2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)1.1 集合课件 新人教A版
山东省2014届高三数学一轮复习考试试题精选(1)分类汇编17:平面向量 Word版含答案
山东省2014届高三数学一轮复习考试试题精选(1)分类汇编17:平面向量一、选择题1 .(山东省桓台第二中学2014届高三上学期期中考试数学(理)试题)若非零向量b a ,满足||||b a =.0)2(=⋅+b b a ,则b a ,的夹角为( )A .30oB .60oC .120oD .150o【答案】C2 .(山东省淄博第一中学2014届高三上学期期中模块考试数学(理)试题)已知向量a →=(cos θ,sin θ),b →=(3,1),则|2a →―b →|的最大值和最小值分别为 ( )A .4,0B .16,0C .2,0D .16,4【答案】A3 .(山东省德州市2014届高三上学期期中考试数学(理)试题)如图,AB 是⊙O 的直径,点,C D 是半圆弧AB 的两个三等分点,,AB a AC b ==,则AD =( )A .12a b -B .12a b - C .12a b +D .12a b + 【答案】D4 .(山东省淄博第五中学2014届高三10月份第一次质检数学(理)试题)已知i 与j 为互相垂直的单位向量,2a i j =-,b i j λ=+且a 与b 的夹角为锐角,则实数λ的取值范围是 ( ) A .1(,2)(2,)2-∞--B .1(,)2+∞C.22(2,)(,)33-+∞D .1(,)2-∞【答案】A5 .(山东省淄博第一中学2014届高三上学期期中模块考试数学(理)试题)设非零向量a .b .c 满足||||||c b a ==,=+,则向量.间的夹角为( )A .150°B .120°C .60°D .30°【答案】B6 .(山东省山师附中2014届高三11月期中学分认定考试数学(理)试题)在ABC ∆中,2,3==AC AB ,若O为ABC ∆内部的一点,且满足0=++OC OB OA ,则BC AO ⋅= ( )A .21 B .52 C .31 D .41 【答案】C7 .(山东省淄博一中2014届高三上学期10月阶段检测理科数学)若点P 是△ABC 所在平面内的一点,且满足5AP→=3AB →+2AC →,则△ABP 与△ABC 的面积比为 ( )A .15B .25C .35D .45【答案】B .8 .(山东省青岛市2014届高三上学期期中考试数学(理)试题)设a .b 都是非零向量,下列四个条件中,一定能使0||||a ba b +=成立的是 ( )A .13a b =-B .//a bC .2a b =D .a b ⊥【答案】A9 .(山东省淄博第五中学2014届高三10月份第一次质检数学(理)试题)下列各式正确的是( )A .a b =a b ⋅B .()222a b=a b ⋅⋅C .若()a b-c ,⊥则a b=a c ⋅⋅D . 若a b=a c ⋅⋅则b=c【答案】C10.(山东省枣庄市2014届高三上学期期中检测数学(理)试题)如图,,90PA PB APB =∠=︒,点C 在线段PA 的延长线上,,D E 分别为ABC ∆的边,AB BC 上的点.若PE 与PA PB +共线,DE 与PA 共线,则PD BC ⋅的值为( )A .1-B .0C .1D .2【答案】B11.(山东省临沂市2014届高三上学期期中考试数学(理)试题)已知a,b 均为单位向量,它们的夹角为3π,则a b += ( )A . 1BCD .2【答案】C12.(山东省淄博第五中学2014届高三10月份第一次质检数学(理)试题)在ABC ∆中,已知a .b .c 成等比数列,且33,cos 4a c B +==,则AB BC ⋅= ( )A .32B .32-C .3D .-3【答案】B13.(山东省文登市2014届高三上学期期中统考数学(理)试题)已知向量(3,4)a =, (2,1)b =-,如果向量a xb-与b 垂直,则x 的值为 ( )A .233B .323C .25D .25-【答案】C14.(山东省济南外国语学校2014届高三上学期质量检测数学(理)试题)设311(2sin ,),(,cos )264a xb x ==,且//a b ,则锐角x 为( )A .6πB .3π C .4π D .512π 【答案】C15.(山东省单县第五中学2014届高三第二次阶段性检测试题(数理))O 是平面上一定点,( )A .B .C 是平面上不共线的三个点,动点P 满足).,0[)||||(+∞∈⋅++=λλAC ACAB AB 则P 的轨迹一定通过△ABC 的 ( )A .外心B .内心C .重心D .垂心【答案】B16.(山东省博兴二中2014届高三第一次复习质量检测理科数学试卷)已知向量a =(1,2),向量b =(x ,-2),且a ⊥(a -b ),则实数x 等于( )A .9B .4C .0D .-4【答案】A17.(山东省威海市2014届高三上学期期中考试数学(理)试题)已知||1,||2,,60a b a b ==<>=,则|2|a b -=( )A .2B .4C .D .8【答案】A18.(山东省济南一中等四校2014届高三上学期期中联考数学(理)试题)已知向量(2,8),(8,16)a b a b +=--=-,则a 与b 夹角的余弦值为 ( )A .6365B .6365-C .6365±D .513【答案】B19.(山东省临朐七中2014届高三暑假自主学习效果抽测(二)数学试题)设P 是△ABC 所在平面内的一点,2BC BA BP +=,则 ( )A .0PA PB +=B .0PC PA += C .0PB PC +=D .0PA PB PC ++=【答案】B 二、填空题20.(山东省山师附中2014届高三11月期中学分认定考试数学(理)试题)在直角三角形ABC 中,3,2==∠AC C π,取点D.E 使BE AB DA BD 3,2==,那么=⋅+⋅_________________________.【答案】321.(山东省济南一中等四校2014届高三上学期期中联考数学(理)试题)若向量(2,3),(4,7)BA CA ==,则BC =___________.【答案】(2,4)--22.(山东省文登市2014届高三上学期期中统考数学(理)试题)在ABC ∆中,3BC BD =,AD AB ⊥,1AD =,则AC AD ⋅=_________.23.(山东省郯城一中2014届高三上学期第一次月考数学(理)试题)定义*a b 是向量a 和b 的“向量积”,它的长度*s i n a b a b α=,其中α为向量a 和b 的夹角,若()2,0u =,(1,3u v -=-,则*()u u v +=_____________.【答案】2324.(山东省枣庄市2014届高三上学期期中检测数学(理)试题)已知向量(1,1),(1,2)a b ==-,若()(,)a a b R λμλμ⊥+∈,则λμ=___________.【答案】12-25.(山东省山师附中2014届高三11月期中学分认定考试数学(理)试题)在ABC ∆中,若向量)sin sin ,sin sin 2(),sin ,sin (sin B A C A C B A +-=-=,且//,则角B____________________.【答案】4π26.(山东师大附中2014届高三第一次模拟考试数学试题)设M 是线段BC 的中点,点A 在直线BC外,216BC =,AB AC AB AC +=-,则AM =___________ .【答案】227.(山东省聊城市堂邑中学2014届高三上学期9月假期自主学习反馈检测数学(理)试题)如图,在正方形ABCD中,已知2AB =,M 为BC 的中点,若N 为正方形 内(含边界)任意一点,则AM AN ⋅的取值范围是______.【答案】[]0,6根据题意,由于在正方形ABCD 中,已知2AB =,M 为BC 的中点,若N 为正方形 内(含边界)任意一点,以A 为原点建立直角坐标系,那么可知M(2,1),B(2,0)N(x,y),则可知2AM AN x y ⋅=+,0202x y ≤≤⎧⎨≤≤⎩,结合线性规划可知当目标函数过点(0,0)最小,过点(2,2)最大,因此可知AM AN ⋅的取值范围是[]0,6.28.(山东省博兴二中2014届高三第一次复习质量检测理科数学试卷)在长江南岸渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h.渡船要垂直地渡过长江,则航向为北偏西____★____度.【答案】3029.(山东省单县第五中学2014届高三第二次阶段性检测试题(数理))已知向量AB 与AC 的夹角为0120,且|AB →|=3,|AC →|=2,若λ=+AP AB AC ,且⊥AP BC ,则实数λ的值为__________.【答案】712三、解答题30.(山东省德州市2014届高三上学期期中考试数学(理)试题)在平面直角坐标系xOy 中,已知四边形OABC 是等腰梯形,(6,0),A C ,点,M 满足12OM OA =,点P 在线段BC 上运动(包括端点),如图. (1)求OCM ∠的余弦值;(2)是否存在实数λ,使()OA OP CM λ-⊥,若存在,求出满足条件的实数λ的取值范围,若不存在,请说明理由.【答案】(1)由题意可得1(6,0),(1,3),(3,0)2OA OCOM OA ====,(2,3),(1,CM CO =-=-(2)设(P t ,其中15t ≤≤,()OP t λλ= 若()OA OP CM λ-⊥,则()0OA OP CM λ-⋅= 即12230(23)12t t λλλ-+=⇒-=,若32t =,则λ不存在 若32t ≠,则1223t λ=- 33[1,)(,5]22t ∈⋃,故12(,12][,)7λ∈-∞-⋃+∞31.(山东省淄博一中2014届高三上学期10月阶段检测理科数学)已知向量a →=(cos3x 2,sin 3x 2),b →=(cos x 2,―sin x2),且x ∈[0,π2].(1) 已知a →∥b →,求x;(2)若f(x)=a →·b →―2λ|a →+b →|+2λ的最小值等于―3,求λ的值.【答案】解:(1)∵ a →∥b →∴ cos3x 2×(―sin x 2)―sin 3x 2cos x2=0,即sin2x=0, ∵ x ∈[0,π2] ∴ x=0,π2(2)∴a →·b →=cos 3x 2cos x 2―sin 3x 2sin x2=cos2x;|a →+b →|=2+2a →·b →=2+2cos2x∵ x ∈[0,π2]∴ f(x)=cos2x―2λ1+2cos2x+2λ=2cos 2x―4λcosx+2λ―1令g(t)=2t 2―4λt+2λ―1,0≤t≤1∴ ① 当λ≤0时,g(t)在[0,1]上为增函数,g(t)min =g(0)=2λ―1=―3, ∴λ=―1≤0; ② 当0<λ≤1时,g(t)min =g(λ)=―3, ∴ λ2―λ―1=0 ∴ λ=1±52∉[0,1],舍去;③ 当λ>1时,g(t)在[0,1]上为减函数,g(t)min =g(1)= 1―2λ=―3, ∴λ=2>0 ∴ 由上可知,λ=―1或232.(山东省博兴二中2014届高三第一次复习质量检测理科数学试卷)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |和|a -b |.【答案】解:(1)(2a -3b )·(2a +b )=61,解得a ·b =-6∴cos θ=a ·b |a ||b |=-64×3=-12,又0≤θ≤π,∴θ=2π3(2)|a +b |2=a 2+2a ·b +b 2=13, ∴|a +b |=13|a -b |2=a 2-2a ·b +b 2=37. ∴|a -b |=3733.(山东省文登市2014届高三上学期期中统考数学(理)试题)已知(2c o s ,2s i n )(a b ααββ==,,02αβπ<<<.(Ⅰ)若a b ⊥,求|2|a b -的值;(Ⅱ)设(2,0)c =,若2a b c +=,求βα,的值.【答案】解: (Ⅰ)∵⊥∴0a b ⋅=又∵2222||4cos 4sin 4a a αα==+=,1sin cos ||2222=+==ββ ∴2|2|a b -()222244448a ba ab b =-=-+=+=,∴|2|22a b -=.(Ⅱ)∵a 2b (2cos 2cos ,2sin 2sin )(2,0)αβαβ+=++= ∴cos cos 1sin sin 0αβαβ+=⎧⎨+=⎩即cos 1cos sin sin αβαβ=-⎧⎨=-⎩两边分别平方再相加得: 122cos β=- ∴1cos 2β=∴1cos 2α= ∵02,αβπ<<<且sin sin 0αβ+= ∴15,33απβπ==34.(山东省枣庄市2014届高三上学期期中检测数学(理)试题)已知向量123,,AP AP AP 满足1230AP AP AP ++=,且123||||||1AP AP AP ===.求证:123PP P ∆为正三角形· 【答案】。
【三维设计】2014届高考数学一轮(基础知识高频考点解题
