及方程的另一个根.21.( 8 分)小伟和小欣玩一种抽卡片游戏:将背面完全相同,正面分别写有1, 2, 3,4的四张卡片背面向上,把卡片冼匀后,小伟和小欣各自随机抽取一张(不放回),并将小伟抽的卡片上的数字作为十位数字,小欣抽的卡片上的数字作为个位数字,组成一个两位数.如果所组成的两位数为偶数,则小伟胜;否则小欣胜.(1)分别求出小伟、小欣获胜的概率;(2)当小伟抽取的卡片数字为2 时,小伟和小欣谁获胜的可能性大?为什么?22.( 7 分)如图,⊙O是△ABC的外接圆,AB=AC,P是⊙O上一点.(1)请你只用无刻度的直尺,分别画出图 1 和图 2 中∠P的平分线;......(2)结合图 2,说明你这样画的理由.A APO OB C B CP图 2图 1(第 22题)23.( 8 分)如图,在Rt△ ABC 中,∠ ACB=90 °,以 AC 为直径的⊙ O 与 AB 边交于点 D ,E 为 BC 的中点,连接DE .A(1)求证: DE 是⊙ O 的切线;(2)若AC=BC ,判断四边形OCED的形状,并说明理由.DOC E B(第 23题)24.( 9 分)如图,点 B、 C、 D 都在⊙ O 上,过点 C 的⊙ O 的切线交OB 延长线于点A,连接 CD 、 BD,若∠ CDB =∠ OBD=30 °, OB=6cm .C(1)求证: AC∥ BD;(2)求由弦 CD、BD 与弧 BC 所围成的阴影部分的面积.(结果保留π)O(第 24题)25.( 9 分)如图,某市近郊有一块长为60 米,宽为 50 米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为 a 米)区域将铺设塑胶地面作为运动场地.设通道的宽度为x 米.(1)a=▲ (用含x的代数式表示);(2)若塑胶运动场地总占地面积为2430 平方米,则通道的宽度为多少米?50 米aa a60 米(第 25题)26.( 13 分)( 1)如图 1,AB为⊙O的弦,D为AB上一点,且OD⊥ OB.直线 l 与⊙ O 相切与点 A,且直线 l 与 OD的延长线交于点 C.①求证: AC=CD ;②若 AC =2, OA= 5 ,求线段OD的长.l图 1(2)如图 2,AB为⊙O的弦,D为AB上一点,且OD⊥OB.直线⊥OA,且直线与OA的延长线交于点 A’,与 BA的延长线交于点 E,与 OD的延长线相交于点 C’.①在图 2 中找出与C’D相等的线段,并说明理由;②若 A’C’=9cm, OA’=12cm,⊙ O的半径为6cm,求线段 OD的长.A’九年级数学参考答案及评分标准一、 (每小 2分,共 12分,将正确答案的 号填在下面的表格中) 号 1 2 3 4 5 6 答案DDBCCA二、填空 (本大 共 10 小 ,每小 2 分,共 20 分.不需写出解答 程, 把答案直接填写在答 卡相 位置上).......7.乙8 . (x 2)2 39. 60 10.- 4、- 6 11 . 4512. 2 13 .3514. 11015. x ·[ 4- 0.5( x - 3) ]= 15 16 . 30三、解答 (本大 共11 小 ,共 88 分. 在答 卡指定区域内作答,解答 写出文字 明、 明 程或演算步 ) 17. (1)4x 2- 2x - 1= 0.解: a =4,b= - 2,c= - 1.⋯⋯⋯⋯⋯⋯⋯⋯ 1 分b 2 4ac =( - 2)2- 4×4×( -1 ) =20> 0, ⋯⋯⋯⋯⋯⋯⋯⋯ 2 分 x =22 20 22 5 1 5 , ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分484x 1 15, x 2 15 . ⋯⋯⋯⋯⋯⋯⋯⋯ 5 分44(2) (x +1) 2 =9 x 2解: (x +1) 2 -9 x 2 =0 ,( x +1+ 3x ) ( x + 1-3 x )=0 , ⋯⋯⋯⋯⋯⋯⋯⋯ 2 分 (4 x +1) (1-2 x )=0 ,⋯⋯⋯⋯⋯⋯⋯⋯ 3 分 4x +1 =0或 1-2 x =0,⋯⋯⋯⋯⋯⋯⋯⋯ 4 分 x 11, x 2 1 . ⋯⋯⋯⋯⋯⋯⋯⋯ 5 分4 2(其它解法参照 分)18.( 1)中位数是9.5分,⋯⋯⋯⋯⋯⋯⋯ 2 分 众数是10分;⋯⋯⋯⋯⋯⋯⋯ 1 分( 2) x 乙 9分,S 乙2=1分2;⋯⋯⋯⋯⋯⋯⋯⋯ 7 分( 3)乙.⋯⋯⋯⋯⋯⋯⋯⋯ 8 分19.( 7 分)( 1)作 正确⋯⋯⋯⋯⋯⋯⋯ 3 分( 2)作 OC ⊥ AB 于 C ,并延 交交⊙O 于 D , C AB 的中点∴ AC = 1AB=16.2又由已知=8⋯⋯⋯⋯⋯⋯⋯⋯4 分CDO个 形截面的半径x ㎝, OC =x -8 ,ACB在Rt △中 , (x -8)2 +16 2 =x 2⋯⋯⋯⋯⋯6 分OCA解得: x =20.D20⋯⋯⋯⋯⋯ 7 分∴ 形截面的半径㎝.20.( 1)根据 意得:b 2 4ac > 0,即 [ 2( m 1)] 24 1 ( m 21) >0,⋯⋯⋯⋯ 2 分解得: < 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分m( 2)将 x =0 代入方程得: m 21 0 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分 解得 =1 或 =-1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分mm当 m =1,原方程 x 2 0 ,解得 : x 1 x 2 0,即另一个根 0;⋯⋯⋯⋯ 7 分当 =-1 ,原方程x 22x 0 ,解得 : x 10, x 2 2 ,即另一个根2. ⋯ 9 分m21.( 1)解:所有情况列表如下:两位数小欣12 34小11213 14 2 212324 3 31 32344414243⋯⋯⋯3分共有 12 种等可能的 果,其中两位数 偶数的6 次,两位数 奇数的6次.⋯ 4分∴ P (小 ) = P (小欣 ) = 1.⋯⋯⋯⋯⋯⋯⋯ 5 分2(2)当小 抽取的卡片数字2 ,小欣只有可能抽到 1、 3、 4,成的两位数是21、 23、 24,⋯⋯⋯⋯⋯⋯⋯ 6 分P (小 ) =1,P (小欣 ) = 2.⋯⋯⋯⋯⋯⋯⋯ 7 分33∴小欣 的可能性大.⋯⋯⋯⋯⋯⋯⋯ 8 分22.( 1)在1 中作 正确(接 AP ),⋯⋯⋯⋯⋯⋯⋯ 2 分在 2 中作 正确( 接AO 交于⊙ O 于点 D , 接 DP )⋯⋯⋯⋯ 4 分( 2)在 2 中,∵ AD 直径,A⌒ ⌒ ⋯⋯⋯⋯ 5分∴ABD =ACD∵AB = AC ,O⌒ ⌒⋯⋯⋯⋯ 6分∴AB =AC⌒ ⌒ ⌒ ⌒BCA∴ABD - AB =ACD - AC⌒ ⌒ P∴ BD =CDP图 1即∠ BPD =∠ CPD . ⋯⋯⋯⋯⋯7 分OBCD23.解:( 1)如 , 接OD 、CD .∵OC = OD ,∴∠ OCD =∠ ODC ,⋯⋯ 1 分∵AC ⊙ O 的直径,∴∠ CDB = 90°.∵E BC 的中点,∴ DE = CE ,A∴∠ ECD =∠ EDC ,⋯⋯⋯⋯ 2 分∴∠ OCD +∠ ECD =∠ ODC +∠ EDC = 90°, DO∴∠ ODE= ∠ ACB =90°, ⋯⋯⋯⋯ 3 分即 OD ⊥DE ,又∵ D 在 O 上BC E ∴DE 与 O 相切.⋯⋯⋯⋯⋯⋯⋯ 4 分( 2)若 AC=BC ,四 形 ODEC 正方形.理由: ∵AC=BC ,∠ ACB=90°,∴∠ A = 45°.∵OA = OD , ∴∠ ODA =∠ A =45°.∴∠ COD =∠ A+ ∠ ODA = 90°. ⋯⋯⋯⋯⋯⋯⋯ 6 分∵四 形 ODEC 中,∠ COD =∠ ODE= ∠ ACB=90°,且 OC = OD∴四 形 ODEC 正方形.