三角函数的诱导公式
三角函数的诱导公式
万能公式 ⒌万能公式 2tan(α/2)
sinα=—————— 1+tan^2(α/2) 1-tan^2(α/2) cosα=—————— 1+tan^2(α/2) 2tan(α/2) tanα=—————— 1-tan^2(α/2) 万能公式推导 附推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为 cos^2(α)+sin^2(α)=1) 再把*分式上下同除 cos^2(α),可得 sin2α=tan2α/(1+tan^2(α)) 然后用 α/2 代替 α 即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三角函数的诱导公式
常用的诱导公式有以下几组: 公式一: 设 α 为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设 α 为任意角,π+α 的三角函数值与 α 的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角 α 与 -α 的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到 π-α 与 α 的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到 2π-α 与 α 的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α 与 α 的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα
三角函数的诱导公式
三角函数的诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cotcot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
三角函数诱导公式总结
三角函数诱导公式总结三角函数诱导公式是指用其中一三角函数来表示另一三角函数的公式。
在数学中三角函数诱导公式的推导和应用是非常重要的,它们在解三角方程、证明恒等式以及求解复数等领域中起到关键的作用。
本文将总结常见的三角函数诱导公式,并给出对应的推导过程和实际应用。
1.正弦函数的诱导公式:- $\sin (-x) = -\sin x$:通过几何意义可知,正弦函数在坐标系中关于原点对称,所以负角的正弦值等于对应正角的负值。
- $\sin (180° - x) = \sin x$:结合几何意义可知,正弦函数在坐标系中关于y轴对称,所以对于给定角度x,180°减去x所得的角度的正弦值等于x的正弦值。
- $\sin (180° + x) = -\sin x$:同理,正弦函数在坐标系中关于y轴对称,所以对于给定角度x,180°加上x所得的角度的正弦值等于x的负值。
- $\sin (360° - x) = -\sin x$:结合以上公式可得,对于给定角度x,360°减去x所得的角度的正弦值等于x的负值。
- $\sin (2x) = 2\sin x \cos x$:利用正弦函数的倍角公式,可得到角度为2x的正弦值可以分解为角度为x的正弦值的两倍乘以角度为x的余弦值。
这个公式在波动和震动的物理问题中常常使用。
2.余弦函数的诱导公式:- $\cos (-x) = \cos x$:由于余弦函数是偶函数,在坐标系中关于y轴对称,所以负角的余弦值等于对应正角的余弦值。
- $\cos (180° - x) = -\cos x$:余弦函数在坐标系中关于原点对称,所以对于给定角度x,180°减去x所得的角度的余弦值等于x的负值。
- $\cos (180° + x) = -\cos x$:同理,余弦函数在坐标系中关于原点对称,所以对于给定角度x,180°加上x所得的角度的余弦值等于x 的负值。
三角函数的诱导公式
三角函数的诱导公式(六公式)公式一:sin(α+k*2π)=sinα(k为整数)cos(α+k*2π)=cosα(k为整数)tan(α+k*2π)=tanα(k为整数)公式二:sin(π+α) = -sinαcos(π+α) = -cosαtan(π+α)=tanα公式三:sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanα公式四:sin(π-α) = sinαcos(π-α) = -cosαtan(π-α) =-tanα公式五:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotα公式六:sin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotα(以上k∈Z)诱导公式记背诀窍:奇变偶不变,符号看象限。
[2]或者也可以这样记:分变整不变,符号看象限。
三角和公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ)(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)积化和差的四个公式sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)正弦二倍角公式sin2α = 2cosαsinα 正切二倍角公式tan2α= 2tanα / 1 - tan^2α余弦二倍角公式余弦二倍角公式有三组表示形式,三组形式等价(升幂,降角):1. cos2α = 2cos^2(α)-12. cos2α = 1 − 2sin^2(a)3. cos2α = cos^2(a)− sin^2(a)cos2α = cos^2(α)-sin^2(α)= 2cos^2(α)-1 = 1 -2sin^2(α)还可以变形为(降幂,升角)sin^2α = (1 -cos2α) /2,cos^2α =(1 + cos2α)/2sin2α = sin^2(α + π/4) -cos^2(α + π/4) = 2sin^2(a + π/4) -1 = 1 -2cos^2(α + π/4);cos2α = 2sin(α + π/4)cos(α + π/4)正切二倍角公式tan2α = 2tanα/[1 - (tanα)^2]tan(1/2*α)=(sin α)/(1 + cos α) = (1 - cos α)/sin αtan(2a) = tan(a + a) = (tan(a) + tan(a))/(1 -tan(a)*tan(a) )= 2tanα/[1 -tan^2(a)]。
