2014届高三数学一轮复习专讲专练:1.2命题、充分条件与必要条件

合集下载

2014高考数学一轮复习课件:命题及其关系、充分条件与必要条件(精)

2014高考数学一轮复习课件:命题及其关系、充分条件与必要条件(精)

π 1.(2012· 湖南高考)命题“若 α=4,则 tan α=1”的逆 否命题是( ) π B.若 α=4,则 tan α≠1
π A.若 α≠4,则 tan α≠1 π C.若 tan α≠1,则 α≠4
π D.若 tan α≠1,则 α=4 π 解析: 原命题的逆否命题为“若 tan α≠1, 则 α≠4”. 故

本例(3)中很容易因理解错误而致 错.正确的理解为:选出的答案能推得“x= 1或x=2”成立,反之不成立.
【活学活用】 π 3.(2013· 许昌模拟)“x=2kπ+4(k∈Z)”是“tan x=1” 成立的( ) B.必要不充分条件
A.充分不必要条件
C.充要条件 D.既不充分也不必要条件 π 解析:当 x=2kπ+4(k∈Z)时,tan x=1;而当 tan x=1
• 判断充要条件的常用方法 • (1)定义法:①定条件.确定命题中哪是条件, 哪是结论.②找推式.是A⇒B形式,还是B⇒A 形式;③下结论.根据定义下结论. • (2)等价法:利用A⇒B与綈B⇒綈A;B⇒A与綈 A⇒綈B;A⇔B与綈B⇔綈A的等价关系.一般地, 对于条件或结论是不等关系(否定式)的命题,运 用等价法. • (3)利用集合间的包含关系判断.若A⊆B,则A是 B的充分条件或B是A的必要条件;若A=B,则A 是B的充要条件.
• (1)已知原命题写出其他命题时,要以各种命题 的定义为依据. • (2)原命题与其逆否命题为等价命题,逆命题与 否命题为等价命题,一真俱真,一假俱假.当 一个命题的真假不易判断时,可考虑判断其等 价命题的真假.

命题的否定与否命题是两个不同的 概念.对一个命题进行否定时,只否定结论; 而求一个命题的否命题时,需要将条件和结 论同时否定.

[vip专享]2014届高考数学一轮复习名师首选:第1章2《命题及其关系、充分条件与必要条件》

[vip专享]2014届高考数学一轮复习名师首选:第1章2《命题及其关系、充分条件与必要条件》
23WOR1DWO---RDWwOorRdDw1ordword
21
3 2 1 “” 23WOR1D
1 320082 1 3
学案 2 命题及其关系、充分条件与必要条件
导学目标: 1.能写出一个命题的逆命题、否命题、逆否命题,会分析四种命题的相互 关系.2.理解必要条件、充分条件与充要条件的含义.
自主梳理 1.命题 用语言、符号或式子表达的,可以判断真假的语句叫做命题,其中判断为真的语句叫 做真命题,判断为假的语句叫做假命题. 2.四种命题及其关系 (1)四种命题
探究点一 四种命题及其相互关系 例 1 写出下列命题的逆命题、否命题、逆否命题,并判断其真假. (1)实数的平方是非负数; (2)等底等高的两个三角形是全等三角形; (3)弦的垂直平分线经过圆心,并平分弦所对的弧. 解题导引 给出一个命题,判断其逆命题、否命题、逆否命题等的真假时,如果直接 判断命题本身的真假比较困难,则可以通过判断它的等价命题的真假来确定. 解 (1)逆命题:若一个数的平方是 非负数,则这个数是实数.真命题. 否命题:若一个数不是实数,则它的平方不是非负数.真命题. 逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题. (2)逆命题:若两个三角形全等,则这两个三角形等底等高.真命题. 否命题:若两个三角形不等底或不等高,则这两个三角形不全等.真命题. 逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.假命题. ( 3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分 线.真命题. 否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的 弧.真命题. 逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平 分线.真命题. 变式迁移 1 有下列四个命题: ①“若 x+y=0,则 x,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题; ③“若 q≤1,则 x2+2x+q=0 有实根”的逆否命题;

2014年高考数学一轮复习练手题:命题及其关系、充分条件与必要条件

2014年高考数学一轮复习练手题:命题及其关系、充分条件与必要条件

2014年高考数学一轮复习练手题:命题及其关系、充分条件与必要条件巩固双基,提升能力一、选择题1. (2013 •泰安期末)命题:若—1< x v 1,则x A 2< 1”的逆否命题是()A. 若x>1 或x<—1,则xA 2>1B. 若xA 2< 1,则—1 < x< 1C. 若xA 2> 1,贝U x > 1 或x<—1D. 若xA >1,贝y x》l 或x<—1解析:逆否命题是将原命题的条件和结论换位否定,故选D.答案:D2. (2013 •嘉定区、黄浦区联考)已知空间三条直线a、b、m及平面a,且a、b a.条件甲:m丄a, m± b;条件乙:m l a,贝U条件乙成立”是条件甲成立”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件解析:根据线面垂直的性质知,若m丄a, —定有m丄a, m丄b;但若m丄a, m丄b, 不一定有m丄a,因为a、b不一定相交.因此条件乙成立”是条件甲成立”的充分不必要条件.答案:A3. (2013 •南宁调研)设x, y是两个实数,命题:x, y中至少有一个数大于1”成立的充分不必要条件是()A. x + y = 2B. x + y >2C. xA 2+ yA 2> 2D. xy > 1解析:x, y中至少有一个数大于1"成立的充分不必要条件是x+ y > 2,因为若x, y 都不大于1,则x+ y >2不成立.但是x, y中至少有一个数大于1,不一定有x+ y >2,如x= 4 , y=—8,贝U x+ y=—4.故选B.答案:B4. (2012 •广西调研)设条件p:f(x)= e A x+ 2xA2+ mx + 1在(0,+^)上单调递增,条件q:m+ 5>0,贝U p 是q 的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件解析:函数f(x)在(0,+^)上单调递增,只需f'x( = e A x+ 4x+ m》0在(0,+^)上恒成立,又f 'X) = e A x+ 4x + m在(0,+ m)上单调递增,因此有m》—1,故p是q的充分不必要条件.答案:A5•对于函数y = f(x), x€ R, y = |f(x)|的图像关于y轴对称”是y= f(x)是奇函数”的A. 充分而不必要条件B. 必要而不良分条件C. 充要条件D. 既不充分也不必要条件解析:若y = f(x)为奇函数,则y = |f(x)|的图像关于y轴对称,反过来不成立,即若y=f(x)为偶函数,则y = | f(x)|的图像也关于y轴对称.故选B.答案:B6. (2013 •海口模拟)已知集合A= {x € R|1/2 v 2人x< 8} , B= {x€ R| — 1 v x v m + 1},若x€ B成立的一个充分不必要的条件是x€ A,则实数m的取值范围是()A. m >2B. m<2C. m > 2D. —2 v m v 2解析:A= {x € R|1/2 v 2A x v 8} = {x| —1 v x v 3}••• x € B成立的一个充分不必要条件是x € A,AB. - m + 1 > 3,即卩m > 2.答案:C二、填空题7. _______________________________________________________________________(2013 •广西调研)写出一个使不等式|x—2| v 1成立的必要不充分条件_________________ .解析:解不等式|x —2| v 1,得1 v x v 3,此为充要条件,要求必要不充分条件,只要使所求条件比此范围大即可.答案:0 v x v 3(答案不唯一)& (2012 •南昌模拟)若XA2—2x—8 > 0”是x v m”的必要不充分条件,则m的最大值为解析:由xA 2—2x —8> 0,得x v —2或x>4,要使x v m能得出x v —2或x >4,故m的最大值为一2.答案:—29 .给定下列命题:①若k>0,则方程xA 2+ 2x —k= 0有实数根;②若a> b,则a+ c> b + c”的否命题;③矩形的对角线相等”的逆命题;④若xy= 0,则x、y中至少有一个为0”的否命题.其中真命题的序号是_____________ .解析:①I A= 4 —4( —k) = 4 + 4k>0 ,•①是真命题.②否命题:若a w b,则a+ c<b+ c"是真命题.③逆命题:对角线相等的四边形是矩形”是假命题.④否命题:若xy工0,则x、y都不为0”是真命题.答案:①②④三、解答题10. 已知函数f(x)在(— 8,+^)上是增函数,a, b€ R,对命题:若a+ b>0,则f(a) + f(b) ^f(—a) + f(—b).(1) 写出否命题,判定真假,并证明你的结论;(2) 写出逆否命题,判定真假,并证明你的结论.解析:⑴否命题:已知函数f(x)在(—8,+^)上是增函数,a, b € R.若a+ b< 0,则f(a) + f(b) < f( —a) + f( —b).否命题为真命题,证明如下:•/ f(x)在(—8,+ 8)上是增函数,若a+ b< 0,贝U a<—b, b<—a,••• f(a) < f( —b), f(b) < f( —a).f(a) + f(b) < f( —a) + f( —b),故否命题为真命题.(2)逆否命题:已知函数f(x)在(—8,+8)上是增函数,a, b€ R.若f(a) + f(b) <f( —a) + f(—b),则a + b< 0.该逆否命题为真命题,证明如下:对于原命题:••• f(x)在(—8,+ 8)上是增函数,且a+ b>0,•a>—b, b >—a.••• f(a)列—b), f(b) —a).•- f(a) + f(b) (—a) + f( —b).故原命题为真命题,所以逆否命题为真命题.11. 已知P= {x|x A 2—8x—20w0}, S= {x|1 —m<x<l + m}.(1) 是否存在实数m,使x€ P是x€ S的充要条件,若存在,求出m的范围;(2) 是否存在实数m,使x€ P是x€ S的必要条件,若存在,求出m的范围.2解析:⑴由xA —8x—20W0 得—2W X< 10,•P= {x| —2<x< 10}.••• x€ P是x€ S的充要条件,• P= S.• 1 —m = —2;1 + m = 10 ;m = 3, m = 9•这样的m不存在.(2)由题意x€ P是x€ S的必要条件,则SP.• 1 ——2;1 + m< 10「. m w 3.综上,可知m W3时,x€ P是x€ S的必要条件.12 . (2013 •江西南昌三中月考)已知命题p:X2是方程xA 2—mx—2 = 0的两个实根,不等式aA 2—5a—3>|(1 —X2|对任意实数m € [ —1,1]恒成立;命题q:不等式axA 2+ 2x —1 >0有解.若命题p是真命题,命题q为假命题,求实数a的取值范围.解析:•/ X1, X2是方程x2—mx — 2 = 0的两个实根,•X1 + X2 = m, X1X2= — 2 ,•凶一X2|= v [(X1 + X2)A —4X1X2)] = V (m A + 8).又m € [ —1,1],故|x1 —X21的最大值等于3.由题意得:a —5a —3a或a w — 1.故命题p是真命题时,a或a w—1.命题q: (1) a> 0时,axA + 2x— 1 >0显然有解;(2) a= 0 时,2x—1 >0 有解;(3) a< 0 时,A= 4 + 4a >0,—1 < a< 0.从而命题q为真命题时:a>— 1.a的取值范围是a<- 1.•••命题p是真命题,命题q为假命题时实数。