⋯⋯⋯⋯⋯⋯⋯8 分24.( 1 ) 明: 接 OC ,交 BD 于 E ,∵∠ CDB =∠ OBD =30°,∴∠ COB =60° C∴∠ OEB =90°. ⋯⋯⋯⋯⋯⋯⋯ 2 分∵ AC 是⊙ O 的切 ,∴∠ OCA =90°.⋯⋯⋯ 4 分DE∴∠ OCA =∠ OEB .O∴ AC ∥BD ⋯⋯⋯⋯⋯⋯ 5 分( 2)∵∠ OEB=90°,∴ DE = BE ,又∵∠ CDB =∠ OBD=30 °,∠ CED =90 °∴△ CDE ≌△ OEB⋯⋯⋯⋯ 6 分∴阴影部分的面S=S 扇形 COB ⋯⋯⋯⋯ 7 分= 60626 . ⋯⋯⋯⋯ 9分36025.( 1) a =60 3x;⋯⋯⋯⋯⋯⋯⋯ 2 分2603x(5060 3x(50 3x)( 2)根据 意得:2 x)2430,22化 ,整理得: (20 - x ) 2= 324⋯⋯⋯⋯ 7 分解得: x 1 2, x 2 38(不合 意,舍去)⋯⋯⋯⋯⋯⋯⋯8 分答:通道的 度2 米.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分26.( 1)① 明:∵直l 与⊙ O 相切与点 A ,∴∠ OAC=90 °.⋯⋯⋯7 分AB⋯⋯⋯⋯ 5 分BOD∵OD⊥ OB,∴∠ DOB=90°,∵OA =OB,∴∠ OAB=∠ OBA,⋯⋯⋯⋯ 1 分又∵∠ OAB +∠ DAC =∠ OBA +∠ ODB= 90°,∴∠ ODB=∠ DAC,⋯⋯⋯⋯2分又∵∠ ODB=∠ CDA,∴∠ DAC=∠ ADC,∴AC =CD.⋯⋯⋯⋯3分②在 Rt△ OAC中, AC=2, OA= 5 ,∴OC2=22( 5) =9.∴OC=3,⋯⋯⋯⋯⋯⋯⋯ 4 分∴OD=OC- CD=OC- AC=1.⋯⋯⋯⋯⋯⋯⋯ 6 分(2)①C’D= C’E.明:∵⊥ OA,∴∠ OA’C’=90 °.B ∵ OD⊥ OB,∴∠ DOB=90°,∵ OA= OB,∴∠ OAB=∠ OBA ,⋯⋯⋯ 7 分又∵∠ AEA’+∠ E AA’=∠ OBA+∠ ODB = 90°,∠ODB=∠ EDC’,∠ OAB=∠ E AA’⋯⋯⋯8分∴∠ AEA’=∠ EDC’,∴ C’ D= C’ E.⋯⋯⋯9分②在 Rt△ OA’C’中,A’C’=9cm, OA’=12cm,OD A222∴OC’12 =225.∴ OC’=15,⋯ 10 分= 9C’l 在△ AEA ’与△ ODB 中, E A’∵∠ AA’E= DOB=90°,∠ OBA=∠E AA’, AA’= OB=6.∴△ AEA ’≌△∠ ODB∴ A’E=OD.⋯⋯⋯⋯⋯⋯ 11 分∵C’D = C’E,∴ 9+ A’E=15- OD∴ 9+ OD=15 - OD,∴ OD= 3.⋯⋯⋯⋯⋯⋯13 分。
2019~2020学年第一学期初三数学期中考试试卷(含答案)
2019~2020学年第一学期期中考试试卷初 三 数学 2019.11本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分。
考试用时120分钟。
一、选择题:(本大题共有10小题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母填在相应的表格内......) 1. 一元二次方程3x 2-x -2=0的二次项系数、一次项系数、常数项分别是( ▲ ) A.3,-1,-2B.3,1,-2C. 3,-1,2D. 3,1,22.抛物线y =(x -1)2+2的对称轴为( ▲ ) A. 直线B. 直线C. 直线D. 直线3.一元二次方程x 2-6x -5=0配方后可变形为( ▲ ) A.B.C.D.4. 一元二次方程2x 2-5x -2=0的根的情况是( ▲ ) A. 有两个相等的实数根 B. 有两个不相等的实数根 C. 只有一个实数根D. 没有实数根5. 在下列网格中,小正方形的边长为1,点A 、B 、O 都在格点上,则∠A 的正弦值是( ▲ ) A.5B.5 C.25 D. 126. 有x 支球队参加篮球比赛,共比赛了21场,每两队之间都比赛一场,则下列方程中符合题意的是( ▲ ) A.B.C.D.7. 若将抛物线y =5x 2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为( ▲ ) A. B.C.D .8.已知点A (-3,y 1),B (-1,y 2),C (2,y 3)在函数22=--+y x x b 的图象上,则y 1、y 2、y 3的大小关系为( ▲ )A. 132y y y <<B.213y y y << C. 321y y y <<D.312y y y <<9.已知抛物线y =ax 2+bx +3在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴x =1上的动点,根据图中提供的信息,给出以下结论:①2a +b =0,②x =3是ax 2+bx +3=0的一个根,③△PAB 周长的最小值是1032+.其中正确的是(▲ )A. ①②③B. ①②C. ①③D. ②③10. 2x-1 0 1 3 y-3131x =1;③当x <1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有( ▲ ) A. 1个B. 2个C. 3个D. 4个二、填空题:(共有8小题,每小题3分,共计24分.请把答案填写在下面相.应横线...上.) 11. 抛物线y =5(x -4)2+3的顶点坐标是______.12. -1是方程x 2+bx -5=0的一个根,则b =______,另一个根是______.13. 已知抛物线y =ax 2-3x +a 2-1经过坐标原点,且开口向下,则实数a 的值为______. 14. 已知如图:CD 是Rt △ABC 斜边上的高线,且AB =10,若BC =8,则cos ∠ACD = ______ . 15. 三角形的两边长分别是3和4,第三边长是方程x 2-13x +40=0的根,则该三角形的周长为______.(第14题图) (第17题图)16. 若关于x 的一元二次方程kx 2-6x +1=0有两个实数根,则k 的取值范围是______.17. 已知二次函数y =ax 2+bx +c 的部分图象如图所示,则关于x 的方程ax 2+bx +c =0的两个根的和为______.18. 已知实数x ,y 满足xx y ++-=2330,则y -x 的最大值为______.三、解答题:(本大题共有10小题,共76分.解答时应写出必要的文字说明、证明过程或演算步骤) 19.(每小题4分,共计16分)解下列方程: (1)2230x x --=; (2)()234x +=;(3)()()21312xx x -=-; (4) 2214x x -=-20.(本题6分)已知二次函数24y x x =+, (1)求出函数的对称轴和顶点坐标.(2)指出何时函数有最值,最值是多少?21.(本题6分)在平面直角坐标系xOy 中,抛物线2y x bx c =++经过点, .(1)求抛物线的表达式;(2)求抛物线与x 轴交点的坐标.22.(本题6分)如图二次函数y =ax 2+bx +c 的图象与x 轴交于点(1,0)、(3,0),根据图象解答下列问题: (1)直接写出方程ax 2+bx +c =0的两个根;(2)直接写出当x 为何值时,y >0?当x 为何值时,y <0?23.(本题6分)已知m 是方程01x x 2=--的一个根,求4)3m (m )1m (m 22++-+的值.24.(本题6分)已知关于x 的方程x 2+mx+m-3=0 (1)若该方程的一个根为2,求m 的值及方程的另一个根; (2)求证:不论m 取何实数,该方程都有两个不相等的实数根.25.(本题6分)利用一面墙(墙的长度不限),另三边用58m 长的篱笆围成一个面积为2200m 的矩形场地.求矩形的长和宽.26.(本题6分)在平面直角坐标系中,已知抛物线经过A (﹣4,0),B (0,﹣4),C (2,0)三点. (1)求抛物线的解析式;(2)若点M 的横坐标是-3,求△ABM 的面积。