三角函数的诱导公式【六公式】
)/ )
九倍角
sin9A=(sinA*(-3+4*sinA^2 )* ( 64*sinA^6-96*sinA^4+36*sinA^2-3 ))
cos9A=(cosA*(-3+4*cosA^2 )* ( 64*cosA^6-96*cosA^4+36*cosA^2-3 ))
tan9A=tanA* ( 9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8 ) / (1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8 )
例. c^3=c*c^2=c* (1-s^2 ), c^5=c*(c^2 ) ^2=c* ( 1-s^2 ) ^2 )
特殊公式
(sina+sin θ) * ( sina- sin θ) =sin (a+θ) *sin ( a- θ)
证明:(sina+sin θ) *( sina- sin θ) =2 sin[ (θ +a)/2] cos[(a - θ)/2] *2 cos[ (θ +a)/2] sin[(a- θ) /2]
tan (α +β+γ) =(tan α+tan β+tan γ - tan α· tan β· tan γ) / (1- tan α· tan β - tan β· tan γ - tan α· tan γ)
(α +β+γ≠π /2+2k π,α、β、γ≠π /2+2k π)
积化和差的四个公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
三角函数 诱导公式
三角函数诱导公式(Induction formula)是一种数学公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
包括一些常用的公式和和差化积公式。
常用公式公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)=-cosαtan(π+α)= tanαcot(π+α)=cotα公式三: 任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):sin(-α)=-sinαcos(-α)= cosαtan(-α)=-tanαcot(-α)=-cotα公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)= cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六: π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotαtan(π/2-α)=cotαcot(π/2+α)=-tanαcot(π/2-α)=tanα推算公式:3π/2 ± α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαsin(3π/2-α)=-cosαcos(3π/2+α)=sinαcos(3π/2-α)=-sinαtan(3π/2+α)=-cotαtan(3π/2-α)=cotαcot(3π/2+α)=-tanαcot(3π/2-α)=tanα诱导公式记忆口诀:"奇变偶不变,符号看象限"。
三角函数的诱导公式
三角函数的诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
三角函数诱导公式大全
三角函數誘導公式大全三角函数诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
三角函数的八个诱导公式
三角函数的八个诱导公式
三角函数公式是数学中最基础的知识之一,但这些公式能够模拟出实际应用中所发生的事情,非常有用。
在数学中,一般情况下,三角函数会有八个诱导公式,这些公式作为三角函数的基础,它们在进行推导和解决实际问题时非常有用。
首先,最基本的公式之一就是sinx+cosx=1。
这个公式可以多次使用,当我们遇到需要解决sinx+cosx方程,我们可以立即得到解。
第二个公式是sinx-cosx=0,它显示了正弦和余弦之间的关系,正弦减去余弦的值是0。
第三个公式就是sinx cosx=1/2,此公式表明正弦和余弦乘积相等于1/2。
第四个诱导公式是sinx cotx=1。
它表示正弦和余切之积等于1。
第五个公式是cotxsinx+cotxcosx=1。
这个公式表明余切和正弦,余弦之和等于1。
第六个公式是sinx cscx=1。
该公式表明正弦和余割之积为1。
最后,还有两个公式,可以用来解决角的问题,即
sinx/cosx+cosx/sinx=2和sinx/cscx=1。
总体而言,上面提到的八个三角函数诱导公式是数学中基础计算的重要元素,它们不仅可以帮助我们快速解决实际问题,还可以用来推导其他更复杂的公式。
同时,此外的诱导公式也可以用来提供进一步的精度和稳定性来解决更复杂的方程。
三角函数诱导公式大全