2014届高三数学一轮复习 命题及其关系、充分条件与必要条件提分训练题

2014届高三数学一轮复习 命题及其关系、充分条件与必要条件提分训练题

命题及其关系、充分条件与必要条件1.若a ∈R ,则“a =1”是“|a |=1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件解析:若a =1,则有|a |=1是真命题,即a =1⇒|a |=1,由|a |=1可得a =±1,所以若|a |=1,则有a =1是假命题,即|a |=1⇒a =1不成立,所以a =1是|a |=1的充分而不必要条件. 答案:A2.已知命题p :∃n ∈N,2n>1 000,则綈p 为( ). A .∀n ∈N,2n≤1 000 B .∀n ∈N,2n>1 000 C .∃n ∈N,2n ≤1 000D .∃n ∈N,2n<1 000解析 特称命题的否定是全称命题.即p :∃x ∈M ,p (x ),则綈p :∀x ∈M ,綈p (x ).故选A. 答案 A3.命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数”解析:原命题的逆命题是:若一个数的平方是正数,则它是负数. 答案:B4.已知α,β角的终边均在第一象限,则“α>β”是“sin α>sin β”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 (特例法)当α>β时,令α=390°,β=60°,则sin 390°=sin 30°=12<sin60°=32,故sin α>sin β不成立;当sin α>sin β时,令α=60°,β=390°满足上式,此时α<β,故“α>β”是“sin α>sin β”的既不充分也不必要条件. 答案 D【点评】 本题采用了特例法,所谓特例法,就是用特殊值特殊图形、特殊位置代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效. 5.与命题“若a ∈M ,则b ∉M ”等价的命题是( ) A .若a ∉M ,则b ∉M B .若b ∉M ,则a ∈M C .若a ∉M ,则b ∈MD .若b ∈M ,则a ∉M解析:因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.故选D. 答案:D6 若实数a ,b 满足a ≥0,b ≥0,且ab =0,则称a 与b 互补.记φ(a ,b )=a 2+b 2-a -b ,那么φ(a ,b )=0是a 与b 互补的( ).A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件解析 若φ (a ,b )=0,即a 2+b 2=a +b ,两边平方得ab =0,故具备充分性.若a ≥0,b ≥0,ab =0,则不妨设a =0.φ(a ,b )=a 2+b 2-a -b =b 2-b =0.故具备必要性.故选C. 答案 C7.已知集合A ={x ∈R|12<2x<8},B ={x ∈R|-1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是( ) A .m ≥2 B .m ≤2 C .m >2D .-2<m <2解析:A ={x ∈R|12<2x<8}={x |-1<x <3}∵x ∈B 成立的一个充分不必要条件是x ∈A ∴AB∴m +1>3,即m >2. 答案:C 二、填空题8.若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的取值范围是________. 解析:x ∉[2,5]且x ∉{x |x <1或x >4}是真命题.由⎩⎪⎨⎪⎧x <2或x >5,1≤x ≤4得1≤x <2.答案:[1,2)9.已知p :“a =2”,q :“直线x +y =0与圆x 2+(y -a )2=1相切”,则p 是q 的________条件.解析:由直线x +y =0与圆x 2+(y -a )2=1相切得,圆心(0,a )到直线x +y =0的距离等于圆的半径,即有|a |2=1,a =± 2.因此,p 是q 的充分不必要条件.答案:充分不必要10.设p :|4x -3|≤1;q :(x -a )(x -a -1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________. 解析 p :|4x -3|≤1⇔12≤x ≤1,q :(x -a )(x -a -1)≤0⇔a ≤x ≤a +1由pq ,得⎩⎪⎨⎪⎧a ≤12,a +1≥1,解得:0≤a ≤12.答案 ⎣⎢⎡⎦⎥⎤0,12 11.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3 p 2:|a +b |>1⇔θ∈⎝⎛⎦⎥⎤2π3,πp 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π其中真命题的个数是____________.解析 由|a +b |>1可得a 2+2a²b +b 2>1,因为|a |=1,|b |=1,所以a²b >-12,故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a²b >-12,|a +b |2=a 2+2a²b +b 2>1,即|a +b |>1,故p 1正确.由|a -b |>1可得a 2-2a²b +b 2>1,因为|a |=1,|b |=1,所以a²b <12,故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立,p 4正确. 答案 212.给出下列命题:①原命题为真,它的否命题为假; ②原命题为真,它的逆命题不一定为真; ③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m >1,则mx 2-2(m +1)x +m +3>0的解集为R”的逆命题. 其中真命题是________.(把你认为正确命题的序号都填在横线上)解析:原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式mx 2-2(m +1)x +m +3>0的解集为R ,由⎩⎪⎨⎪⎧ m >0Δ=m +2-4m m +⇒⎩⎪⎨⎪⎧m >0m >1⇒m >1.故⑤正确. 答案:②③⑤ 三、解答题13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解析:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.14.求方程ax 2+2x +1=0的实数根中有且只有一个负实数根的充要条件. 解析:方程ax 2+2x +1=0有且仅有一负根. 当a =0时,x =-12适合条件.当a ≠0时,方程ax 2+2x +1=0有实根, 则Δ=4-4a ≥0,∴a ≤1, 当a =1时,方程有一负根x =-1.当a <1时,若方程有且仅有一负根,则x 1x 2=1a<0,∴a <0.综上,方程ax 2+2x +1=0有且仅有一负实数根的充要条件为a ≤0或a =1.15.已知命题p :⎩⎪⎨⎪⎧x +2≥0,x -10≤0,命题q :1-m ≤x ≤1+m ,m >0,若¬p 是¬q 的必要不充分条件,求实数m 的取值范围.解析:p :x ∈[-2,10],q :x ∈[1-m,1+m ],m >0, ∵¬p 是¬q 的必要不充分条件,∴p ⇒q 且q ⇒/ p . ∴[--m,1+m ].∴⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m ≥10.∴m ≥9.16.已知全集U =R ,非空集合A ={x |x -2x -a +<0},B ={x |x -a 2-2x -a<0}.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. 解析:(1)当a =12时,A ={x |2<x <52},B ={x |12<x <94},∁U B ={x |x ≤12或x ≥94},(∁U B )∩A ={x |94≤x <52}.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,得B ={x |a <x <a 2+2}, 当3a +1>2,即a >13时,A ={x |2<x <3a +1},⎩⎪⎨⎪⎧a ≤2a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =Ø,符合题意;当3a +1<2,即a <13时,A ={x |3a +1<x <2}.⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,解得-12≤a <13;综上,a ∈[-12,3-52].。

【步步高】2014届高三数学大一轮复习 1.2命题及其关系、充分条件与必要条件教案 理 新人教A版

【步步高】2014届高三数学大一轮复习 1.2命题及其关系、充分条件与必要条件教案 理 新人教A版

§1.2命题及其关系、充分条件与必要条件2014高考会这样考 1.考查四种命题的意义及相互关系;2.考查对充分条件、必要条件、充要条件等概念的理解,主要以客观题的形式出现;3.在解答题中考查命题或充分条件与必要条件.复习备考要这样做 1.在解与命题有关的问题时,要理解命题的含义,准确地分清命题的条件与结论;2.注意条件之间关系的方向性、充分条件与必要条件方向正好相反;3.注意等价命题的应用.1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.[难点正本疑点清源]1.等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.2.集合与充要条件设集合A ={x |x 满足条件p },B ={x |x 满足条件q },则有(1)若A ⊆B ,则p 是q 的充分条件,若A B ,则p 是q 的充分不必要条件; (2)若B ⊆A ,则p 是q 的必要条件,若B A ,则p 是q 的必要不充分条件; (3)若A =B ,则p 是q 的充要条件; (4)若A B ,且B A ,则p 是q 的既不充分也不必要条件.1. 下列命题:①“全等三角形的面积相等”的逆命题; ②“若ab =0,则a =0”的否命题;③“正三角形的三个角均为60°”的逆否命题.其中真命题的序号是________(把所有真命题的序号填在横线上). 答案 ②③解析 ①“全等三角形的面积相等”的逆命题为“面积相等的三角形全等”,显然该命题为假命题;②“若ab =0,则a =0”的否命题为“若ab ≠0,则a ≠0”,而由ab ≠0,可得a ,b 都不为零,故a ≠0,所以该命题是真命题;③因为原命题“正三角形的三个角均为60°”是一个真命题,故其逆否命题也是一个真命题. 2. “x >2”是“1x <12”的________条件.答案 充分不必要 解析 ①x >2⇒2x >0⇒x 2x >22x ⇒1x <12, ∴“x >2”是“1x <12”的充分条件.②1x <12⇒x <0或x >2D ⇒/x >2. ∴“x >2”是“1x <12”的不必要条件.3. 已知a ,b ∈R ,则“a =b ”是“a +b2=ab ”的____________条件.答案 必要不充分 解析 因为若a =b <0,则a +b2≠ab ,所以充分性不成立;反之,因为a +b2=ab ⇔a=b ⇔a =b ≥0,所以必要性成立,故“a =b ”是“a +b2=ab ”的必要不充分条件.4. (2011²天津)设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 C解析因为A={x|x-2>0}={x|x>2}=(2,+∞),B={x|x<0}=(-∞,0),所以A∪B=(-∞,0)∪(2,+∞),C={x|x(x-2)>0}={x|x<0或x>2}=(-∞,0)∪(2,+∞).即A∪B=C.故“x∈A∪B”是“x∈C”的充要条件.5.(2012²天津)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析由条件推结论和结论推条件后再判断.若φ=0,则f(x)=cos x是偶函数,但是若f(x)=cos(x+φ) (x∈R)是偶函数,则φ=π也成立.故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.题型一四种命题的关系及真假例1已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( ) A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题思维启迪:根据四种命题的定义判断一个原命题的逆命题、否命题、逆否命题的表达格式.当命题较简单时,可直接判断其真假,若命题本身复杂或不易直接判断时,可利用其等价命题——逆否命题进行真假判断.答案 D解析 命题“若函数f (x )=e x-mx 在(0,+∞)上是增函数,则m ≤1”是真命题,所以其逆否命题“若m >1,则函数f (x )=e x-mx 在(0,+∞)上不是增函数”是真命题. 探究提高 (1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)认真仔细读题,必要时举特例.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数 答案 C解析 由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C. 题型二 充要条件的判断例2 已知下列各组命题,其中p 是q 的充分必要条件的是( )A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点 B .p :f -x f x =1;q :y =f (x )是偶函数C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A思维启迪:首先要分清条件和结论,然后可以从逻辑推理、等价命题或集合的角度思考问题,做出判断. 答案 D解析 对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件; 对于B ,由f -x f x =1⇒f (-x )=f (x )⇒y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f -x f x =1,例如函数f (x )=0,所以p 是q 的充分不必要条件;对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q 的既不充分也不必要条件;对于D ,由A ∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ; 反之,由∁U B ⊆∁U A ,知A ⊆B ,即A ∩B =A . 所以p ⇔q .综上所述,p 是q 的充分必要条件的是D.探究提高 判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件; ②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件; ③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件. 其中真.命题的序号是________. 答案 ①④解析 对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列 {a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =32,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④. 题型三 利用充要条件求参数例3 已知集合M ={x |x <-3或x >5},P ={x |(x -a )²(x -8)≤0}.(1)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的充要条件;(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件. 思维启迪:解决此类问题一般是先把充分条件、必要条件或充要条件转化为集合之间的关系,再根据集合之间的关系列出关于参数的不等式求解. 解 (1)由M ∩P ={x |5<x ≤8},得-3≤a ≤5, 因此M ∩P ={x |5<x ≤8}的充要条件是{a |-3≤a ≤5}.(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件,就是在集合{a |-3≤a ≤5}中取一个值,如取a =0,此时必有M ∩P ={x |5<x ≤8};反之,M ∩P ={x |5<x ≤8}未必有a =0,故“a =0”是“M ∩P ={x |5<x ≤8}”的一个充分但不必要条件.探究提高 利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的运算,一定要注意区间端点值的检验.已知p :x 2-4x -5≤0,q :|x -3|<a (a >0).若p 是q 的充分不必要条件,求a 的取值范围.解 设A ={x |x 2-4x -5≤0}={x |-1≤x ≤5},B ={x |-a +3<x <a +3},因为p 是q 的充分不必要条件,从而有A B .故⎩⎪⎨⎪⎧-a +3<-1,a +3>5,解得a >4.等价转化思想在充要条件关系中的应用典例:(12分)已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m >0),且綈p 是綈q 的必要而不充分条件,求实数m 的取值范围.审题视角 (1)先求出两命题的解集,即将命题化为最简.(2)再利用命题间的关系列出关于m 的不等式或不等式组,得出结论. 规范解答解 方法一 由q :x 2-2x +1-m 2≤0, 得1-m ≤x ≤1+m ,[2分] ∴綈q :A ={x |x >1+m 或x <1-m ,m >0}, [3分] 由p :⎪⎪⎪⎪⎪⎪1-x -13≤2,解得-2≤x ≤10, [5分] ∴綈p :B ={x |x >10或x <-2}.[6分]∵綈p 是綈q 的必要而不充分条件.∴A B ,∴⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10,或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,即m ≥9或m >9.∴m ≥9.[12分]方法二 ∵綈p 是綈q 的必要而不充分条件, ∴p 是q 的充分而不必要条件,[2分]由q :x 2-2x +1-m 2≤0,得1-m ≤x ≤1+m ,∴q :Q ={x |1-m ≤x ≤1+m }, [4分]由p :⎪⎪⎪⎪⎪⎪1-x -13≤2,解得-2≤x ≤10, ∴p :P ={x |-2≤x ≤10}.[6分]∵p 是q 的充分而不必要条件,∴P Q ,∴⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10,或⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m >10,即m ≥9或m >9.∴m ≥9.[12分]温馨提醒 本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.方法与技巧1. 当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其它三种命题时,应把其中一个(或几个)作为大前提.2. 数学中的定义、公理、公式、定理都是命题,但命题与定理是有区别的;命题有真假之分,而定理都是真的. 3. 命题的充要关系的判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:利用A ⇒B 与綈B ⇒綈A ,B ⇒A 与綈A ⇒綈B ,A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 失误与防范1. 判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p则q ”的形式.2. 判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012²湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由原命题与其逆否命题之间的关系可知,原命题的逆否命题: 若tan α≠1,则α≠π4.2. (2012²福建)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( ) A .x =-12B .x =-1C .x =5D .x =0答案 D解析 ∵a =(x -1,2),b =(2,1), ∴a ²b =2(x -1)+2³1=2x . 又a ⊥b ⇔a ²b =0,∴2x =0,∴x =0.3. 已知集合M ={x |0<x <1},集合N ={x |-2<x <1},那么“a ∈N ”是“a ∈M ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N ”是“a ∈M ”的必要而不充分条件.故选B.4. 下列命题中为真命题的是( )A .命题“若x >y ,则x >|y |”的逆命题B .命题“若x >1,则x 2>1”的否命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>0,则x >1”的逆否命题 答案 A解析 对于A ,其逆命题:若x >|y |,则x >y ,是真命题,这是因为x >|y |=⎩⎪⎨⎪⎧y y ≥0-y y <0,必有x >y ;对于B ,否命题:若x ≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题:若x ≠1,则x 2+x -2≠0,因为x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x >0或x <0,不一定有x >1,因此原命题的逆否命题是假命题,故选A.二、填空题(每小题5分,共15分) 5. 下列命题:①若ac 2>bc 2,则a >b ;②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件; ④若f (x )=log 2x ,则f (|x |)是偶函数. 其中正确命题的序号是________. 答案 ①③④解析 对于①,ac 2>bc 2,c 2>0,∴a >b 正确;对于②,sin 30°=sin 150°D ⇒/30°=150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③对;对于④显然对.6. 已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________. 答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0, 解得m ≥3;又因为p (2)是真命题,所以4+4-m >0, 解得m <8.故实数m 的取值范围是3≤m <8.7. (2011²陕西)设n ∈N +,一元二次方程x 2-4x +n =0有整数..根的充要条件是n =________. 答案 3或4解析 ∵x 2-4x +n =0有整数根, ∴x =4±16-4n 2=2±4-n ,∴4-n 为某个整数的平方且4-n ≥0,∴n =3或n =4. 当n =3时,x 2-4x +3=0,得x =1或x =3;当n =4时,x 2-4x +4=0,得x =2. ∴n =3或n =4. 三、解答题(共22分)8. (10分)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假.解 原命题:若a ≥0,则x 2+x -a =0有实根. 逆否命题:若x 2+x -a =0无实根,则a <0. 判断如下:∵x 2+x -a =0无实根,∴Δ=1+4a <0,∴a <-14<0,∴“若x 2+x -a =0无实根,则a <0”为真命题.9. (12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若綈p 是綈q 的充分而不必要条件,求实数m 的取值范围.解 由题意得p :-2≤x -3≤2,∴1≤x ≤5. ∴綈p :x <1或x >5.q :m -1≤x ≤m +1,∴綈q :x <m -1或x >m +1.又∵綈p 是綈q 的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5,且等号不能同时取到,∴2≤m ≤4.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012²上海)对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 ∵mn >0,∴⎩⎪⎨⎪⎧m >0,n >0或⎩⎪⎨⎪⎧m <0,n <0,当m >0,n >0且m ≠n 时,方程mx 2+ny 2=1的曲线是椭圆, 当m <0,n <0时,方程mx 2+ny 2=1不表示任何图形, 所以条件不充分;反之,当方程mx 2+ny 2=1表示的曲线是椭圆时有mn >0,所以“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的必要不充分条件.2. 已知p :1x -2≥1,q :|x -a |<1,若p 是q 的充分不必要条件,则实数a 的取值范围为( ) A .(-∞,3] B .[2,3] C .(2,3]D .(2,3)答案 C 解析 由1x -2≥1,得2<x ≤3; 由|x -a |<1,得a -1<x <a +1.若p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧a -1≤2a +1>3,即2<a ≤3.所以实数a 的取值范围是(2,3],故选C.3. 集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 A ={x |-4≤x ≤4},若A ⊆B ,则a >4.a >4D /⇒a >5,但a >5⇒a >4.故“A ⊆B ”是“a >5”的必要不充分条件. 二、填空题(每小题5分,共15分)4. 设有两个命题p 、q .其中p :对于任意的x ∈R ,不等式ax 2+2x +1>0恒成立;命题q :f (x )=(4a -3)x 在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫34,1∪(1,+∞)解析 当a =0时,不等式为2x +1>0,显然不能恒成立,故a =0不适合; 当a ≠0时,不等式ax2+2x +1>0恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=22-4a <0, 解得a >1.若命题q 为真,则0<4a -3<1,解得34<a <1.由题意,可知p ,q 一真一假. 当p 真q 假时,a 的取值范围是 {a |a >1}∩{a |a ≤34或a ≥1}={a |a >1};当p 假q 真时,a 的取值范围是 {a |a ≤1}∩{a |34<a <1}={a |34<a <1};所以a 的取值范围是⎝ ⎛⎭⎪⎫34,1∪(1,+∞). 5. 若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的取值范围是________.答案 [1,2)解析 x ∉[2,5]且x ∉{x |x <1或x >4}是真命题.由⎩⎪⎨⎪⎧x <2或x >5,1≤x ≤4,得1≤x <2.点评 “A 或B ”的否定是“綈A 且綈B ”.6. “m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0, 即m ≤14,∵m <14⇒m ≤14,反之不成立.故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.三、解答题7. (13分)已知全集U =R ,非空集合A =⎩⎨⎧⎭⎬⎫x |x -2x -3a +1<0,B =⎩⎨⎧⎭⎬⎫x |x -a 2-2x -a <0.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. 解 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x -52<0=⎩⎨⎧⎭⎬⎫x |2<x <52, B =⎩⎨⎧⎭⎬⎫x |x -94x -12<0=⎩⎨⎧⎭⎬⎫x |12<x <94, ∴∁U B =⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥94.∴(∁U B )∩A =⎩⎨⎧⎭⎬⎫x |94≤x <52. (2)∵a 2+2>a ,∴B ={x |a <x <a 2+2}. ①当3a +1>2,即a >13时,A ={x |2<x <3a +1}.∵p 是q 的充分条件,∴A ⊆B .∴⎩⎪⎨⎪⎧a ≤23a +1≤a 2+2,即13<a ≤3-52.②当3a +1=2,即a =13时,A =∅,不符合题意;③当3a +1<2,即a <13时,A ={x |3a +1<x <2},由A ⊆B 得⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,∴-12≤a <13.综上所述,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.。