2019-2020学年九年级数学期中试卷及答案
第 1 页 共 15 页2019-2020学年九年级数学期中试卷2019.11一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.) 1.下列关于x 的方程中,一定是一元二次方程的是( )A .x -1=0B .x 3+x =3C .x 2+3x -5=0D .ax 2+bx +c =02.关于x 的方程x 2+x -k =0有两个不相等的实数根,则k 的取值范围为( )A .k >-14B .k ≥-14C .k <-14D .k >-14且k ≠03.45°的正弦值为( )A .1B .12C .22D .324.已知△ABC ∽△DEF ,∠A =∠D ,AB =2cm ,AC =4cm ,DE =3cm ,且DE <DF , 则DF 的长为( )A .1cmB .1.5cmC .6cmD .6cm 或1.5cm5.在平面直角坐标系中,点A (6,3),以原点O 为位似中心,在第一象限内把线段OA 缩小为原来的13得到线段OC ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)6.已知⊙A 半径为5,圆心A 的坐标为(1,0),点P 的坐标为(-2,4),则点P 与⊙A 的位置关系是( )A .点P 在⊙A 上B .点P 在⊙A 内C .点P 在⊙A 外D .不能确定7.如图,在□ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC =( )A .1︰3B .1︰4C .2︰3D .1︰28.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12,AD =4,BC =9,点P 是AB 上一动点,若△P AD 与△PBC 相似,则满足条件的点P 的个数有( )AD F CBOE(第7题)CP FEQ(第10题)ACD(第8题)。
河南省洛阳市新安县2019-2020学年九年级(上)期中数学试卷 含解析
2019-2020学年九年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的代号字母在答题卡相应位置涂黑.1.若(a﹣3)x b﹣2﹣5x﹣1=0是关于x的一元二次方程,则a、b的取值为()A.a≠0,b=4 B.a≠0,b=2 C.a≠﹣3,b=4 D.a≠3,b=4 2.把a根号外的因式移入根号内的结果是()A.B.C.D.3.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)4.如果关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,那么k的取值范围是()A.k<1 B.k≠0 C.k<1且k≠0 D.k>15.下列说法不正确的是()A.位似图形一定是相似图形B.相似图形不一定是位似图形C.位似图形上任意一对对应点到位似中心的距离之比等于位似比D.位似图形中每组对应点所在的直线必相互平行6.如果•=成立,那么()A.a≥0 B.0≤a≤3C.a≥3 D.a取任意实数7.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是()A.BC=2DE B.△ADE∽△ABCC.=D.S△ABC=3S△ADE8.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或109.已知a≠b,且a2﹣5a﹣1=0,b2﹣5b﹣1=0,则+的值为()A.﹣1 B.﹣1C.﹣1D.﹣110.若方程x2+mx+1=0和方程x2﹣x﹣m=0有一个相同的实数根,则m的值为()A.2 B.0 C.﹣1 D.二.填空题(每小题3分,共15分)11.已知=,则a:b=.12.若最简二次根式与是可以合并的二次根式,则a=,b =.13.方程3x2+x﹣1=0的解是.14.已知x=,y=,则﹣=.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是.三、解答题(本大题共8个小题,共75分)16.计算:(1)÷﹣×+(2)(2+3)2﹣(2﹣3)217.解下列方程:(1)4x2﹣7x﹣2=0(用配方法)(2)(2x﹣1)2=x(3x+2)﹣718.如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)以点E为中心,在位似中心的同侧画出△EDF的一个位似△ED1F1,使得它与△EDF 的相似比为2:1;(3)求△ABC与△ED1F1的面积比.19.如图,△ABC中,点D在边AB上,满足∠ACD=∠B,若AC=2,AD=1.(1)求DB的长;(2)求△ACD与△ABC的面积的比.20.已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根:(2)若x1,x2是原方程的两根,且|x1﹣x2|=2,求m的值,并求出此时方程的两根.21.如图,教学楼旁边有一棵大树,课外兴趣小组的同学在阳光下测得一根长为1m的竹竿的影长为0.9m,同一时刻这棵树落在地上的影长为2.7m,落在墙上的影长为1.2m,请你计算树高为多少.22.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?23.如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.参考答案与试题解析一.选择题(共10小题)1.若(a﹣3)x b﹣2﹣5x﹣1=0是关于x的一元二次方程,则a、b的取值为()A.a≠0,b=4 B.a≠0,b=2 C.a≠﹣3,b=4 D.a≠3,b=4 【分析】根据一元二次方程的定义得出a﹣3≠0,b﹣2=2求出即可.【解答】解:由题意,得a﹣3≠0,b﹣2=2解得a≠3,b=4.故选:D.2.把a根号外的因式移入根号内的结果是()A.B.C.D.【分析】本题需注意的是a的符号,根据被开方数不为负数可得出a<0,因此需先将a 的负号提出,然后再将a移入根号内进行计算.【解答】解:∵a<0,∴a=﹣=﹣;故选:B.3.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.4.如果关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,那么k的取值范围是()A.k<1 B.k≠0 C.k<1且k≠0 D.k>1【分析】方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:由题意知:k≠0,△=36﹣36k>0,∴k<1且k≠0.故选:C.5.下列说法不正确的是()A.位似图形一定是相似图形B.相似图形不一定是位似图形C.位似图形上任意一对对应点到位似中心的距离之比等于位似比D.位似图形中每组对应点所在的直线必相互平行【分析】如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫位似图形,这个点叫做位似中心,因而A,B,C正确,D错误.