八年级数学从分数到分式1

合集下载

从分数到分式说课稿

从分数到分式说课稿

从分数到分式说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“从分数到分式”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“从分数到分式”是人教版八年级上册第十五章第一节的内容。

本节课是在学生学习了整式的基础上,进一步研究代数式的一种新形式——分式。

分式的概念是后续学习分式的性质、运算以及分式方程的基础,具有承上启下的作用。

从数学知识的内在联系来看,分数与分式有着密切的联系。

通过类比分数的概念和性质,学生能够更好地理解分式的概念和性质,体会数学知识之间的相互联系和转化。

从数学思想方法的角度来看,本节课渗透了类比、转化等数学思想方法,有助于培养学生的数学思维能力和创新能力。

二、学情分析在学习本节课之前,学生已经掌握了整式的概念和运算,并且在小学阶段对分数有了一定的认识和理解。

但是,分式的概念对于学生来说是一个全新的内容,需要通过类比分数的概念来建立。

八年级的学生已经具备了一定的观察、分析和抽象概括能力,但是他们的思维还处于从形象思维向抽象思维过渡的阶段。

因此,在教学过程中,要注重引导学生通过观察、思考、讨论等活动,逐步建立分式的概念。

三、教学目标基于对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解分式的概念,能够区分整式和分式。

(2)掌握分式有意义、无意义和值为零的条件。

2、过程与方法目标(1)通过类比分数的概念,经历分式概念的形成过程,提高学生的抽象概括能力和类比推理能力。

(2)通过分析分式有意义、无意义和值为零的条件,培养学生的逻辑思维能力和分析问题、解决问题的能力。

3、情感态度与价值观目标(1)让学生体会数学知识来源于生活,又服务于生活,激发学生学习数学的兴趣。

(2)通过小组合作学习,培养学生的合作意识和团队精神。

四、教学重难点1、教学重点分式的概念和分式有意义、无意义的条件。

2、教学难点分式值为零的条件。

八年级-人教版-数学-上册-第1课时-从分数到分式

八年级-人教版-数学-上册-第1课时-从分数到分式

x 的值为正;
x-1
当分子x<0,分母x-1<0,即x<0时,
x x-1
的值为正.
例3
(1)当 x 取何值时,分式
x x-1
的值为正?
(2)当
b
取何值时,分式
b 5-3b
的值为负?
解:(2)当分子b>0,分母5-3b<0,即b> 5 时,
3
b 5-3b
的值为负;
当分子b<0时,分母5-3b>0 ,即b<0时,
使分式有意义,分式中的分母应满足什么条件?
答:∵分式的分母表示除数, ∴分母不能为0,即B不能为0, ∴当 B≠0 时,分式 A 才有意义.
B
例1 下列分式中的字母满足什么条件时分式有意义?
(1)
2 3x

(2)
x x-1

解:(1)要使分式
2 3x
பைடு நூலகம்
有意义,则分母 3x≠0

即 x≠0;
(2)要使分式
x1
解:由分子x2-1=0,得x=1或x=-1, 当x=1时,分母x-1=1-1=0; 当x=-1时,分母x-1=-1-1=-2; 故当x=-1时,原分式的值为0.
例3
(1)当 x 取何值时,分式
x x-1
的值为正?
(2)当
b
取何值时,分式
b 5-3b
的值为负?
解:(1)当分子 x>0,分母 x-1>0,即x>1时,
第1课时 从分数到分式
1.一艘轮船在静水中的最大航速为 30 km/h,它沿江以最大航 速顺流航行 90 km 所用时间,与以最大航速逆流航行 60 km 所用时 间相等,江水的流速为多少?
问题1 顺流航行的速度、逆流航行的速度与轮船在静水中的 速度、水流速度之间有什么关系?

八年级上册数学课件:从分数到分式

八年级上册数学课件:从分数到分式
思考: 1、分式概念的形成过程,体现了什么数学思想方法? (如分类、整体、类比、数形结合等思想)
2、分式与整式的区别是什么? 分母中必须含有字母
知识讲解
下列各式中,哪些是整式?哪些是分式?
根据分式的概念,试着写出一个具有实际背景意义的分式.
知识讲解
二、分式有意义的条件
5 x 3
注意:分式中字 母的取值不能使分母 为零.因为当分母的 值为零时,分式就没 有意义.
新课导入
问题二: 奥帆中心规定,学生单价为60元/人,成人单价为70元/人。我们
共有a位学生,b位教师,买门票需要多少元?平均每张门票多少元?
问题三: 按照奥帆中心规定,m个人享受团购价,交了600元门票钱,那么
平均每个人多少元?
知识讲解
一、分式的概念
把除式 A÷B 写成 的形式,其中 A,B 都是整式,且 B 中含有字母,我们把代数式 叫做分式.
第十五章 分式
第十五章 分式
15.1.1 从分数到分式
学习目标
1 了解分式的概念,能区别分式与分数的相同与区别 之处.(重点)
2 能确定分式有,无意义的条件,能确定分式为零的 条件 .(重、难点)
新课导入
问题一: 周末,部分老师和学生去青岛
奥帆中心研学,早上7点乘车从学校出发,9点到达目的地,行程 145千米,那么汽车的平均速度约为多少千米/小时?
知识讲解
a 1
2a a 1
2a
4a3 3-2 a
2
a 1
知识讲解
三、分式值为0的条件
问题1:通过上面的学习知道分式的分母不能为0,那分子能为 0吗?
问题2: 在分母不为0的前提下,分子为0,分式的值将怎样?
知识讲解