第二节同角三角函数的根本关系与诱导公式[ 知识能否忆起 ]1.同角三角函数的根本关系式(1 平方关系: sin2α+cos2α=1(α∈R.(2 商数关系: tan α=.2.六组诱导公式角2kπ+α(k∈Zπ +α-απ-α-α+α函数正弦sin_α-sin_α-sin_αsin_αcos_αcos_α余弦cos_α-cos_αcos_α-cos_αsin_α-sin_α正切tan_ αtan_α-tan_α-tan_α对于角“±α〞(k∈Z 的三角函数记忆口诀“奇变偶不变,符号看象限〞,“奇变偶不变〞是指“当 k 为奇数时,正弦变余弦,余弦变正弦;当 k 为偶数时,函数名不变〞.“符号看象限〞是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号〞.[ 小题能否全取 ]1.sin 585°的值为 (A.- B.C.- D.解析:选 A sin 585 °= sin(360 °+225°=s in 225°= sin(180°+45°=- sin 45°=-.2.(教材习题改编 sin( π+θ=-cos(2π-θ,|θ|< ,那么θ等于 (A.- B.-C. D.解析:选 D∵sin(π+θ=-cos(2π-θ,∴- sin θ=-cos θ,∴ tan θ= .∵|θ|< ,∴θ= .3. tan θ= 2,那么= (A.2 B.- 2C.0 D.解析:选 B原式====- 2.4. (教材习题改编如果sin( +πA =,那么c os 的值是 ________.解析:∵ sin( π+ A =,∴- sin A = .∴c os=- sin A =.答案:5.α是第二象限角,tan α=-,那么cos α= ________.解析:由题意知cos α<0,又 sin 2α+cos2α=1,tan α==- .∴ cos α=- .答案:-应用诱导公式时应注意的问题(1 利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负号—脱周期—化锐角.特别注意函数名称和符号确实定.(2 在利用同角三角函数的平方关系时,假设开方,要特别注意判断符号.(3 注意求值与化简后的结果要尽可能有理化、整式化.同角三角函数的根本关系式典题导入[例 1](1(2021 江·西高考假设tan θ+= 4,那么 sin 2θ=(A. B.C. D.(2 sin(3π+α=2sin,那么= ________.[自主解答]+=,(1∵ tan θ4∴+=4,∴=4,即=4,∴sin 2θ=.(2 法一:由 sin(3π+α=2sin 得 tan α=2.原式===- .法二:由得 sin α= 2cos α.原式==- .[答案] (1D (2-在(2 的条件下, sin2α+sin 2α= ________.解析:原式= sin2α+2sin αcos α=== .答案:由题悟法1.利用 sin2α+cos2α=1 可以实现角α的正弦、余弦的互化,利用= tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用 (sin α±cos α2=1±2sin αcos α,可以知一求二 (参阅本节题型技法点拨.3.注意公式逆用及变形应用:1= sin2α+ cos2α, sin2α=1- cos2α, cos2α= 1- sin2α.以题试法1. (1(2021 长·沙模拟假设角α的终边落在第三象限,那么+的值为( A.3 B.- 3C.1 D.- 1(2 sin α= 2sin β, tan α= 3tan β,那么 cos α= ________.解析: (1 由角α的终边落在第三象限得sin α<0, cos α<0,故原式=+=+=-1- 2=- 3.(2∵ sin α= 2sin β, tan α= 3tan β,∴sin2α= 4sin2β,①tan2α= 9tan2β,②由①÷②得: 9cos2α= 4cos2β,③①+③得: sin2α+ 9cos2α=4,∵c os2α+ sin2α= 1,∴cos2α=,即 cos α=±.答案: (1B(2 ±三角函数的诱导公式典题导入[例 2](1= ________.(2 A=+ (k∈Z,那么 A 的值构成的集合是(A . {1 ,- 1,2,- 2}B. { - 1,1}C. {2 ,- 2} D .{1 ,- 1,0,2,- 2}[自主解答 ] (1 原式====-=-·=- 1.(2 当 k 为偶数时, A=+= 2;k 为奇数时, A=-=- 2.[答案 ] (1- 1(2C由题悟法利用诱导公式化简求值时的原那么(1 “负化正〞,运用-α的诱导公式将任意负角的三角函数化为任意正角的三角函数.(2 “大化小〞,利用 k·360 °+α(k∈Z的诱导公式将大于 360 °的角的三角函数化为 0°到360 °的三角函数.(3 “小化锐〞,将大于90°的角化为0°到 90°的角的三角函数.(4 “锐求值〞,得到 0°到 90°的三角函数后,假设是特殊角直接求得,假设是非特殊角可由计算器求得.以题试法2. (1(2021 滨·州模拟sin 600 +°tan 240 的°值等于 (A.- B.C.-D. +(2 f(x= asin( xπ+α+ bcos( xπ-β,其中α,β, a, b 均为非零实数,假设f(2 012=- 1,那么 f(2 013 等于 ________.解析: (1sin 600°+ tan 240°= sin(720 °- 120°+ tan(180 °+ 60°=- sin 120°+ tan 60°=-+=.(2 由诱导公式知f(2 012 = asin α+bcos β=- 1,∴f(2 013 = asin( π+α+bcos( π-β=- (asin α+ bcos β= 1.答案: (1B (21诱导公式在三角形中的应用典题导入[例 3]在△ABC中,假设sin(2-πA=-sin(π-B,cos A=-cos (π-B,求△ABC的三个内角.[自主解答 ]由得sin A =sin B , cos A= cos B 两式平方相加得2cos2A = 1,即 cos A =或 cos A=- .(1 当 cos A=时, cos B=,又角 A 、 B 是三角形的内角,∴A =, B =,∴C=π- (A + B = .(2 当 cos A=-时, cos B=-,又角 A 、B 是三角形的内角,∴A=,B=,不合题意.综上知, A=, B=, C= .由题悟法1.诱导公式在三角形中经常使用,常用的角的变形有: A + B =π- C,2A + 2B = 2π-2C,++=等,于是可得sin(A + B = sin C, cos= sin 等;2.求角时,通常是先求出该角的某一个三角函数值,再结合其范围,确定该角的大小.以题试法3.在三角形ABC 中,(1 求证: cos2+ cos2= 1;(2 假设 cossintan (C-π <0,求证:三角形ABC 为钝角三角形.证明: (1 在△ ABC 中, A+B=π- C,那么=-,所以 cos= cos= sin,故 cos2+ cos2= 1.(2 假设 cossintan (C-π <0,那么(- sin A(-cos Btan C<0,即 sin Acos Btan C<0,∵在△ ABC 中, 0<A<π,0< B<π,0<C<π,∴s in A>0 ,或∴B 为钝角或 C 为钝角,故△ ABC 为钝角三角形.1. sin(θ+π <0, cos(θ-π >0,那么以下不等关系中必定成立的是( A . sin θ<0,cos θ>0B. sin θ>0, cos θ<0C. sin θ>0,cos θ>0 D . sin θ<0 , cos θ<0解析:选 B sin(θ+π<0,∴- sin θ<0, sin θ>0.∵c os(θ-π>0,∴- cos θ>0.∴ cos θ<0.2. (2021 ·徽名校模拟安tan x= 2,那么 sin2x+ 1= (A.0 B.C. D.解析:选 B sin2x+ 1=== .3. (2021 ·西高考假设=,那么江tan 2α= (A.- B.C.- D.解析:选 B∵ ==,∴ tanα=-3.∴tan 2α== .4. (2021 ·博模拟淄sin 2α=-,α∈,那么 sin α+cos α=( A.- B.C.- D.解析:选 B(sin α+cos α2= 1+ 2sin αcos α=1+ sin 2α=,又α∈, sin α+ cos α>0,所以 sin α+cos α=.5. cos=,且 |φ|<,那么 tan φ= (A.- B.C.- D.解析:选 D cos= sin φ=,又|φ|<,那么 cos φ=,所以 tan φ= .6. 2tan α·sin α= 3,-<α< 0,那么 sin α= (A.B .-C.D.-解析:选 B由2tanα·sinα=3得,=3,即 2cos2α+ 3cos α- 2= 0,又-<α< 0,解得 cos α= (cos α=- 2 舍去,故 sin α=- .7. cos- sin 的值是 ________.解析:原式= cos+ sin = cos+ sin= .答案:8.假设= 2,那么 sin( θ- 5π sin= ________.解析:由= 2,得sin θ+ cos θ= 2(sin θ- cos θ,两边平方得:1+ 2sin θcos θ=4(1- 2sin θcos θ,故 sin θcos θ=,∴sin(θ- 5πsin= sin θcos θ= .答案:9. (2021 ·山模拟中cos=,那么 sin= ________.解析: sin= sin=- sin =- cos=- .答案:-10.求值: sin(- 1 200 ·°cos 1 290 +°cos(-1 020 °·sin( - 1 050 +°tan 945 . °解:原式=- sin 1 200 ·°cos 1 290 +° cos 1 020 °·(- sin 1 050 +°tan 945 °=- sin 120 ·°cos 210 °+ cos 300 °·(- sin 330 °+ tan 225 °=(- sin 60 ·°(- cos 30 °+ cos 60 °·sin 30 +°tan 45 °=×+×+ 1= 2.11. cos( π+α=-,且α是第四象限角,计算:(1sin(2 -πα;(2(n∈Z.解:∵ cos(π+α=-,∴-cos α=-, cos α=.又∵ α是第四象限角,∴s in α=-=- .(1sin(2π-α= sin [2π+(-α]= sin(-α=-sinα=;(2=====-=- 4.12.(2021 ·信阳模拟角α的终边经过点 P.(1 求 sin的α值;(2 求·的值.解:(1∵ |OP|=1,∴点 P 在单位圆上.由正弦函数的定义得sinα=-.(2 原式=·==,由余弦函数的定义得cos α=.故所求式子的值为 . 1.=-,那么的值是 (A.B .-C.2 D.- 2解析:选 A由于·==-1,故=.2.假设角α的终边上有一点P(- 4, a,且 sinα· cos=,那么α a的值为(A.4 B.±4C.- 4 或- D.解析:选 C依题意可知角α的终边在第三象限,点P(- 4,a 在其终边上且sinα· cos=α易得 tan α=或,那么a=- 4 或- .3. A 、 B、 C 是三角形的内角,sin A ,- cos A 是方程 x2- x+ 2a=0 的两根.(1求角 A;(2 假设=- 3,求 tan B.解: (1 由可得,sin A -cos A =1.①又 sin2A + cos2A= 1,所以 sin2A +(sin A - 12= 1,即 4sin2A - 2sin A = 0,得 sin A = 0(舍去或 sin A =,那么 A=或,将 A =或代入①知 A =时不成立,故 A=.(2 由=- 3,得 sin2B - sin Bcos B - 2cos2B= 0,∵c os B ≠0,∴ tan2B -tan B- 2=0,∴tan B = 2 或 tan B=- 1.∵tan B =- 1 使 cos2B- sin2B= 0,舍去,故 tan B = 2.1. sin= m,那么 cos 等于 (A . mB .- mC.D.-解析:选 A∵sin=m,∴cos= sin= m.2.求证: sinθ+(1tan+θcos=θ+.证明:左边= sinθ+cosθ=s in +θ+ cos θ+=+=+=+=右边.3. sin( -πα- cos( π+α= .求以下各式的值:(1sin α- cos α;(2sin3+ cos3.解:由 sin( π-α- cos(π+α=,得 sin α+ cos α=,①将①两边平方,得1+ 2sin α·cos α=,故 2sin α·cos α=- .又<α<π,∴ sin α>0, cos α<0.(1(sin α- cos α2= 1- 2sin α·cos α= 1-=,∴ sin α- cos α= .(2sin3+ cos3=cos3α-sin3α= (cos α- sin α(cos2α+ cos α·sin α+sin2α=-×=- .。
2014届高考文科数学第一轮复习试题及答案
惠州市2014届高三第二次调研考试试题数 学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1. 已知集合{}0,1S =,集合{}0T =,∅表示空集,那么S T = ( ) A .∅ B .{0} C .{0,1} D .{0,1,0}2. 命题“存在实数x ,使210x x +-<”的否定为( )A .对任意实数x ,都有210x x +-≥ B .不存在实数x ,使210x x +-≥ C .对任意实数x ,都有210x x +-< D .存在实数x ,使210x x +-≥3. 双曲线221169x y -=的离心率为( ) A .53 B .54 C .35 D . 454. 直线40y +=与圆22(2)(1)9x y -++=的位置关系是( )A .相切B .相交且直线不经过圆心C .相离D .相交且直线经过圆心5. 已知(a = ,(1,)b x =,若a b ⊥ ,则x 等于( )A .2BC .3D 6. 函数()()2log 31xf x =-的定义域为( )A .[)1,+∞B .()1,+∞ C .[)0,+∞ D . ()0,+∞7. 已知等差数列{}n a 的前n 项和为n S ,若125a a +=,349a a +=,则10S 为( ) A .55 B .60 C .65 D .708. 已知函数sin()(0,||)2y x πωϕωϕ=+><的部分图像如图所示,则,ωϕ的值分别为( ) A .2,3π- B .2,6π-C .4,6π- D .4,3π9.已知,m n 为两条不同的直线,,αβ为两个不同的平面,给出下列4个命题:①若,//,//m n m n αα⊂则 ②若,//,m n m n αα⊥⊥则 ③若,,//m m αβαβ⊥⊥则 ④若//,//,//m n m n αα则 其中真命题的序号为( )A .①②B .②③C .③④D .①④ 10. 设D 是正123PP P ∆及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合0{|,||||,1,2,3}i S P P D PP PP i =∈≤=.则集合S 表示的平面区域是( )A .三角形区域B .四边形区域C .五边形区域D .六边形区域二、填空题:(本大题共5小题,分为必做题和选做题两部分.每小题5分,满分20分) (一)必做题:第11至13题为必做题,每道试题考生都必须作答. 11.复数2(1)i -的虚部为__________.12.如图所示,程序框图(算法流程图)的输出结果为_________.13.设变量,x y 满足约束条件01030y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则2z x y =+的最大值为_________.(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的,只计前一题的得分。
2014届高三数学一轮复习课件(基础知识+小题全取+考点通关+课时检测)1.2命题、充分条件与必要条件
1.充分、必要条件的判定方法有定义法、集合法 和等价转化法. 2.三种不同的方法各适用于不同的类型,定义法
适用于定义、定理判断性问题,而集合法多适用于命题
中涉及字母的范围的推断问题,等价转化法适用于条件 和结论带有否定性词语的命题,常转化为其逆否命题来 判断.