【解答】解:根据位似图形的定义可知,B,C正确,似图形中每组对应点所在的直线相交于一点,D错误.故选:D.6.如果•=成立,那么()A.a≥0 B.0≤a≤3C.a≥3 D.a取任意实数【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:•=成立,则,解得:a≥3.故选:C.7.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是()A.BC=2DE B.△ADE∽△ABCC.=D.S△ABC=3S△ADE【分析】根据三角形的中位线定理得出DE是△ABC的中位线,再由中位线的性质得出△ADE∽△ABC,进而可得出结论.【解答】解:∵在△ABC中,点D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∴BC=2DE,故A正确;∵DE∥BC,∴△ADE∽△ABC,故B正确;∴=,故C正确;∵DE是△ABC的中位线,∴AD:BC=1:2,∴S△ABC=4S△ADE故D错误.故选:D.8.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10【分析】先将x=2代入x2﹣2mx+3m=0,求出m=4,则方程即为x2﹣8x+12=0,利用因式分解法求出方程的根x1=2,x2=6,分两种情况:①当6是腰时,2是底边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.【解答】解:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=6.①当6是腰时,2是底边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选:B.9.已知a≠b,且a2﹣5a﹣1=0,b2﹣5b﹣1=0,则+的值为()A.﹣1 B.﹣1C.﹣1D.﹣1【分析】由a2﹣5a﹣1=0,b2﹣5b﹣1=0,且a≠b知a、b是方程x2﹣5x﹣1=0的两个不相等的实数根,据此得出a+b=5,ab=﹣1,代入到原式=计算可得.【解答】解:∵a2﹣5a﹣1=0,b2﹣5b﹣1=0,且a≠b,∴a、b是方程x2﹣5x﹣1=0的两个不相等的实数根,则a+b=5,ab=﹣1,∴原式===﹣1,故选:C.10.若方程x2+mx+1=0和方程x2﹣x﹣m=0有一个相同的实数根,则m的值为()A.2 B.0 C.﹣1 D.【分析】设x=a是两个方程相同的实数根,然后代入原方程中即可求出答案.【解答】解:由方程x2+mx+1=0得x2=﹣mx﹣1,由方程x2﹣x﹣m=0得x2=x+m.则有﹣mx﹣1=x+m,即x=﹣1.把x=﹣1代入方程x2+mx+1=0,得方程1﹣m+1=0,从而解得m=2.故选:A.二.填空题(共5小题)11.已知=,则a:b=19:13 .【分析】内项之积等于外项之积,依据比例的基本性质,即可得出结果.【解答】解:∵=,∴5(a+2b)=9(2a﹣b),∴13a=19b,∴a:b=19:13,故答案为:19:13.12.若最简二次根式与是可以合并的二次根式,则a= 1 ,b= 1 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:因为最简二次根式与是可以合并的二次根式,可得:,解得:a=1,b=1,故答案为:1;1.13.方程3x2+x﹣1=0的解是x=.【分析】根据公式法即可求出答案.【解答】解:∵3x2+x﹣1=0,∴a=3,b=1,c=﹣1,∴△=1+12=13,∴x=故答案为:x=.14.已知x=,y=,则﹣=4.【分析】直接利用二次根式的性质化简得出答案.【解答】解:∵x=,y=,∴﹣=﹣=2(+)﹣2(﹣)=4.故答案为:4.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是①②③④.【分析】由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS 证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故答案为:①②③④.三.解答题(共8小题)16.计算:(1)÷﹣×+(2)(2+3)2﹣(2﹣3)2【分析】(1)先利用二次根式的除法法则运算,然后化简即可;(2)先利用完全平方公式计算,然后合并即可.【解答】解:(1)原式=﹣+2=4﹣+2;(2)原式=12+12+18﹣(12﹣12+18)=30+12﹣30+12=24.17.解下列方程:(1)4x2﹣7x﹣2=0(用配方法)(2)(2x﹣1)2=x(3x+2)﹣7【分析】(1)首先把方程移项、二次项系数化成1,然后配方变形成(x+a)2=b的形式,即可转化成一元一次方程,从而求解;(2)整理成一般式,然后利用因式分解法求解即可.【解答】解:(1)4x2﹣7x﹣2=0,移项,得:4x2﹣7x=2,即:x2﹣x=,配方:x2﹣x+()2=+.即(x﹣)2=,则x﹣=±,则方程的解是:x1=2,x2=﹣.(2)(2x﹣1)2=x(3x+2)﹣7,整理得,x2﹣6x+8=0,(x﹣2)(x﹣4)=0,∴x1=2,x2=4.18.如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)以点E为中心,在位似中心的同侧画出△EDF的一个位似△ED1F1,使得它与△EDF 的相似比为2:1;(3)求△ABC与△ED1F1的面积比.【分析】(1)先利用勾股定理计算出两个三角形的所有边长,通过计算对应边的比得到==,再根据相似三角形的判定方法即可得到△ABC∽△DEF;(2)根据画位似图形的方法画出△ED1F1;(3)易得△ABC∽△D1EF1,然后根据相似三角形面积的比等于相似比的平方进行计算.【解答】解:(1)∵AB=2,AC=,BC=5,EF=,FD=,ED=2,∴==,==,==,∴==,∴△ABC∽△DEF;(2)延长ED到点D1,使ED1=2ED,延长EF到点F1,使EF1=2EF,连结D1F1,则△ED1F1为所求,如图;(3)∵△ABC∽△DEF,△DEF∽△D1EF1,∴△ABC∽△D1EF1,∴△ABC与△ED1F1的面积比=()2=()2=.19.如图,△ABC中,点D在边AB上,满足∠ACD=∠B,若AC=2,AD=1.(1)求DB的长;(2)求△ACD与△ABC的面积的比.【分析】(1)由两组对应角相等直接证△ACD∽△ABC,由相似三角形对应边的比相等可求出AB的长,由AB和AD的长即可直接求出BD的长;(2)由相似三角形的面积比等于相似比的平方可直接求出△ACD与△ABC的面积的比.【解答】解:(1)∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,又∵AC=2,AD=1,∴AB=4,∴DB=AB﹣AD=3;(2)∵△ACD∽△ABC且=,∴△ACD与△ABC的面积的比为1:4.20.已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根:(2)若x1,x2是原方程的两根,且|x1﹣x2|=2,求m的值,并求出此时方程的两根.【分析】(1)根据关于x的一元二次方程x2+(m+3)x+m+1=0的根的判别式△=b2﹣4ac 的符号来判定该方程的根的情况;(2)根据根与系数的关系求得x1+x2=﹣(m+3),x1•x2=m+1;然后由已知条件“|x1﹣x2|=2”可以求得(x1﹣x2)2=(x1+x2)2﹣4x1x2=8,从而列出关于m的方程,通过解该方程即可求得m的值;最后将m值代入原方程并解方程.