高三数学一轮复习-命题及其关系 充分条件和必要条件-

高三数学一轮复习-命题及其关系 充分条件和必要条件-

第二节 命题及其关系、充分条件与必要条件充要条件问题的常见类型及解题策略(1)判断指定条件与结论之间的关系.解决此类问题应分三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.(2)探究某结论成立的充要、充分、必要条件.解答此类题目,可先从结论出发,求出使结论成立的必要条件,然后再验证得到的必要条件是否满足充分性.(3)充要条件与命题真假性的交汇问题.依据命题所述的充分必要性,判断是否成立即可.1.(2014·西安模拟)如果对于任意实数x ,[x ]表示不超过x 的最大整数,那么“[x ]=[y ]”是“|x -y |<1成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.已知p :1x -1<1,q :x 2+(a -1)x -a >0,若p 是q 的充分不必要条件,则实数a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)3.设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. [课堂归纳——通法领悟]个区别——“A 是B 的充分不必要条件”与“A 的充分不 必要条件是B ”的区别“A 是B 的充分不必要条件”中,A 是条件,B 是结论;“A 的充分不必要条件是B ”中,B 是条件,A 是结论.在进行充分、必要条件的判断中,要注意这两种说法的区别.条规律——四种命题间关系的两条规律(1)逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用.种方法——判断充分条件和必要条件的方法 (1)定义法;(2)集合法;(3)等价转化法.方法博览(一)三法破解充要条件问题 1.定义法定义法就是将充要条件的判断转化为两个命题——“若p ,则q ”与“若q ,则p ”的判断,根据两个命题是否正确,来确定p 与q 之间的充要关系.[典例1] 设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 [点评] 判断p 、q 之间的关系,只需判断两个命题A :“若p ,则q ”和B :“若q ,则p ”的真假.(1)若p ⇒q ,则p 是q 的充分条件; (2)若q ⇒p ,则p 是q 的必要条件; (3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件; (4)若p ⇒q 且q ⇒/ p ,则p 是q 的充分不必要条件; (5)若p ⇒/ q 且q ⇒p ,则p 是q 的必要不充分条件; (6)若p ⇒/ q 且q ⇒/ p ,则p 是q 的既不充分也不必要条件.2.集合法集合法就是利用满足两个条件的参数取值所构成的集合之间的关系来判断充要关系的方法.主要解决两个相似的条件难以进行区分或判断的问题.[典例2] 若A :log 2a <1,B :x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零,则A 是B 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 [点评] 利用集合间的关系判断充要条件的方法3.等价转化法等价转化法就是在判断含有逻辑联结词“否”的有关条件之间的充要关系时,根据原命题与其逆否命题的等价性转化为形式较为简单的两个条件之间的关系进行判断.[典例3] 已知条件p :4x -1≤-1,条件q :x 2-x <a 2-a ,且⌝q 的一个充分不必要条件是⌝p ,则a 的取值范围是________.[点评] 条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假.答案通关集训:1.解析:选A 若[x ]=[y ],则|x -y |<1;反之,若|x -y |<1,如取x =1.1,y =0.9,则[x ]≠[y ],即“[x ]=[y ]”是“|x -y |<1成立”的充分不必要条件.2.解析:选A 不等式1x -1<1等价于1x -1-1<0,即x -2x -1>0,解得x >2或x <1,所以p 为(-∞,1)∪(2,+∞).不等式x2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即q 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综上可知a 的取值范围为(-2,-1].3.解析:一元二次方程x 2-4x +n =0的根为x =4±16-4n2=2±4-n ,因为x 是整数,即2±4-n 为整数,所以4-n 为整数,且n ≤4,又因为n ∈N *,取n =1,2,3,4,验证可知n =3,4符合题意,所以n =3,4时可以推出一元二次方程x 2-4x +n =0有整数根.答案:3或4典例1、[解题指导] 由0<x <π2可知0<sin x <1,分别判断命题“若x sin 2x <1,则x sin x <1”与“若x sin x <1,则x sin 2x <1”的真假即可.[解析] 因为0<x <π2,所以0<sin x <1,不等式x sin x <1两边同乘sin x ,可得x sin 2x <sin x ,所以有x sin 2x <sin x <1.即x sin x <1⇒x sin 2x <1;不等式x sin 2x <1两边同除以sin x ,可得x sin x <1sin x ,而由0<sin x <1,知1sin x>1,故x sin x <1不一定成立,即x sin 2x <1⇒/ x sin x <1.综上,可知“x sin 2x <1”是“x sin x <1”的必要不充分条件.[答案] C典例2、[解题指导] 分别求出使A 、B 成立的参数a 的取值所构成的集合M 和N ,然后通过集合M 与N 之间的关系来判断.[解析] 由log 2a <1,解得0<a <2,所以满足条件A 的参数a 的取值集合为M ={a |0<a <2};而方程x 2+(a +1)x +a -2=0的一根大于零,另一根小于零的充要条件是f (0)<0,即a -2<0,解得a <2,即满足条件B 的参数a 的取值集合为N ={a |a <2},显然M N ,所以A 是B 的充分不必要条件.[答案] B典例3、[解题指导] “⌝q 的一个充分不必要条件是⌝p ”等价于“p 是q 的一个必要不充分条件”.[解析] 由4x -1≤-1,得-3≤x <1.由x 2-x <a 2-a ,得(x -a )[x +(a -1)]<0,当a >1-a ,即a >12时,不等式的解为1-a <x <a ;当a =1-a ,即a =12时,不等式的解为∅;当a <1-a ,即a <12时,不等式的解为a <x <1-a .由⌝q 的一个充分不必要条件是⌝p ,可知⌝p 是⌝q 的充分不必要条件,即p 为q 的一个必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.当a >12时,由{x |1-a <x <a x |-3≤x <1},得⎩⎪⎨⎪⎧-3≤1-a ,1≥a ,解得12<a ≤1;当a =12时,因为空集是任意一个非空集合的真子集,所以满足条件;当a <12时,由{x |a <x <1-a x |-3≤x <1},得⎩⎪⎨⎪⎧-3≤a ,1≥1-a ,解得0≤a <12.综上,a 的取值范围是[0,1]. [答案] [0,1]。