答案:A
2.若命题p的逆命题是q,命题q的否命题是r,则p是r的 ( )
A.逆命题 C.否命题
B.逆否命题 D.以上判断都不对
解析:命题p:若x,则y,其逆命题q:若y,则x,那么命Байду номын сангаас题q的否命题r:若綈y,则綈x,所以p是r的逆否命题.
答案:B
3.(2012· 温州适应性测试)设集合A,B,则A⊆B是A∩B
=A成立的
A.充分不必要条件 C.充要条件 B.必要不充分条件
(
)
D.既不充分也不必要条件
解析:由A⊆B,得A∩B=A;反过来,由A∩B=A, 且(A∩B)⊆B,得A⊆B.因此,A⊆B是A∩B=A成立的充
要条件.
答案:C
4.“在△ABC中,若∠C=90°,则∠A、∠B都是锐角”
的否命题为:____________________. 解析:原命题的条件:在△ABC中,∠C=90°, 结论:∠A、∠B都是锐角.否命题是否定条件和结论. 即“在△ABC中,若∠C≠90°,则∠A、∠B不都是锐
①“若x2+y2≠0,则x,y不全为零”的否命题; ②“正多边形都相似”的逆命题; ③“若m>0,则x2+x-m=0有实根”的逆否命题; ④“若x-3 是有理数,则x是无理数”的逆否命题.
1 2
A.①②③④
C.②③④ [自主解答]
2014届高考数学(文)一轮复习课件(鲁闽皖专用)1.1集合(新人教A版)
(4)集合的表示方法 ①__列__举__法___ ②__描__述__法__
③_V_e_n_n_图__法__
【即时应用】
(1)判断下列结论是否正确(在后面的括号内填“√”或
“×”):
①Z={全体整数}
()
②R={实数集}={R}
()
③{(1,2)}={1,2}
()
④{1,2}={2,1}
()
把握高考命题动向,体现区域化考试特点。本栏目以最新 的高考试题为研究素材,解析经典考题,洞悉命题趋势,展示 现场评卷规则。对例题不仅仅是详解评析,更是从命题层面评 价考题,从备考角度提示规律方法,拓展思维,警示误区。 【考题体验】让你零距离体验高考,亲历高考氛围,提升应战 能力。为你顺利穿越数学高考时空增添活力,运筹帷幄、决胜 千里。
的解集
>0的解集 的定义域 的值域
的图象上 的点集
【例1】(1)设P、Q为两个非空实数集合,定义集合P+Q=
{a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个
数是( )
(A)9
(B)8
(C)7
(D)6
(2)已知-3∈A={a-2,2a2+5a,12},则a=________.
【例2】(1)已知a∈R,b∈R,若{a, b ,1}={a2,a+b,0},则a2 013+
a
b2 013=________.
(2)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实
数m的取值范围是________.
(3)设A={x|x2-8x+15=0},B={x|ax-1=0},若B⊆A,求实数a组成
山东省2014届高三数学一轮复习考试试题精选(1)分类汇编18:数列 Word版含答案-推荐下载
an
Sn
2( 1 n
根据题意,由于数列 an 的通项为
n
a1+a2 ++an
3 1 1 2 n 1 n 2 ,故选 D
1
) 2
,那么可知数列的前
2[(1 1
1) 3
(1 2
n
1) 4
13..(山东省潍坊市 2014 届高三上学期期中考试数学(理)试题)等差数列{ an }的前 20 项和为
an
+( 1 n
C.90
C. 8
C.(1)94 3
4
C.
5
1 anan1
2 n(n
n
1
2)
可以变形为
)] 可知结论为 2
an
C.20
C.1
C.93
3
C.
10
D.90
D.25
D.-2
D.189
1
D.8( )Fra bibliotek( )
( )
( )
( )
【答案】C 7. .(山东省淄博第一中学 2014 届高三上学期期中模块考试数学(理)试题)在各项均为正数的
8.
等比数列{an}中,若 a5a6=9,则 log3a1+log3a2++log3a10=
A.12
【答案】D
B.2+log35
C.8
.(山东省青岛市 2014 届高三上学期期中考试数学(理)试题)已知等差数列an的公差
d 0 ,若 a1 a2 a3 a2013 2013at ( t N* ),则 t
2014届高考一轮复习数学基础知识集合(新人教A版)Word版
高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:2.集合4.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.5.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z= {整数}(√)Z ={全体整数} (×)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N;A=,则C s A= {0})③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.解:逆否:a = 2且b = 3,则a+b = 5,成立,所以此命题为真.②.解:逆否:x + y =3x = 1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.6.例:若.7.集合运算:交、并、补.8.主要性质和运算律1.包含关系:2.等价关系:3.集合的运算律:交换律:结合律:分配律:.0-1律:等幂律:求补律:A∩C U A=φ A∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)9.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.x (自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.2.分式不等式的解法(1)标准化:移项通分化为>0(或<0);≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
2014高考数学一轮汇总训练(归纳明确考点+课前自测+教师备选题+误区警示+课后实战题,含详解及20
第三节等比数列及其前n项和[备考方向要明了]考什么怎么考1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中,识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.1.以客观题的形式考查等比数列的性质及其基本量的计算,如2012年新课标全国T5,某某T13等.2.以解答题的形式考查等比数列的定义、通项公式、前n项和公式及性质的综合应用,如2012年某某T18等.[归纳·知识整合]1.等比数列的相关概念相关名词等比数列{a n}的有关概念及公式定义a n+1a n=q(q是常数且q≠0,n∈N*)或a na n-1=q(q是常数且q≠0,n∈N*且n≥2)通项公式a n=a1q n-1=a m·q n-m前n项和公式S n=⎩⎪⎨⎪⎧na1q=1a11-q n1-q=a1-a n q1-qq≠1等比中项设a,b为任意两个同号的实数,则a,b的等比中项G=±ab[探究] 1.b2=ac是a,b,c成等比数列的什么条件?提示:b2=ac是a,b,c成等比数列的必要不充分条件,因为当b=0时,a,c至少有一个为零时,b2=ac成立,但a,b,c不成等比数列;若a,b,c成等比数列,则必有b2=ac.2.如何理解等比数列{a n }与指数函数的关系? 提示:等比数列{a n }的通项公式a n =a 1qn -1可改写为a n =a 1q·q n.当q >0,且q ≠1时,y=q x是一个指数函数,而y =a 1q·q x是一个不为0的常数与指数函数的积,因此等比数列{a n }的图象是函数y =a 1q·q x的图象上的一群孤立的点.2.等比数列的性质(1)对任意的正整数m ,n ,p ,q ,若m +n =p +q 则a m ·a n =a p ·a q . 特别地,若m +n =2p ,则a m ·a n =a 2p .(2)若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m-S 2m )(m ∈N *,公比q ≠-1).(3)数列{a n }是等比数列,则数列{pa n }(p ≠0,p 是常数)也是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k.[自测·牛刀小试]1.在等比数列{a n }中,如果公比q <1,那么等比数列{a n }是( ) A .递增数列 B .递减数列 C .常数列 D .无法确定数列的增减性解析:选D 当a 1>0,0<q <1,数列{a n }为递减数列,当q <0,数列{a n }为摆动数列. 2.(教材习题改编)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C .8D .2+log 35解析:选B ∵数列{a n }为等比数列,∴a 5a 6=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1·a 2·…·a 10) =log 3(a 5a 6)5=5log 3a 5a 6=5log 39=10.3.(教材习题改编)在等比数列{a n }中,若a 5-a 1=15,a 4-a 2=6,则a 3=________.解析:∵⎩⎪⎨⎪⎧a 5-a 1=15,a 4-a 2=6,∴⎩⎪⎨⎪⎧a 1q 4-1=15,a 1q 3-q =6.∴q 2-1≠0,q 4-1q 3-q =52.∴2q 2-5q +2=0,解得q =12或q =2.当q =2时,a 1=1,∴a 3=a 1q 2=4.当q =12时,a 1=-16,∴a 3=a 1q 2=-4.答案:4或-44.在等比数列{a n }中,a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5的值为________. 解析:由等比数列性质,已知转化为a 23+2a 3a 5+a 25=25, 即(a 3+a 5)2=25,又a n >0,故a 3+a 5=5. 答案:55.在1与4之间插入三个数使这五个数成等比数列,则这三个数分别是________. 解析:设等比数列的公比为q ,则4=q 4.即q =± 2. 当q =2时,插入的三个数是2,2,2 2. 当q =-2时,插入的三个数是-2,2,-2 2. 答案:2,2,22或-2,2,-2 2等比数列的基本运算[例1] (1)(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7(2)(2012·某某高考)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.(3)(2012·某某高考)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.[自主解答] (1)设数列{a n }的公比为q ,由⎩⎪⎨⎪⎧a 4+a 7=2,a 5·a 6=a 4·a 7=-8,得⎩⎪⎨⎪⎧a 4=4,a 7=-2,或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以⎩⎪⎨⎪⎧a 1=-8,q 3=-12,或⎩⎪⎨⎪⎧a 1=1,q 3=-2,所以⎩⎪⎨⎪⎧a 1=-8,a 10=1,或⎩⎪⎨⎪⎧a 1=1,a 10=-8,所以a 1+a 10=-7.(2)∵2(a n +a n +2)=5a n +1,∴2a n +2a n ·q 2=5a n ·q , 即2q 2-5q +2=0, 解得q =2或q =12(舍去).又∵a 25=a 10=a 5·q 5, ∴a 5=q 5=25=32. ∴32=a 1·q 4,解得a 1=2. ∴a n =2×2n -1=2n ,故a n =2n.(3)由S 2=3a 2+2,S 4=3a 4+2作差可得a 3+a 4=3a 4-3a 2,即2a 4-a 3-3a 2=0,所以2q 2-q -3=0,解得q =32或q =-1(舍去).[答案] (1)D (2)2n(3)32———————————————————等比数列运算的通法与等差数列一样,求等比数列的基本量也常运用方程的思想和方法.从方程的观点看等比数列的通项公式a n =a 1·q n -1(a 1q ≠0)及前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1中共有五个变量,已知其中的三个变量,可以通过构造方程或方程组求另外两个变量,在求公比q 时,要注意应用q ≠0验证求得的结果.1.(1)(2013·海淀模拟)在等数列{a n }中,a 1=8,a 4=a 3a 5,则a 7=( ) A.116B.18C.14D.12(2)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( ) A.152B.314 C.334D.172解析:(1)选B 在等比数列{a n }中,a 24=a 3a 5,又a 4=a 3a 5,所以a 4=1,故q =12,所以a 7=18.