【解答】(1)证明:∵△=(m+3)2﹣4(m+1)=(m+1)2+4,∵无论m取何值,(m+1)2+4恒大于0,∴原方程总有两个不相等的实数根.(2)∵x1,x2是原方程的两根,∴x1+x2=﹣(m+3),x1•x2=m+1,∵|x1﹣x2|=2∴(x1﹣x2)2=(2)2,∴(x1+x2)2﹣4x1x2=8,∴[﹣(m+3)]2﹣4(m+1)=8∴m2+2m﹣3=0,解得:m1=﹣3,m2=1.当m=﹣3时,原方程化为:x2﹣2=0,解得:x1=,x2=﹣,当m=1时,原方程化为:x2+4x+2=0,解得:x1=﹣2+,x2=﹣2﹣.21.如图,教学楼旁边有一棵大树,课外兴趣小组的同学在阳光下测得一根长为1m的竹竿的影长为0.9m,同一时刻这棵树落在地上的影长为2.7m,落在墙上的影长为1.2m,请你计算树高为多少.【分析】先求出墙上的影高CD落在地面上时的长度,再设树高为h,根据同一时刻物高与影长成正比列出关系式求出h的值即可.【解答】解:设墙上的影高CD落在地面上时的长度为xm,树高为hm,∵某一时刻测得长为1m的竹竿影长为0.9m,墙上的影高CD为1.2m,∴=,解得x=1.08(m),∴树的影长为:1.08+2.7=3.78(m),∴=,解得h=4.2(m).答:AB测的树高为4.2米.22.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?【分析】设应将每千克小型西瓜的售价降低x元.那么每千克的利润为:(3﹣2﹣x)元,由于这种小型西瓜每降价0.1元/千克,每天可多售出40千克.所以降价x元,则每天售出数量为:(200+)千克.本题的等量关系为:每千克的利润×每天售出数量﹣固定成本=200.【解答】解:设应将每千克小型西瓜的售价降低x元.根据题意,得[(3﹣2)﹣x](200+)﹣24=200.方程可化为:50x2﹣25x+3=0,解这个方程,得x1=0.2(舍去),x2=0.3.答:应将每千克小型西瓜的售价降低0.3元.23.如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.【分析】(1)当t=1时,根据点E、G的速度均为2cm/s,点F的速度为4cm/s,可求出S和t的关系.(2)根据点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S,求出S和t的关系式.(3)两边对应成比例夹角相等的三角形是相似三角形可求出解.【解答】解:(1)如图1,当t=1秒时,AE=2,EB=10,BF=4,FC=4,CG=2,由S=S梯形GCBE﹣S△EBF﹣S△FCG,=×﹣=×(10+2)×8﹣×10×4﹣=24(cm2);(2)①如图1,当0≤t≤2时,点E、F、G分别在边AB、BC、CD上移动,此时AE=2t,EB=12﹣2t,BF=4t,FC=8﹣4t,CG=2t,S=S梯形GCBE﹣S△EBF﹣S△FCG=×(EB+CG)•BC﹣EB•BF﹣FC•CG=×8×(12﹣2t+2t)﹣×4t(12﹣2t)﹣×2t(8﹣4t)=8t2﹣32t+48(0≤t≤2).②如图2,当点F追上点G时,4t=2t+8,解得t=4,当2<t<4时,点E在边AB上移动,点F、G都在边CD上移动,此时CF=4t﹣8,CG=2t,FG=CG﹣CF=2t﹣(4t﹣8)=8﹣2t,S=FG•BC=(8﹣2t)•8=﹣8t+32.即S=﹣8t+32(2<t<4).(3)如图1,当点F在矩形的边BC上的边移动时,在△EBF和△FCG中,∠B=∠C=90°,①若=,即=,解得t=.所以当t=时,△EBF∽△FCG,②若=即=,解得t=.所以当t=时,△EBF∽△GCF.综上所述,当t=或t=时,以点E、B、F为顶点的三角形与以F、C、G为顶点的三角形相似.。
河南省洛阳市三中2019-2020学年九年级(上)期中数学试卷(含答案)[精品]
河南省洛阳市三中2019-2020学年九年级(上)期中数学试卷一.选择题(满分30分,每小题3分)1.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.已知方程2﹣4+2=0的两根是1,2,则代数式的值是( ) A .2011B .2012C .2013D .20143.在平面直角坐标系中,点A 的坐标是(1,3),将点A 绕原点O 顺时针旋转90°得到点A ′,则点A ′的坐标是( ) A .(﹣3,1)B .(3,﹣1)C .(﹣1,3)D .(1,﹣3)4.一元二次方程2﹣8﹣1=0配方后可变形为( ) A .(+4)2=17B .(+4)2=15C .(﹣4)2=17D .(﹣4)2=155.已知,如图,AB 是⊙O 的直径,点D ,C 在⊙O 上,连接AD 、BD 、DC 、AC ,如果∠BAD =25°,那么∠C 的度数是( )A .75°B .65°C .60°D .50°6.P 是⊙O 外一点,PA 、PB 分别交⊙O 于C 、D 两点,已知、的度数别为88°、32°,则∠P 的度数为( )A.26°B.28°C.30°D.32°7.如图,以点P为圆心作圆,所得的圆与直线l相切的是()A.以PA为半径的圆B.以PB为半径的圆C.以PC为半径的圆D.以PD为半径的圆8.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为()A.105°B.112.5°C.120°D.135°9.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm10.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为,△ABP的面积为S,能正确反映S与之间函数关系的图象是()A .B .C .D .二.填空题(满分15分,每小题3分)11.在平面直角坐标系中,点(3,4)关于原点对称的点的坐标是 .12.请任意写出一个图象开口向下且顶点坐标为(﹣2,1)的二次函数解析式: . 13.如图,⊙O 的半径为2,切线AB 的长为,点P 是⊙O 上的动点,则AP 的长的取值范围是 .14.如图,矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ′处,则重叠部分△AFC 的面积为 .15.如图,在矩形ABCD 中,AB =1,AD =2,点E 是边AD 上的一个动点,把△BAE 沿BE 折叠,点A 落在点A '处,若点A '恰好在矩形的对称轴上,则∠A 'BE 的度数为 .三.解答题16.(9分)如表:方程1、方程2、方程3、…是按一定规律排列的一列方程.(2)请写出这列方程中第10个方程,并用求根公式求其解.(3)根据表中的规律写出第n个方程和这个方程的解.17.(9分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?18.(9分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?19.(9分)在如图所示的直角坐标系中,解答下列问题:(1)将△ABC绕点A顺时针旋转90°,画出旋转后的△A1B1C1;(2)求经过A1B1两点的直线的函数解析式.20.(9分)如图,已知直线y=﹣6与抛物线y=a2+b+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.21.(9分)已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.22.