2014届高考人教A版数学(理)一轮复习讲义1.2命题及其关系、充分条件与必要条件

2014届高考人教A版数学(理)一轮复习讲义1.2命题及其关系、充分条件与必要条件

第2讲命题及其关系、充分条件与必要条件【2014年高考会这样考】1.考查四种命题之间的关系,明确四种命题的构成形式,能运用所学知识判断命题或其等价命题的真假,多以填空题或选择题的形式考查.2.判断指定的条件与结论之间的关系或探求其结论成立时的条件等,一般以选择题、填空题的形式考查,有时融入到解答题中综合考查.考点梳理1.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假判断①两个命题互为逆否命题,它们具有相同的真假性.②两个命题互为逆命题或否命题,它们的真假性没有关系.2.充分条件、必要条件与充要条件(1)“若p,则q”形式的命题为真时,记作p⇒q,称p是q的充分条件,q是p的必要条件.(2)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件,q也是p的充要条件.【助学·微博】一个等价关系互为逆否命题的两个命题的真假性相同,对于一些难于判断真假的命题可转化为对其等价命题来判断.两种判断方法充分条件、必要条件的判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)集合法:记A={x|x∈p},B={x|x∈q}.若A⊆B,则p是q的充分条件或q 是p的必要条件;若A=B,则p是q的充要条件.考点自测1.(2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是().A.若α≠π4,则tan α≠1 B.若α=π4,则tan α≠1C.若tan α≠1,则α≠π4D.若tan α≠1,则α=π4解析按逆否命题的定义知原命题的逆否命题是:若tan α≠1,则α≠π4.故选C.答案 C2.(2012·天津)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析因为f(x)是偶函数⇔φ=kπ,k∈Z,所以“φ=0”是“f(x)是偶函数”的充分而不必要条件.答案 A3.(人教A版教材习题改编)命题“如果b2-4ac>0,则方程ax2+bx+c=0(a≠0)有两个不相等的实根”的否命题、逆命题和逆否命题中是真命题的个数为().A.0 B.1 C.2 D.3解析原命题为真,则它的逆否命题为真,逆命题为“若方程ax2+bx+c=0(a≠0)有两个不相等的实根,则b2-4ac>0”,为真命题,则它的否命题也为真.答案 D4.(2011·山东)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是().A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析同时否定原命题的条件和结论,所得命题就是它的否命题.答案 A5.下列命题中所有真命题的序号是________.①“a>b”是“a2>b2”的充分条件;②“|a|>|b|”是“a2>b2”的必要条件;③“a>b”是“a+c>b+c”的充要条件.解析①由2>-3⇒/ 22>(-3)2知,该命题为假命题;②a2>b2⇒|a|2>|b|2⇒|a|>|b|,该命题为真命题;③a>b⇒a+c>b+c,又a+c>b+c⇒a>b;∴“a>b”是“a+c>b+c”的充要条件为真命题.答案②③考向一四种命题及其关系【例1】►(2012·济南模拟)下列有关命题的说法正确的是().A.命题“若xy=0,则x=0”的否命题为“若xy=0,则x≠0”B.“若x+y=0,则x,y互为相反数”的逆命题为真命题C.命题“∃x∈R,使得2x2-1<0”的否定是“∀x∈R,均有2x2-1<0”D.命题“若cos x=cos y,则x=y”的逆否命题为真命题[审题视点] (1)根据四种命题的定义判断一个命题的逆命题、否命题、逆否命题表达格式的正误.(2)判断一个命题的真假时,若命题简单可直接判断;否则,利用其逆否命题进行真假判断.解析命题“若xy=0,则x=0”的否命题为“若xy≠0,则x≠0”,所以A 错;命题“∃x∈R,使得2x2-1<0”的否定是“∀x∈R,均有2x2-1≥0”,所以C错;命题“若cos x=cos y,则x=y”为假命题,故其逆否命题也假,故D错;“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”显然正确.所以应选B.答案B[来源: ](1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)认真仔细读题,必要时举特例.【训练1】以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,因此①是假命题,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x+y是偶数,则x,y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.答案②④考向二充分条件与必要条件的判断【例2】►(2012·北京)设a,b∈R.“a=0”是“复数a+b i是纯虚数”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[审题视点] 根据充分条件、必要条件的定义判断.解析a=0时,a+b i不一定是纯虚数,但a+b i为纯虚数时,a=0一定成立,故“a=0”是“复数a+b i是纯虚数”的必要不充分条件.答案 B充分条件和必要条件反映了条件和结论之间的关系,结合具体问题可按照以下三个步骤进行判断:①确定条件是什么,结论是什么;②尝试从条件推结论,结论推条件;③确定条件和结论是什么关系.【训练2】(2011·天津)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析由题意知,x≥2且y≥2⇒x2+y2≥4,充分性满足;反之,不成立,如x=y=74,满足x2+y2≥4,但不满足x≥2且y≥2.答案 A 考向三充要条件的探求【例3】►(2011·陕西)设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n=________.[审题视点] 直接利用求根公式进行计算,然后用整数等有关概念进行分析、验证.解析x=4±16-4n2=2±4-n,因为x是整数,即2±4-n为整数,所以4-n为整数,且n≤4,又因为n∈N*,取n=1,2,3,4,验证可知n=3,4符合题意,所以n=3,4时可以推出一元二次方程x2-4x+n=0有整数根.答案3或4解答此类题目,可先从结论出发,求出使结论成立的必要条件,然后再验证得到的必要条件是否满足充分性.【训练3】(2011·湖北)若实数a,b满足a≥0,b≥0,且ab=0,则称a与b 互补.记φ(a,b)=a2+b2-a-b,那么φ(a,b)=0是a与b互补的().A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件解析若φ(a,b)=0,即a2+b2=a+b,两边平方整理,得ab=0,故具备充分性.若a≥0,b≥0,ab=0,则不妨设a=0.φ(a,b)=a2+b2-a-b=b2-b=0.故具备必要性.故选C.答案 C方法优化1——充要条件的判断方法【命题研究】通过对近三年高考试题的统计分析可以看出,有关充分条件和必要条件的考题,是通过对命题条件和结论的分析,一方面运用集合观点进行求解,另一方面可从逻辑关系上去寻找联系.考查对数学概念的准确记忆和深层次的理解,考查角度主要是充分条件、必要条件和充要条件的判断,它往往是在不同知识点的交会处进行命题,考查面十分广泛,涵盖函数、立体几何、不等式、向量、三角等内容.判断“p是q的什么条件”的实质是对命题“若p,则q”与“若q,则p”的真假的确定.今后凡是遇到“p是q 的什么条件”的题目,一要养成化简条件、结论为最简形式的好习惯,二要养成“解决彻底”的好习惯,既要解决充分性,又要解决必要性.【真题探究】► (2012·山东)设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[教你审题] 先根据函数的性质确定这两个命题的充要条件,然后根据定义法将其转化为两个简单命题进行判断.[一般解法] 第1步 确定“函数f (x )=a x 在R 上是减函数”的充要条件:a ∈(0,1); 第2步 由g ′(x )=3(2-a )x 2≥0知g (x )在R 上是增函数的充要条件:a ∈(0,1)∪(1,2); 第3步 (0,1)(0,1)∪(1,2).所以选A.[优美解法] (举反例法)第1步 在(0,1)内任取一个实数,不妨取a =12,前者⇒后者;第2步 取a =32,后者⇒/ 前者(前提:想到y =x 3的图象和性质).[答案] A【试一试】 (2011·浙江)若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a ”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 对于0<ab <1,如果a >0,则b >0,a <1b 成立,如果a <0,则b <0,b >1a 成立,因此“0<ab <1”是“a <1b 或b >1a ”的充分条件;反之,若a =-1,b =2,“a <1b 或b >1a ”成立,但不能推出0<ab <1,因此“0<ab <1”不是“a <1b 或b >1a ”的必要条件;故“0<ab <1”是“a <1b 或b >1a ”的充分而不必要条件.答案 AA级基础演练(时间:30分钟满分:55分) 一、选择题(每小题5分,共20分)1.(2012·福建)下列命题中,真命题是().A.∃x0∈R,e x0≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是ab=-1D.a>1,b>1是ab>1的充分条件解析因为∀x∈R,e x>0,故排除A;取x=2,则22=22,故排除B;a+b=0,取a=b=0,则不能推出ab=-1,故排除C.应选D.答案 D2.(2013·徐州模拟)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是().A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数解析否命题既否定题设又否定结论,故选B.答案 B3.(2012·重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的().A.既不充分也不必要条件B.充分而不必要条件C.必要而不充分条件D.充要条件解析 ∵x ∈[0,1]时,f (x )是增函数,又∵y =f (x )是偶函数,∴x ∈[-1,0]时,f (x )是减函数.当x ∈[3,4]时,x -4∈[-1,0],∵T =2,∴f (x )=f (x -4).∴x ∈[3,4]时,f (x )是减函数,充分性成立.反之:x ∈[3,4]时,f (x )是减函数,x -4∈[-1,0],∵T =2,∴f (x )=f (x -4),∴x ∈[-1,0]时,f (x )是减函数,∵y =f (x )是偶函数,∴x ∈[0,1]时,f (x )是增函数,必要性亦成立.答案 D4.方程ax 2+2x +1=0至少有一个负实根的充要条件是( ).A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0 解析 法一 (直接法)当a =0时,x =-12符合题意.当a ≠0时,若方程两根一正一负(没有零根),则⎩⎨⎧ Δ=4-4a >0,1a <0⇔⎩⎨⎧ a <1,a <0⇔a <0; 若方程两根均负,则⎩⎪⎨⎪⎧ Δ=4-4a ≥0,-2a<0,1a >0⇔⎩⎨⎧a ≤1,a >0⇔0<a ≤1. 综上所述,所求充要条件是a ≤1.法二 (排除法)当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B ,所以选C.答案 C二、填空题(每小题5分,共10分)5.(2012·盐城调研)“m <14”是“一元二次方程x 2+x +m =0有实数解”的________条件.解析x2+x+m=0有实数解等价于Δ=1-4m≥0,即m≤1 4.答案充分不必要6.(2012·扬州模拟)下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a,b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;③“x>2”是“1x<12”的充分不必要条件;④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.解析①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a,b∈R,若a=3且b=3,则a+b=6”,此命题为真命题,所以原命题也是真命题,②错误;③1x<12,则1x-12=2-x2x<0,解得x<0或x>2,所以“x>2”是“1x<12”的充分不必要条件,③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确.答案①②三、解答题(共25分)7.(12分)分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若ab=0,则a=0或b=0;(2)若x2+y2=0,则x,y全为零.解(1)逆命题:若a=0或b=0,则ab=0,真命题.否命题:若ab≠0,则a≠0且b≠0,真命题.逆否命题:若a≠0且b≠0,则ab≠0,真命题.(2)逆命题:若x,y全为零,则x2+y2=0,真命题.否命题:若x2+y2≠0,则x,y不全为零,真命题.逆否命题:若x,y不全为零,则x2+y2≠0,真命题.8.(13分)已知p :x 2-8x -20≤0,q :x 2-2x +1-a 2≤0(a >0).若p 是q 的充分不必要条件,求实数a 的取值范围.解 p :x 2-8x -20≤0⇔-2≤x ≤10,q :x 2-2x +1-a 2≤0⇔1-a ≤x ≤1+a .∵p ⇒q ,q ⇒/ p ,∴{x |-2≤x ≤10}{x |1-a ≤x ≤1+a }.故有⎩⎨⎧ 1-a ≤-2,1+a ≥10,a >0,且两个等号不同时成立,解得a ≥9.因此,所求实数a 的取值范围是[9,+∞).B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·皖南八校模拟)“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x+(m +2)y -3=0相互垂直”的( ). A .充分必要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 解析 由两直线垂直的充要条件知(m +2)(m -2)+3m (m +2)=0,解得m =-2或12,∴m =12时,两直线垂直,反过来不成立.答案 B2.(2012·潍坊二模)下列说法中正确的是 ( ).A .命题“若am 2<bm 2,则a <b ”的逆命题是真命题B .若函数f (x )=ln ⎝ ⎛⎭⎪⎫a +2x +1的图象关于原点对称,则a =3 C .∃x ∈R ,使得sin x +cos x =43成立D .已知x ∈R ,则“x >1”是“x >2”的充分不必要条件解析 A 中命题的逆命题是“若a <b ,则am 2<bm 2”是假命题,因为m =0时,上述命题就不正确,故A 错误;B 选项,若f (x )的图象关于原点对称,则f (x )为奇函数,则f (0)=ln(a +2)=0,解得a =-1,故B 错误;C 选项,sin x +cosx =2sin ⎝ ⎛⎭⎪⎫x +π4∈[-2,2],且43∈[-2,2],因此C 是真命题.选项D ,“x >1”是“x >2”的必要不充分条件.故选C.答案 C二、填空题(每小题5分,共10分)3.(2012·长沙模拟)若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是________.解析 方程x 2-mx +2m =0对应的二次函数f (x )=x 2-mx +2m ,∵方程x 2-mx +2m =0有两根,其中一根大于3一根小于3,∴f (3)<0,解得m >9,即:方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是m >9. 答案 m >94.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________. 解析 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴AB ,∴m +1>3,即m >2.答案 (2,+∞)三、解答题(共25分) 5.(12分)求证:关于x 的方程ax 2+bx +c =0有一个根为1的充要条件是a +b +c =0.证明 充分性:若a +b +c =0,∴b =-a -c ,∴ax 2+bx +c =0化为ax 2-(a +c )x +c =0,∴(ax -c )(x -1)=0,∴当x =1时,ax 2+bx +c =0,∴方程ax 2+bx +c =0有一个根为1.必要性:若方程ax 2+bx +c =0有一个根为1,∴x =1满足方程ax 2+bx +c =0,∴a +b +c =0.综上可知,关于x 的方程ax 2+bx +c =0有一个根为1的充要条件是a +b +c =0.6.(13分)已知全集U =R ,非空集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x -(3a +1)<0, B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -a 2-2x -a <0. (1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.解 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x -52<0=⎩⎨⎧⎭⎬⎫x |2<x <52, B =⎩⎨⎧⎭⎬⎫x |x -94x -12<0=⎩⎨⎧⎭⎬⎫x |12<x <94, ∴∁U B =⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥94. ∴(∁U B )∩A =⎩⎨⎧⎭⎬⎫x |94≤x <52. (2)∵a 2+2>a ,∴B ={x |a <x <a 2+2}.①当3a +1>2,即a >13时,A ={x |2<x <3a +1}.∵p 是q 的充分条件,∴A ⊆B .∴⎩⎨⎧a ≤23a +1≤a 2+2,即13<a ≤3-52.②当3a +1=2,即a =13时,A =∅,不符合题意; ③当3a +1<2,即a <13时,A ={x |3a +1<x <2}, 由A ⊆B 得⎩⎨⎧ a ≤3a +1a 2+2≥2,∴-12≤a <13. 综上所述,实数a 的取值范围是 ⎣⎢⎡⎭⎪⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.。

