04线性方程组(工程数学)

合集下载

线性代数教案-第四章 线性方程组

线性代数教案-第四章 线性方程组

第四章:线性方程组一、 本章的教学目标及基本要求所谓线性方程组,其形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (4.0.1) 其中n x x ,, 1代表n 个未知量,m 是方程个数,)11(n j m i a ij ,,;,, ==被称为方程组的系数,)1(m i b i , ,=是常数项.方程组中未知量个数n 与方程个数m 不一定相等.系数ij a 的第一个角标i 表示它在第i 个方程,第二个角标j 表示它是未知量j x 的系数.因为未知量的幂次是1,故称为线性方程组.如果知道了一个线性方程组的全部系数和常数项,这个线性方程组就确定了.确切地说,线性方程组(4.0.1)可以用下列矩阵来表示:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡m mn m m n n b a a a b a a a b a a a 21222221111211(4.0.2) 实际上,给定矩阵(4.0.2),除去代表未知量的字母外,线性方程组(4.0.1)就确定了,而采用什么字母来代表未知量是无关紧要的.以后如无特别声明,类似(4.0.2)的矩阵就被看做一个线性方程组.对于线性方程组(4.0.1),设n m ij a A ⨯=][,T 1)(n x x ,, =x ,T 1)(m b b ,, =b ,由矩阵乘法的定义知,它可被表为b x =A . (4.0.3)当n m =,A 是一个n 阶方阵.若0det ≠A ,它存在唯一解,可用克莱姆法则求得.若0det =A ,或n m ≠,方程组(4.0.3)在什么条件下有解;如果有解,解是否唯一;如果解不唯一而且有无穷个,这些解是否可用简要形式表示以及如何表示等等问题,即为本章讨论的主要内容.1 齐次线性方程组在线性方程组(4.0.3)中,若T)00(,, ==θb ,则有 θx =A . (4.1.1)这被称为与线性方程组(4.0.3)对应的齐次线性方程组,A 被称为它的系数矩阵.线性方程组的三种初等变换,与矩阵的三种行初等变换完全对应. 任何矩阵均可经有限次行初等变换化为行最简形.性质1 若1ξx =,2ξx =是θx =A 的解,则21ξξx +=也是θx =A 的解.性质2 若ξx =是θx =A 的解,k 为任意实数,则ξx k =也是θx =A 的解.θx =A 的全部解构成一个线性空间,记为S ,被称为齐次线性方程组θx =A 的解空间.定理4.1.1 齐次线性方程组(4.1.1)有非零解的充要条件是n A R <)(.解空间S 的基又被称为方程组(4.1.1)的基础解系.求得基础解系,就求得了全部解. 通解.显然,T )00(,, =θ是齐次线性方程组的解,被称为零解或平凡解.2 非齐次线性方程组在线性方程组(4.0.3)中,若T )00(,, =≠θb ,则它被称为非齐次线性方程组.与它对应的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m mn m m n n b a a a b a a a b a a a B 21222221111211 是一个)1(+⨯n m 矩阵,它由系数矩阵n m ij a A ⨯=][加上一列T 1)(m b b ,, =b 组成,即 ][b A B =.称B 为线性方程组(4.0.3)的增广矩阵.性质1 若1ηx =,2ηx =是b x =A 的解,则12ηηx -=是对应齐次线性方程组θx =A 的解.性质2 若ηx =是b x =A 的解,ξx =是对应齐次线性方程组θx =A 的解,则ηξx +=是b x =A 的解.性质3 非齐次线性方程组的通解是对应齐次方程组的通解加上自身的任意一个解. 定理4.2.1 非齐次线性方程组b x =A 有解的充要条件是)()(B R A R =,即系数矩阵和增广矩阵有相同的秩.定理4.2.2设非齐次线性方程组b x =A 的系数矩阵A 及增广矩阵B 的秩相等:r B R A R ==)()(,未知量个数为n .则它有唯一解的充要条件是n r =;它有无穷多解的充要条件是n r <.二、本章教学内容的重点和难点1、齐次及非齐次线性方程组的解法2、理解解空间与前面空间的关系。

线性代数第四章线性方程组课件

线性代数第四章线性方程组课件
方程组 AX 0 的两个基础解系, 则由这两个基础解
系分别确定的解集合
S {k11 k22 ktt | k1, k2, 与 T {l11 l22 lt t | l1,l2,
是相等的,即 S T.
, kt是任意常数} , lt是任意常数}
定理5 设 A 是一个 m n矩阵,若齐次线性方程组
一个解.
定理8 设 1,2 是方程组 AX 的两个解,则 1 2 是 AX 导出组 AX 0 的一个解.
由这两个结果, 我们能够得到非齐次线性方程 组解的结构定理.
定理9 设矩阵 A 是一个 mn矩阵.若非齐次线性
方程组 AX 有解, 令 0是 AX 的某一个解
(通常称为特解).
k1, k2, , ks 是任意常数, 则
k11 k22 kss
也是方程组的解. 即齐次线性方程组解的线性组合
还是方程组的解.
记齐次线性方程组 AX 0的解集合为 S , 即
S { (c1,c2, ,cn)T | A 0}.
那么,上面的定理 3 就可以表述为:
对于任意的 1, 2 S , k1, k2是两个任意常数,有
1)当 R(A) R(A) n 时,0是 AX 唯一的解; 2)当 R(A) R(A) n 时,AX 的导出组 AX 0 存在无穷多解, 则 AX 的解集合为 S {0 k11 k22 kss | k1, k2, , ks是任意常数}, 其中 1,2, ,s是 AX 0 的一个基础解系.
是线性无关的.
1, 2, , n
定理2(齐次线性方程组有非零解的判别定理) 齐
次线性方程组 AX 0 有非零解的充分必要条件是
它的系数矩阵 A 的秩 R(A) n .
推论1 如果齐次线性方程组 AX 0 中的方程个数