(2)选B 显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12,或⎩⎪⎨⎪⎧a 1=9,q =-13,(舍去)故S 5=a 11-q 51-q=4⎝ ⎛⎭⎪⎫1-1251-12=314.等比数列的判定与证明[例2] 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明数列{b n }是等比数列; (2)在(1)的条件下证明⎩⎨⎧⎭⎬⎫a n 2n 是等差数列,并求a n .[自主解答] (1)证明:∵由a 1=1,及S n +1=4a n +2, 有a 1+a 2=4a 1+2,a 2=3a 1+2=5, ∴b 1=a 2-2a 1=3. 由S n +1=4a n +2,①知当n ≥2时,有S n =4a n -1+2,② ①-②得a n +1=4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1). 又∵b n =a n +1-2a n ,∴b n =2b n -1.∴{b n }是首项b 1=3,公比q =2的等比数列. (2)由(1)可得b n =a n +1-2a n =3×2n -1,∴a n +12n +1-a n 2n =34. ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)34=34n -14. a n =(3n -1)×2n -2.———————————————————等比数列的判定方法(1)定义法:若a n+1a n=q(q为非零常数,n∈N*)或a na n-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列.(2)等比中项公式法:若数列{a n}中,a n≠0且a2n+1=a n·a n+2(n∈N*),则数列{a n}是等比数列.(3)通项公式法:若数列通项公式可写成a n=c·q n(c,q均是不为0的常数,n∈N*),则{a n}是等比数列.(4)前n项和公式法:若数列{a n}的前n项和S n=k·q n-k(k为常数且k≠0,q≠0,1),则{a n}是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.2.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列⎩⎨⎧⎭⎬⎫S n+54是等比数列.解:(1)设成等差数列的三个正数分别为a-d,a,a+d.依题意,得a-d+a+a+d=15,解得a=5.所以{b n}中的b3,b4,b5依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去).故{b n}的第3项为5,公比为2.由b3=b1·22,即5=b1×22,解得b1=54.所以{b n}是以54为首项,以2为公比的等比数列,其通项公式为b n=54×2n-1=5×2n-3.(2)证明:由(1)得数列{b n}的前n项和S n=541-2n1-2=5×2n-2-54,即S n+54=5×2n-2.所以S1+54=52,S n+1+54S n+54=5×2n-15×2n-2=2.因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,以2为公比的等比数列.等比数列的性质及应用[例3] (1)在等比数列{a n }中,若a 1·a 2·a 3·a 4=1,a 13·a 14·a 15·a 16=8,则a 41·a 42·a 43·a 44=________.(2)已知数列{a n }为等比数列,S n 为其前n 项和,n ∈N *,若a 1+a 2+a 3=3,a 4+a 5+a 6=6,则S 12=________.[自主解答](1)法一:a 1·a 2·a 3·a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41·q 6=1,①a 13·a 14·a 15·a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,② 由②÷①,得a 41·q 54a 41·q6=q 48=8⇒q 16=2,又a 41·a 42·a 43·a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)·(q 16)10=1·210=1 024.法二:由性质可知,依次4项的积为等比数列,设公比为q ,T 1=a 1·a 2·a 3·a 4=1,T 4=a 13·a 14·a 15·a 16=8,∴T 4=T 1·q 3=1·q 3=8,即q =2.∴T 11=a 41·a 42·a 43·a 44=T 1·q 10=210=1 024.(2)法一:设等比数列{a n }的公比为q ,则a 4+a 5+a 6a 1+a 2+a 3=a 1·q 3+a 2·q 3+a 3·q 3a 1+a 2+a 3=q 3=63,即q 3=2.故S 12=(a 1+a 2+a 3)+(a 4+a 5+a 6)+(a 7+a 8+a 9)+(a 10+a 11+a 12)=(a 1+a 2+a 3)+(a 1·q 3+a 2·q 3+a 3·q 3)+(a 1·q 6+a 2·q 6+a 3·q 6)+(a 1·q 9+a 2·q 9+a 3·q 9)=(a 1+a 2+a 3)+(a 1+a 2+a 3)q 3+(a 1+a 2+a 3)q 6+(a 1+a 2+a 3)q 9=(a 1+a 2+a 3)(1+q 3+q 6+q 9)=3×(1+2+22+23)=45.法二:设等比数列{a n }的公比为q , 则a 4+a 5+a 6a 1+a 2+a 3=q 3=63,即q 3=2.因为S 6=a 1+a 2+a 3+a 4+a 5+a 6=9,S 12-S 6=a 7+a 8+a 9+a 10+a 11+a 12,所以S 12-S 6S 6=a 7+a 8+a 9+a 10+a 11+a 12a 1+a 2+a 3+a 4+a 5+a 6= a 1·q 6+a 2·q 6+a 3·q 6+a 4·q 6+a 5·q 6+a 6·q 6a 1+a 2+a 3+a 4+a 5+a 6=q 6=4.所以S 12=5S 6=45. [答案] (1)1 024 (2)45 ———————————————————等比数列常见性质的应用等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.3.已知等比数列前n 项的和为2,其后2n 项的和为12,求再后面3n 项的和. 解:∵S n =2,其后2n 项为S 3n -S n =S 3n -2=12, ∴S 3n =14.由等比数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等比数列, 即(S 2n -2)2=2·(14-S 2n )解得S 2n =-4,或S 2n =6.当S 2n =-4时,S n ,S 2n -S n ,S 3n -S 2n ,…是首项为2,公比为-3的等比数列, 则S 6n =S n +(S 2n -S n )+…+(S 6n -S 5n )=-364, ∴再后3n 项的和为S 6n -S 3n =-364-14=-378.当S 2n =6时,同理可得再后3n 项的和为S 6n -S 3n =126-14=112. 故所求的和为-378或112.3个防X ——应用等比数列的公比应注意的问题 (1)注意q =1时,S n =na ,这一特殊情况.(2)由a n +1=qa n (q ≠0),并不能断言{a n }为等比数列,还要验证a 1≠0.(3)在应用等比数列的前n 项和公式时,必须注意对q =1和q ≠1分类讨论,防止因忽略q =1这一特殊情况而导致错误.4个思想——求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和的公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中根据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)整体思想:当公比q ≠1时,S n =a 11-q n 1-q =a 11-q ·(1-q n),令a 11-q =t ,则S n =t (1-q n ).把a 11-q与q n当成一个整体求解,也可简化运算.(3)分类讨论思想:在应用等比数列前n 项和公式时,必须分类求和,当q =1时,S n=na 1;当q ≠1时,S n =a 11-q n1-q;在判断等比数列单调性时,也必须对a 1与q 分类讨论.(4)函数思想:在等比数列{a n }中,a n =a 1q·q n,它的各项是函数y =a 1q·q x图象上的一群孤立的点,可以根据指数函数的一些性质研究等比数列问题(如单调性),注意函数思想在等比数列问题中的应用.创新交汇——以等比数列为背景的新定义问题1.在新情境下先定义一个新数列,然后根据定义的条件推断这个新数列的一些性质或者判断一个数列是否属于这类数列的问题是近年来新兴起的一类问题,同时,数列也常与函数、不等式等形成交汇命题.2.对于此类新定义问题,我们要弄清其本质,然后根据所学的数列的性质即可快速解决.[典例] (2012·某某高考)定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”,现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x;③f (x )=|x |;④f (x )=ln|x |. 则其中是“保等比数列函数”的f (x )的序号为( ) A .①②B .③④ C .①③D .②④[解析] 法一:设{a n }的公比为q . ①f (a n )=a 2n ,∵a 2n +1a 2n =⎝ ⎛⎭⎪⎫a n +1a n 2=q 2, ∴{f (a n )}是等比数列.排除B 、D. ③f (a n )=|a n |, ∵|a n +1||a n |=⎪⎪⎪⎪⎪⎪a n +1a n =|q |, ∴{f (a n )}是等比数列. 法二:不妨令a n =2n.①因为f (x )=x 2,所以f (a n )=4n .显然{f (2n)}是首项为4,公比为4的等比数列. ②因为f (x )=2x,所以f (a 1)=f (2)=22,f (a 2)=f (4)=24,f (a 3)=f (8)=28,所以f a 2f a 1=2422=4≠f a 3f a 2=2824=16,所以{f (a n )}不是等比数列.③因为f (x )=|x |,所以f (a n )=2n =(2)n. 显然{f (a n )}是首项为2,公比为2的等比数列. ④因为f (x )=ln|x |,所以f (a n )=ln 2n=n ln 2. 显然{f (a n )}是首项为ln 2,公差为ln 2的等差数列. [答案] C [名师点评]1.本题具有以下创新点(1)命题背景新颖:本题是以“保等比数列函数”为新定义背景,考查等比数列的有关性质.(2)考查内容创新:本题没有直接指明判断等比数列的有关性质,而是通过新定义将指数函数、对数函数及幂函数、二次函数与数列有机结合,对学生灵活处理问题的能力有较高要求.2.解决本题的关键有以下两点(1)迅速脱掉“新定义”的外衣,认清本题的实质是:已知数列{a n }为正项等比数列,判断数列{a 2n },{2a n },{|a n |}及{ln|a n |}是否为等比数列问题.(2)灵活运用排除法或特殊值法也是正确解决本题的关键. [变式训练]1.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则m n =( )A.32B.32或23 C.23D .以上都不对 解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b=92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23. 2.设f (x )是定义在R 上恒不为零的函数,且对任意的实数x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值X 围是( )A.⎣⎢⎡⎭⎪⎫12,2B.⎣⎢⎡⎦⎥⎤12,2 C.⎣⎢⎡⎦⎥⎤12,1D.⎣⎢⎡⎭⎪⎫12,1 解析:选D 由已知可得a 1=f (1)=12,a 2=f (2)=[f (1)]2=⎝ ⎛⎭⎪⎫122,a 3=f (3)=f (2)·f (1)=[f (1)]3=⎝ ⎛⎭⎪⎫123,…,a n =f (n )=[f (1)]n =⎝ ⎛⎭⎪⎫12n ,∴S n =12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n .