常用的诱导公式有以下几组:1.sinα^2 +cosα^2=12.sinα/c osα=tanα3.tanα=1/c otα公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)3常用公式编辑口诀;奇变偶不变,符号看象限一般的最常用公式有:Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+TanB)/(1-TanA*TanB)Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)同角三角函数的关系(即同角八式)·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*c osαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1·商数关系:sina/cosa=tanacosa/sina=cota直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,sina=y/r余弦等于角A的邻边比斜边cosa=x/r正切等于对边比邻边,tana=y/x三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·c osβ-sinα·s inβcos(α-β)=cosα·c osβ+sinα·s inβsinα·cosβ-c osα·s inβsin(α+β)=sinα·c osβ+cosα·s inβ sin(α-β)=tan(α+β)=(tanα+tanβ)/(1-tanα·t anβ)tan(α-β)=(tanα-t anβ)/(1+tanα·t anβ)·辅助角公式:Asinα+B cosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·c osα=2/(t anα+cotα)cos(2α)=cos^2(α)-s in^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-t an^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4c os^3(α)-3cosα·半角公式:cosα)/2)sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/s inαtan(α/2)=±√((1-·降幂公式:sin^2(α)=(1-c os(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))万能公式:· sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·c osβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-s inβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-c osβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角函数的诱导公式》(第一课时)一.教材分析(1)教材的地位与作用:《三角函数的诱导公式》选自《普通高中课程标准数学教科书·数学必修4》(人教A版)第一章第3节第一课时,是三角函数这一章中的一个重要内容,它涉及三角函数的求值、化简、证明等应用,而且公式推导过程中所渗透的类比、化归、分类讨论、整体代换等思想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:《三角函数的诱导公式》是《任意角和弧度制》与《任意角的三角函数》内容的延续,不仅能加深对三角函数的理解,也为以后学三角函数的图像与性质做好铺垫。
二.学情分析(1)学生的已有的知识结构:掌握了任意角和弧度制,任意角的三角函数的定义,同角三角函数的基本关系。
(2)教学对象:高一理科试验班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与任意角的三角函数的定义及诱导公式一等方面进行类比,这是积极因素,应因势利导。
不利因素是:本节公式的种类繁多,要求归纳总结的知识多,这对学生的思维是一个突破。
三.教学目标根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标:理解并掌握三角函数的诱导公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.(3)情感,态度与价值观:培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。
四.重点、难点分析教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中涉及Z k ∈的问题解决。
五.教法与学法分析培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。
一句话:还课堂以生命力,还学生以活力。
六.课堂设计(一)创设情境,提出问题。
(时间设定:4分钟) [利用投影展示]诱导公式一:(1)原理:终边相同的角的同一三角函数的值相等。
(2)作用:利用公式一,可以把求任意角的三角函数值,转化为求0到π2(或︒0~︒360)角的三角函数值。
即负化正,大化小。
【提出问题1】化简(1)613sinπ(2))945sin(︒(3))316cos(π-(4))1845tan(︒-216sin )62sin(613sin==+=ππππ;︒=︒+︒⨯=︒225sin )2253602sin()945sin( 32cos)326cos()316cos(ππππ=+-=-)45tan()453605tan()1845tan(︒-=︒-︒⨯-=︒- 〖设计意图〗复习诱导公式一,引入新课题,同时激发学生的兴趣,调动学习的积极性。