线性方程组解法归纳总结

线性方程组解法归纳总结

线性方程组解法归纳总结在数学领域中,线性方程组是一类常见的方程组,它由一组线性方程组成。

解决线性方程组是代数学的基础知识之一,广泛应用于各个领域。

本文将对线性方程组的解法进行归纳总结。

一、高斯消元法高斯消元法是解决线性方程组的基本方法之一。

其基本思想是通过逐步消元,将线性方程组转化为一个上三角形方程组,从而求得方程组的解。

具体步骤如下:1. 将线性方程组写成增广矩阵的形式,即将系数矩阵和常数向量合并成一个矩阵。

2. 选取一个非零的主元(通常选取主对角线上的元素),通过初等行变换将其它行的对应位置元素消为零。

3. 重复上述步骤,逐步将系数矩阵转化为上三角形矩阵。

4. 通过回代法,从最后一行开始求解未知数,逐步得到线性方程组的解。

高斯消元法的优点是理论基础牢固,适用于各种规模的线性方程组。

然而,该方法有时会遇到主元为零或部分主元为零的情况,需要进行特殊处理。

二、克拉默法则克拉默法则是一种用行列式求解线性方程组的方法。

它利用方程组的系数矩阵和常数向量的行列式来求解未知数。

具体步骤如下:1. 求出系数矩阵的行列式,若行列式为零则方程组无解。

2. 对于每个未知数,将系数矩阵中对应的列替换为常数向量,再求出替换后矩阵的行列式。

3. 用未知数的行列式值除以系数矩阵的行列式值,即可得到该未知数的解。

克拉默法则的优点是计算简单,适用于求解小规模的线性方程组。

然而,由于需要计算多次行列式,对于大规模的线性方程组来说效率较低。

三、矩阵法矩阵法是一种将线性方程组转化为矩阵运算的方法。

通过矩阵的逆运算或者伴随矩阵求解线性方程组。

具体步骤如下:1. 将线性方程组写成矩阵的形式,其中系数矩阵为A,未知数矩阵为X,常数向量矩阵为B。

即AX=B。

2. 若系数矩阵A可逆,则使用逆矩阵求解,即X=A^(-1)B。

3. 若系数矩阵A不可逆,则使用伴随矩阵求解,即X=A^T(ATA)^(-1)B。

矩阵法的优点是适用于各种规模的线性方程组,且运算速度较快。

线性方程组的解法知识点总结

线性方程组的解法知识点总结

线性方程组的解法知识点总结在数学中,线性方程组是研究线性关系的重要工具。

解决线性方程组的问题有助于我们理解和应用线性代数的基本知识。

本文将总结线性方程组的解法,包括高斯消元法、矩阵的逆和克拉默法则。

一、高斯消元法高斯消元法是解决线性方程组的常见方法。

它通过逐步消去未知数,将方程组化简为上三角形式,并利用回代求解未知数的值。

步骤:1. 将线性方程组写成增广矩阵的形式,其中矩阵的最后一列是常数列。

2. 选取一个基准元素,通常选择矩阵的左上角元素或者第一列的首个非零元素。

3. 通过初等行变换,将基准元素下方的元素转化为零,从而将方程组化为上三角形式。

4. 从最后一行开始,通过回代求解未知数的值。

高斯消元法的优点是能够很好地处理大规模的线性方程组,但其缺点是计算量较大,并且可能需要进行主元交换。

二、矩阵的逆矩阵的逆也是解决线性方程组的重要方法。

对于一个非奇异方阵(可逆矩阵),我们可以通过求解逆矩阵来得到线性方程组的解。

步骤:1. 将线性方程组写成矩阵形式,其中系数矩阵为一个非奇异方阵。

2. 判断系数矩阵是否可逆。

如果可逆,则计算系数矩阵的逆矩阵。

3. 将方程组的常数列构成一个列矩阵,记为向量b。

4. 计算未知数向量x的值,即x = A^(-1) * b,其中A^(-1)为系数矩阵的逆矩阵。

矩阵的逆方法适用于已知系数矩阵可逆的情况,且计算矩阵的逆矩阵需要考虑到矩阵的性质和运算法则。

三、克拉默法则克拉默法则是一种解决线性方程组的特殊方法,适用于方程组的系数矩阵为方阵并且可逆的情况。

它利用行列式的性质来求解未知数的值。

步骤:1. 将线性方程组写成矩阵形式,并记为Ax = b,其中A为系数矩阵,x为未知数向量,b为常数向量。

2. 求解系数矩阵的行列式,记为det(A)。

3. 分别将系数矩阵每一列替换为常数向量b,得到新的矩阵A1到An。

4. 分别求解A1到An的行列式,得到d1到dn。

5. 根据克拉默法则,未知数向量x的值为x = (d1/det(A),d2/det(A), ..., dn/det(A))。

线性方程组的解法线性方程组

线性方程组的解法线性方程组

线性方程组的解法线性方程组线性方程组是数学中常见的一种方程形式,它由多个线性方程联立而成。

解线性方程组是在给定一组方程的条件下,求出符合这些方程的未知数的取值,从而满足方程组的所有方程。

本文将介绍线性方程组的解法和应用。

一、高斯消元法高斯消元法是解线性方程组的一种常用方法。

它通过一系列行变换将线性方程组转化为简化的行阶梯形矩阵,然后通过回代求解得到方程组的解。

具体步骤如下:1. 将线性方程组写成增广矩阵的形式,其中未知数的系数和常数项构成矩阵的左右两部分。

2. 选取一个主元(即系数不为零的元素)作为基准行,并通过行变换使得该元素为1,同时消去其他行中该列的元素。

3. 重复上述步骤,将矩阵转化为行阶梯形式,即每一行的主元都在前一行主元的右下方。

4. 进行回代,从最后一行开始,逐步求解方程组的未知数。

高斯消元法能够解决大部分线性方程组,但对于某些特殊情况,例如存在无穷解或无解的方程组,需要进行额外的判断和处理。

二、矩阵求逆法矩阵求逆法是另一种解线性方程组的方法。

它通过求解方程组的系数矩阵的逆矩阵,再与常数项的矩阵相乘,得到未知数的解向量。

具体步骤如下:1. 如果线性方程组的系数矩阵存在逆矩阵,即矩阵可逆,那么方程组有唯一解。

2. 计算系数矩阵的逆矩阵。

3. 将逆矩阵与常数项的矩阵相乘,得到未知数的解向量。

需要注意的是,矩阵求逆法只适用于方程组的系数矩阵可逆的情况,对于不可逆的方程组,则无解或者存在无穷解。

三、克拉默法则克拉默法则适用于n个未知数、n个方程的线性方程组。

它利用行列式的性质来求解未知数。

具体步骤如下:1. 构建系数矩阵和常数项的矩阵。

2. 计算系数矩阵的行列式,即主对角线上各元素的乘积减去副对角线上各元素的乘积。

3. 分别用求解一个未知数时的系数矩阵替代系数矩阵中对应列的元素,再计算新矩阵的行列式。

4. 将每个未知数的解依次计算出来。

克拉默法则的优点是理论简单,易于理解,但随着未知数和方程数的增加,计算复杂度呈指数增长,计算效率较低。

土木工程:线性代数: 线性方程组

土木工程:线性代数: 线性方程组

第一节 线性方程组的三种表达形式、解、通解
x 2y 3z 6 例:线性方程组 x 3y 4z 8 .
x 4 y 5z 10
1 2 3 A 1 3 4 .
1 4 5
系数矩阵
1 2 3 6 ( A,b) 1 3 4 8 . 增广矩阵
1 4 5 10
第一节 线性方程组的三种表达形式、解、通解
1
k2
0
0 .
0 0 0 0
0 1 0
2 1 1 1 1 1 2 4
2,
( A,
b)
1
2
1
2 0 1
1 2.
1 1 2 4 0 0 0 1
r(A) 2 r(A,b) 3.
2.
3x 2x
3y 2y
3 .
4
第三节 非齐次线性方程组
非齐次线性方程组解的情况与秩的关系 情况1. 存在唯一解: 系数矩阵的秩与系数增广矩阵的
秩相等,且等于未知数的个数 情况2. 无解: 系数矩阵的秩小于系数增广矩阵的秩 情况3. 存在无穷多解〔齐次解+对应齐次的通解〕
系数矩阵的秩与系数增广矩阵的秩相等,且小 于未知数的个数
第三节 非齐次线性方程组
例 求解方程组
x1 x2 x3 2
x1
2
x2
3x3
3
.
3x1 5x2 8x3 8
1 1 1 2 1 1 1 2 1 0 0 1 ( A,b) 1 2 3 3 0 1 2 1 0 1 0 1.
3 5 8 8 0 2 5 2 0 0 1 0
1 x 1
1
第三节 非齐次线性方程组
第四章 线性方程组
第一节 线性方程组的三种表达形式、解、通解 第二节 齐次线性方程组 第三节 非齐次线性方程组

线性方程组知识点总结

线性方程组知识点总结

线性方程组知识点总结一、引言线性方程组是数学中重要的概念,广泛应用于各个领域。

本文将对线性方程组的基本概念、求解方法和应用进行总结和介绍。

二、基本概念1. 线性方程组的定义:线性方程组是由若干个线性方程组成的方程集合,形式一般为a1x1 + a2x2 + ... + anxn = b。

2. 线性方程组的解:线性方程组的解是使得所有方程都成立的一组变量值,分为唯一解、无解和无穷多解三种情况。

3. 线性方程组的系数矩阵:系数矩阵是由线性方程组中各个方程的系数构成的矩阵,记作A。

4. 线性方程组的增广矩阵:增广矩阵是将线性方程组的系数矩阵和常数项列向量合并成一个矩阵,记作[A | b]。

三、求解方法1. 列主元消元法:利用行初等变换将线性方程组转化为简单形式,其中列主元消元法是一种常用的方法。

具体步骤包括选主元、消元和回代三个过程。

2. 矩阵法:利用矩阵的逆、转置等性质,可以通过求解矩阵方程来求解线性方程组。

3. 克拉默法则:克拉默法则是一种利用行列式的性质来求解线性方程组的方法,通过计算线性方程组的系数行列式和常数行列式的比值,可以得到方程组的解。

四、应用领域1. 工程学:线性方程组广泛应用于工程学中的结构分析、电路分析、力学运动等问题的求解。

2. 经济学:线性方程组在经济学中的需求分析、均衡分析、成本分析等方面有着重要应用。

3. 计算机科学:线性方程组在图像处理、数据分析、模型建立等计算机科学的领域中起着关键作用。

五、总结线性方程组是数学中的基础概念,对于理解和解决实际问题具有重要意义。

本文总结了线性方程组的基本概念、求解方法和应用领域,希望能为读者提供一定的参考和启发。

建议读者在学习线性方程组时,注重理论与实践的结合,加强对各种方法的理解和运用能力,进一步提升问题求解的能力和水平。

线性方程组

线性方程组
当常数项b1,b2,…,bn都等于零时,则方程组⑴称为齐次线性方程组。
谢谢观看
②矩阵消元法.将线性方程组的增广矩阵通过行的初等变换化为行简化阶梯形矩阵,则以行简化阶梯形矩阵为 增广矩阵的线性方程组与原方程组同解。当方程组有解时,将其中单位列向量对应的未知量取为非自由未知量, 其余的未知量取为自由未知量,即可找出线性方程组的解。
关于未知量是一次的方程组,其一般形式为

式中x1,x2,…,xn代表未知量,αij(1≤i≤m,1≤j≤n)称为方程⑴的系数,bi(1≤i≤m)称为常数项。 系数和常数项都是任意的复数或某一个域的元素。
克莱姆法则(见行列式)给出了一类特殊线性方程组解的公式。
解法
①克莱姆法则.用克莱姆法则求解方程组有两个前提,一是方程的个数要等于未知量的个数,二是系数矩阵的 行列式要不等于零。用克莱姆法则求解方程组实际上相当于用逆矩阵的方法求解线性方程组,它建立线性方程组 的解与其系数和常数间的关系,但由于求解时要计算n+1个n阶行列式,其工作量常常很大,所以克莱姆法则常用 于理论证明,很少用于具体求解。
线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。
定义
xj表未知量,aij称系数,bi称常数项。
称为系数矩阵和增广矩阵。若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn) 为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方 程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。 线性方程组主要讨论的问题是:
①一个方程组何时有解。
②有解方程组解的个数。