∵n ∈N *,∴12≤S n <1.一、选择题(本大题共6小题,每小题5分,共30分)1.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4×⎝ ⎛⎭⎪⎫32nB .4×⎝ ⎛⎭⎪⎫23nC .4×⎝ ⎛⎭⎪⎫32n -1D .4×⎝ ⎛⎭⎪⎫23n -1解析:选C (a +1)2=(a -1)(a +4)⇒a =5,a 1=4,q =32,故a n =4·⎝ ⎛⎭⎪⎫32n -1.2.(2012·某某高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .7解析:选B 由题意可知a 3a 11=a 27=16,因为{a n }为正项等比数列,所以a 7=4.所以log 2a 10=log 2(a 7×23)=log 225=5.3.各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ) A .33 B .72 C .84 D .189解析:选C ∵a 1+a 2+a 3=21,∴a 1+a 1·q +a 1·q 2=21,3+3×q +3×q 2=21, 1+q +q 2=7,解得q =2或q =-3.∵a n >0,∴q =2,a 3+a 4+a 5=21×q 2=21×4=84.4.(2013·某某模拟)已知a ,b ,m ,n ,x ,y 均为正数,且a ≠b ,若a ,m ,b ,x 成等差数列,a ,n ,b ,y 成等比数列,则有( )A .m >n ,x >yB .m >n ,x <yC .m <n ,x <yD .m <n ,x >y 解析:选B ∵m =a +b2,n =ab (a ≠b ),∴m >n .又2b =m +x ,由b 2=ny ,得b =ny , 即2ny =m +x ≥2mx ,∴ny ≥mx , 即ny ≥mx ,y x ≥mn>1.∴y >x .5.已知等比数列{a n }中,a 1=2,a 5=18,则a 2a 3a 4等于() A .36 B .216 C .±36 D.±216解析:选B 由等比数列的性质得a 23=a 1·a 5=2×18=36, 又a 3=a 1q 2=2q 2>0,故a 3=6. 所以a 2a 3a 4=a 33=216.6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =() A .2n -1B.⎝ ⎛⎭⎪⎫32n -1 C.⎝ ⎛⎭⎪⎫23n -1D.12n -1解析:选B 利用等比数列知识求解. ∵S n =2a n +1,∴当n ≥2时,S n -1=2a n . ∴a n =S n -S n -1=2a n +1-2a n .∴3a n =2a n +1. ∴a n +1a n =32.又∵S 1=2a 2,∴a 2=12.∴a 2a 1=12.∴{a n }从第二项起是以32为公比的等比数列.∴S n =a 1+a 2+a 3+…+a n =1+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n -11-32=⎝ ⎛⎭⎪⎫32n -1⎝⎛也可以先求出n ≥2时,a n =3n -22n -1,再利用S n =2a n +1,⎭⎪⎫求得S n =⎝ ⎛⎭⎪⎫32n -1.二、填空题(本大题共3小题,每小题5分,共15分)7.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________. 解析:∵S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0. ∵a 1≠0,∴q =-2. 答案:-28.若数列{a n }(a n ∈R )对任意的正整数m ,n 满足a m +n =a m a n ,且a 3=22,那么a 12=________.解析:令m =1,则a n +1=a n a 1⇒a 1=q ,a 3=a 1q 2=22⇒q 3=22,a 12=q 12=64. 答案:649.(2013·聊城模拟)已知f (x )是定义在R 上的不恒为零的函数,且对于任意的a ,b∈R ,满足f (a ·b )=af (b )+bf (a ),f (2)=2,a n =f 2n n (n ∈N *),b n =f 2n 2n(n ∈N *),考察下列结论.①f (0)=f (1);②f (x )为偶函数;③数列{a n }为等比数列;④{b n }为等差数列.其中正确的是________.解析:令a =0,b =0,则f (0)=0,令a =b =1, 则f (1)=2f (1),故f (0)=f (1)=0; 设a =-1,b =x ,因为f (1)=f [(-1)×(-1)]=-2f (-1), 则f (-1)=0,所以f (-x )=-f (x )+xf (-1)=-f (x ),f (x )为奇函数;f (2n)=2f (2n -1)+2n -1f (2)=2f (2n -1)+2n⇒f 2n2n=f 2n -12n -1+1,则{b n }为等差数列;∵b 1=f 22=1,∴b n =1+(n -1)×1=n .∴f 2n2n =n ,a n =f 2n n=2n,则数列{a n }为等比数列.答案:①③④三、解答题(本大题共3小题,每小题12分,共36分) 10.数列{a n }中,S n =1+ka n (k ≠0,k ≠1). (1)证明:数列{a n }为等比数列; (2)求通项a n ;(3)当k =-1时,求和a 21+a 22+…+a 2n . 解:(1)∵S n =1+ka n ,①S n -1=1+ka n -1,②①-②得S n -S n -1=ka n -ka n -1(n ≥2), ∴(k -1)a n =ka n -1,a n a n -1=k k -1为常数,n ≥2. ∴{a n }是公比为kk -1的等比数列.(2)∵S 1=a 1=1+ka 1,∴a 1=11-k. ∴a n =11-k ·⎝ ⎛⎭⎪⎫k k -1n -1=-kn -1k -1n.(3)∵{a n }中a 1=11-k ,q =k k -1,∴{a 2n }是首项为⎝⎛⎭⎪⎫1k -12,公比为⎝ ⎛⎭⎪⎫k k -12的等比数列.当k =-1时,等比数列{a 2n }的首项为14,公比为14,∴a 21+a 22+…+a 2n =14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n .11.设数列{a n }是一等差数列,数列{b n }的前n 项和为S n =23(b n -1),若a 2=b 1,a 5=b 2.(1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和S n .解:(1)∵S 1=23(b 1-1)=b 1,∴b 1=-2.又S 2=23(b 2-1)=b 1+b 2=-2+b 2,∴b 2=4.∴a 2=-2,a 5=4. ∵{a n }为等差数列, ∴公差d =a 5-a 23=63=2, 即a n =-2+(n -2)·2=2n -6. (2)∵S n +1=23(b n +1-1),①S n =23(b n -1),②①-②得S n +1-S n =23(b n +1-b n )=b n +1,∴b n +1=-2b n .∴数列{b n }是等比数列,公比q =-2,首项b 1=-2, ∴b n =(-2)n. ∴S n =23[(-2)n-1].12.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{}对n ∈N *均有c 1b 1+c 2b 2+…+b n=a n +1成立,求c 1+c 2+c 3+…+c 2 013.解:(1)∵由已知得a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ), 解得d =2或d =0(舍去).∴a n =1+(n -1)·2=2n -1(n ∈N *). 又b 2=a 2=3,b 3=a 5=9, ∴数列{b n }的公比为3. ∴b n =3·3n -2=3n -1(n ∈N *).(2)由c 1b 1+c 2b 2+…+b n=a n +1得当n ≥2时,c 1b 1+c 2b 2+…+-1b n -1=a n .两式相减得,n ≥2时,b n=a n +1-a n =2.∴=2b n =2·3n -1(n ≥2).又当n =1时,c 1b 1=a 2, ∴c 1=3.∴=⎩⎪⎨⎪⎧3n =1,2·3n -1n ≥2.∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.1.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .52B .7 C .6 D .4 2解析:选A 法一:由等比中项的性质知a 1a 2a 3=(a 1a 3)·a 2=a 32=5,a 7a 8a 9=(a 7a 9)·a 8=a 38=10,所以a 2a 8=5013,所以a 4a 5a 6=(a 4a 6)·a 5=a 35=(a 2a 8)3=(5016)3=5 2.法二:由等比数列的性质知a 1a 2a 3,a 4a 5a 6,a 7a 8a 9构成等比数列,所以(a 1a 2a 3)(a 7a 8a 9)=(a 4a 5a 6)2,即a 4a 5a 6=±5×10=±52,又数列各项均为正数,所以a 4a 5a 6=5 2.2.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4 D .1∶3解析:选C 由等比数列的性质:S 3、S 6-S 3、S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6),将S 6=12S 3代入得S 9S 3=34.3.设正项等比数列{a n }的前n 项和为S n ,已知a 3=4,a 4a 5a 6=212. (1)求首项a 1和公比q 的值; (2)若S n =210-1,求n 的值. 解:(1)∵a 4a 5a 6=a 35=212⇒a 5=16,∴a 5a 3=q 2=4⇒q =2,a 1q 2=a 3,解得a 1=1.(2)由S n =210-1,得S n =a 1q n -1q -1=2n-1,∴2n -1=210-1⇒2n =210,即n =10.4.已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明{b n }是等比数列; (2)求{a n }的通项公式. 解:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,以-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 又a 1=1也符合上式,所以{a n }的通项公式为a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).。
2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)2.12导数的应用(一)课件 新人教A版
二、利用导数研究函数的极值 1.极大值:
在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数 值都 小于 x0点的函数值,称 点x0 为函数y=f(x)的极大值点,其函
数值 f(x0) 为函数的极大)内,函数y=f(x)在任何一点的函数 值都 大于 x 点的函数值,称 点x0 为函数y=f(x)的极小值点,其函
2 (2)∵当x∈-∞,3时,f′(x)>0; 2 当x∈3,2时,f′(x)<0;
当x∈(2,+∞)时,f′(x)>0, 2 ∴f(x)在x= 时取得极大值, 3
22 即a·3-22=32. 3
∴a=27.
1.求函数单调区间与函数极值时要养成列表的习 惯,可使问题直观且有条理,减少失分的可能. 2.如果一个函数在给定定义域上的单调区间不止一 个,这些区间之间一般不能用并集符号“∪”连接,只能 用“,”或“和”字隔开.
[例2]
(2012· 江苏高考)若函数y=f(x)在x=x0处取
得极大值或极小值,则称x0为函数y=f(x)的极值点.已 知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个 极值点. (1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极
值点.
[自主解答]
2 1 2 (2)由(1)知f(x)=- ln x- x +x, 3 6 -x2-3x+2 2 x ∴f′(x)=- - +1= 3x 3 3x 1 x-1x-2 =- · . x 3 又∵x>0,∴0<x<1时,f′(x)<0,1<x<2时,f′(x)>0,x>2 时,f′(x)<0, ∴函数f(x)在(0,1)和(2,+∞)上是减少的,在(1,2)上是增加 的, ∴x=1是函数f(x)的极小值点,x=2是函数f(x)的极大值点.