2014高考数学一轮汇总训练《命题及其关系、充分条件与必要条件》理 新人教A版

2014高考数学一轮汇总训练《命题及其关系、充分条件与必要条件》理 新人教A版

第二节命题及其关系、充分条件与必要条件[备考方向要明了][归纳²知识整合]1.命题在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.[探究] 1.在原命题及其逆命题、否命题、逆否命题这4个命题中,真命题的个数可能有几个?提示:由于原命题与逆否命题是等价命题;逆命题与否命题是等价命题,所以真命题的个数可能为0,2,4.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充分必要条件.记作p⇔q.[探究] 2.“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的说法相同吗?提示:两者说法不相同.“p的一个充分不必要条件是q”等价于“q是p的充分不必要条件”,显然这与“p是q的充分不必要条件”是截然不同的.3.命题“若p,则q”的逆命题为真,逆否命题为假,则p是q的什么条件?提示:逆命题为真即q⇒p,逆否命题为假,即p⇒/ q,故p是q的必要不充分条件.[自测²牛刀小试]1.(教材改编题)给出命题:“若x2+y2=0,则x=y=0”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A.0个B.1个C.2个D.3个解析:选D 逆命题为:若x=y=0,则x2+y2=0,是真命题.否命题为:若x2+y2≠0,则x≠0或y≠0,是真命题.逆否命题为:若x≠0或y≠0,则x2+y2≠0,是真命题.2.下列命题:①“a>b”是“a2>b2”的必要条件;②“|a|>|b|”是“a2>b2”的充要条件;③“a>b”是“a+c>b+c”的充要条件.其中是真命题的是( ) A .①② B .②③ C .①③D .①②③解析:选B ①a >b ⇒/ a 2>b 2,且a 2>b 2⇒/ a >b ;故①不正确;②a 2>b 2⇔|a |>|b |,故②正确;③“a >b ”⇒a +c >b +c ,且a +c >b +c ⇒a >b ,故③正确.3.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( ) A .若f (x )是偶函数,则f (-x )是偶函数 B .若f (x )不是奇函数,则f (-x )不是奇函数 C .若f (-x )是奇函数,则f (x )是奇函数 D .若f (-x )不是奇函数,则f (x )不是奇函数解析:选B 原命题的否命题是既否定题设又否定结论,故“若f (x )是奇函数,则f (-x )是奇函数”的否命题是B 选项.4.(2012²湖南高考)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析:选 C 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.5.(2012²天津高考)设φ∈R ,则“φ=0”是“f (x )=cos (x +φ)(x ∈R )为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 解析:选A 因为f (x )是偶函数⇔φ=k π,k ∈Z ,所以“φ=0”是“f (x )是偶函数”的充分而不必要条件.[例1] 在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a1b2-a2b1=0”.那么f(p)等于( )A.1 B.2C.3 D.4[自主解答] 原命题p显然是真命题,故其逆否命题也是真命题.而其逆命题是:若a1b2-a2b1=0,则两条直线l1与l2平行,这是假命题,因为当a1b2-a2b1=0时,还有可能l1与l2重合,逆命题是假命题,从而否命题也为假命题,故f(p)=2.[答案] B———————————————————判断四种命题间的关系的方法(1)在判断四种命题之间的关系时,首先要注意分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地有了它的“逆命题”“否命题”“逆否命题”.(2)当一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其他三种命题时,应把其中一个(或n个)作为大前提.1.设原命题是“当c>0时,若a>b,则ac>bc”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假.解:“当c>0时”是大前提,写其他命题时应该保留,原命题的条件是a>b,结论是ac>bc.因此它的逆命题:当c>0时,若ac>bc,则a>b.它是真命题;否命题:当c>0时,若a≤b,则ac≤bc.它是真命题;逆否命题:当c>0时,若ac≤bc,则a≤b.它是真命题.[例2] (1)(2012²浙江高考)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)下面四个条件中,使a>b成立的充分不必要的条件是( )A.a>b+1 B.a>b-1C.a2>b2D.a3>b3[自主解答] (1)“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的充要条件是:由a 1=2a +1≠-14,解得a =-2或1.故“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的充分不必要条件.(2)a >b +1⇒a -b >1>0⇒a >b ,但a =2,b =1满足a >b ,但a =b +1,故A 项正确.或用排除法:对于B ,a >b -1不能推出a >b ,排除B ;而a 2>b 2不能推出a >b ,如a =-2,b =1,(-2)2>12,但-2<1,故C 项错误;a >b ⇔a 3>b 3,它们互为充要条件,排除D.[答案] (1)A (2)A ——————————————————— 充分条件、必要条件的判断方法判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p .2.已知命题p :函数f (x )=|x -a |在(1,+∞)上是增函数,命题q :f (x )=a x(a >0且a ≠1)是减函数,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选A 若命题p 为真,则a ≤1;若命题q 为真, 则0<a <1.∵由q 能推出p 但由p 不能推出q , ∴p 是q 的必要不充分条件.[例3] 已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的范围; (2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件,若存在,求出m 的范围. [自主解答] (1)由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},∵x ∈P 是x ∈S 的充要条件,∴P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,这样的m 不存在.(2)由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,∴m ≤3.综上,可知m ≤3时,x ∈P 是x ∈S 的必要条件.保持本例条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. 解:由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/ P .∴[-2,10] [1-m,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞). ———————————————————1.解决与充要条件有关的参数问题的方法解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.2.利用转化的方法理解充分必要条件若綈p 是綈q 的充分不必要必要不充分、充要条件,则p 是q 的必要不充分充分不必要、充要条件.3.已知不等式1x -1<1的解集为p ,不等式x 2+(a -1)x -a >0的解集为q ,若p 是q 的充分不必要条件,则实数a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)解析:选A 不等式1x -1<1等价于1x -1-1<0,即x -2x -1>0,解得x >2或x <1,所以p 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即q 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综合知-2<a ≤-1.1个转化——正难则反的转化由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.2个区别——“否命题”与“命题的否定”以及“充分条件”与“必要条件”的区别(1)否命题是既否定命题的条件,又否定命题的结论,而命题的否定是只否定命题的结论.要注意区别.(2)充分必要条件的判断应注意问题的设问方式,①A 是B 的充分不必要条件是指:A ⇒B 且B ⇒/ A ;②A 的充分不必要条件是B 是指:B ⇒A 且A ⇒/ B ,在解题中一定要弄清它们的区别,以免出现错误.3种方法——判断充分条件和必要条件的方法 (1)命题判断法.设“若p ,则q ”为原命题,那么:①原命题为真,逆命题为假时,p 是q 的充分不必要条件; ②原命题为假,逆命题为真时,p 是q 的必要不充分条件; ③原命题与逆命题都为真时,p 是q 的充要条件;④原命题与逆命题都为假时,p 是q 的既不充分也不必要条件. (2)集合判断法.从集合的观点看,建立命题p ,q 相应的集合:p :A ={x |p (x )成立},q :B ={x |q (x )成立},那么:①若A ⊆B ,则p 是q 的充分条件;若A B 时,则p 是q 的充分不必要条件;②若B ⊆A ,则p 是q 的必要条件;若B A 时,则p 是q 的必要不充分条件; ③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件. (3)等价转化法.p 是q 的什么条件等价于綈q 是綈p 的什么条件.创新交汇——与充要条件有关的交汇问题1.充分条件、必要条件和充要条件的判断是每年高考的热点内容,多与函数、不等式、向量、立体几何、解析几何等交汇命题.2.突破此类问题的关键有以下四点: (1)要分清命题的条件与结论;(2)要善于将文字语言转化为符号语言进行推理; (3)要注意等价命题的运用;(4)当判断多个命题之间的关系时,常用图示法,它能使问题直观、易于判断. [典例] (2011²陕西高考)设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________.[解析] x =4±16-4n 2=2±4-n ,因为x 是整数,即2±4-n 为整数,所以4-n为整数,且n ≤4,又因为n ∈N *,取n =1,2,3,4,验证可知n =3,4符合题意,所以n =3,4时可以推出一元二次方程x 2-4x +n =0有整数根.[答案] 3或4 [名师点评]1.本题有以下两个创新点(1)考查内容创新:本题以一元二次方程为背景,探求方程有整数根的充要条件. (2)命题方式创新:此题目的特点是给出结论,未给条件,由结论探求条件. 2.解决本题的关键有以下两点(1)从结论出发,正确求出使结论成立的必要条件;(2)要验证所得到的必要条件是否满足充分性,否则极易得出n =1,2,3,4的错误答案. [变式训练]1.已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( ) A .x =-12B .x =-1C .x =5D .x =0解析:选D a ⊥b ⇔a ²b =0,a ²b =(x -1,2)²(2,1)=2(x -1)+2³1=2x =0,∴x=0.2.对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B 当m <0,n <0时,mn >0,但mx 2+ny 2=1没有意义,不是椭圆;反之,若mx 2+ny 2=1表示椭圆,则m >0,n >0,即mn >0.3.设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 化简得A ={x |x >2},B ={x |x <0},C ={x |x <0,或x >2}.∵A ∪B =C ,∴“x ∈A ∪B ”是“x ∈C ”的充要条件.一、选择题(本大题共6小题,每小题5分,共30分)1.(2013²潍坊模拟)命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.2.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B M ={x |0<x ≤3},N ={x |0<x ≤2},所以N M ,故a ∈M 是a ∈N 的必要不充分条件.3.(2013²日照模拟)已知直线l 1:x +ay +1=0,直线l 2:ax +y +2=0,则命题“若a =1或a =-1,则直线l 1与l 2平行”的否命题为( )A .若a ≠1且a ≠-1,则直线l 1与l 2不平行B .若a ≠1或a ≠-1,则直线l 1与l 2不平行C .若a =1或a =-1,则直线l 1与l 2不平行D .若a ≠1或a ≠-1,则直线l 1与l 2平行解析:选A 命题“若A ,则B ”的否命题为“若綈A ,则綈B ”,显然“a =1或a =-1”的否定为“a ≠1且a ≠-1”,“直线l 1与l 2平行”的否定为“直线l 1与l 2不平行”.4.已知a ,b 为非零向量,则“函数f (x )=(a x +b )2为偶函数”是“a ⊥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解析:选C 依题意得f (x )=a 2x 2+2(a ²b )x +b 2.由函数f (x )是偶函数,得a ²b =0,又a ²b 为非零向量,所以a ⊥b ;反过来,由a ⊥b 得,a ²b =0,f (x )=a 2x 2+b 2,函数f (x )是偶函数.综上所述,“函数f (x )=(a x +b )2为偶函数”是“a ⊥b ”的充要条件.5.(2012²安徽高考)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 若α⊥β,又α∩β=m ,b ⊂β,b ⊥m ,根据两个平面垂直的性质定理可得b ⊥α,又因为a ⊂α,所以a ⊥b ;反过来,当a ∥m 时,因为b ⊥m ,一定有b ⊥a ,但不能保证b ⊥α,即不能推出α⊥β.6.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8xx +4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x 恒成立,故Δ≤0,即m ≥43;m ≥8x x 2+4对任意x >0恒成立,即x >0时,m ≥⎝⎛⎭⎪⎫8x x 2+4max,而8x x 2+4=8x +4x≤824=2,故m ≥2.当p 成立时q 不一定成立,即p 不是q 的充分条件,但如果p 不成立,即m <43时,q 一定不成立,即p 是q 的必要不充分条件.二、填空题(本大题共3小题,每小题5分,共15分) 7.(2013²南京模拟)有下列几个命题: ①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析:①原命题的否命题为“若a ≤b 则a 2≤b 2”错误. ②原命题的逆命题为:“x ,y 互为相反数,则x +y =0”正确. ③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”正确. 答案:②③8.(2013²石家庄质检)下列四个命题: ①“∃x ∈R ,x 2-x +1≤0”的否定; ②“若x 2+x -6≥0,则x >2”的否命题;③在△ABC 中,“A >30°”是“sin A >12”的充分不必要条件;④“函数f (x )=tan(x +φ)为奇函数”的充要条件是“φ=k π(k ∈Z )”.其中真命题的序号是________(把真命题的序号都填上).解析:“∃x ∈R ,x 2-x +1≤0”的否定为“∀x ∈R ,x 2-x +1>0”,①是真命题;“若x 2+x -6≥0,则x >2”的否命题是“若x 2+x -6<0,则x ≤2”,②也是真命题;在△ABC中,“A >30°”是“sin A >12”的必要不充分条件,③是假命题;“函数f (x )=tan(x +φ)为奇函数”的充要条件是“φ=k π2(k ∈Z )”,④是假命题.答案:①②9.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________.解析:α:x ≥a ,可看作集合A ={x |x ≥a }, ∵β:|x -1|<1,∴0<x <2, ∴β可看作集合B ={x |0<x <2}.又∵α是β的必要不充分条件,∴B A ,∴a ≤0. 答案:(-∞,0]三、解答题(本大题共3小题,每小题12分,共36分)10.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅. 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0}, 则U ={m |m ≤-1或m ≥32}.假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧m ∈U ,x 1+x 2≥0,x 1x 2≥0⇒⎩⎪⎨⎪⎧m ∈U ,4m ≥0,2m +6≥0⇒m ≥32.又集合{m |m ≥32}关于全集U 的补集是{m |m ≤-1},所以实数m 的取值范围是{m |m ≤-1}.11.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =x 2-32x+1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝ ⎛⎭⎪⎫x -342+716,∵x ∈⎣⎢⎡⎦⎥⎤34,2,∴716≤y ≤2,∴A =⎩⎨⎧⎭⎬⎫y |716≤y ≤2.由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.12.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:∵mx 2-4x +4=0是一元二次方程, ∴m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,∴⎩⎪⎨⎪⎧Δ1=161-m ≥0,Δ2=16m 2-44m 2-4m -5≥0,解得m ∈⎣⎢⎡⎦⎥⎤-54,1.∵两方程的根都是整数,故其根的和与积也为整数,∴⎩⎪⎨⎪⎧4m ∈Z ,4m ∈Z ,4m 2-4m -5∈Z .∴m 为4的约数.又∵m ∈⎣⎢⎡⎦⎥⎤-54,1,∴m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根为非整数; 而当m =1时,两方程的根均为整数, ∴两方程的根均为整数的充要条件是m =1.1.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( ) A .若a +b +c ≠3,则a 2+b 2+c 2<3 B .若a +b +c =3,则a 2+b 2+c 2<3 C .若a +b +c ≠3,则a 2+b 2+c 2≥3 D .若a 2+b 2+c 2≥3,则a +b +c =3解析:选A a +b +c =3的否定是a +b +c ≠3,a 2+b 2+c 2≥3的否定是a 2+b 2+c 2<3. 2.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A 由x ≥2且y ≥2可得x 2+y 2≥4,但反之不成立.3.“a =b ”是“直线y =x +2与圆(x -a )2+(y -b )2=2相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A a =b 时,圆心到直线距离d =|a -b +2|2=2, 所以相切;若直线与圆相切时,有d =|a -b +2|2=2,所以a =b 或a =-4+b .4.已知集合A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2. 答案:(2,+∞)。