《线性代数》第四章:线性方程组-PPT课件

《线性代数》第四章:线性方程组-PPT课件
三角形线性方程组要求方程组所含方程的个数等于未知量的个数且第个方程第个变量的系数三角形线性方程组是一类特殊的情形解法也简单由克莱姆法则可以判断其解惟一一般只需要从最后一个方程开始求解逐步回代就可求出方程组的全部解11定义416线性方程组中自上而下的各方程所含未知量个数依次减少这种形式的方程组称为n元阶梯形线性方程组
❖ 例如 axbyc 是一个二元方程,a , b 不同时
为零时,方程有无穷多解,如 b0时,x0,yc
b
为二元方程 的一个特解, axbyc
b0 时 , xk,ycakk R
bb
为二元方程的通解;当 a , b 同时为零,若时c ,0
方程无解;当
a同, b 时为零,若 时c , 0 方程
有无穷多解任意一对有序实数都是方程的解。
❖ 消元法的目的就是利用方程组的初等变换将 原方程组化为阶梯形方程组, 由于这个阶梯形 方程组与原线性方程组同解, 解这个阶梯形方 程组得到的解就是原方程组的解。
❖ 注意:将一个方程组化为行阶梯形方程组的 步骤并不是惟一的, 所以,同一个方程组的行 阶梯形方程组也不是唯一的。
❖ n元线性方程组的一般形式为
cnnxn 0
❖ 其中 crr 0 则线性方程组有唯一解,即仅有零解。
❖ (2) 当 r n 时,方程组可以化为
c11x1 c12x2 c1rxr c1nxn 0
c22x2 c2rxr c2nxn 0 ..........................
crrxr crnxn 0
❖ 其中 crr 0 将其改写成
a11x1a12x2 a1rxrb1a1r1xr1 a1nxn a22x2 a2rxrb2a2r1xr1 a2nxn arrxrbrarr1xr1 arnxn

线性方程组的解法与应用知识点总结

线性方程组的解法与应用知识点总结

线性方程组的解法与应用知识点总结线性方程组是数学中的重要概念,它在各个领域中都有着广泛的应用。

解决线性方程组的问题需要掌握一系列的解法和相关知识点。

本文将对线性方程组的解法和应用进行总结,并给出一些例子来说明其实际应用。

一、解线性方程组的基本方法1. 列主元消元法:列主元消元法是解决线性方程组最常用的方法之一。

其基本思想是通过将方程组化为阶梯型或最简形,进而求解方程组的解。

2. 高斯-约当消元法:高斯-约当消元法是解决线性方程组的另一种常用方法。

它与列主元消元法不同,是以行出发进行消元,最终将方程组化为最简形。

3. 矩阵方法:矩阵方法是一种便捷的解线性方程组的方法。

通过将线性方程组的系数矩阵进行相应运算,可以得到方程组的解。

二、线性方程组的应用1. 工程问题中的线性方程组:在线性方程组的解法中,工程问题是其中的重要应用之一。

例如,在电路分析中,可以通过列主元消元法或矩阵方法解决多个电路元件之间的关系,进而求解未知电流或电压。

2. 经济模型中的线性方程组:经济学中的模型通常涉及到多个未知数之间的关系,而这些关系可以用线性方程组来表示。

通过解决线性方程组,可以得到经济模型的平衡解,以便进行相关的经济分析。

3. 自然科学中的线性方程组:自然科学中的许多问题都可以通过线性方程组的方法求解。

例如,在化学反应中,可以通过解线性方程组来确定各个物质的摩尔浓度;在物理学中,可以通过线性方程组来描述多个物体之间的相互作用。

4. 数据分析中的线性方程组:在数据分析中,线性方程组也有着广泛的应用。

例如,在回归分析中,可以通过解线性方程组来确定自变量与因变量之间的线性关系;在最小二乘法中,可以通过解线性方程组来拟合数据并进行预测。

以上仅仅是线性方程组在实际应用中的一些典型例子,事实上,线性方程组在各个学科中都有着重要的地位,解决实际问题时经常涉及到线性方程组的分析与求解。

总结:通过本文的总结,我们了解了解线性方程组的基本解法和常见应用。

《线性代数》第四章线性方程组 第1节.ppt

《线性代数》第四章线性方程组 第1节.ppt

2
1 1
11 2 1 0 2
2 7
~
2 2 5 1 1 18
0
0
0
3 3 6
4 23 5
5
2
4
7
1 3 1 4
1 2 3 1 1 7
~ 0 3 4 2 3 5
0 0
0 0
1 7
0 1
1 5
1 42
~
1 2 3 1 1 7
0 3 4 2 3 5
0 0
0 0
1 0
二、用消元法解线性方程组
中学代数已介绍过二元、三元线性方程组的消元法——高斯消元 法。下面再作一例,以求其规律。
例 解线性方程组
2x1 x2 2x3 4
x1 x2 2x3 1
4x1 x2 4x3 2
解:交换第一、二两个方程, 得同解组
x1 x2 2x3 1 1 2x1 x2 2x3 4 2 4x1 x2 4x3 2 3
(1) 的 方 程 组
称为线性方程组
它可写作矩阵形式: AX b (2)
其中 A (aij )mn 是系数矩阵
X (x1, x2 ,xn )T
b (b1,b2 ,bm )T
称 B (A b) 为增广矩阵,通常写成 ( A | b)或( A, b)
b=0时所对应的方程组为齐次线性方程组
b≠0时所对应的方程组为非齐次线性方程组
当 x , x ,, x 分别用数k , k ,, k 代入方程组中的
1
2
n
1
2
n
每一个方程后, 若能使得每一个等式都 变成恒等式,
则我们称
x k , x k ,, x k ,
1
1

工程数学第四章 线性方程组

工程数学第四章 线性方程组
第四章
1 − 1 5 1 1 − 2 解: Q A = 3 − 1 8 1 3 − 9
1 0 → 0 0 −1 2 0 0 5 −7 0 0




0 1 0 0 2 −7 2 0 0 3 1 2 0 0
1 5 − 1 1 − 1 0 1 − 7 2 0 2 → → 0 0 0 0 0 0 0 0 0 0
第四章




c11 c12 L c1r 0 c 22 L c 2 r L L L L 0 L c rr 0 0 0 L L L L L L 0 0 L L
c1, r +1 c 2, r +1 L c r , r +1 0 L 0
L c1n L c2n L L L crn L 0 L L L 0
第四章




将一般解中的自由未知量 xr+1, xr+2, …, xn 任取一组数:k1, k2, …, kn−r, 得相应解为 x1=k1d11+k2d12+…+kn−rd1, n−r x2=k1d21+k2d22+…+kn−rd2, n−r ……………… xr=k1dr1+k2dr2+…+kn−rdr, n−r xr+1=k1 xr+2= k2 kn−r
称 A 为线性方程组的增广矩阵. 当方程组右边的常数项不全为 0, 即 b≠0 时,称 AX=b 为非齐次线性方程组,而称 AX=0 为齐次线性方程组.
第四章




二、线性方程组的消元解法

大学线性代数课件线性方程组第四章 线性方程组

大学线性代数课件线性方程组第四章 线性方程组

4 4
1 2 2 1 1 0 2 53
0
1
2
4
3
0
1
2
4 3
0 0 0 0 00 0 0
对应于矩阵
1 0 0
0 1 0
2 2 0
5
4 3
0
3
的同解方程组为
x 1
x 2
2x 3
2x 3
5 3
4 3
x 4
x 4
0 0
x =2 1
x 3
5 3
x 4
移项得, xx12=2x32x3
然而,许多线性方程组并不能同时满足这两个条件. 为此,必须讨论一般情况下线性方程组的求解方法和解 的各种情况.
§2 齐次线性方程组
一般地,齐次线性方程组可以写成
a11x1 a12 x2 a1n xn 0,
a21x1 a22 x2 a2n xn
0,
am1x1 am2 x2 amn xn 0.
(1)
am1x1 am2 x2 amnxn bm.
其中x1, x2,, xn是n个未知量,
m是方程组所包含的方程 个数,
aij (i 1,2,, m; j 1,2,, n)称为方程组的系数 ,
bj ( j 1,2,, m)称为常数项 .
A
aij
,
mn
x1
x
x2
,
xn
n1
x1 7x2 5x3 2, 2x1 5x2 3x3 3,
3x1 2x2 8x3 17.
解:对增广矩阵进行行初等变换
A
b
1 2
7 5 5 3
2 1 7 3 0 19
5 13
2 1