2014高考数学一轮汇总训练(归纳明确考点+课前自测+教师备选题+误区警示+课后实战题,含详解及2013模拟题)《
第一节函数及其表示[备考方向要明了][归纳·知识整合]1.函数与映射的概念[探究] 1.函数和映射的区别与联系是什么?提示:二者的区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集,二者的联系是函数是特殊的映射.2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值,函数值的集合 {f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系. 3.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. [探究] 2.若两个函数的定义域与值域都相同,它们是否是同一个函数?提示:不一定.如函数y =x 与y =x +1,其定义域与值域完全相同,但不是同一个函数;再如y =sin x 与y =cos x ,其定义域都为R ,值域都为[-1,1],显然不是同一个函数.因为定义域和对应关系完全相同的两个函数的值域也相同,所以定义域和对应关系完全相同的两个函数才是同一个函数.4.函数的表示方法表示函数的常用方法有:解析法、列表法和图象法. 5.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数,分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[自测·牛刀小试]1.(教材习题改编)给出下列五个命题,正确的有( ) ①函数是定义域到值域的对应关系; ②函数f (x )=x -4+1-x ;③f (x )=5,因这个函数的值不随x 的变化而变化,所以f (t 2+1)也等于5; ④y =2x (x ∈N )的图象是一条直线; ⑤f (x )=1与g (x )=x 0表示同一个函数. A .1个 B .2个 C .3个D .4个解析:选B 由函数的定义知①正确;②错误;由⎩⎪⎨⎪⎧x -4≥0,1-x ≥0,得定义域为∅,所以不是函数;因为函数f (x )=5为常数函数,所以f (t 2+1)=5,故③正确;因为x ∈N ,所以函数y =2x (x ∈N )的图象是一些离散的点,故④错误;由于函数f (x )=1的定义域为R ,函数g (x )=x 0的定义域为{x |x ≠0},故⑤错误.综上分析,可知正确的个数是2.2.(教材习题改编)以下给出的对应是从集合A 到B 的映射的有( )①集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应.②集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;③集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;④集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.A .1个B .2个C .3个D .4个解析:选C 由于新华中学的每一个班级里的学生都不止一个,即一个班级对应的学生不止一个,所以④不是从集合A 到集合B 的映射.3.(2012·江西高考)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 4.(教材习题改编)已知函数f (x )=x +2x -6,则f (f (4))=________;若f (a )=2,则a =________.解析:∵f (x )=x +2x -6,∴f (4)=4+24-6=-3. ∴f (f (4))=f (-3)=-3+2-3-6=19.∵f (a )=2,即a +2a -6=2, 解得a =14. 答案:19145.(教材习题改编)A ={x |x 是锐角},B =(0,1),从A 到B 的映射是“求余弦”,与A 中元素60°相对应的B 中的元素是________;与B 中元素32相对应的A 中的元素是________.解析:∵cos 60°=12,∴与A 中元素60°相对应的B 中的元素是12.又∵cos 30°= 32,∴与B 中元素32相对应的A 中的元素是30°. 答案:1230°[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x -1,x 表示同一个函数.(2)函数y =f (x )的图象与直线x =1的交点最多有1个. (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.(4)若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________.[自主解答] 对于(1),函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧x ,-x的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )与g (t )表示同一函数;对于(4),由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)——————————————————— 1.判断两个变量之间是否存在函数关系的方法要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否为同一个函数的方法判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.1.(1)以下给出的同组函数中,是否表示同一函数?为什么? ①f 1:y =xx;f 2:y =1.②f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:③f 1:y =2x ;f 2:如图所示.解:①不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .②同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.③同一函数.理由同②.(2)已知映射f :A →B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是( )A .k >1B .k ≥1C .k <1D .k ≤1解析:选A 由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根. 所以Δ=4(1-k )<0,解得k >1时满足题意.[例2] (1)已知f (x +1)=x 2+4x +1,求f (x )的解析式.(2)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9.求f (x ). [自主解答] (1)法一:(换元法)设x +1=t ,则x =t -1, ∴f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.法二:(配凑法)∵f (x +1)=x 2+4x +1=(x +1)2+ 2(x +1)-2,∴所求函数为f (x )=x 2+2x -2.(2)(待定系数法)由题意,设函数为f (x )=ax +b (a ≠0),∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9.由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,解得a =1,b =3.∴所求函数解析式为f (x )=x +3.若将本例(1)中“f (x +1)=x 2+4x +1”改为“f ⎝⎛⎭⎪⎫2x+1=lg x ”,如何求解?解:令2x+1=t ,∵x >0,∴t >1且x =2t -1. ∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).———————————————————求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).2.给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2. 试分别求出f (x )的解析式. 解:(1)令t = x +1, ∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c ,又∵f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2,解得⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +3.[例3] 已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f x +,x <4,则f (2+log 23)的值为( )A.124B.112C.16 D.13[解析] ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.[答案] A———————————————————解决分段函数求值问题的方法(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围,做到分段函数分段解决.3.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ) A.12 B.45 C .2D .9解析:选C ∵x <1,f (x )=2x+1,∴f (0)=2.由f (f (0))=4a ,得f (2)=4a ,∵x ≥1,f (x )=x 2+ax , ∴4a =4+2a ,解得a =2.4种方法——函数解析式的求法求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)解方程组法.具体内容见例2[方法·规律].2两个易误点——映射的概念及分段函数求值问题中的易误点(1)判断对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯一”.但要注意:①A 中不同元素可有相同的象,即允许多对一,但不允许一对多;②B 中元素可无原象,即B 中元素可有剩余.(2)求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域是其定义域内不同子集上对应的各关系式的值域的并集.数学思想——分类讨论思想在分段函数中的应用当数学问题不宜用统一的方法处理时,我们常常根据研究对象的差异,按照一定的分类方法或标准,将问题分为“全而不重,广而不漏”的若干类,然后逐类分别讨论,再把结论汇总,得出问题答案的思想,这就是主要考查了分类讨论的数学思想,由于分段函数在不同定义区间上具有不同的解析式,在处理分段函数问题时应对不同的区间进行分类求解,然后整合,这恰好是分类讨论的一种体现.[典例] (2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[解析] ①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34.[答案] -34[题后悟道]1.在解决本题时,由于a 的取值不同限制了1-a 及1+a 的取值,从而应对a 进行分类讨论.2.运用分类讨论的思想解题的基本步骤 (1)确定讨论对象和确定研究的区域;(2)对所讨论的问题进行合理的分类(分类时需要做到不重不漏,标准统一、分层不越级);(3)逐类讨论:即对各类问题详细讨论,逐步解决; (4)归纳总结,整合得出结论. [变式训练]1.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C ①当a >0时,∵f (a )>f (-a ), ∴log 2a >log a =log 2 1a.∴a >1a,得a >1.②当a <0时,∵f (a )>f (-a ), ∴log (-a )>log 2(-a )=log 1-a .∴-a <1-a得-1<a <0,故C 项为正确选项.2.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ∈-∞,,x 2,x ∈[1,+,若f (x )>4,则x 的取值范围是________________.解析:当x <1时,由f (x )>4得2-x>4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2,但由于x ≥1,所以x >2. 综上,x 的取值范围是x <-2或x >2. 答案:(-∞,-2)∪(2,+∞)一、选择题(本大题共6小题,每小题5分,共30分) 1.下列各组函数中,表示相等函数的是( )A .y =5x 5与y =x 2B .y =ln e x与y =e ln xC .y =x -x +x -1与y =x +3D .y =x 0与y =1x解析:选D y =5x 5=x ,y =x 2=|x |,故y =5x 5与y =x 2不表示相等函数;B 、C 选项中的两函数定义域不同;D 选项中的两函数是同一个函数.2.设A ={0,1,2,4},B =⎩⎨⎧⎭⎬⎫12,0,1,2,6,8,则下列对应关系能构成A 到B 的映射的是( )A .f :x →x 3-1 B .f :x →(x -1)2C .f :x →2x -1D .f :x →2x解析:选C 对于A ,由于集合A 中x =0时,x 3-1=-1∉B ,即A 中元素0在集合B 中没有元素与之对应,所以选项A 不符合;同理可知B 、D 两选项均不能构成A 到B 的映射,C 符合.3.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≥0,-x ,x <0,则f (f (-10))=( )A.12 B.14 C .1D .-14解析:选A 依题意可知f (-10)=lg 10=1,f (1)=21-2=12.4.(2013·杭州模拟)设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D ∵f (a )+f (-1)=2,且f (-1)= 1=1, ∴f (a )=1,当a ≥0时,f (a )= a =1,∴a =1; 当a <0时,f (a )= -a =1,∴a =-1.5.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( )A .f (x )=x 2-12x +18B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3 解析:选B 由f (x )+2f (3-x )=x 2可得f (3-x )+2f (x )=(3-x )2,由以上两式解得f (x )=13x 2-4x +6. 6.(2013·泰安模拟)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x,x >1.满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①解析:选B ①f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x )满足. ②f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x )不满足. ③0<x <1时,f ⎝ ⎛⎭⎪⎫1x =-x =-f (x ), x =1时,f ⎝ ⎛⎭⎪⎫1x =0=-f (x ), x >1时,f ⎝ ⎛⎭⎪⎫1x =1x=-f (x )满足. 二、填空题 7.已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,则函数f (3)=________. 解析:∵f ⎝⎛⎭⎪⎫x -1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x -1x 2+2, ∴f (x )=x 2+2.∴f (3)=32+2=11.答案:118.若f (a +b )=f (a )·f (b )且f (1)=1,则f f +f f +…+f f =________.解析:令b =1,∵f a +f a =f (1)=1, ∴f f +f f +…+f f =2 011. 答案:2 0119.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析:画出f (x )=⎩⎪⎨⎪⎧ x 2+1,x ≥0,1,x <0的图象,如图.由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧ 1-x 2>0,1-x 2>2x ,即⎩⎨⎧ -1<x <1,-1-2<x <-1+ 2.得x ∈(-1,2-1).答案:(-1,2-1)三、解答题(本大题共3小题,每小题12分,共36分)10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0. (1)求f (g (2))和g (f (2))的值;(2)求f (g (x ))和g (f (x ))的解析式.解:(1)由已知,g (2)=1,f (2)=3,因此f (g (2))=f (1)=0,g (f (2))=g (3)=2.(2)当x >0时,g (x )=x -1,故f (g (x ))=(x -1)2-1=x 2-2x ;当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧ x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0,故g (f (x ))=f (x )-1=x 2-2;当-1<x <1时,f (x )<0,故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧ x 2-2,x >1或x <-1,3-x 2,-1<x <1.11.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0).∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x .∴a =1,b =-1.∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0,解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.12.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x ); (2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围.解:(1)∵x =716时,4x =74, ∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34. ∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧ 1≤4x <2,3≤16x -4<4,∴716≤x <12.1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用s 1,s 2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )解析:选B 根据故事的描述,乌龟是先于兔子到达终点,到达终点的最后时刻乌龟的路程大于兔子的路程,并且兔子中间有一段路程为零,分析知B 图象与事实相吻合.2.下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应;(2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应. 解析:对于(1),集合P 中元素0在集合Q 中没有对应元素,故(1)不是函数;对于(3)集合P 不是数集,故(3)不是函数;(2)正确.答案:(2)3.试判断以下各组函数是否表示同一函数:(1)y =x -2·x +2,y =x 2-4;(2)y =x ,y =3t 3;(3)y =|x |,y =(x )2.解:∵y =x -2·x +2的定义域为{x |x ≥2}, y =x 2-4的定义域为{x |x ≥2或x ≤-2},∴它们不是同一函数.(2)∵它们的定义域相同,且y =3t 3=t ,∴y =x 与y =3t 3是同一函数.(3)∵y =|x |的定义域为R ,y =(x )2的定义域为{x |x ≥0},∴它们不是同一函数. 4.已知f (x )=⎩⎪⎨⎪⎧ x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去.②当-1<a <2时,f (a )=2a ,由2a =3,得a =32,满足-1<a <2. ③当a ≥2时,f (a )=a 22, 由a 22=3,得a =±6, 又a ≥2,故a = 6.综上可知,a 的值为32或 6.。