(10分)综合与实践已知,在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF 绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.(1)【问题发现】如图1,当∠EDF绕点D旋转到DE⊥AC于点E时(如图1),①证明:△ADE≌△BDF;②猜想:S△DEF+S△CEF=S△ABC.(2)【类比探究】如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△+S△CEF与S△ABC的关系,并给予证明.DEF(3)【拓展延伸】如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)23.(11分)如图,抛物线与轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥轴于点D,交直线BC于点E,抛物线的对称轴是直线=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A 、是轴对称图形,但不是中心对称图形,故此选项错误;B 、不是轴对称图形,也是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是中心对称图形也是轴对称图形,故此选项正确.故选:D .2.解:∵方程2﹣4+2=0的两根是1,2, ∴12+2=41,22﹣42=﹣2,∴=++2011=4﹣1+2011 =2014. 故选:D .3.解:如图所示,由旋转可得:∠AOA '=∠BOC =90°,AO =A 'O ,∴∠AOB =∠A 'OC ,而∠ABO =∠A 'CO =90°, ∴△AOB ≌△A 'OC ,∴A 'C =AB =1,CO =BO =3, ∴点A '的坐标为(3,﹣1), 故选:B .4.解:∵2﹣8=1,∴2﹣8+16=1+16,即(﹣4)2=17,故选:C.5.解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选:B.6.解:∵和所对的圆心角分别为88°和32°,∴∠A=×32°=16°,∠ADB=×88°=44°,∵∠P+∠A=∠ADB,∴∠P=∠ADB﹣∠A=44°﹣16°=28°.故选:B.7.解:∵PB⊥l于B,∴以点P为圆心,PB为半径的圆与直线l相切.故选:B.8.解:连结PP′,如图,∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△ABP绕点B顺时针旋转90°得到△CBP′,∴BP=BP′,∠BAP=∠BCP′,∠PBP′=90°,∴△PBP′为等腰直角三角形,∴∠BPP′=45°,PP′=PB=2,在△APP′中,∵PA=1,PP′=2,AP′=3,∴PA2+PP′2=AP′2,∴△APP′为直角三角形,∠APP′=90°,∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,∴∠BP′C=135°.故选:D.9.解:连接OA,∵OD⊥AB,∴AD=AB=4,由勾股定理得,OA==5,故选:C.10.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<≤2,s=,当2<≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:点(3,4)关于原点对称的点的坐标是(﹣3,﹣4).故答案为:(﹣3,﹣4).12.解:抛物线y=﹣(+2)2+1的开口向下、顶点坐标为(﹣2,1),故答案为:y=﹣(+2)2+1(答案不唯一).13.解:连接OB,∵AB是⊙O的切线,∴∠OBA=90°,∴OA==4,当点P在线段AO上时,AP最小为2,当点P在线段AO的延长线上时,AP最大为6,∴AP的长的取值范围是2≤AP≤6,故答案为:2≤AP≤6.14.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=,则AF=8﹣,在Rt△AFD′中,(8﹣)2=2+42,解之得:=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.15.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N===0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A ′E 2=(1﹣A ′E )2+12,解得:A ′E =1,∴AE =1;②如图2,过A ′作PQ ∥AD 交AB 于P ,交CD 于Q ,则直线PQ 是矩形ABCD 的对称轴,∴PQ ⊥AB ,AP =PB ,AD ∥PQ ∥BC ,∴A ′B =2PB ,∴∠PA ′B =30°,∴∠A ′BC =30°,∴∠EBA ′=30°,∴AE =A ′E =A ′B ×tan30°=1×=;综上所述:AE 的长为1或;故答案为:1或. 三.解答题(共8小题,满分75分)16.解:(1)∵2+3﹣18=0即(+6)(﹣3)=0∴+6=0或﹣3=0∴1=﹣6,2=3;(2)方程规律:2+1•﹣12•2=0,2+2•﹣22•2=0,2+3•﹣32•2=0, 即第10个方程为2+10﹣102•2=0,所以第10个方程为2+10﹣200=0,解得=,1=10,2=﹣20;(3)由(2)得:第n 个方程为:2+n ﹣2n 2=0,方程的两根为1=﹣2n ,2=n .17.解:(1)y =(﹣50)[50+5(100﹣)]=(﹣50)(﹣5+550)=﹣52+800﹣27500,∴y =﹣52+800﹣27500(50≤≤100);(2)y =﹣52+800﹣27500=﹣5(﹣80)2+4500,∵a =﹣5<0,∴抛物线开口向下.∵50≤≤100,对称轴是直线=80,∴当=80时,y 最大值=4500;(3)当y =4000时,﹣5(﹣80)2+4500=4000,解得1=70,2=90.∴当70≤≤90时,每天的销售利润不低于4000元.18.解:(1)设每次降价的百分率为.40×(1﹣)2=32.4=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y 元,由题意,得(40﹣30﹣y )(4×+48)=510, 解得:y 1=1.5,y 2=2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.19.解:(1)如图,(2)设线段B1A1所在直线l的解析式为:y=+b(≠0),∵B1(﹣2,3),A1(2,0),∴,∴,∴线段B1A1所在直线l的解析式为:.20.解:(1)把A(1,﹣4)代入y=﹣6,得=2,∴y=2﹣6,令y=0,解得:=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(﹣1)2﹣4=2﹣2﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).21.(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)22.解:(1)①∵∠C=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∴∠ADE=∠B,∵∠EDF=90°,∴∠ADE+∠BDF=90°,∵DE⊥AC,∴∠AED=90°,∴∠A+∠ADE=90°,∴∠A=∠BDF,∵点D是AB的中点,∴AD=BD,在△ADE和△BDF中,,∴△ADE≌△BDF(SAS);②如图1中,当∠EDF绕D点旋转到DE⊥AC时,四边形CEDF是正方形.