线性方程组的解法与应用

线性方程组的解法与应用

线性方程组的解法与应用线性方程组是数学中重要的概念,广泛应用于各个领域,例如工程、经济学和物理学等。

在本文中,将介绍线性方程组的解法和其在实际问题中的应用。

一、线性方程组的定义和基本概念线性方程组由一组线性方程组成,每个方程都是变量的线性组合。

一般形式可表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,a、x和b分别表示系数矩阵、变量矩阵和常数矩阵。

基于这个定义,我们可以通过不同的方法来解决线性方程组。

二、线性方程组的解法1. 列主元消元法列主元消元法是一种常用的求解线性方程组的方法。

它通过将系数矩阵化为上三角矩阵,从而得到方程组的解。

具体步骤如下:(1)选取一个非零列主元素,通常为当前行中绝对值最大的元素。

(2)将选中的列主元素所在列的其他元素转化为零,通过进行一系列的初等变换,如行交换和倍数变换。

(3)重复上述步骤,直到将系数矩阵转化为上三角矩阵。

2. 高斯-约当消元法高斯-约当消元法是另一种求解线性方程组的方法。

它通过将系数矩阵化为行阶梯矩阵,从而得到方程组的解。

具体步骤如下:(1)选取一个非零主元素,通常为当前列中绝对值最大的元素。

(2)将选中的主元素所在列的其他元素转化为零,通过进行一系列的初等变换,如行交换和倍数变换。

(3)重复上述步骤,直到将系数矩阵转化为行阶梯矩阵。

3. 矩阵求逆法矩阵求逆法是一种求解线性方程组的较为高效的方法。

它通过计算系数矩阵的逆矩阵,将方程组转化为逆矩阵与常数矩阵的乘积,从而得到方程组的解。

然而,该方法要求系数矩阵可逆,即行列式不等于零。

三、线性方程组在实际问题中的应用线性方程组广泛应用于各个领域,主要体现在以下方面:1. 工程领域在线性方程组的求解过程中,常常需要对方程组进行建模。

例如,在工程领域中,可以通过建立线性方程组来描述和解决各种物理力学问题,如结构力学、电路分析和信号处理等。

工程数学第三章 线性方程组

工程数学第三章 线性方程组
x11 x22 L xnn .
观察这个式子我们发现,系数列向量组和常数列向量之间存在一种线性关系.如果方程
组有解,则 可以写成 1 , 2 , , n 的线性组合.于是,求解方程组的问题就转化为求 一组数 x1, x2 ,L , xn ,使得 x11 x22 L xnn 成立,即方程组有解 可 表示为向量组 1 , 2 , , n 的线性组合;方程组有唯一解 能由1 , 2 , , n 线 性表示,且表示形式唯一;方程组有多组解 由1 , 2 , , n 表示的形式不唯一; 方程组无解 不能由1 , 2 , , n 线性表示.
注:维数不同的零向量是不相同的.
上页
下页
返回
结束
定义 2 向量 = a1,a2, ,an 的各分量取相反数所得到的向量称为向量 的负 向量,记作 ,即 a1, a2,L , an .
定义 3 如果 a1,a2,L ,an , b1,b2,L ,bn ,当 ai bi (i 1, 2,L , n)
上页
下页
返回
结束
例 2 设 1 (1, 0, 0), 2 (0,1, 0) ,3 (0, 0,1) ,试证这三个向量中的任一向量均
不能由其余两个向量线性表出.
证 假设存在 k1, k2 ,使得 k1 2 k23 1 ,即 k1(0,1, 0) k2 (0, 0,1) (1, 0, 0) ,化
+
a 22 am2
x2
+
a2n amn
xn
=
b2
bm