2014届高考数学一轮复习 第1章《集合与常用逻辑用语》(第2课时)知识过关检测 理 新人教A版
2014届高考数学(理)一轮复习知识过关检测:第1章《集合与常用逻辑用语》(第2课时)(新人教A 版)一、选择题1.下列命题中的假命题是( )A .∃x ∈R ,lg x =0B .∃x ∈R ,tan x =1C .∀x ∈R ,x 3>0D .∀x ∈R,2x>0解析:选C.对于A ,当x =1时,lg x =0,正确;对于B ,当x =π4时,tan x =1,正确;对于C ,当x <0时,x 3<0,错误;对于D ,∀x ∈R,2x>0,正确.2.(2011·高考卷)若p 是真命题,q 是假命题,则( ) A .p ∧q 是真命题 B .p ∨q 是假命题 C .綈p 是真命题 D .綈q 是真命题解析:选D.根据“且”“或”“非”命题的真假判定法则知D 正确.3.(2012·高考某某卷)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0解析:选C.利用“全称命题的否定是存在性命题”求解.命题p 的否定为“∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0”.4.(2013·日照质检)下列命题中,真命题是( )A .∃x ∈R ,sin 2x 2+cos 2x 2=12B .∀x ∈(0,+∞),e x>x +1C .∃x ∈R ,x 2+x =-1D .∀x ∈(0,π),sin x >cos x解析:选B.∵sin 2x2+cos 2x2=1,∴A 错.∵x 2+x +1=(x +12)2+34≥34,∴C 错.又∵sin π6<cos π6,∴D 错.故选B.5.(2013·某某质检)已知命题p :∃a ,b ∈(0,+∞),当a +b =1时,1a +1b=3;命题q :∀x ∈R ,x 2-x +1≥0,则下列命题是假命题的是( )A .綈p ∨綈qB .綈p ∧綈qC .綈p ∨qD .綈p ∧q解析:选B.由基本不等式可得:1a +1b =(1a +1b )×(a +b )=2+b a +ab≥4,故命题p 为假命题,綈p 为真命题;∀x ∈R ,x 2-x +1=(x -12)2+34>0,故命题q 为真命题,綈q 为假命题,綈p ∧綈q 为假命题,故选B.二、填空题6.已知命题p :“∃x ∈R +,x >1x”,命题p 的否定为命题q ,则q 是“________________”;q 为________命题.(填“真”或“假”)解析:x >1时,x ≤1x为假命题.答案:∀x ∈R +,x ≤1x假7.命题“∀x ∈R ,∃m ∈Z ,m 2-m <x 2+x +1”是________命题.(填“真”或“假”)解析:由于∀x ∈R ,x 2+x +1=(x +12)2+34≥34,因此只需m 2-m <34,即-12<m <32,所以当m =0或m =1时,∀x ∈R ,m 2-m <x 2+x +1成立,因此命题是真命题.答案:真8.给定下列几个命题:①“x =π6”是“sin x =12”的充分不必要条件;②若“p ∨q ”为真,则“p ∧q ”为真;③“等底等高的三角形是全等三角形”的逆命题.其中为真命题的是________.(填上所有正确命题的序号)解析:①中,若x =π6,则sin x =12,但sin x =12时,x =π6+2k π或5π6+2k π(k ∈Z ).故“x =π6”是“sin x =12”的充分不必要条件,故①为真命题;②中,令p 为假命题,q 为真命题,有“p ∨q ”为真命题,而“p ∧q ”为假命题,故②为假命题;③为真命题.答案:①③ 三、解答题9.(2013·某某质检)写出下列命题的否定,并判断其真假. (1)q :所有的正方形都是矩形;(2)r :∃x ∈R ,x 2+2x +2≤0.解:(1)綈q :至少存在一个正方形不是矩形,是假命题.(2)綈r :∀x ∈R ,x 2+2x +2>0,是真命题.10.已知命题p :方程2x 2-2 6x +3=0的两根都是实数;q :方程2x 2-2 6x +3=0的两根不相等,试写出由这组命题构成的“p 或q ”、“p 且q ”、“非p ”形式的复合命题,并指出其真假.解:“p 或q ”的形式:方程2x 2-2 6x +3=0的两根都是实数或不相等. “p 且q ”的形式:方程2x 2-2 6x +3=0的两根都是实数且不相等.“非p ”的形式:方程2x 2-2 6x +3=0无实根. ∵Δ=24-24=0,∴方程有两相等的实根.∵p 真,q 假,∴“p 或q ”为真,“p 且q ”为假,“非p ”为假.一、选择题1. 已知命题p :∀x ∈[1,2],x 2≥a ,命题q :∃x ∈R ,x 2+2ax +2-a =0,若命题“p 且q ”是真命题,则实数a 的取值X 围为( )A .(-∞,-2]B .(-2,1)C .(-∞,-2]∪{1}D .[1,+∞)解析:选C.因为命题“p 且q ”是真命题,故命题p 与命题q 均为真命题.由命题p 为真命题,可知a ≤1.由命题q 是真命题,可知Δ=4a 2-4(2-a )≥0,解得a ≤-2或a ≥1.综上可知a 的取值X 围为(-∞,-2]∪{1}.2.(2013·某某六校第二次检测)下列命题中,真命题是( )A .∃x ∈⎣⎢⎡⎦⎥⎤0,π2,sin x +cos x ≥2B .∀x ∈(3,+∞),x 2>2x +1C .∃x ∈R ,x 2+x =-1D .∀x ∈⎝ ⎛⎭⎪⎫π2,π,tan x >sin x 解析:选B.对于选项A ,sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,∴此命题不成立;对于选项B ,x 2-2x -1=(x -1)2-2,当x >3时,(x -1)2-2>0,∴此命题成立;对于选项C ,x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴x 2+x =-1对任意实数x 都不成立,∴此命题不成立;对于选项D ,当x ∈⎝ ⎛⎭⎪⎫π2,π时,tan x <0,sin x >0,命题显然不成立.故选B.二、填空题3.设p :关于x 的不等式a x >1的解集为{x |x <0},q :函数y =lg(ax 2-x +a )的定义域为R ,若p ∨q 为真命题,p ∧q 为假命题,则a 的取值X 围是________.解析:p 真时,0<a <1;q 真时,ax 2-x +a >0对x ∈R 恒成立,则⎩⎪⎨⎪⎧a >0Δ=1-4a 2<0,即a >12;p ∨q 为真,p ∧q 为假,则p 、q 应一真一假:①当p 真q 假时,⎩⎪⎨⎪⎧0<a <1a ≤12⇒0<a ≤12;②当p 假q 真时,⎩⎪⎨⎪⎧a ≤0或a ≥1a >12⇒a ≥1.综上,a ∈(0,12]∪[1,+∞).答案:(0,12]∪[1,+∞)4.已知m 、n 是不同的直线,α、β是不重合的平面. 命题p :若α∥β,m ⊂α,n ⊂β,则m ∥n ; 命题q :若m ⊥α,n ⊥β,m ∥n ,则α∥β.下面的命题中,①p ∨q ;②p ∧q ;③p ∨綈q ;④綈p ∧q . 真命题的序号是________(写出所有真命题的序号).解析:命题p 是假命题,命题q 是真命题,所以①④是真命题. 答案:①④ 三、解答题5.f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使得g (x 1)=f (x 0),求a 的取值X 围.解:由于函数g (x )在定义域[-1,2]是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此该问题等价于函数g (x )的值域是函数f (x )值域的子集,又因函数f (x )的值域是[-1,3],函数g (x )的值域为[2-a,2+2a ],所以则有2-a ≥-1且2+2a ≤3,即a ≤12,又因a >0,所求a 的取值X 围是(0,12].。
山东省2014届高三数学一轮复习考试试题精选(1)分类汇编3《函数的单调性与最值(或值域)》.pdf
山东省2014届高三数学一轮复习考试试题精选(1)分类汇编3:函数的单调性与最值(或值域) 一、选择题 .(山东省烟台二中2014届高三10月月考理科数学试题)对任意实数a,b定义运算如下,则函数 的值域为B.C.D. 【答案】B .(山东省广饶一中二校区2014届高三上学期10月月考数学(理)试题)用表示三个数中的最小值,, (x0) , 则的最大值为( ) A.4B.5C.6D.7 【答案】C .(山东省临沂一中2014届高三9月月考数学(理科)试题)已知函数,构造函数的定义如下:当时,,当时,,则( ) A.有最小值0,无最大值B.有最小值-1,无最大值C.有最大值1,无最小值D.无最大值,也无最小值 【答案】B .(山东省山师附中2014届高三11月期中学分认定考试数学(理)试题)已知是上是增函数,那么实数a的取值范围是( ) A.B.C.D. 【答案】C .(山东省烟台二中2014届高三10月月考理科数学试题)下列函数中,满足对任意当时都有的是( ) A.B.C.D. 【答案】A .(山东省日照市第一中学2014届高三上学期第一次月考数学(理)试题)已知函数的定义域为,且为偶函数,则实数的值可以是( ) A.B.C.D. 【答案】B 因为函数为偶函数,所以,即函数关于对称,所以区间关于对称,所以,即,所以选B. .(山东省枣庄市2014届高三上学期期中检测数学(理)试题)函数的值域是B.C.D. 【答案】C .(山东省青岛市2014届高三上学期期中考试数学(理)试题)定义运算,若函数在上单调递减,则实数的取值范围是B.C.D. 【答案】D .(山东省实验中学2014届高三上学期第二次诊断性测试数学(理)试题)下列函数中在区间上单调递增的是B.C.D. 【答案】B .(山东省德州市平原一中2014届高三9月月考数学(理)试题)已知函数满足对任意的实数都有成立,则实数的取值范围为( ) A.B.C.D. 【答案】B .(山东省聊城市东阿一中2014届高三10月模块测试数学(理)试题)设奇函数在上为增函数,且,则不等式的解集为( )B.C.D. 【答案】B .(山东省临沂一中2014届高三9月月考数学(理科)试题)若函数在区间上是减函数,则实数的取值范围是( ) A.B.C.D. 【答案】A .(山东省郯城一中2014届高三上学期第一次月考数学(理)试题)已知函数f(x)=满足对任意x1≠x2,都有f(x),则实数x的取值范围是(-∞,-1)∪(2,+∞)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2) 【答案】B .(山东省德州市2014届高三上学期期中考试数学(理)试题)已知是上的单调递增函数,则实数的取值范围是B.C.D. 【答案】C .(山东省德州市平原一中2014届高三9月月考数学(理)试题)奇函数f(x)在(0,+∞)上为单调递减函数,且f(2)=0,则不等式≤0的解集为( ) A.(-∞,-2]∪(0,2]B.[-2,0]∪[2,+∞)C.(-∞,-2]∪[2,+∞)D.[-2,0)∪(0,2]【答案】D.(山东省桓台第二中学2014届高三第二次阶段性测试数学试题)已知函数在实数集R上具有下列性质:①是偶函数,②,③当<3时,>B.>>C.>>D.>> 【答案】D .(山东省德州市2014届高三上学期期中考试数学(理)试题)设偶函数在上为增函数,且,则不等式的解集为B.C.D. 【答案】A 二、填空题 .(山东省桓台第二中学2014届高三9月月考数学(理)试题)函数f(x)=的值域为_________ 【答案】 .(山东省聊城市东阿一中2014届高三10月模块测试数学(理)试题)定义在[-6, 6]上的函数是增函数,则满足的取值范围是_____________. 【答案】(3,4.5) .(山东省烟台市莱州一中2014届高三10月阶段测试数学试题(理))函数的定义域为A,若,则称为单函数.例如:函数是单函数.给出下列命题:①函数是单函数;②指数函数是单函数;③若为单函数,; ④定义域上具有单调性的函数一定是单函数,其中的真命题是_________________.(写出所有真命题的序号)【答案】.(2)(3)(4) .(山东省济南外国语学校2014届高三上学期质量检测数学(理)试题)一次研究性课堂上,老师给出函数,甲、乙、丙三位同学在研究此函数的性质时分别给出下列命题: 甲:函数为偶函数; 乙:函数; 丙:若则一定有 你认为上述三个命题中正确的个数有_____________个 【答案】2 三、解答题 .(山东省德州市平原一中2014届高三9月月考数学(理)试题)知函数为偶函数.(Ⅰ)求实数的值;(Ⅱ)记集合,,判断与的关系;(Ⅲ)当时,若函数的值域为,求的值. 【答案】 .(山东省临沂一中2014届高三9月月考数学(理科)试题)设a为实数,记函数的最大值为.(1)设t=,求t的取值范围,并把f(x)表示为t的函数m(t) ;(2)求 ;(3)试求满足的所有实数a. 【答案】解:(1)∵,∴要使有意义,必须且,即.∵,且① ∴的取值范围是, 由①得:,∴, (2)由题意知即为函数,的最大值, ∵直线是抛物线的对称轴, ∴可分以下几种情况进行讨论: ①当时,函数,的图象是开口向上的抛物线的一段,由知在上单调递增,故;②当时,,,有=2;③当时,,函数,的图象是开口向下的抛物线的一段, 若即时,,若即时,,若即时,.综上所述,有=(3)当时,; 当时,,,∴, ,故当时,; 当时,,由知:,故; 当时,,故或,从而有或, 要使,必须有,,即, 此时,. .(山东省博兴二中2014届高三第一次复习质量检测理科数学试卷)定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界. 已知函数f(x)=1+a·x+x. (1)当a=1时,求函数f(x)在(-∞,0]上的值域,并判断函数f(x)在(-∞,0]上是否为有界函数,请说明理由; (2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围. 【答案】[解析] (1)当a=1时,f(x)=1+x+x. 因为f(x)在(-∞,0]上递减,所以f(x) ≥f(0)=3, 即f(x)在(-∞,0]上的值域为[3,+∞) 故不存在常数M>0,使|f(x)|≤M成立. 所以函数f(x)在(-∞,0]上不是有界函数 (2)由题意知,|f(x)|≤3在[0,+∞)上恒成立. ∴-3≤f(x)≤3,即-4-x≤a·x≤2-x, ∴-4·2x-x≤a≤2·2x-x在[0,+∞)上恒成立, 设2x=t,h(t)=-4t-,p(t)=2t-, 由x∈[0,+∞)得t≥1, 设1≤t10 p(t1)-p(t2)=0,x>0).(1)求证:f(x)在(0,+∞)上是增函数; (2)若f(x)在上的值域是,求a的值. 【答案】 解:(1)证明:方法一:设x2>x1>0, 则x2-x1>0,x1x2>0. ∵f(x2)-f(x1)=-=-=>0, ∴f(x2)>f(x1),∴f(x)在(0,+∞)上是增函数.方法二:∵f(x)=-, ∴f′(x)=′=>0, ∴f(x)在(0,+∞)上为增函数.(2)∵f(x)在上的值域是, 又f(x)在上单调递增, ∴f=,f(2)=2,∴a=. .(山东省潍坊市诸城一中2014届高三10月阶段性测试数学(理)试题)定义在R上的单调函数满足,且对任意都有(I)求证:为奇函数;(II)若对任意恒成立,求实数k的取值范围.【答案】 .(山东省临沂一中2014届高三9月月考数学(理科)试题)已知函数,试判断此函数在上的单调性,并求此函数在上的最大值和最小值.【答案】解:设x1.x2是区间[2,6]上的任意两个实数,且x1<x2, 则=-==由于2<x1<x20,(x1-1)(x2-1)>0,于是,即 所以函数是区间[2,6]上的减函数 因此函数在区间[2,6]的两个端点上分别取得最大值与最小值, 故函数在上的最大值和最小值分别为2和 .(山东省德州市平原一中2014届高三9月月考数学(理)试题)已知函数是定义在上的奇函数,在上(Ⅰ)求函数的解析式;并判断在上的单调性(不要求证明)(Ⅱ)解不等式【答案】 .(山东省烟台市莱州一中2014届高三10月阶段测试数学试题(理))集合A是由具备下列性质的函数组成的:①函数的定义域是; ②函数的值域是; ③函数在上是增函数,试分别探究下列两小题(1)判断函数是否属于集合A?并说明理由;(2)对于(1)中你认为属于集合A的函数,不等式是否对于任意的恒成立?若成立,请给出证明;若不成立,请说明理由.【答案】. .(山东省桓台第二中学2014届高三9月月考数学(理)试题)已知,若满足, (1)求实数的值;(2)判断函数的单调性,并加以证明. 【答案】解:(1)函数的定义域为R,又满足∴ ,即 ∴ ,解得(2)设,得则∴ ,即∴ 在定义域R上为增函数 .(山东省广饶一中二校区2014届高三上学期10月月考数学(理)试题)设函数的定义域是R,对于任意实数,恒有,且当 时,. (1)求证:,且当时,有; (2)判断在R上的单调性;(3)设集合,集合,若,求的取值范围.【答案】(1)证明:,令,则,且由时,,所以; 设,,. (2)解:,则时,, ,在R上单调递减.(3)解:,由单调性知, 又。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
型试题的一个热点,此类题目常常以“问题”为核心,
以“探究”为途径,以“发现”为目的,常见的命题形 式有新定义、新运算、新性质,这类试题只是以集合为 依托,考查考生理解问题、解决创新问题的能力.