2014届高考数学理科试题大冲关:1.2命题及其关系、充分条件与必要条件

2014届高考数学理科试题大冲关:1.2命题及其关系、充分条件与必要条件

2014届高考数学理科试题大冲关:1.2命题及其关系、充分条件与必要条件2014届高考数学理科试题大冲关:命题及其关系、充分条件与必要条件一、选择题1.设集合A={x∈R|x-2>0},B={x∈R|x <0},C={x∈R|x(x-2)>0},则“x∈A∪B”是“x∈C”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“若-1<x<1,则x2<1”的逆否命题是()A.若x≥1或x≤-1,则x2≥1B.若x2<1,则-1<x<1C.若x2>1,则x>1或x<-1D.若x2≥1,则x≥1或x≤-13.设a1,a2,b1,b2均不为0,则“a1a2=b1b2”是“关于x的不等式a1x+b1>0与a2x+b2>0的解集相同”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.“a=0”是“函数y=ln|x-a|为偶函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件5.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数6.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件二、填空题7.给出命题:已知实数a、b满足a+b=1,则ab≤14.它的逆命题、否命题、逆否命题三个命题中,真命题的个数是________.8.(2012·盐城模拟)已知直线l1:ax-y+2a +1=0和直线l2:2x-(a-1)y+2=0(a∈R),则l1⊥l2的充要条件是a=________.9.p:“向量a与向量b的夹角θ为锐角”是q:“a·b>0”的________条件.三、解答题10.已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若命题“A∩B=∅”是假命题,求实数m的取值范围.11.(1)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在求出p的取值范围;(2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?如果存在求出p的取值范围.12.设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎨⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.详解答案一、选择题1.解析:A ∪B ={x ∈R|x <0或x >2},C ={x ∈R|x <0或x >2},∵A ∪B =C ,∴x ∈A ∪B 是x ∈C 的充分必要条件.答案:C2.解析:若原命题是“若p,则q”,则逆否命题为“若綈q则綈p”,故此命题的逆否命题是“若x2≥1,则x≥1或x≤-1”.答案:D3.解析:“不等式a1x+b1>0与a2x+b2>0的解集相同”⇒“a1a 2=b1b2”,但“a1a2=b1b2”“不等式a1x+b1>0与a2x+b2>0的解集相同”,如:a1=1,b1=-1,a2=-1,b2=1.答案:C4.解析:当a=0时,函数y=ln|x|为偶函数;当函数y=ln|x-a|为偶函数时,有ln|-x-a|=ln|x-a|,∴a=0.5.解析:否命题是既否定题设又否定结论.答案:B6.解析:当a=1时,N={1},此时有N⊆M,则条件具有充分性;当N⊆M时,有a2=1或a2=2得到a1=1,a2=-1,a3=2,a4=-2,故不具有必要性,所以“a=1”是“N⊆M”的充分不必要条件.答案:A二、填空题7.解析:∵a+b=1⇒1=(a+b)2=a2+2ab +b2≥4ab⇒ab≤14.∴原命题为真,从而逆否命题为真;若ab≤1,显然得不出a+b=1,故逆命题4为假,因而否命题为假.8.解析:l1⊥l2⇔2a+(a-1)=0,解得a=13.答案:1 39.解析:若向量a与向量b的夹角θ为锐角,则cos θ=a·b|a|·|b|>0,即a·b>0;由a·b>0可得cos θ=a·b|a|·|b|>0,故θ为锐角或θ=0°,故p是q的充分不必要条件.答案:充分不必要三、解答题10.解:因为“A∩B=∅”是假命题,所以A∩B≠∅.设全集U={m|Δ=(-4m)2-4(2m+6)≥0},则U={m|m≤-1或m≥32}.假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0,⇒⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0,⇒m ≥32. 又集合{m |m ≥32}.关于全集U 的补集是{m |m ≤-1},所以实数m 的取值范围是{m |m ≤-1}.11.解:(1)当x >2或x <-1时,x 2-x -2>0,由4x +p <0得x <-p 4,故-p 4≤-1时,“x <-p 4”⇒“x <-1”⇒“x 2-x -2>0”.∴p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件.(2)不存在实数p ,使“4x +p <0”是“x 2-x-2>0”的必要条件.12.解:(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0,当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3.由⎩⎨⎧ x 2-x -6≤0x 2+2x -8>0,得2<x ≤3,即q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是2<x <3.(2)p 是q 的必要不充分条件,即q ⇒p 且p q ,设A ={x |p (x )},B ={x |q (x )},则A B ,又B =(2,3],当a >0时,A =(a,3a );a <0时,A =(3a ,a ).所以当a >0时,有⎩⎨⎧ a ≤2,3<3a ,解得1<a ≤2; 当a <0时,显然A ∩B =∅,不合题意.综上所述,实数a 的取值范围是1<a ≤2.。