设△ABC的边长AC=BC=a,则正方形CEDF的边长为a.∴S△ABC=a2,S正方形DECF=(a)2=a2即S△DEF+S△CEF=S△ABC;故答案为.(2)上述结论成立;理由如下:连接CD;如图2所示:∵AC=BC,∠ACB=90°,D为AB中点,∴∠B=45°,∠DCE=∠ACB=45°,CD⊥AB,CD=AB=BD,∴∠DCE=∠B,∠CDB=90°,∵∠EDF=90°,∴∠CDE=∠BDF,在△CDE和△BDF中,,∴△CDE≌△BDF(ASA),∴S△DEF+S△CEF=S△ADE+S△BDF=S△ABC;(3)不成立;S△DEF﹣S△CEF=S△ABC;理由如下:连接CD,如图3所示:同(2)得:△DEC≌△DBF,∠DCE=∠DBF=135°∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+S△ABC,∴S△DEF﹣S△CFE=S△ABC.∴S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.23.解:(1)点A的坐标是(2,0),抛物线的对称轴是直线=﹣1,则点B(﹣4,0),则函数的表达式为:y=a(﹣2)(+4)=a(2+2﹣8),即:﹣8a=﹣2,解得:a=,故抛物线的表达式为:y=2+﹣2;(2)将点B、C的坐标代入一次函数表达式:y=m+n并解得:直线BC的表达式为:y=﹣﹣2,则tan∠ABC=,则sin∠ABC=,设点D(,0),则点P(,2+﹣2),点E(,﹣﹣2),∵PE=OD,OD=﹣,∴PE=(2+﹣2++2)=2+,解得:=0或﹣5(舍去=0),即点D(﹣5,0)S=×PE×BD=(2+﹣2﹣+2)(﹣4﹣)=;△PBE(3)由题意得:△BDM是以BD为腰的等腰三角形,①当BD=BM时,过点M作MH⊥轴于点H,BD=1=BM,则MH=y M=BM sin∠ABC=1×=,则M=﹣,故点M(﹣,);②当BD=DM(M′)时,同理可得:点M′(﹣,);故点M坐标为(﹣,)或(﹣,).。
2019-2020学年九年级的数学上学期期中原创卷A卷(河南)(考试版)
1 / 2绝密 ★启用前 |1 考试研究中心命制2019-2020 学年上学期期中原创卷【河南 A 卷】九年级数学(考试时间: 120 分钟试卷满分: 120 分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务势必自己的姓名、准考据号填写在答题卡上。
2.回答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版九上全册。
第Ⅰ卷一、选择题(本大题共 10 个小题,每题 3 分,共 30 分.在每题给出的四个选项中,只有一个选项是切合题目要求的)1.以下方程中,对于x 的一元二次方程是A .x 2 +2y=1B .1 1 ﹣ 2=0x 2 xC . ax 2+bx+c=0D . x 2+2x=12.以下图标中,是中心对称图形的是A .B .C .D .3.用配方法解一元二次方程 2x 2﹣ x ﹣1=0 时,配方正确的选项是A .( x ﹣ 1 ) 2= 9B .( x+ 1 ) 2=94 16 4 16 1 25 1 2 5C .(x ﹣) = D .( x+2 ) =4244.如图, △OAB 绕点 O 逆时针旋转 80 获得 △OCD ,若 ∠ AOB 35 ,则 ∠AOD 等于A .35B .40C . 45D .555y ax 2 bx a 2 2( a , b为常数)的图象如图,则a 的.若二次函数A . 1B . 2C .2D . 26.某商铺进行 “迎五一, 大促销 ”摸奖活动, 凡是有购物小票的顾客均可摸球一规则以下:一个不透明的袋子中装有10 个黑球和若干白球,它们除颜色不一中随机摸出一个球,记下颜色,再把它放回袋子中摇匀,重复此过程 .共有有 180 人,由此预计袋子中白球个数大概为 A .10B .12C .15D .167.如图, AB 是⊙ O 的直径,弦 CD ⊥ AB 于点 E .若 AB=8 ,AE=1,则弦 CD A .7 B .2 7 C .6D .88.如图, AB 是⊙ O 的直径,直线 PA 与⊙ O 相切于点 A , PO 交⊙ O 于点 C ,ABC 的度数为A . 20°B . 25°C . 40°D . 50°9.对于抛物线 y= 2( x+4 )2﹣ 5,以下说法正确的选项是3A .张口向下B .对称轴是直线 x=4C .极点坐标( 4,﹣ 5 )D .向右平移 4 个单位,再向上平移5 个单位获得 y= 2 x2310.如图,在平行四边形ABCD 中, BD=6 ,将平行四边形 ABCD 绕其对称中过的路径长为A . 3πB .3C . 6πD .6第Ⅱ卷二、填空题(本大题共 5 小题,每题 3 分,共 15 分)11.若对于 x 的方程式 2x +mx ﹣6=0 的有一个根 2,则另一个根为 ____________12.已知 a 、 b 、c 为 △ABC 的三边长,且 a 、 b 知足 a 24a b 26b 13周长为 _____________ .13.把二次函数 y=x 2+bx+c 的图象沿 y 轴向下平移 1 个单位长度, 再沿 x 轴向左的抛物线的极点坐标为(﹣ 2, 0),原抛物线相应的函数表达式是 _____14.现有长分别为 1, 2, 3, 4, 5 的木条各一根,从这 5 根木条中任取_____________.15.二次函数 y=ax2+bx+c 的图象以下图,给出以下说法:① abc< 0;②方程 ax2+bx+c=0 的根为 x1=﹣ 1、x2=3;③当 x> 1 时, y 随 x 值的增大而减小;④当y>0时,﹣ 1<x< 3.此中正确的说法是_____________.(填序号)三、解答题(本大题共8 小题,共75 分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分8 分)解以下一元二次方程:( 1)4x2 3x ;( 2)x x 4 4x 16 ;( 3)x2 +4 x - 1=0(用配方法);( 4) 2 x2- 8 x +3=0 (用公式法) .17.(本小题满分9 分)已知对于 x 的一元二次方程x2 5x 2m 0 有实数根.( 1)求 m 的取值范围;( 2)当m 5时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.218.(本小题满分9 分)已知对于 x 的一元二次方程mx2(3m 1)x 30 .( 1)求证:无论m 为任何实数,此方程总有实数根;( 2)假如该方程有两个不等的整数根,且m 为正整数,求m 的值;19.(本小题满分9 分)△ABC 和点 S 在平面直角坐标系中的地点以下图:( 1)将△ ABC 向右平移4 个单位获得△ A1B1C1,画出△ A1B1C1并写出点A1的坐标是,点B1的坐标是;( 2)将△ ABC 绕点 S 按顺时针方向旋转90°,画出旋转后的图形.20.(本小题满分9 分)如图,点 A 是⊙ O 上一点,半径OC 的延伸线与过点 A 的直线交于点B, OC= BC, AC=1OB.2(1)求证: AB 是⊙ O 的切线;(2)若∠ ACD = 45°,OC= 2,求弦 AD 的长.21.(本小题满分10 分)某校展开研学旅游活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上), D(泗水),每位学生只好选去一个地方,王老师对本班同学选用的研学基地状况进行检查统计,绘制了两幅不完(以下图).