1.创新集合新定义
创新集合新定义问题是通过重新定义相应的集合,
对集合的知识加以深入地创新,结合原有集合的相关知 识和相应数学知识,来解决新定义的集合创新问题. 1 [典例 1] 若 x∈A,则x∈A,就称 A 是伙伴关系
集.在解题时,若未明确说明集合非空时,要考虑到集 合为空集的可能性.例如:A⊆B,则需考虑A=∅和A≠∅
两种可能的情况.
[例1] (1)(2012· 新课标全国卷)已知集合A= {1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B 中所含元素的个数为 ( )
A.3
C.8
B.6
∴B={-1}或B={-2}或B={-1,-2}.
①若B={-1},则m=1;
②若B={-2},则应有-(m+1)=(-2)+(-2)=
-4,且m=(-2)· (-2)=4,这两式不能同时成立, ∴B≠{-2}; ③若B={-1,-2},则应有-(m+1)=(-1)+(- 2)=-3,且m=(-1)· (-2)=2,由这两式得m=2.
C.(1,3)
D.(1,2)∪(3,4)
解析:因为∁RB={x|x>3,或x<-1},所以A∩(∁RB) ={x|3<x<4}.
答案:B
3.(2012· 惠州模拟)已知集合A={(x,y),B={(x,y)|x-y =0,x,y∈R},则集合A∩B= A.(0,0) B.{0} ( )
C.{(0,0)}
A.A⊆B
C.D⊆C
B.C⊆B
D.A⊆D
解析:选项A错,应当是B⊆A.选项B对,正方形一定 是矩形,但矩形不一定是正方形.选项C错,应当是 C⊆D .选项D错,应当是D⊆A.
答案: B
2.(2012· 浙江高考)设集合A={x|1<x<4},集合B= {x|x2-2x-3≤0},则A∩(∁RB)= A.(1,4) B.(3,4) ( )
1.判断两集合的关系常有两种方法:一是化简集
合,从表达式中寻找两集合间的关系;二是用列举法表 示各集合,从元素中寻找关系. 2.已知两集合间的关系求参数时,关键是将两集 合间的关系转化为元素间的关系,进而转化为参数满足 的关系.解决这类问题常常需要合理利用数轴、Venn 图帮助分析.
2.已知集合 A={y|y= -x2+2x},B={x||x-m|<2 013},若 A∩B=A,则 m 的取值范围是 ( )
合,定义集合P+Q={a+b|a∈P,b∈Q},若P=
{0,2,5},Q={1,2,6},则P+Q中元素的个数为( )
A.9
C.7
B.8
D.6
(2)已知集合A={a-2,2a2+5a,12},且-3∈A,则a= ________.
解析:(1)∵P+Q={a+b|a∈P,b∈Q},P={0,2,5},Q
(2)设U=R,集合A={x|x2+3x+2=0},B={x|x2 +(m+1)x+m=0}.若(∁UA)∩B=∅,则m的值是
________.
[自主解答] 得B⊆A, ∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2- 4m=(m-1)2≥0,∴B≠∅. A={-2,-1},由(∁UA)∩B=∅,
定先考虑A或B是否为空集,以防漏解.另外要注意分
类讨论和数形结合思想的应用.
3.(2013· 合肥模拟)如图,已知 R 是实 数集,集合 A={x|log 1 (x-1)>0},B=
2
2x-3 x <0 x
,则阴影部分表示的集合是 ( )
A.[0,1] C.(0,1)
D.∅
解析:直线x+y=0与x-y=0的交点坐标为(0,0). 答案:C
4.(教材习题改编)用适当的符号填空:已知A={x|x=3k +2,k∈Z},则有:17________A;-5________A.
解析:由3k+2=17,解得k=5∈Z,所以17∈A; 7 由3k+2=-5,解得k=- ∉Z,所以-5∉A. 3
[答案]
B 该题是集合新定义的问题,定义了
[题后悟道]
集合中元素的性质,此类题目只需准确提取信息并加 工利用,便可顺利解决.
2.创新集合新运算 创新集合新运算问题是按照一定的数学规则和要求给
出新的集合运算规则,并按照此集合运算规则和要求结合
相关知识进行逻辑推理和计算等,从而达到解决问题的目 的. [典例2] 设P和Q是两个集合,定义集合P-Q= {x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},
(5,1),(5,2),(5,3),(5,4)},
∴B中所含元素的个数为10.
(2)由ห้องสมุดไป่ตู้M=N 知
n=1, log2n=m n=1, ∴ m=0 n=m, 或 log2n=1, m=2, 或 n=2,
故(m-n)2 013=-1 或 0.
[答案]
那么P-Q=
A.{x|0<x<1} C.{x|1≤x<2} B.{x|0<x≤1} D.{x|2≤x<3}
(
)
[解析] 由log2x<1,得0<x<2,所以P={x|0<x<2}; 由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P
经检验知m=1或m=2符合条件.
∴m=1或2. [答案] (1)D (2)1或2
将例3(1)中的条件“M={2,3}”改为“M∩N=N”,试求 满足条件的集合M的个数. 解:由M∩N=N得M⊇N. 含有2个元素的集合M有1个,含有3个元素的集合M有 4个, 含有4个元素的集合M有6个,含有5个元素的集合M有
因为A∩B=A,所以A⊆B. 如图,由数轴可得
m-2 013<0, m+2 013>1,
解得-2 012<m<2 013.
[例3]
(1)(2011· 江西高考)若全集U={1,2,3,4,5,6},
( )
M={2,3},N={1,4},则集合{5,6}等于 A.M∪N C.(∁UM)∪(∁UN) B.M∩N D.(∁UM)∩(∁UN)
[自主解答] ∴A={1,2}. 由题意知B={1,2,3,4},∴满足条件的C可为{1,2}, {1,2,3},{1,2,4},{1,2,3,4}. (1)由x2-3x+2=0,得x=1或x=2,
(2)由log2x≤2,得0<x≤4,
即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,如图所 示,则a>4,即c=4. [答案] (1) D (2) 4
4个,
含有6个元素的集合M有1个. 因此,满足条件的集合M有1+4+6+4+1=16个.
1.在进行集合的运算时要尽可能地借助Venn图
和数轴使抽象问题直观化.一般地,集合元素离散时 用Venn图表示;集合元素连续时用数轴表示,用数轴 表示时注意端点值的取舍. 2.在解决有关A∩B=∅,A⊆B等集合问题时,一
答案:∈
∉
5.(2012· 盐城模拟)如图,已知U={1,2,3,4, 5,6,7,8,9,10},集合A={2,3,4,5,6,8},B ={1,3,4,5,7},C={2,4,5,7,8,9},用列举 法写出图中阴影部分表示的集合为________.
解析:阴影部分表示的集合为A∩C∩(∁UB)={2,8}. 答案: {2,8}
A.[-2 012,2 013]
C.[-2 013,2 011]
B.(-2 012,2 013)
D.(-2 013,2 011)
解析:集合 A 表示函数 y= -x2+2x的值域,由 t=- x2+2x=-(x-1)2+1≤1,可得 0≤y≤1,故 A=[0,1]. 集合 B 是不等式|x-m|<2 013 的解集,解之得 m-2 013<x<m+2 013,所以 B=(m-2 013,m+2 013).
第一章 集合与常用逻辑用语
[知识能否忆起] 一、元素与集合 1.集合中元素的三个特性: 确定性 、互异性、无序性 .
2.集合中元素与集合的关系: 元素与集合之间的关系有 属于 和 不属于两种,表示符号
为 ∈和 ∉ .
3.常见集合的符号表示: 自然 数集 N
集合
正整数集 整数集 有理数集 实数集 N+ Z Q R
集合,集合
1 -1,0, ,2,3的所有非空子集中 M= 2
具有伙伴关系的集合的个数是
(
)
A.1
C.7
B.3
D.31
[解析]
1 具有伙伴关系的元素组是-1; ,2, 2
1 ,2, 个:{-1},2
所以具有伙伴关系的集合有 3
1 -1, ,2. 2
={1,2,6},∴当a=0时,a+b的值为1,2,6;当a=2时,a +b的值为3,4,8;当a=5时,a+b的值为6,7,11, ∴P+Q={1,2,3,4,6,7,8,11},∴P+Q中有8个元素.
(2)∵-3∈A, ∴-3=a-2 或-3=2a2+5a. 3 ∴a=-1 或 a=- . 2 当 a=-1 时,a-2=-3,2a2+5a=-3, 与元素互异性矛盾,应舍去. 3 7 当 a=- 时,a-2=- ,2a2+5a=-3. 2 2 3 ∴a=- 满足条件. 2 3 答案:(1)B (2)- 2
1.正确理解集合的概念
研究一个集合,首先要看集合中的代表元素,然后
再看元素的限制条件,当集合用描述法表示时,注意弄 清其元素表示的意义是什么.注意区分{x|y=f(x)}、{y|y =f(x)}、{(x,y)|y=f(x)}三者的不同. 2.注意空集的特殊性