(通用版)高考数学一轮复习1.2命题及其关系、充分条件与必要条件讲义理

(通用版)高考数学一轮复习1.2命题及其关系、充分条件与必要条件讲义理

第二节命题及其关系、充分条件与必要条件1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系四种命题间的相互关系四种命题的真假关系(1)两个命题互为逆否命题,它们具有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系3.充分条件、必要条件的判定⇐充分条件与必要条件的定义从集合角度理解若 p⇒q,则 p 是 q 的充分条件,q 是 p 的必 p 成立的对象的集合为 A,q 成立的对象要条件的集合为 Bp 是 q 的充分不必要条件p⇒q 且 q⇒/ pA 是 B 的真子集p 是 q 的必要不充分条件p⇒/ q 且 q⇒ pp 是 q 的充要条件p⇔qB 是 A 的真子集 A=B集合与充要条件 的关系⇐p 是 q 的既不充分也不必 要条件p⇒/ q 且 q ⇒/ pA,B 互不包含否命题对题设和结论都进行否定.在判断充分、必要条件的时候,一定要从 p 能否推出 q,q 能否推出 p 两方面去判断:对于 q⇒p,要能够证明,而对于 p⇒/ q,只需举一反例即可.小可以推大,大不可以推小,如 x>2(小范围)⇒x>1(大范围),x>1(大范围)⇒/ x>2(小范围). [熟记常用结论]1.充分条件与必要条件的两个特征 (1)对称性:若 p 是 q 的充分条件,则 q 是 p 的必要条件,即“p⇒q”⇔“q⇐p”. (2)传递性:若 p 是 q 的充分(必要)条件,q 是 r 的充分(必要)条件,则 p 是 r 的充分(必要)条件,即“p⇒q 且 q⇒r”⇒“p⇒r”(“p⇐q 且 q⇐r”⇒“p⇐r”). 2.利用互为逆否命题“同真、同假”的特点,可得: (1)p⇒q 等价于綈 q⇒綈 p; (2)q⇒/ p 等价于綈 p ⇒/ 綈 q.[小题查验基础] 一、判断题(对的打“√”,错的打“×”) (1)“x2+2x-8<0”是命题.( ) (2)一个命题非真即假.( ) (3)四种形式的命题中,真命题的个数为 0 或 2 或 4.( ) 答案:(1)× (2)√ (3)√ 二、选填题 1.已知命题 p:若 x≥a2+b2,则 x≥2ab,则下列说法正确的是( ) A.命题 p 的逆命题是“若 x<a2+b2,则 x<2ab” B.命题 p 的逆命题是“若 x<2ab,则 x<a2+b2” C.命题 p 的否命题是“若 x<a2+b2,则 x<2ab” D.命题 p 的否命题是“若 x≥a2+b2,则 x<2ab” 解析:选 C 命题 p 的逆命题是“若 x≥2ab,则 x≥a2+b2”,故 A、B 都错误;命题 p 的否命题是“若 x< a2+b2,则 x<2ab”,故 C 正确,D 错误. 2.“sin α=cos α”是“cos 2α=0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析:选 A 因为 cos 2α=cos2α-sin2α=0,所以 sin α=±cos α,所以“sin α=cos α”是“cos 2α=0”的充分不必要条件.故选 A.3.原命题“设 a,b,c∈R,若 a>b,则 ac2>bc2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.0 B.1C.2D.4解析:选 C 当 c=0 时,ac2=bc2,所以原命题是假命题;由于原命题与逆否命题的真假一致,所以逆否命题也是假命题;逆命题为“设 a,b,c∈R,若 ac2>bc2,则 a>b”,它是真命题;由于否命题与逆命题的真假一致,所以否命题也是真命题.综上所述,真命题有 2 个.4.(2019·青岛模拟)命题“若 a,b 都是偶数,则 ab 是偶数”的逆否命题为______________________.答案:若 ab 不是偶数,则 a,b 不都是偶数5.“x(x-1)=0”是“x=1”的________条件(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).解析:x(x-1)=0⇒x=0 或 x=1,即 x(x-1)=0 不一定有 x=1 成立;但 x=1 能推出 x(x-1)=0 成立.故“x(x-1)=0”是“x=1”的必要不充分条件.答案:必要不充分考点一[基础自学过关] 命题及其关系[题组练透]1.命题“若 x2+y2=0(x,y∈R),则 x=y=0”的逆否命题是( )A.若 x≠y≠0(x,y∈R),则 x2+y2=0B.若 x=y≠0(x,y∈R),则 x2+y2≠0C.若 x≠0 且 y≠0(x,y∈R),则 x2+y2≠0D.若 x≠0 或 y≠0(x,y∈R),则 x2+y2≠0解析:选 D x2+y2=0 的否定为 x2+y2≠0;x=y=0 的否定为 x≠0 或 y≠0.故“若 x2+y2=0(x,y∈R),则 x=y=0”的逆否命题为“若 x≠0 或 y≠0(x,y∈R),则 x2+y2≠0”.2.有以下命题:①“若 xy=1,则 x,y 互为倒数”的逆命题;②“面积相等的两个三角形全等”的否命题;③“若 m≤1,则 x2-2x+m=0 有实数解”的逆否命题;④“若 A∩B=B,则 A⊆B”的逆否命题.其中真命题为( )A.①② B.②③C.④D.①②③解析:选 D ①“若 x,y 互为倒数,则 xy=1”是真命题;②“面积不相等的两个三角形一定不全等”,是真命题;③若 m≤1,则 Δ=4-4m≥0,所以原命题是真命题,故其逆否命题也是真命题;④由 A∩B=B,得 B⊆A,所以原命题是假命题,故其逆否命题也是假命题.故选 D.3.给出命题:若函数 y=f(x)是幂函数,则函数 y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.3B.2C.1D.0解析:选 C 易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题只有一个.[名师微点]1.由原命题写出其他 3 种命题的方法由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.[提醒] (1)对于不是“若 p,则 q”形式的命题,需先改写;(2)当命题有大前提时,写其他三种命题时需保留大前提.2.判断命题真假的 2 种方法(1)直接判断:判断一个命题为真命题,要给出严格的推理证明;说明一个命题是假命题,只需举出一个反例即可.(2)间接判断:根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其逆否命题的真假.考点二[师生共研过关] 充分条件、必要条件的判定[典例精析]| | (1)(2018·天津高考)设 x∈R,则“ x-12<1”是“x3<1”的( ) 2A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)(2018·北京高考)设 a,b,c,d 是非零实数,则“ad=bc”是“a,b,c,d 成等比数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(3)“a=0”是“函数 f(x)=sin x-1x+a 为奇函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件| | | | [解析] (1)由 x-12<12,得 0<x<1,则 0<x3<1,即“ x-12<1”⇒“x3<1”; 2| | 由 x3<1,得 x<1,当 x≤0 时, x-12≥1, 2| | 即“x3<1”⇒/ “ x-12<1”. 2| | 所以“ x-12<1”是“x3<1”的充分而不必要条件. 2(2)a,b,c,d 是非零实数,若 a<0,d<0,b>0,c>0,且 ad=bc,则 a,b,c,d 不成等比数列(可以假设 a=-2,d=-3,b=2,c=3).若 a,b,c,d 成等比数列,则由等比数列的性质可知 ad=bc.所以“ad=bc”是“a,b,c,d 成等比数列”的必要而不充分条件.(3)f(x)的定义域为{x|x≠0},关于原点对称,当 a=0 时,f(x)=sin x-1x,f(-x)=sin(-x)--1x=-sin x( ) +1x=- sin x-1x =-f(x),故 f(x)为奇函数;反之,当 f(x)=sin x-1x+a 为奇函数时,f(-x)+f(x)=0,又 f(-x)+f(x)=sin(-x)--1x+a+sin x-1x+ a=2a,故 a=0,所以“a=0”是“函数 f(x)=sin x-1x+a 为奇函数”的充要条件,故选 C.[答案] (1)A (2)B (3)C[解题技法]充分、必要条件的判断 3 种方法利用定义判 直接判断“若 p,则 q”“若 q,则 p”的真假.在判断时,确定条件是什么、结断论是什么从集合的角 利用集合中包含思想判定.抓住“以小推大”的技巧,即小范围推得大范围,度判断 即可解决充分必要性的问题利用等价转 化法条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假[过关训练]1.(2018·衡阳模拟)对于函数 y=f(x),x∈R,“y=|f(x)|的图象关于 y 轴对称”是“y=f(x)是奇函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选 B 若 y=f(x)为奇函数,则 y=|f(x)|的图象关于 y 轴对称,反过来不成立,因为当 y=f(x)为偶函数时,y=|f(x)|的图象也关于 y 轴对称.故选 B.2.(2018·北京高考)设 a,b 均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选 C 由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即 a2+9b2-6a·b=9a2+b2+6a·b.又 a,b 均为单位向量,所以 a2=b2=1,所以 a·b=0,能推出 a⊥b.由 a⊥b 得|a-3b|= 10,|3a+b|= 10, 能推出|a-3b|=|3a+b|,所以“|a-3b|=|3a+b|”是“a⊥b”的充分必要条件.3.设 a,b 是实数,则“a>b”是“a2>b2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选 D a>b 不能推出 a2>b2,例如 a=-1,b=-2;a2>b2 也不能推出 a>b,例如 a=-2,b=1.故“a>b”是“a2>b2”的既不充分也不必要条件.考点三[师生共研过关] 充分条件、必要条件的探求与应用[典例精析](1)命题“∀x∈[1,3],x2-a≤0”为真命题的一个充分不必要条件是( )A.a≥9B.a≤9C.a≥10D.a≤10(2)已知 P={x|x2-8x-20≤0},非空集合 S={x|1-m≤x≤1+m}.若 x∈P 是 x∈S 的必要条件,则 m 的取值范围为________.[解析] (1)命题“∀x∈[1,3],x2-a≤0”⇔“∀x∈[1,3],x2≤a”⇔9≤a.则 a≥10 是命题“∀x∈[1,3],x2-a≤0”为真命题的一个充分不必要条件.(2)由 x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10}.∵x∈P 是 x∈S 的必要条件,则 S⊆P,∴Error!解得 0≤m≤3,故 0≤m≤3 时,x∈P 是 x∈S 的必要条件.[答案] (1)C (2)[0,3][变式发散] 1.(变条件)本例(2)中条件“若 x∈P 是 x∈S 的必要条件”变为“綈 P 是綈 S 的必要不充分条件”,其他条件不变.求实数 m 的取值范围.解:由例题知 P={x|-2≤x≤10}.∵綈 P 是綈 S 的必要不充分条件,∴P 是 S 的充分不必要条件,∴P⇒S 且 S⇒/ P. ∴[-2,10]⇐[1-m,1+m].∴Error!或Error!∴m≥9,则 m 的取值范围是[9,+∞).2.(变设问)本例(2)条件不变,问是否存在实数 m,使 x∈P 是 x∈S 的充要条件?并说明理由.解:由例题知 P={x|-2≤x≤10}.若 x∈P 是 x∈S 的充要条件,则 P=S,∴Error!∴Error!这样的 m 不存在.[解题技法]根据充分、必要条件求解参数范围的方法及注意点(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[过关训练]1.使 a>0,b>0 成立的一个必要不充分条件是( )A.a+b>0B.a-b>0C.ab>1 D.ab>1 解析:选 A 因为 a>0,b>0⇒a+b>0,反之不成立,而由 a>0,b>0 不能推出 a-b>0,ab>1,ab>1, 故选 A.2.已知命题 p:x2+2x-3>0;命题 q:x>a,且綈 q 的一个充分不必要条件是綈 p,则 a 的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析:选 A 由 x2+2x-3>0,得 x<-3 或 x>1,由綈 q 的一个充分不必要条件是綈 p,可知綈 p 是綈 q 的充分不必要条件,等价于 q 是 p 的充分不必要条件,故 a≥1.故选 A.[课时跟踪检测]一、题点全面练1.命题“若 a>b,则 a+c>b+c”的否命题是( )A.若 a≤b,则 a+c≤b+c B.若 a+c≤b+c,则 a≤bC.若 a+c>b+c,则 a>bD.若 a>b,则 a+c≤b+c解析:选 A “若 p,则 q”的否命题是“若綈 p,则綈 q”,所以原命题的否命题是“若 a≤b,则 a+c≤b+c”,故选 A.2.命题“若 α=π,则 tan α=1”的逆否命题是( ) 4A.若 α≠π,则 tan α≠1 4B.若 α=π,则 tan α≠1 4C.若 tan α≠1,则 α≠π 4D.若 tan α≠1,则 α=π 4解析:选 C 以否定的结论作条件、否定的条件作结论得出的命题为逆否命题,即“若 α=π,则 tan α= 41”的逆否命题是“若 tan α≠1,则 α≠π”. 43.有下列几个命题:①“若 a>b,则1a>1b”的否命题; ②“若 x+y=0,则 x,y 互为相反数”的逆命题;③“若 x2<4,则-2<x<2”的逆否命题.其中真命题的序号是( )A.① B.①②C.②③D.①②③解析:选 C ①原命题的否命题为“若 a≤b,则1a≤1b”,假命题;②原命题的逆命题为“若 x,y 互为相反 数,则 x+y=0”,真命题;③原命题为真命题,故逆否命题为真命题.所以真命题的序号是②③.4.设 A,B 是两个集合,则“A∩B=A”是“A⊆B”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选 C 由 A∩B=A 可得 A⊆B,由 A⊆B 可得 A∩B=A.所以“A∩B=A”是“A⊆B”的充要条件.故选C.5.(2019·西城区模拟)设平面向量 a,b,c 均为非零向量,则“a·(b-c)=0”是“b=c”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选 B 由 b=c,得 b-c=0,得 a·(b-c)=0;反之不成立.故“a·(b-c)=0”是“b=c”的必要不充分条件.6.(2019·抚州七校联考)A,B,C 三个学生参加了一次考试,A,B 的得分均为 70 分,C 的得分为 65分.已知命题 p:若及格分低于 70 分,则 A,B,C 都没有及格.则下列四个命题中为 p 的逆否命题的是( )A.若及格分不低于 70 分,则 A,B,C 都及格B.若 A,B,C 都及格,则及格分不低于 70 分C.若 A,B,C 至少有一人及格,则及格分不低于 70 分D.若 A,B,C 至少有一人及格,则及格分高于 70 分解析:选 C 根据原命题与它的逆否命题之间的关系知,命题 p 的逆否命题是若 A,B,C 至少有一人及格,则及格分不低于 70 分.故选 C.7.(2019·湘东五校联考)“不等式 x2-x+m>0 在 R 上恒成立”的一个必要不充分条件是( )A.m>14 C.m>0B.0<m<1 D.m>1解析:选 C 若不等式 x2-x+m>0 在 R 上恒成立,则 Δ=(-1)2-4m<0,解得 m>1,因此当不等式 4x2-x+m>0 在 R 上恒成立时,必有 m>0,但当 m>0 时,不一定推出不等式在 R 上恒成立,故所求的必要不充分条件可以是 m>0.8.(2019·安阳模拟)设 p:f(x)=ex+2x2+mx+1 在[0,+∞)上单调递增,q:m+5≥0,则 p 是 q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 函数f(x)在[0,+∞)上单调递增,只需f′(x)=e x+4x+m≥0在[0,+∞)上恒成立,又因为f′(x)=e x+4x+m在[0,+∞)上单调递增,所以f′(0)=1+m≥0,即m≥-1,故p是q的充分不必要条件.二、专项培优练(一)易错专练——不丢怨枉分1.已知α,β是两个不同的平面,直线l⊂β,则“α∥β”是“l∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A ∵α,β是两个不同的平面,直线l⊂β,则“α∥β”⇒“l∥α”,反之不成立,∴α,β是两个不同的平面,直线l⊂β,则“α∥β”是“l∥α”的充分不必要条件.故选A.”的( )2.(2019·太原模拟)“m=2”是“函数y=|cos mx|(m∈R)的最小正周期为π2A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A ∵当函数y=|cos mx|(m∈R)的最小正周期为π时,m=±2,∴“m=2”是“函数y=|cos mx|(m2”的充分不必要条件.∈R)的最小正周期为π23.“单调函数不是周期函数”的逆否命题是_______________________________.解析:原命题可改写为“若函数是单调函数,则函数不是周期函数”,故其逆否命题是“若函数是周期函数,则函数不是单调函数”,简化为“周期函数不是单调函数”.答案:周期函数不是单调函数(二)素养专练——学会更学通4.[逻辑推理]若命题A的逆命题为B,命题A的否命题为C,则B是C的( )A.逆命题B.否命题C.逆否命题D.都不对解析:选C 根据题意,设命题A为“若p,则q”,则命题B为“若q,则p”,命题C为“若綈p,则綈q”,显然,B与C是互为逆否命题.故选C.5.[逻辑推理]若a,b都是正整数,则a+b>ab成立的充要条件是( )A.a=b=1 B.a,b至少有一个为1C.a=b=2 D.a>1且b>1解析:选B ∵a+b>ab,∴(a-1)(b-1)<1.∵a,b∈N*,∴(a-1)(b-1)∈N,∴(a-1)(b-1)=0,∴a=1或b=1.故选B.6.[数学运算]圆x2+y2=1与直线y=kx-3有公共点的充分不必要条件是( )A.k≤-22或k≥22B.k≤-22C.k≥2D.k≤-22或k>2≤1,即k2+1解析:选B 若直线与圆有公共点,则圆心(0,0)到直线kx-y-3=0的距离d=|-3|k2+1≥3,∴k2+1≥9,即k2≥8,∴k≥22或k≤-22,∴圆x2+y2=1与直线y=kx-3有公共点的充分不必要条件是k≤-22,故选B.7.[数学运算]方程x2-2x+a+1=0有一正一负两实根的充要条件是( )A.a<0 B.a<-1C.-1<a<0 D.a>-1解析:选B ∵方程x2-2x+a+1=0有一正一负两实根,∴Error!解得a<-1.故选B.8.[数学抽象]能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________.解析:设f(x)=sin x,则f(x)在[0,π2]上是增函数,在[π2,2]上是减函数.由正弦函数图象的对称性知,当x∈(0,2]时,f(x)>f(0)=sin 0=0,故f(x)=sin x满足条件f(x)>f(0)对任意的x∈(0,2]都成立,但f(x)在[0,2]上不一直都是增函数.答案:f(x)=sin x(答案不唯一)。