即 x1 1 + x2 2 + xn n = ,这就是线性方程组的向量形式.
上页
下页
返回
结束
第二节 向量组的线性相关性

工程数学-线性代数第五版答案04

工程数学-线性代数第五版答案04

第四章 向量组的线性相关性1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3.解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T=(1-0, 1-1, 0-1)T=(1, 0, -1)T .3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3⨯1+2⨯0-3, 3⨯1+2⨯1-4, 3⨯0+2⨯1-0)T =(0, 1, 2)T .2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61T T T --+==(1, 2, 3, 4)T . 3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r⎪⎪⎪⎭⎫⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示; (2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1, a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关. 8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1, a 2线性表示的表示式.解 因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使λ1(a 1+b )+λ2(a 2+b )=0,由此得 2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=,设211λλλ+-=c , 则 b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. 解 不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有a1+b1=(1, 2)T+b1=(0, 1)T, a2+b2=(2, 4)T+(0, 0)T=(2, 4)T,而a1+b1,a2+b2的对应分量不成比例,是线性无关的.10.举例说明下列各命题是错误的:(1)若向量组a1,a2,⋅⋅⋅,a m是线性相关的,则a1可由a2,⋅⋅⋅,a m线性表示.解设a1=e1=(1, 0, 0,⋅⋅⋅, 0),a2=a3=⋅⋅⋅=a m=0,则a1,a2,⋅⋅⋅,a m线性相关,但a1不能由a2,⋅⋅⋅,a m线性表示.(2)若有不全为0的数λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0成立,则a1,a2,⋅⋅⋅,a m线性相关, b1,b2,⋅⋅⋅,b m亦线性相关.解有不全为零的数λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0,原式可化为λ1(a1+b1)+⋅⋅⋅+λm(a m+b m)=0.取a1=e1=-b1,a2=e2=-b2,⋅⋅⋅,a m=e m=-b m,其中e1,e2,⋅⋅⋅,e m 为单位坐标向量,则上式成立,而a1,a2,⋅⋅⋅,a m和b1,b2,⋅⋅⋅,b m 均线性无关.(3)若只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0才能成立,则a1,a2,⋅⋅⋅,a m线性无关, b1,b2,⋅⋅⋅,b m亦线性无关.解由于只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式由λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0成立,所以只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1(a1+b1)+λ2(a2+b2)+⋅⋅⋅+λm(a m+b m)=0成立.因此a1+b1,a2+b2,⋅⋅⋅,a m+b m线性无关.取a1=a2=⋅⋅⋅=a m=0,取b1,⋅⋅⋅,b m为线性无关组,则它们满足以上条件,但a1,a2,⋅⋅⋅,a m线性相关.(4)若a1,a2,⋅⋅⋅,a m线性相关, b1,b2,⋅⋅⋅,b m亦线性相关,则有不全为0的数,λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m=0,λ1b1+⋅⋅⋅+λm b m=0同时成立.解a1=(1, 0)T,a2=(2, 0)T,b1=(0, 3)T,b2=(0, 4)T,λ1a1+λ2a2 =0⇒λ1=-2λ2,λ1b1+λ2b2 =0⇒λ1=-(3/4)λ2,⇒λ1=λ2=0,与题设矛盾.11.设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.证明由已知条件得a1=b1-a2,a2=b2-a3, a3=b3-a4, a4=b4-a1,于是a1 =b1-b2+a3=b1-b2+b3-a4=b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.12. 设b 1=a 1, b 2=a 1+a 2, ⋅ ⋅ ⋅, b r =a 1+a 2+ ⋅ ⋅ ⋅ +a r , 且向量组a 1, a 2, ⋅ ⋅ ⋅ , a r 线性无关, 证明向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关. 证明 已知的r 个等式可以写成⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅100110111) , , ,() , , ,(2121r r a a a b b b , 上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B )=R (A )=r , 从而向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关.13. 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7).解 由⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a , 知R (a 1T , a 2T , a 3T )=R (a 1, a 2, a 3)=2. 因为向量a 1T 与a 2T 的分量不成比例, 故a 1T , a 2T 线性无关, 所以a 1T , a 2T 是一个最大无关组.14. 利用初等行变换求下列矩阵的列向量组的一个最大无关组: (1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.15. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=5200111031116110111031113111332221) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5.16. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 已知n 维单位坐标向量e 1, e 2,⋅ ⋅ ⋅, e n 能由它们线性表示, 证明a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关. 证法一 记A =(a 1, a 2, ⋅ ⋅ ⋅, a n ), E =(e 1, e 2,⋅ ⋅ ⋅, e n ). 由已知条件知, 存在矩阵K , 使E =AK .两边取行列式, 得|E |=|A ||K |.可见|A|≠0,所以R(A)=n,从而a1,a2,⋅⋅⋅,a n线性无关.证法二因为e1,e2,⋅⋅⋅,e n能由a1,a2,⋅⋅⋅,a n线性表示,所以R(e1,e2,⋅⋅⋅,e n)≤R(a1,a2,⋅⋅⋅,a n),而R(e1,e2,⋅⋅⋅,e n)=n,R(a1,a2,⋅⋅⋅,a n)≤n,所以R(a1,a2,⋅⋅⋅,a n)=n,从而a1,a2,⋅⋅⋅,a n线性无关.17.设a1,a2,⋅⋅⋅,a n是一组n维向量, 证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.证明必要性:设a为任一n维向量.因为a1,a2,⋅⋅⋅,a n线性无关,而a1,a2,⋅⋅⋅,a n,a是n+1个n维向量,是线性相关的,所以a能由a1,a2,⋅⋅⋅,a n线性表示,且表示式是唯一的.充分性:已知任一n维向量都可由a1,a2,⋅⋅⋅,a n线性表示,故单位坐标向量组e1,e2,⋅⋅⋅,e n能由a1,a2,⋅⋅⋅,a n线性表示,于是有n=R(e1,e2,⋅⋅⋅,e n)≤R(a1,a2,⋅⋅⋅,a n)≤n,即R(a1,a2,⋅⋅⋅,a n)=n,所以a1,a2,⋅⋅⋅,a n线性无关.18.设向量组a1,a2,⋅⋅⋅,a m线性相关,且a1≠0,证明存在某个向量a k (2≤k≤m),使a k能由a1,a2,⋅⋅⋅,a k-1线性表示.证明因为a1,a2,⋅⋅⋅,a m线性相关,所以存在不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λm , 使λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λm a m =0,而且λ2, λ3,⋅ ⋅ ⋅, λm 不全为零. 这是因为, 如若不然, 则λ1a 1=0, 由a 1≠0知λ1=0, 矛盾. 因此存在k (2≤k ≤m ), 使λk ≠0, λk +1=λk +2= ⋅ ⋅ ⋅ =λm =0,于是λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λk a k =0,a k =-(1/λk )(λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λk -1a k -1),即a k 能由a 1, a 2, ⋅ ⋅ ⋅, a k -1线性表示.19. 设向量组B : b 1, ⋅ ⋅ ⋅, b r 能由向量组A : a 1, ⋅ ⋅ ⋅, a s 线性表示为(b 1, ⋅ ⋅ ⋅, b r )=(a 1, ⋅ ⋅ ⋅, a s )K , 其中K 为s ⨯r 矩阵, 且A 组线性无关. 证明B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r . 证明 令B =(b 1, ⋅ ⋅ ⋅, b r ), A =(a 1, ⋅ ⋅ ⋅, a s ), 则有B =AK . 必要性: 设向量组B 线性无关.由向量组B 线性无关及矩阵秩的性质, 有r =R (B )=R (AK )≤min{R (A ), R (K )}≤R (K ), 及 R (K )≤min{r , s }≤r .因此R (K )=r .充分性: 因为R (K )=r , 所以存在可逆矩阵C , 使⎪⎭⎫ ⎝⎛=O E KC r为K 的标准形. 于是(b 1, ⋅ ⋅ ⋅, b r )C =( a 1, ⋅ ⋅ ⋅, a s )KC =(a 1, ⋅ ⋅ ⋅, a r ).因为C 可逆, 所以R (b 1, ⋅ ⋅ ⋅, b r )=R (a 1, ⋅ ⋅ ⋅, a r )=r , 从而b 1, ⋅ ⋅ ⋅, b r 线性无关.20. 设⎪⎩⎪⎨⎧+⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅++=+⋅⋅⋅++=-1321312321 n n n n ααααβαααβαααβ,证明向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价. 证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ, 将上式记为B =AK . 因为0)1()1(0111101*********||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n , 所以K 可逆, 故有A =BK -1. 由B =AK 和A =BK -1可知向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 可相互线性表示. 因此向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价.21. 已知3阶矩阵A 与3维列向量x 满足A 3x =3A x -A 2x , 且向量组x , A x , A 2x 线性无关.(1)记P =(x , A x , A 2x ), 求3阶矩阵B , 使AP =PB ; 解 因为AP =A (x , A x , A 2x )=(A x , A 2x , A 3x )=(A x , A 2x , 3A x -A 2x )⎪⎪⎭⎫ ⎝⎛-=110301000) , ,(2x x x A A , 所以⎪⎪⎭⎫ ⎝⎛-=110301000B . (2)求|A |.解 由A 3x =3A x -A 2x , 得A (3x -A x -A 2x )=0. 因为x , A x , A 2x 线性无关, 故3x -A x -A 2x ≠0, 即方程A x =0有非零解, 所以R (A )<3, |A |=0.22. 求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ; 解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A , 于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x . 取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ;取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T .因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x . 解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A , 于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x . 取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ;取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T .因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .(3)nx 1 +(n -1)x 2+ ⋅ ⋅ ⋅ +2x n -1+x n =0.解 原方程组即为x n =-nx 1-(n -1)x 2- ⋅ ⋅ ⋅ -2x n -1.取x 1=1, x 2=x 3= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-n ;取x 2=1, x 1=x 3=x 4= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-(n -1)=-n +1; ⋅ ⋅ ⋅ ;取x n -1=1, x 1=x 2= ⋅ ⋅ ⋅ =x n -2=0, 得x n =-2.因此方程组的基础解系为ξ1=(1, 0, 0, ⋅ ⋅ ⋅, 0, -n )T ,ξ2=(0, 1, 0, ⋅ ⋅ ⋅, 0, -n +1)T ,⋅ ⋅ ⋅,ξn -1=(0, 0, 0, ⋅ ⋅ ⋅, 1, -2)T .23. 设⎪⎭⎫ ⎝⎛--=82593122A , 求一个4⨯2矩阵B , 使AB =0, 且 R (B )=2.解 显然B 的两个列向量应是方程组AB =0的两个线性无关的解. 因为⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--=8/118/5108/18/101 82593122~rA , 所以与方程组AB =0同解方程组为⎩⎨⎧+=-=432431)8/11()8/5()8/1()8/1(x x x x x x . 取(x 3, x 4)T =(8, 0)T , 得(x 1, x 2)T =(1, 5)T ;取(x 3, x 4)T =(0, 8)T , 得(x 1, x 2)T =(-1, 11)T .方程组AB =0的基础解系为ξ1=(1, 5, 8, 0)T , ξ2=(-1, 11, 0, 8)T .因此所求矩阵为⎪⎪⎪⎭⎫ ⎝⎛-=800811511B .24. 求一个齐次线性方程组, 使它的基础解系为ξ1=(0, 1, 2, 3)T , ξ2=(3, 2, 1, 0)T .解 显然原方程组的通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x , 即⎪⎩⎪⎨⎧=+=+==14213212213223k x k k x k k x k x , (k 1, k 2∈R ), 消去k 1, k 2得⎩⎨⎧=+-=+-023032431421x x x x x x , 此即所求的齐次线性方程组.25. 