(二)师生互动,探究问题[5分钟]【提出问题2】)225sin(︒、)32cos(π、)45tan(︒-的值又该如何计算呢?有学生会说:用计算器来求(老师当然肯定这种做法,但考试时不让用计算器。
) 【提出问题3】:同学们,我们来分析一下这些角有什么特征?(学生会发现6π为锐角,而︒225、32π、︒-45分别是第三、二、四象限角)【提出问题4】:我们能找到︒225、32π、︒-45与锐角的联系吗?[利用投影展示])45180sin()225sin(︒+︒=︒;)3cos()32cos(πππ-=【提出问题5】如何将求0到π2(或︒0~︒360)角的三角函数值转化为求锐角的三角函数值呢?【探究问题】给定一个角α。
(1)角απ-、απ+的终边与角α的终边有什么关系?它们的三角函数之间有什么关系? (2)角α-的终边与角α的终边有什么关系?它们的三角函数之间有什么关系? (3)角απ-2的终边与角α的终边有什么关系?它们的三角函数之间有什么关系?〖设计意图〗层层深入,剖析了角变换的妙用,使学生容易接受为什么要变换角,经过变换后,突然发现求0到π2(或︒0~︒360)角的三角函数值可以转化为求锐角的三角函数值;亲身体会从特殊到一般的推导过程。
【教师讲解】诱导公式的推导:(1)角απ+的终边与角α的终边关于原点对称;角απ-的终边与角α的终边关于y 轴对称; (2)角α-的终边与角α的终边关于x 轴对称; (3)角απ-2的终边与角α的终边关于直线x y =对称。
我们结合三角函数的定义,由上述对称性来讨论这些角的三角函数的关系。
如图,设任意角α的终边与单位圆的交点坐标为),(1y x P 。
由于角απ+的终边与角α的终边关于原点对称,角απ+的终边与单位圆的交点坐标为2P 与点1P 关于原点对称,因此2P 的坐标为),(y x --。
由三角函数的定义得:y =αsin , x =αcos , xy=αtan y -=+)sin(απ,x -=+)cos(απ,xy =+)tan(απ 从而得 公式二(三)类比联想,解决问题。
[时间设定:10分钟]【学生活动】请同学们自己完成公式三、四的推导。
学生开展合作学习,讨论交流,老师巡视课堂,发现有典型解法的,叫同学板书在黑板上。
公式三 公式四〖设计意图〗从特殊到一般,从模仿到创新,有利于学生的知识迁移和能力提高,让学生在探索过程中,充分感受到成功的情感体验。
(四)解决例题,开拓思维。
[时间设定:5分钟] [利用投影展示]2245sin )45180sin()225sin(-=︒-=︒+︒=︒;213cos )3cos()32cos(-=-=-=ππππ;145tan )45tan(-=︒-=︒-〖设计意图〗共享学习成果,开拓了思维,感受数学的美。
(五)归纳提炼,构建新知。
[时间设定:3分钟]【提出问题6】你能用简洁的语言概括一下公式一~四吗?它们的作用是什么? 学生讨论、回答,教师总结板书:)(2Z k k ∈∙+πα,α-,απ±的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
即函数名不变,符号看象限。
〖设计意图〗通过归纳总结,使学生加深对公式特征的了解,加深对知识的认识,完善知识结构,增强思维的严谨性。
(六)层层深入,掌握新知。
[时间设定:15分钟] 例1.利用公式求下列三角函数值:(1))1290sin(︒-(2))420cos(︒-(3))679tan(π-[利用投影展示]2130sin )30180sin(150sin )1503606sin()1290sin(=︒=︒-︒=︒=︒+︒⨯-=︒- 2160cos )60360cos(420cos )420cos(=︒=︒+︒=︒=︒-336tan )6tan()613tan(679tan )679tan(-=-=+-=+-=-=-πππππππ〖设计意图〗通过两道简单题来剖析公式中的基本量,进行正反两方面的“短、浅、快”练习,通过总结、辨析和反思,强化公式的结构特征。
【提出问题6】由例1,你对公式一~四的作用有什么进一步的认识?你能归纳一下把任意角的三角函数转化为求锐角的三角函数的步骤吗? [利用投影展示]〖设计意图〗体现由未知转化为已知的化归思想,培养学生的归纳总结能力。
例2.化简)180cos()180sin()360sin()180cos(αααα-︒-∙︒--︒+∙+︒(先由学生独立求解,然后抽学生板演,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。
)变式1:化简)tan()cos()sin(πααπα---+ 变式2:化简)cos(])1sin[(])1cos[()sin(απαπαπαπ+++--+k k k k ,其中Z k ∈。
〖设计意图〗变式训练,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思想,分类讨论思想。
(七)总结归纳,加深理解。
[时间设定:2分钟] (1)诱导公式一~四的推导及应用。
(2)任意角的三角函数转化为求锐角的三角函数的步骤。
〖设计意图〗形成知识模块,从知识的归纳延伸到思想方法的提炼,优化学生的认知结构。
(八)课后作业,巩固提高。
[时间设定:1分钟] (1)必做:课本P29习题1.3第2、3题。
(2)研究性作业:推导诱导公式五、六。
(3)选做:化简Z k k k ∈-++++),313cos()313sin(απαπ〖设计意图〗为了使所有学生巩固所学知识,布置了“必做题”;“选做题”又为学有余力者留有自由发展的空间,布置了“探究题”以利于学生开展研究性学习,拓展学生的视野。
七、板书设计八、教学反思本节课立足课本,着力挖掘,设计合理,层次分明。
充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。
在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,引导学生发现数学的美,体验求知的乐趣。