(1)求该班的总人数,并补全条形统计图.(2)求 D(泗水)所在扇形的圆心角度数;(3)该班班委 4 人中, 1 人选去曲阜, 2 人选去梁山, 1 人选去汶上,王老师要从这 4 人人认识他们对研学基地的见解,请你用列表或画树状图的方法,求所抽取的 2 人中恰巧有1 人选去梁山的概率.22.(本小题满分10 分)如图, AB 是⊙ O 的直径, CD 是⊙ O 的切线,切点为 D ,CD 与 AB 的延伸线交于点E,( 1)求证:△ ADE 是等腰三角形;( 2)若 BE=2,求图中暗影部分的面积(结果保存π).23.(本小题满分11 分)某商场经销一种销售成本为每件40 元的商品.据市场检查剖析,假如按每件50 元销售500 件,若销售单价每涨 1 元,每周销售量就减少10 件.设销售单价为每件x 元( x≥售量为 y 件.(1)写出 y 与 x 的函数关系式.(注明 x 的取值范围)(2)设一周的销售收益为 S,写出 S 与 x 的函数关系式,并确立当单价在什么范围内变化时,收单价的增大而增大?( 3)在商场对该种商品投入不超出10 000 元的状况下,使得一周销售收益达到8000 元定为多少?2 / 2。
河南2019-2020九年级上册期中考试A卷.pdf
骂他他也听不见。他现在就剩下一张嘴了。”
9.请结合全文,理解“而我,几乎什么也不用说”这句话的深层意蕴。(4 分)
不密封
语文试题 第 3 页(共 8 页)
语文试题 第 4 页(共 8 页)
………………○………………内………………○………………装………………○………………订………………○………………线………………○………………
二、现代文阅读(共 28 分)
每说一句话都相当费力。她坐在轮椅上,经常为要一件东西,或者要办什么事,憋得脸红脖子粗。而我们
(一)阅读下文,完成后面的题目。(共 16 分)
却不知所云。倒是父亲,母亲说什么,他一下子就听懂了。父亲说,你娘说,她出院了,这病一时半会儿
父亲的电话
不会死,也好不了多快。她说你们都耽误了这么长时间了,你们都有自己的工作,该回去上班了。
①父亲耳朵越来越聋,你在他耳朵旁扔个炮仗他都不会有任何反应。
⑬听了父亲翻译过来母亲的话,我们一时不知说什么好。说真的,我们去上班了,家里怎么能放心得
②以前,闲下来时,他会到村口的老槐树下,和大家说些家长里短,听听村子里的大情小事。或者一个 下?母亲能听见我们说的话,却表达不出来,而父亲能表达,却听不见我们说什么。这以后,就是给家里
主体。随着国家休闲政策的发布,各地也在依据自身情况制定相关方面的政策法规,进一步落实带薪休假、
⑨父亲的耳朵聋了,家里的氛围却是越来越和谐了。
组织休闲节事活动等,民众的幸福感会随之逐年提升。
⑩过年时,我们一家人在一起,又说又笑的,父亲坐在那里,虽然听不见我们说什么,但见我们笑,
(1)仔细观察材料二中的“近年全国居民人均可支配收入及其增长速度”和“近年国内旅游收入及旅游 他也跟着笑。他将他的孙子抱在怀里,掏出一个红包塞进孙子的手里。孙子拿着红包,将嘴凑近他的耳朵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年九年级(上)期中数学试卷
一、选择题(本大题共10个小题,每小题3分,共30分)下列各小题均有四个答案,其
中只有一个是正确的,请将正确答案的代号字母在答题卡相应位置涂黑.
1.若(a﹣3)x b﹣2﹣5x﹣1=0是关于x的一元二次方程,则a、b的取值为()A.a≠0,b=4 B.a≠0,b=2 C.a≠﹣3,b=4 D.a≠3,b=4 2.把a根号外的因式移入根号内的结果是()
A.B.C.D.
3.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()
A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)
4.如果关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,那么k的取值范围是()
A.k<1 B.k≠0 C.k<1且k≠0 D.k>1
5.下列说法不正确的是()
A.位似图形一定是相似图形
B.相似图形不一定是位似图形
C.位似图形上任意一对对应点到位似中心的距离之比等于位似比
D.位似图形中每组对应点所在的直线必相互平行
6.如果•=成立,那么()
A.a≥0 B.0≤a≤3
C.a≥3 D.a取任意实数
7.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是()
A.BC=2DE B.△ADE∽△ABC
C.=D.S△ABC=3S△ADE
8.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()
A.10 B.14 C.10或14 D.8或10
9.已知a≠b,且a2﹣5a﹣1=0,b2﹣5b﹣1=0,则+的值为()A.﹣1 B.﹣1C.﹣1D.﹣1
10.若方程x2+mx+1=0和方程x2﹣x﹣m=0有一个相同的实数根,则m的值为()A.2 B.0 C.﹣1 D.
二.填空题(每小题3分,共15分)
11.已知=,则a:b=.
12.若最简二次根式与是可以合并的二次根式,则a=,b =.
13.方程3x2+x﹣1=0的解是.
14.已知x=,y=,则﹣=.
15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:
①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,
其中正确的结论的个数是.
三、解答题(本大题共8个小题,共75分)
16.计算:
(1)÷﹣×+
(2)(2+3)2﹣(2﹣3)2
17.解下列方程:
(1)4x2﹣7x﹣2=0(用配方法)
(2)(2x﹣1)2=x(3x+2)﹣7
18.如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.
(1)判断△ABC和△DEF是否相似,并说明理由;
(2)以点E为中心,在位似中心的同侧画出△EDF的一个位似△ED1F1,使得它与△EDF 的相似比为2:1;
(3)求△ABC与△ED1F1的面积比.
19.如图,△ABC中,点D在边AB上,满足∠ACD=∠B,若AC=2,AD=1.(1)求DB的长;
(2)求△ACD与△ABC的面积的比.
20.已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根:
(2)若x1,x2是原方程的两根,且|x1﹣x2|=2,求m的值,并求出此时方程的两根.21.如图,教学楼旁边有一棵大树,课外兴趣小组的同学在阳光下测得一根长为1m的竹竿的影长为0.9m,同一时刻这棵树落在地上的影长为2.7m,落在墙上的影长为1.2m,请你计算树高为多少.
22.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价
0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户
要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
23.如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)
(1)当t=1秒时,S的值是多少?
(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;
(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.。