设四元齐次线性方程组I : ⎩⎨⎧=-=+004221x x x x , II : ⎩⎨⎧=+-=+-00432321x x x x x x . 求: (1)方程I 与II 的基础解系; (2) I 与II 的公共解.解 (1)由方程I 得⎩⎨⎧=-=4241x x x x . 取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 0)T ;取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, 1)T .因此方程I 的基础解系为ξ1=(0, 0, 1, 0)T , ξ2=(-1, 1, 0, 1)T .由方程II 得⎩⎨⎧-=-=43241x x x x x . 取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 1)T ;取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, -1)T .因此方程II 的基础解系为ξ1=(0, 1, 1, 0)T , ξ2=(-1, -1, 0, 1)T .(2) I 与II 的公共解就是方程III : ⎪⎩⎪⎨⎧=+-=+-=-=+00004323214221x x x x x x x x x x 的解. 因为方程组III 的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=0000210010101001 1110011110100011~r A , 所以与方程组III 同解的方程组为⎪⎩⎪⎨⎧==-=4342412x x x x x x . 取x 4=1, 得(x 1, x 2, x 3)T =(-1, 1, 2)T , 方程组III 的基础解系为 ξ=(-1, 1, 2, 1)T .因此I 与II 的公共解为x =c (-1, 1, 2, 1)T , c ∈R .26. 设n 阶矩阵A 满足A 2=A , E 为n 阶单位矩阵, 证明R (A )+R (A -E )=n .证明 因为A (A -E )=A 2-A =A -A =0, 所以R (A )+R (A -E )≤n . 又R (A -E )=R (E -A ), 可知R (A )+R (A -E )=R (A )+R (E -A )≥R (A +E -A )=R (E )=n ,由此R (A )+R (A -E )=n .27. 设A 为n 阶矩阵(n ≥2), A *为A 的伴随阵, 证明⎪⎩⎪⎨⎧-≤-===2)( 01)( 1)( *)(n A R n A R n A R n A R 当当当. 证明 当R (A )=n 时, |A |≠0, 故有|AA *|=||A |E |=|A |≠0, |A *|≠0,所以R (A *)=n .当R (A )=n -1时, |A |=0, 故有AA *=|A |E =0,即A *的列向量都是方程组A x =0的解. 因为R (A )=n -1, 所以方程组A x =0的基础解系中只含一个解向量, 即基础解系的秩为1. 因此R (A *)=1.当R (A )≤n -2时, A 中每个元素的代数余子式都为0, 故A *=O , 从而R (A *)=0.28. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x . 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .29. 设四元非齐次线性方程组的系数矩阵的秩为3, 已知η1, η2, η3是它的三个解向量. 且η1=(2, 3, 4, 5)T , η2+η3=(1, 2, 3, 4)T ,求该方程组的通解.解 由于方程组中未知数的个数是4, 系数矩阵的秩为3, 所以对应的齐次线性方程组的基础解系含有一个向量, 且由于η1, η2, η3均为方程组的解, 由非齐次线性方程组解的结构性质得2η1-(η2+η3)=(η1-η2)+(η1-η3)= (3, 4, 5, 6)T为其基础解系向量, 故此方程组的通解:x =k (3, 4, 5, 6)T +(2, 3, 4, 5)T , (k ∈R ).30. 设有向量组A : a 1=(α, 2, 10)T , a 2=(-2, 1, 5)T , a 3=(-1, 1,4)T , 及b =(1, β, -1)T , 问α, β为何值时(1)向量b 不能由向量组A 线性表示;(2)向量b 能由向量组A 线性表示, 且表示式唯一;(3)向量b 能由向量组A 线性表示, 且表示式不唯一, 并求一般表示式.解 ⎪⎪⎭⎫ ⎝⎛---=11054211121) , , ,(123βαb a a a ⎪⎪⎭⎫ ⎝⎛-+++---βαβαα34001110121 ~r . (1)当α=-4, β≠0时, R (A )≠R (A , b ), 此时向量b 不能由向量组A 线性表示.(2)当α≠-4时, R (A )=R (A , b )=3, 此时向量组a 1, a 2, a 3线性无关, 而向量组a 1, a 2, a 3, b 线性相关, 故向量b 能由向量组A 线性表示, 且表示式唯一.(3)当α=-4, β=0时, R (A )=R (A , b )=2, 此时向量b 能由向量组A 线性表示, 且表示式不唯一.当α=-4, β=0时,⎪⎪⎭⎫ ⎝⎛----=1105402111421) , , ,(123b a a a ⎪⎪⎭⎫ ⎝⎛--000013101201 ~r , 方程组(a 3, a 2, a 1)x =b 的解为⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛c c c c x x x 1312011132321, c ∈R . 因此 b =(2c +1)a 3+(-3c -1)a 2+c a 1,即 b = c a 1+(-3c -1)a 2+(2c +1)a 3, c ∈R .31. 设a =(a 1, a 2, a 3)T , b =(b 1, b 2, b 3)T , c =(c 1, c 2, c 3)T , 证明三直线l 1: a 1x +b 1y +c 1=0,l 2: a 2x +b 2y +c 2=0, (a i 2+b i 2≠0, i =1, 2, 3) l 3: a 3x +b 3y +c 3=0,相交于一点的充分必要条件为: 向量组a , b 线性无关, 且向量组a , b , c 线性相关.证明 三直线相交于一点的充分必要条件为方程组⎪⎩⎪⎨⎧=++=++=++000333222111c y b x a c y b x a c y b x a , 即⎪⎩⎪⎨⎧-=+-=+-=+333222111c y b x a c y b x a c y b x a 有唯一解. 上述方程组可写为x a +y b =-c . 因此三直线相交于一点的充分必要条件为c 能由a , b 唯一线性表示, 而c 能由a , b 唯一线性表示的充分必要条件为向量组a , b 线性无关, 且向量组a , b , c 线性相关.32. 设矩阵A =(a 1, a 2, a 3, a 4), 其中a 2, a 3, a 4线性无关, a 1=2a 2- a 3. 向量b =a 1+a 2+a 3+a 4, 求方程A x =b 的通解. 解 由b =a 1+a 2+a 3+a 4知η=(1, 1, 1, 1)T 是方程A x =b 的一个解.由a 1=2a 2- a 3得a 1-2a 2+a 3=0, 知ξ=(1, -2, 1, 0)T 是A x =0的一个解.由a 2, a 3, a 4线性无关知R (A )=3, 故方程A x =b 所对应的齐次方程A x=0的基础解系中含一个解向量.因此ξ=(1,-2,1,0)T是方程A x=0的基础解系.方程A x=b的通解为x=c(1,-2, 1, 0)T+(1, 1, 1, 1)T,c∈R.33.设η*是非齐次线性方程组A x=b的一个解, ξ1,ξ2,⋅⋅⋅,ξn-r,是对应的齐次线性方程组的一个基础解系, 证明:(1)η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性无关;(2)η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r线性无关.证明(1)反证法, 假设η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关.因为ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,而η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关,所以η*可由ξ1,ξ2,⋅⋅⋅,ξn-r线性表示,且表示式是唯一的,这说明η*也是齐次线性方程组的解,矛盾.(2)显然向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r与向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r可以相互表示,故这两个向量组等价,而由(1)知向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,所以向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r也线性无关.34.设η1,η2,⋅⋅⋅,ηs是非齐次线性方程组A x=b的s个解,k1, k2,⋅⋅⋅,k s为实数,满足k1+k2+⋅⋅⋅+k s=1. 证明x=k1η1+k2η2+⋅⋅⋅+k sηs也是它的解.证明因为η1,η2,⋅⋅⋅,ηs都是方程组A x=b的解,所以Aηi=b (i=1, 2,⋅⋅⋅,s),从而A(k1η1+k2η2+⋅⋅⋅+k sηs)=k1Aη1+k2Aη2+⋅⋅⋅+k s Aηs=(k1+k2+⋅⋅⋅+k s)b=b.因此x=k1η1+k2η2+⋅⋅⋅+k sηs也是方程的解.35.设非齐次线性方程组A x=b的系数矩阵的秩为r,η1,η2,⋅⋅⋅,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1, (其中k1+k2+⋅⋅⋅+k n-r+1=1).证明因为η1,η2,⋅⋅⋅,ηn-r+1均为A x=b的解,所以ξ1=η2-η1,ξ2=η3-η1,⋅⋅⋅,ξn-r=η n-r+1-η1均为A x=b的解.用反证法证:ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.设它们线性相关,则存在不全为零的数λ1,λ2,⋅⋅⋅,λn-r,使得λ1ξ1+λ2ξ2+⋅⋅⋅+λ n-rξ n-r=0,即λ1(η2-η1)+λ2(η3-η1)+⋅⋅⋅+λ n-r(ηn-r+1-η1)=0,亦即-(λ1+λ2+⋅⋅⋅+λn-r)η1+λ1η2+λ2η3+⋅⋅⋅+λ n-rηn-r+1=0,由η1,η2,⋅⋅⋅,ηn-r+1线性无关知-(λ1+λ2+⋅⋅⋅+λn-r)=λ1=λ2=⋅⋅⋅=λn-r=0,矛盾.因此ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.ξ1,ξ2,⋅⋅⋅,ξn-r为A x=b的一个基础解系.设x为A x=b的任意解,则x-η1为A x=0的解,故x-η1可由ξ1,ξ2,⋅⋅⋅,ξn-r线性表出,设x-η1=k2ξ1+k3ξ2+⋅⋅⋅+k n-r+1ξn-r=k2(η2-η1)+k3(η3-η1)+⋅⋅⋅+k n-r+1(ηn-r+1-η1),x=η1(1-k2-k3⋅⋅⋅-k n-r+1)+k2η2+k3η3+⋅⋅⋅+k n-r+1ηn-r+1.令k1=1-k2-k3⋅⋅⋅-k n-r+1,则k1+k2+k3⋅⋅⋅-k n-r+1=1,于是x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1.36.设V1={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=0}, V2={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=1},问V1,V2是不是向量空间?为什么?解V1是向量空间,因为任取α=(a1,a2,⋅ ⋅ ⋅,a n)T∈V1,β=(b1,b2,⋅ ⋅ ⋅,b n)T∈V1,λ∈∈R,有a1+a2+⋅ ⋅ ⋅ +a n=0,b1+b2+⋅ ⋅ ⋅ +b n=0,从而(a1+b1)+(a2+b2)+⋅ ⋅ ⋅ +(a n+b n)=(a1+a2+⋅ ⋅ ⋅ +a n)+(b1+b2+⋅ ⋅ ⋅ +b n)=0,λa1+λa2+⋅ ⋅ ⋅ +λa n=λ(a1+a2+⋅ ⋅ ⋅ +a n)=0,所以α+β=(a1+b1,a2+b2,⋅ ⋅ ⋅,a n+b n)T∈V1,λα=(λa1,λa2,⋅ ⋅ ⋅,λa n)T∈V1.V2不是向量空间,因为任取α=(a 1, a 2, ⋅ ⋅ ⋅, a n )T ∈V 1, β=(b 1, b 2, ⋅ ⋅ ⋅, b n )T ∈V 1, 有 a 1+a 2+ ⋅ ⋅ ⋅ +a n =1,b 1+b 2+ ⋅ ⋅ ⋅ +b n =1,从而 (a 1+b 1)+(a 2+b 2)+ ⋅ ⋅ ⋅ +(a n +b n )=(a 1+a 2+ ⋅ ⋅ ⋅ +a n )+(b 1+b 2+ ⋅ ⋅ ⋅ +b n )=2, 所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n )T ∉V 1.37. 试证: 由a 1=(0, 1, 1)T , a 2=(1, 0, 1)T , a 3=(1, 1, 0)T 所生成的向量空间就是R 3.证明 设A =(a 1, a 2, a 3), 由02011101110||≠-==A , 知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3是三维空间R 3的一组基, 因此由a 1, a 2, a 3所生成的向量空间就是R 3.38. 由a 1=(1, 1, 0, 0)T , a 2=(1, 0, 1, 1)T 所生成的向量空间记作V 1,由b 1=(2, -1, 3, 3)T , b 2=(0, 1, -1, -1)T 所生成的向量空间记作V 2, 试证V 1=V 2.证明 设A =(a 1, a 2), B =(b 1, b 2). 显然R (A )=R (B )=2, 又由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=0000000013100211 1310131011010211) ,(~r B A ,知R (A , B )=2, 所以R (A )=R (B )=R (A , B ), 从而向量组a 1, a 2与向量组b 1, b 2等价. 因为向量组a 1, a 2与向量组b 1, b 2等价, 所以这两个向量组所生成的向量空间相同, 即V 1=V 2.39. 验证a 1=(1, -1, 0)T , a 2=(2, 1, 3)T , a 3=(3, 1, 2)T 为R 3的一个基, 并把v 1=(5, 0, 7)T , v 2=(-9, -8, -13)T 用这个基线性表示. 解 设A =(a 1, a 2, a 3). 由06230111321|) , ,(|321≠-=-=a a a , 知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3为R 3的一个基. 设x 1a 1+x 2a 2+x 3a 3=v 1, 则⎪⎩⎪⎨⎧=+=++-=++723053232321321x x x x x x x x , 解之得x 1=2, x 2=3, x 3=-1, 故线性表示为v 1=2a 1+3a 2-a 3. 设x 1a 1+x 2a 2+x 3a 3=v 2, 则⎪⎩⎪⎨⎧-=+-=++--=++1323893232321321x x x x x x x x , 解之得x 1=3, x 2=-3, x 3=-2, 故线性表示为v 2=3a 1-3a 2-2a 3.40. 已知R 3的两个基为 a 1=(1, 1, 1)T , a 2=(1, 0, -1)T , a 3=(1, 0, 1)T , b 1=(1, 2, 1)T , b 2=(2, 3, 4)T , b 3=(3, 4, 3)T . 求由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵P . 解 设e 1, e 2, e 3是三维单位坐标向量组, 则⎪⎪⎭⎫ ⎝⎛-=111001111) , ,() , ,(321321e e e a a a , 1321321111001111) , ,() , ,(-⎪⎪⎭⎫ ⎝⎛-=a a a e e e , 于是 ⎪⎪⎭⎫ ⎝⎛=341432321) , ,() , ,(321321e e e b b b ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-341432321111001111) , ,(1321a a a , 由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-1010104323414323211110011111P .。