2014届高考数学一轮总复习 第一篇 第2讲 命题及其关系、充分条件与必要条件 理 湘教版

2014届高考数学一轮总复习 第一篇 第2讲 命题及其关系、充分条件与必要条件 理 湘教版

第2讲 命题及其关系、充分条件与必要条件A 级 基础演练(时间:30分钟 总分值:55分)一、选择题(每题5分,共20分)1.(2012·某某)以下命题中,真命题是( ).A .∃x 0∈R ,e x 0≤0B .∀x ∈R,2x >x 2C .a +b =0的充要条件是a b=-1D .a >1,b >1是ab >1的充分条件解析 因为∀x ∈R ,e x >0,故排除A ;取x =2,那么22=22,故排除B ;a +b =0,取a =b =0,那么不能推出a b=-1,故排除C.应选D. 答案 D2.(2013·江北区模拟)命题“假设f (x )是奇函数,那么f (-x )是奇函数〞的否命题是( ).A .假设f (x )是偶函数,那么f (-x )是偶函数B .假设f (x )不是奇函数,那么f (-x )不是奇函数C .假设f (-x )是奇函数,那么f (x )是奇函数D .假设f (-x )不是奇函数,那么f (x )不是奇函数解析 否命题既否定题设又否定结论,应选B.答案 B3.(2012·某某)f (x )是定义在R 上的偶函数,且以2为周期,那么“f (x )为[0,1]上的增函数〞是“f (x )为[3,4]上的减函数〞的( ).A .既不充分也不必要条件B .充分而不必要条件C .必要而不充分条件D .充要条件解析∵x ∈[0,1]时,f (x )是增函数,又∵y =f (x )是偶函数,∴x ∈[-1,0]时,f (x )是减函数.当x ∈[3,4]时,x -4∈[-1,0],∵T =2,∴f (x )=f (x -4).∴x ∈[3,4]时,f (x )是减函数,充分性成立.反之:x ∈[3,4]时,f (x )是减函数,x -4∈[-1,0],∵T =2,∴f (x )=f (x -4),∴x ∈[-1,0]时,f (x )是减函数,∵y =f (x )是偶函数,∴x ∈[0,1]时,f (x )是增函数,必要性亦成立.答案 D4.方程ax 2+2x +1=0至少有一个负实根的充要条件是( ).A .0<a ≤1 B.a <1C .a ≤1 D.0<a ≤1或a <0解析 法一 (直接法)当a =0时,x =-12符合题意. 当a ≠0时,假设方程两根一正一负(没有零根), 那么⎩⎪⎨⎪⎧ Δ=4-4a >0,1a <0⇔⎩⎪⎨⎪⎧ a <1,a <0⇔a <0;假设方程两根均负,那么⎩⎪⎨⎪⎧ Δ=4-4a ≥0,-2a<0,1a >0⇔⎩⎪⎨⎪⎧ a ≤1,a >0⇔0<a ≤1.综上所述,所求充要条件是a ≤1. 法二 (排除法)当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B ,所以选C.答案 C二、填空题(每题5分,共10分)5.(2012·某某调研)“m <14〞是“一元二次方程x 2+x +m =0有实数解〞的________条件. 解析x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14. 答案 充分不必要6.(2012·某某模拟)以下四个说法:①一个命题的逆命题为真,那么它的逆否命题一定为真;②命题“设a ,b ∈R ,假设a +b ≠6,那么a ≠3或b ≠3〞是一个假命题;③“x >2〞是“1x <12〞的充分不必要条件; ④一个命题的否命题为真,那么它的逆命题一定为真.其中说法不正确的序号是________.解析①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a ,b ∈R ,假设a =3且b =3,那么a +b =6〞,此命题为真命题,所以原命题也是真命题,②错误;③1x <12,那么1x -12=2-x 2x <0,解得x <0或x >2,所以“x >2〞是“1x <12〞的充分不必要条件,③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确.答案①②三、解答题(共25分)7.(12分)分别写出以下命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)假设ab =0,那么a =0或b =0;(2)假设x 2+y 2=0,那么x ,y 全为零.解 (1)逆命题:假设a =0或b =0,那么ab =0,真命题.否命题:假设ab ≠0,那么a ≠0且b ≠0,真命题.逆否命题:假设a ≠0且b ≠0,那么ab ≠0,真命题.(2)逆命题:假设x ,y 全为零,那么x 2+y 2=0,真命题.否命题:假设x 2+y 2≠0,那么x ,y 不全为零,真命题.逆否命题:假设x ,y 不全为零,那么x 2+y 2≠0,真命题.8.(13分)p :x 2-8x -20≤0,q :x 2-2x +1-a 2≤0(a >0).假设p 是q 的充分不必要条件,某某数a 的取值X 围.解p :x 2-8x -20≤0⇔-2≤x ≤10, q :x 2-2x +1-a 2≤0⇔1-a ≤x ≤1+a .∵p ⇒q ,q ⇒/ p ,∴{x |-2≤x ≤10}{x |1-a ≤x ≤1+a }.故有⎩⎪⎨⎪⎧ 1-a ≤-2,1+a ≥10,a >0,且两个等号不同时成立,解得a ≥9.因此,所某某数a 的取值X 围是[9,+∞).B 级 能力突破(时间:30分钟 总分值:45分)一、选择题(每题5分,共10分)1.(2013·皖南八校模拟)“m =12〞是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直〞的( ).A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析 由两直线垂直的充要条件知(m +2)(m -2)+3m (m +2)=0,解得m =-2或12,∴m =12时,两直线垂直,反过来不成立. 答案 B2.(2012·沙坪坝二模)以下说法中正确的选项是( ).A .命题“假设am 2<bm 2,那么a <b 〞的逆命题是真命题B .假设函数f (x )=ln ⎝ ⎛⎭⎪⎫a +2x +1的图象关于原点对称,那么a =3 C .∃x ∈R ,使得sin x +cos x =43成立 D .x ∈R ,那么“x >1〞是“x >2〞的充分不必要条件解析 A 中命题的逆命题是“假设a <b ,那么am 2<bm 2〞是假命题,因为m =0时,上述命题就不正确,故A 错误;B 选项,假设f (x )的图象关于原点对称,那么f (x )为奇函数,那么f (0)=ln(a +2)=0,解得a =-1,故B 错误;C 选项,sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4∈[-2,2],且43∈[-2,2],因此C 是真命题.选项D ,“x >1〞是“x >2〞的必要不充分条件.应选C.答案 C二、填空题(每题5分,共10分)3.(2012·某某模拟)假设方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是________.解析 方程x 2-mx +2m =0对应的二次函数f (x )=x 2-mx +2m ,∵方程x 2-mx +2m =0有两根,其中一根大于3一根小于3,∴f (3)<0,解得m >9,即:方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是m >9.答案m >94.集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },假设x ∈B 成立的一个充分不必要的条件是x ∈A ,那么实数m 的取值X 围是________.解析A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案 (2,+∞)三、解答题(共25分)5.(12分)求证:关于x 的方程ax 2+bx +c =0有一个根为1的充要条件是a +b +c =0. 证明 充分性:假设a +b +c =0,∴b =-a -c ,∴ax 2+bx +c =0化为ax 2-(a +c )x +c =0,∴(ax -c )(x -1)=0,∴当x =1时,ax 2+bx +c =0,∴方程ax 2+bx +c =0有一个根为1.必要性:假设方程ax 2+bx +c =0有一个根为1,∴x =1满足方程ax 2+bx +c =0,∴a +b +c =0.综上可知,关于x 的方程ax 2+bx +c =0有一个根为1的充要条件是a +b +c =0.6.(13分)全集U =R ,非空集合A =⎩⎨⎧⎭⎬⎫x |x -2x -3a +1<0, B =⎩⎨⎧⎭⎬⎫x |x -a 2-2x -a <0. (1)当a =12时,求(∁U B )∩A ; (2)命题p :x ∈A ,命题q :x ∈B ,假设q 是p 的必要条件,某某数a 的取值X 围. 解 (1)当a =12时, A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x -52<0=⎩⎨⎧⎭⎬⎫x |2<x <52, B =⎩⎨⎧⎭⎬⎫x |x -94x -12<0=⎩⎨⎧⎭⎬⎫x |12<x <94, ∴∁U B =⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥94.∴(∁U B )∩A =⎩⎨⎧⎭⎬⎫x |94≤x <52. (2)∵a 2+2>a ,∴B ={x |a <x <a 2+2}.①当3a +1>2,即a >13时,A ={x |2<x <3a +1}. ∵p 是q 的充分条件,∴A ⊆B .∴⎩⎪⎨⎪⎧ a ≤23a +1≤a 2+2,即13<a ≤3-52. ②当3a +1=2,即a =13时,A =∅,不符合题意; ③当3a +1<2,即a <13时,A ={x |3a +1<x <2}, 由A ⊆B 得⎩⎪⎨⎪⎧ a ≤3a +1a 2+2≥2,∴-12≤a <13. 综上所述,实数a 的取值X 围是⎣⎢⎡⎭⎪⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(二) 命题、充分条件与必要条件1.已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( ) A .x =-12B .x =-1C .x =5D .x =02.(2013·北京西城区期末)“直线l 的方程为x -y =0”是“直线l 平分圆x 2+y 2=1的周长”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(2013·杭州模拟)命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( ) A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数 C .若x +y 不是偶数,则x 与y 不都是偶数 D .若x +y 不是偶数,则x 与y 都不是偶数4.(2012·武汉适应性训练)设a ,b ∈R ,则“a >0,b >0”是“a +b 2>ab ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2012·安徽高考)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知p :“a =2”,q :“直线x +y =0与圆x 2+(y -a )2=1相切”,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.(2011·天津高考)设集合A ={x ∈R|x -2>0},B ={x ∈R|x <0},C ={x ∈R|x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题9.(2012·绍兴模拟)“-3<a <1”是“方程x 2a +3+y 21-a =1表示椭圆”的____________条件.10.(2012·长沙模拟)若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是________.11.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图像关于y 轴对称”是“y =f (x )是奇函数”的________条件.12.集合A ={x ||x |≤4,x ∈R},B ={x |x <a },则“A ⊆B ”是“a >5”的________条件. 13.下列命题: ①若ac 2>bc 2,则a >b ; ②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件; ④若f (x )=log 2x ,则f (|x |)是偶函数. 其中正确命题的序号是________.14.已知集合A =⎩⎨⎧⎭⎬⎫x ⎝⎛⎭⎫12x 2-x -6<1,B ={x |log 4(x +a )<1},若x ∈A 是x ∈B 的必要不充分条件,则实数a 的取值范围是________.1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,则“A <B ”是“cos 2A >cos 2B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.设x 、y 是两个实数,命题“x 、y 中至少有一个数大于1”成立的充分不必要条件是( )A .x +y =2B .x +y >2C .x 2+y 2>2D .xy >13.已知直线l 1:ax -y +2a +1=0和直线l 2:2x -(a -1)y +2=0(a ∈R),则l 1⊥l 2的充要条件是a =________.4.(2011·陕西高考)设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________.5.设条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,求实数a 的取值范围.6.已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.(1)求M∩P={x|5<x≤8}的充要条件;(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.答 案 课时跟踪检测(二)A 级1.选D a ⊥b ⇔2(x -1)+2=0,得x =0.2.选A 若直线l 的方程为x -y =0,则直线l 一定平分圆x 2+y 2=1的周长;但要平分圆x 2+y 2=1的周长,只需要经过圆心(原点)任意作一条直线即可,即“直线l 的方程为x -y =0”是“直线l 平分圆x 2+y 2=1的周长”的充分而不必要条件.3.选C 由于“x ,y 都是偶数”的否定是“x ,y 不都是偶数”,“x +y 是偶数”的否定是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”.4.选D 由a >0,b >0不能得知a +b 2>ab ,如取a =b =1时,a +b 2=ab ;由a +b2>ab不能得知a >0,b >0,如取a =4,b =0时,满足a +b2>ab ,但b =0.综上所述,“a >0,b >0”是“a +b 2>ab ”的既不充分也不必要条件.5.选A 若α⊥β,又α∩β=m ,b ⊂β,b ⊥m ,根据两个平面垂直的性质定理可得b ⊥α,又因为a ⊂α,所以a ⊥b ;反过来,当a ∥m 时,因为b ⊥m ,一定有b ⊥a ,但不能保证b ⊥α,即不能推出α⊥β.6.选A 由直线x +y =0与圆x 2+(y -a )2=1相切得,圆心(0,a )到直线x +y =0的距离等于圆的半径,即有|a |2=1,a =±2.因此,p 是q 的充分不必要条件. 7.选C A ∪B ={x ∈R |x <0,或x >2},C ={x ∈R |x <0,或x >2}, ∵A ∪B =C ,∴x ∈A ∪B 是x ∈C 的充分必要条件.8.选A 对于A ,其逆命题是:若x >|y |,则x >y ,是真命题,这是因为x >|y |≥y ,必有x >y ;对于B ,否命题是:若x ≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题是:若x ≠1,则x 2+x -2≠0,由于x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x >0或x <0,不一定有x >1,因此原命题与它的逆否命题都是假命题.9.解析:方程表示椭圆时,应有⎩⎪⎨⎪⎧a +3>0,1-a >0,a +3≠1-a解得-3<a <1且a ≠-1,故“-3<a <1”是“方程表示椭圆”的必要不充分条件. 答案:必要不充分10.解析:方程x 2-mx +2m =0对应的二次函数f (x )=x 2-mx +2m ,则方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是f (3)<0,解得m >9.答案:m >911.解析:若y =f (x )是奇函数,则f (-x )=-f (x ),∴|f (-x )|=|-f (x )|=|f (x )|, ∴y =|f (x )|的图像关于y 轴对称,但若y =|f (x )|的图像关于y 轴对称,如y =f (x )=x 2,而它不是奇函数.答案:必要不充分12.解析:A ={x |-4≤x ≤4},若A ⊆B ,则a >4,a >4⇒/ a >5,但a >5⇒a >4.故“A ⊆B ”是“a >5”的必要不充分条件.答案:必要不充分13.解析:对于①,ac 2>bc 2,c 2>0,∴a >b 正确;对于②,sin 30°=sin 150°⇒/ 30°=150°,所以②错误;对于③,l 1∥l 2⇔-2a =-4a ⇔a =0,所以③正确;④显然正确.答案:①③④14.解析:由⎝⎛⎭⎫12x 2-x -6<1,即x 2-x -6>0,解得x <-2或x >3,故A ={x |x <-2,或x >3};由log 4(x +a )<1,即0<x +a <4,解得-a <x <4-a ,故B ={x |-a <x <4-a },由题意,可知B A ,所以4-a ≤-2或-a ≥3,解得a ≥6或a ≤-3.答案:(-∞,-3]∪[6,+∞)B 级1.选C 由大边对大角可知,A <B ⇔a <b . 由正弦定理可知a sin A =bsin B, 故a <b ⇔sin A <sin B .而cos 2A =1-2sin 2A ,cos 2B =1-2sin 2B ,又sin A >0,sin B >0,所以sin A <sin B ⇔cos 2A >cos 2B .所以a <b ⇔cos 2A >cos 2B ,即“A <B ”是“cos 2A >cos 2B ”的充要条件. 2.选B 命题“x 、y 中至少有一个数大于1”等价于“x >1或y >1”. 若x +y >2,必有x >1或y >1,否则x +y ≤2;而当x =2,y =-1时,2-1=1<2, 所以x >1或y >1不能推出x +y >2. 对于x +y =2,当x =1,且y =1时, 满足x +y =2,不能推出x >1或y >1.对于x 2+y 2>2,当x <-1,y <-1时,满足x 2+y 2>2,故不能推出x >1或y >1. 对于xy >1,当x <-1,y <-1时,满足xy >1,不能推出x >1或y >1,故选B. 3.解析:l 1⊥l 2⇔2a +(a -1)=0, 解得a =13.答案:134.解析:由于方程都是正整数解,由判别式Δ=16-4n ≥0得“1≤n ≤4”,逐个分析,当n =1、2时,方程没有整数解;而当n =3时,方程有正整数解1、3;当n =4时,方程有正整数解2.答案:3或45.解:条件p 为:12≤x ≤1,条件q 为:a ≤x ≤a +1.綈p 对应的集合A =xx >1,或x <12,綈q 对应的集合B ={x |x >a +1,或x <a }.∵綈p 是綈q 的必要不充分条件,∴B A ,∴a +1>1且a ≤12或a +1≥1且a <12.∴0≤a ≤12.故a 的取值范围是⎣⎡⎦⎤0,12. 6.解:(1)由M ∩P ={x |5<x ≤8},得-3≤a ≤5,因此M ∩P ={x |5<x ≤8}的充要条件是-3≤a ≤5;(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件,就是在集合{a |-3≤a ≤5}中取一个值,如取a =0,此时必有M ∩P ={x |5<x ≤8};反之,M ∩P ={x |5<x ≤8}未必有a =0,故a =0是M ∩P ={x |5<x ≤8}的一个充分不必要条件.。

相关文档
最新文档