工程数学(本)第3章线性方程组学习辅导

工程数学(本)第3章线性方程组学习辅导

工程数学(本)复习辅导顾静相第3章:线性方程组学习要点:线性方程组的基本概念,向量组相关性的概念及判别,极大线性无关组及向量组的秩,基础解系,线性方程组解的情况判别,线性方程组解的性质与结构。

本章重点:向量组相关性的概念及判别,线性方程组相容性定理,齐次线性方程组基础解系几通解的求法,非齐次线性方程组特解和全部解的求法。

复习要求:⒈了解向量的概念及线性运算,了解向量组线性相关与线性无关的概念,会判断向量组的线性相关性。

对于向量组ααα12,,, m ,若存在一组不全为零的常数k k k m 12,,, ,使得k k k m m 11220ααα+++=,,则称向量组ααα12,,, m 线性相关,否则称线性无关。

⒉了解极大线性无关组和向量组秩的概念,掌握其求法。

向量组的一个部分组如满足 ⑴线性无关;⑵向量组中的任一向量都可由其线性表出。

则称这个部分组为该向量组的一个极大线性无关组。

⒊理解线性方程组的相容性定理及齐次线性方程组有非零解的充分必要条件,掌握齐次与非齐次线性方程组解的情况的判别方法。

线性方程组AX b =有解的充分必要条件是:[]r A r A b ()()= 。

n 元齐次线性方程组AX =0有非零解的充分必要条件是:r A n ()<。

⒋熟练掌握齐次线性方程组基础解系和通解的求法。

⒌了解非齐次线性方程组解的结构,熟练掌握求非齐次线性方程组通解的方法。

例题解析: 例1 填空题(1)一个向量组中如有零向量,则此向量组一定线性 。

(2)线性方程组B AX =中的一般解的自由元的个数是2,其中A 是54⨯矩阵,则方程组增广矩阵)(B A r = 。

(3)设向量=1α,)523(,)101(,)321(2'='='βα则+=1αβ 2α(4)若线性方程组⎩⎨⎧=+=-12121x x x x λ无解,则λ____。

解:(1)设0, m αα,,1 为一组n 维向量,取00≠k ,01===m k k ,则0k 0 +m m k k α++α 11= 0由定义可知,向量组0, m αα,,1 线性相关。

线性方程组的解

线性方程组的解

线性方程组的解线性方程组是高中数学中的重要知识点,也是解决实际问题的有力工具。

在此,我将为大家介绍线性方程组的概念和解法,并辅以例题和实际应用,帮助大家更好地理解和运用线性方程组。

一、线性方程组的概念和解法1. 线性方程组的定义线性方程组是由一组线性方程所组成的方程体系,其形式可以表示为:\[\begin{cases}a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_2 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ \ldots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m\end{cases}\]其中,\(x_1, x_2, \ldots, x_n\)是未知数,\(a_{ij}\)和\(b_i\)是已知系数。

2. 解的定义解是指满足线性方程组中所有方程同时成立的数的组合。

3. 解的分类根据未知数的个数和方程组的性质,可以将线性方程组的解分为无解、有唯一解和有无穷多解三种情况。

- 无解:当线性方程组中的方程之间存在矛盾时,方程组无解。

- 有唯一解:当线性方程组中的方程数目等于未知数个数,并且方程组没有冗余方程时,方程组有唯一解。

- 有无穷多解:当线性方程组的方程个数小于未知数个数或者方程组中的方程可以通过其他方程表示时,方程组有无穷多解。

二、解线性方程组的方法1. 列主元的高斯消元法列主元的高斯消元法是求解线性方程组的一种常用方法。

步骤如下:(1)将线性方程组写成增广矩阵的形式。

\[\begin{bmatrix}a_{11} & a_{12} & \ldots & a_{1n} & | & b_1 \\a_{21} & a_{22} & \ldots & a_{2n} & | & b_2 \\ \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} & | & b_m \end{bmatrix}\](2)找到第一个主元(即第一行中不为零的元素),如果没有非零主元,则方程组无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
2. 列主元消元法
列主元消元法的计算步骤: 在进行第 k ( k = 1, 2,
, n - 1) 步消元时, 首先在第 k 列下
面 的 n - k +1 个 元 素 中 选 取 绝 对 值 最 大 的 元 素
k k ( 然后将列主元所 a (pk−1) , 即 a (pk−1) = max aikk −1) 作为列主元素, k≤i
⎡ a11 ⎢a A = ⎢ 21 ⎢ ⎢ an1 ⎣
a12 a22 an 2
a1n ⎤ ⎡1 ⎢l a2 n ⎥ 1 21 ⎥,L= ⎢ ⎢ ⎥ ann ⎥ ⎢ln1 ln 2 ⎣ ⎦
⎤ ⎡u11 u12 ⎥ ⎢ u22 ⎥ ,U = ⎢ ⎥ ⎢ 1⎥ ⎢ ⎦ ⎣
u1n ⎤ u2 n ⎥ ⎥. ⎥ unn ⎥ ⎦
【思路】可以利用消去法对矩阵 A 进行三角分解;也可以利用紧凑格 直接完成 式的计算公式按顺序计算出单位下三角阵 L 和上三角阵 U , 求 A = LU 的三角分解.再分别代入两个三角方程 Ly = b 和 Ux = y 中, 出方程的解 x .
有两个乘数2和-4,每个乘数正好可以产生一个零,用来记-乘数,
⎡ 1 −1 2 −2 ⎤ ⎡ 1 −1 2 −2 ⎤ ⎡ 1 −1 2 −2 ⎤ [ A b] = ⎢−2 1 −1 2 ⎥ → ⎢ −2 −1 3 −2⎥ → ⎢ −2 −1 3 −2⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 4 −1 2 1 ⎦ ⎣ 4 3 −6 7 ⎦ ⎣ 4 −3 3 1 ⎦ ⎣
17
定理 1 矩阵 A 可以三角分解的条件如下:
1. 若矩阵 A 的所有顺序主子式不等于零; 2. 若矩阵 A 对称正定; 3. 若矩阵 A 严格对角占优,即:
akk > ∑ akj , k = 1, 2,
j≠k
n。
18
⎡2 2 1 ⎤ ⎢ ⎥ 例 3 已知矩阵 A = 4 5 4 ,检验 A 是否满足三角分解的条件, ⎢ ⎥ ⎢ 2 4 3⎥ ⎣ ⎦
−1 2 −1 ⎤ ⎡4 → ⎢ −0.75 1.5 −1.75⎥ ⎢ ⎥ 1 13 ⎦ ⎣
11
注:最后一个矩阵对应的方程就是上三角方程组 :
x2 + 2 x3 = −1 ⎧ 4 x1 − ⎪ ⎨ − 0.75 x2 + 1.5 x3 = −1.75 ⎪ x3 = 1 3 ⎩ 回代过程:

1 x3 = 3 −175−15x3 . . x2 = =3 −075 . −1+ x2 −2x3 1 x1 = = 4 3
k =1 1
1
,n
ai1 = ∑ lik uk 1 = li1u11 ,
k =1
即: li1 = ai1 u11 i = 2, 3,
,n.
这是 U 的第一行和 L 的第一列。
22
设: U 的前 m − 1 行和 L 前 m − 1 列均已算出,那么:
amj = ∑ lmk ukj = ∑ lmk ukj + lmm umj ,
{
}
在方程与第 k 个方程交换位置,再按照高斯消元法进行消 元,回代计算没有区别。
10
⎧ x1 − x 2 + 2 x3 = −2 ⎪ ⎪ 例 2 用列主元消元法解线性方程组: ⎨− 2 x1 + x 2 − x3 = 2 。 ⎪ ⎪4 x1 − x 2 + 2 x3 = −1 ⎩ 消去过程 ⎡ 1 −1 2 −2 ⎤ ⎡ 4 −1 2 −1⎤
利用增广矩阵的初等行变换法表示为:
⎡ 1 −1 2 − 2 ⎤ ⎡ 1 − 1 2 − 2 ⎤ ⎡ 1 − 1 2 − 2 ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ [ A b ] = ⎢ −2 1 − 1 2 ⎥ → ⎢ − 1 3 − 2 ⎥ → ⎢ − 1 3 − 2 ⎥ 3 −6 7 ⎦ ⎣ 3 1⎦ ⎣ 4 −1 2 1 ⎦ ⎣
⎡ a11 ⎢a [ A b] = ⎢ 21 ⎢ ⎢ a n1 ⎣
(n ⎡a11 ) ⎢ ⎢ →⎢ ⎢ ⎢ ⎢ ⎣
a12 a22 an 2
( a1k )
n
a1n a2 n ann
b1 ⎤ b2 ⎥ ⎥→ ⎥ bn ⎥ ⎦
n (n a1n) b1( ) ⎤ ⎥ ⎥ n) n) ( ( akn bk ⎥ ⎥ ⎥ ( n) ( n) ann bn ⎥ ⎦
第一个方程乘以 2 加于第二个方程, 第一个方程乘以-4 加于第三个方程,得:
⎧ x1 − x2 + 2 x3 = −2 ⎪ ⎨ − x2 + 3 x3 = −2 ⎪ ⎩ 3 x2 − 6 x3 = 7
4
第二个方程乘以 3 加于第三个方程:
⎧ x1 − x2 + 2 x3 = −2 ⎪ ⎨ − x2 + 3 x3 = −2 ⎪ 3 x3 = 1 ⎩
⎡1 ⎤ ⎡2 2 1 ⎤ 于是有: A = LU = ⎢ 2 1 ⎥ ⎢ 1 2 ⎥ 。 ⎢ ⎥⎢ ⎥ 1 2 1⎦ ⎣ −2 ⎦ ⎣
20
3. 紧凑格式
紧凑格式是利用矩阵乘法和矩阵相等的法则, 对矩阵 A 直接进行 三角分解的一种有一定规律的、便于编程序利用计算机计算的分解 方法。
设: A = LU ,其中:
阵的方程组
Ly = b 和 Ux = y 。
其中消元法的消元过程就是分解系数矩阵为 A = LU ,并解线性方 程组 Ly = b ,回代过程则是解方程组 Ux = y 。
15
解方程组 Ly = b 的计算公式为:
⎧ y1 = b1 ⎪ k −1 ⎨ y = b − l y , k = 2, 3, ⋅ ⋅ ⋅, n ∑1 km m k ⎪ k m= ⎩
这一过程称为消去过程。
5
1 x3 = 3 1 , x2 = 2 + 3 × = 3 3 1 1 x1 = −2 + 3 − 2 × = 3 3
⎛1⎞ ⎜3⎟ 方程组的解为: x = ⎜ 3 ⎟ 。 ⎜ ⎟ ⎜1⎟ ⎜ ⎟ ⎝3⎠
称为 b ,利用增广矩阵的初等行变换法表示为:
第4章
线性方程组的解法
1
n 阶线性方程组 A x =b 。 方程的个数和未知量的个数相等的线性方程组
⎧ a11 x1 + a12 x2 + ⋅ ⋅ ⋅ + a1n xn = b1 ⎪ ⎪ a21 x1 + a22 x2 + ⋅ ⋅ ⋅ + a2 n xn = b2 ⎨ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⎪⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⎪ an1 x1 + an 2 x2 + ⋅ ⋅ ⋅ + ann xn = bn ⎩
用待定系数法
21
注意到由 A = LU 可得:
aij = ∑ lik ukj ,以及: lik = 0 k < i 和 ukj = 0 k < j ,
k =1
n
{
1 k =i
所以: lik ukj = 0 k > min ( i , j ) 。
于是:
a1 j = ∑ l1k ukj = l11u1 j = u1 j ,即: u1 j = a1 j j = 1, 2,
13
只关心系数矩阵的话,就是:
⎡ 1 −1 2 ⎤ ⎡ 1 −1 2 ⎤ ⎡ 1 −1 2⎤ A = ⎢ −2 1 −1⎥ → ⎢ −2 −1 3 ⎥ → ⎢ −2 −1 3⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 4 −1 2 ⎦ ⎣ 4 3 −6 ⎦ ⎣ 4 −3 3 ⎦ ⎣
⎡1 −1 2 ⎤ ⎡1 ⎤ ⎥ , U = ⎢ −1 3 ⎥ , 如果令: L = ⎢ −2 1 ⎢ ⎥ ⎢ ⎥ 3⎦ ⎣ 4 −3 1⎦ ⎣
(1)
2
一、消元法(高斯消元法、列主元消元法)
1. 高斯消元法 高斯消元法的基本思想是通过对线性方程组
Ax=b
的进行同解消元变换(也可以用矩阵的初等行变换法 进行线性方程组的消元变换),将线性方程组化为上 三角形方程组,然后用回代法求出此线性方程组的。
3
⎧ x1 − x2 + 2 x3 = −2 例 1、解线性方程组: ⎪−2 x1 + x2 − x3 = 2 ⎨ ⎪ ⎩ 4 x1 − x2 + 2 x3 = −1
(k ⎡ a11 ) ⎢ ⎢ →⎢ ⎢ ⎢ ⎢ ⎣
( a1k )
k
( akk )
k
( ank )
k
k (k a1n ) b1( ) ⎤ ⎥ ⎥ (k) (k) ⎥ akn bk ⎥ ⎥ (k) (k) ann bn ⎥ ⎦

( akk )
n
7
消元公式:
(0) ⎧ aij = aij , bi(0) = bi , ( i , j = 1, 2, ..., n) ⎪ 2, ..., ⎪ For( kk = 1,( k −1) n − 1k −1) ⎪ ) ( ⎨ aij = aij − lik akj ⎪ b( k ) = b( k −1) − l b( k −1) i i ik k ⎪ ( k − 1) ( k − 1) akk ; i , j = k + 1, ..., n ⎪ l ik = aik ⎩
1⎞ ⎛1 所以,解为: x = ⎜ 3 ⎟ 。 3⎠ ⎝3
12
T
二 、矩阵的三角分解
1. 再论消去法
在例1中,第一步消去
⎡ 1 −1 2 −2 ⎤ ⎡1 −1 2 −2 ⎤ [ A b] = ⎢−2 1 −1 2 ⎥ → ⎢0 −1 3 −2⎥ ⎢ ⎥ ⎢ ⎥ 4 −1 2 1 ⎦ ⎣0 3 −6 7 ⎦ ⎣ 红字即是LU分解中L中的相应元素
若满足条件,则进行 A = LU 分解。
解: 因为顺序主子式
2 2 1 2 2 = 2 ≠ 0 , A3 = 4 5 4 = −4 ≠ 0 , A1 = 2 ≠ 0 , A2 = 4 5 2 4 3 所以 A 满足三角分解条件。
相关文档
最新文档