人教版八年级数学上册第十五章1.1从分数到分式课件

人教版八年级数学上册第十五章1.1从分数到分式课件

x 2x 1 1
x 1 x 2 a 2 2ab b 2
,
, (a b),
,
,
2 3x 2

x
a b
解:整式有
分式有
x 1
x 1
, (a b),
2 2

2 x 1 x 2 a 2 2ab b 2
, ,
3x
x
a b
方法总结:判断一个
式子是分式的关键:
分母中含有字母.
么称
为分式.其中A叫做分式的分子,B为分式的分母.
注意:分式是不同于整式的另一类式子,且分母中含有字母是分式的一大特点.
类比分数、分式的概念及表达形式:
被除数÷除数=商数
如: 3 ÷ 5 =
3
5
整数 整数
分数
类比
被除式÷除式=商式
v–v0
=
t
如: (v–v0) ÷
t
整式(A)
整式(B) 分式( A
B)
3
3
4
π
15.1 分式/
课堂检测
基 础 巩 固 题
3.完成下列各题.
(1)(2018•湘西州)要使分式

+
x≠–2
________.
(2)(2018•湖州)当x=1时,分式

(3)(2018•滨州)若分式

有意义,则x的取值范围为


的值是 .
+
的值为0,则x的值为 –3 .
子为零.
15.1 分式/
巩固练习
2.完成下列题目.
2
(1)当x
时,分式 3x 有意义; 分母 3x≠0, 即 x≠0

人教版八年级上册 15.1从分数到分式 说课讲稿

人教版八年级上册  15.1从分数到分式 说课讲稿

15.1 分式 (1) 《从分数到分式》说课稿一、教材分析1.地位和作用“从分数到分式”是人教版九年制义务教育课本中八年级第一学期第十五章的第一节内容,是中学知识体系的重要组成部分。

分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。

学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。

学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。

2.学情分析我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。

为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。

3.教学目标(1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。

(2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。

(3) 能力目标:学习观察类比和转化的思想方法,培养学生分析、归纳、概括的能力。

(4) 情感目标:通过类比学习分式的的意义,培养学生认识事物之间普遍联系的辩证唯物主义观点,并在探索学习的过程中体会成功的喜悦,从而提高学生学习数学的兴趣。

4.教学重点与难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点(1)重点:分式的意义;分式有意义的条件;(2)难点:分式无意义、分式的值为零的条件。

二、教学方法与学法本节课运用启发类比的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力以及类比归纳能力的培养,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。

数学人教版八年级上册15.1.1从分数到分式教案

数学人教版八年级上册15.1.1从分数到分式教案
实践活动和小组讨论环节,学生们表现出较高的热情。他们积极参与讨论,互相交流想法,共同解决问题。这使我意识到,小组合作学习不仅能提高学生的团队协作能力,还能激发他们的思维,促进对知识的深入理解。
然而,我也发现了一些不足之处。在实践活动过程中,部分学生对于如何将实际问题转化为分式模型感到困惑。这说明我在教学中需要更多关注学生的问题解决能力,培养他们从实际问题中提炼数学模型的能力。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《从分数到分式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过分母为零的情况?”(如:在平均分配物品时,若物品总数为零,该如何表示每个人得到的数量?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式的奥秘。
本节课将结合实际例题,让学生在实际操作中掌握分式的概念和性质,为后续学习分式的运算打下基础。
二、核心素养目标
1.培养学生的逻辑推理能力:通过从分数到分式的过渡,引导学生理解分式概念的内涵和外延,培养学生的抽象逻辑思维,提高其逻辑推理能力。
2.增强学生的数学运算能力:让学生掌握分式的性质,并运用这些性质简化分式,解决实际问题,提高学生的数学运算能力。
数学人教版八年级上册15.1.1从分数到分式教案
一、教学内容
本节课选自数学人教版八年级上册第15章《分式》中的第1节“从分数到分式”。教学内容主要包括以下两部分:
1.分式的概念:通过回顾分数的定义,引导学生理解分式的概念,即分母不为零的表达式称为分式。列举一些具体实例,让学生观察并总结分式的特点。
2.分式的性质:探讨分式的分子、分母与分式值之间的关系,引入分式的基本性质,如分子分母同乘(除)一个非零数,分式的值不变。结合实际例题,让学生运用这些性质简化分式,并解决相关问题。同时,强调分母不为零的重要性。

人教版八年级数学上册15.1.1《从分数到分式》教学设计

人教版八年级数学上册15.1.1《从分数到分式》教学设计

人教版八年级数学上册15.1.1《从分数到分式》教学设计一. 教材分析人教版八年级数学上册15.1.1《从分数到分式》是分式单元的第一节内容,主要介绍了分数与分式的关系,分式的概念以及分式的基本性质。

本节内容是学生学习更高级数学的基础,对于学生理解数学的抽象概念具有重要意义。

二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除运算也已经熟练掌握。

但是,学生对于分数背后的数学原理可能理解不够深入,对于数学的抽象概念还处于逐步理解的过程中。

三. 教学目标1.了解分数与分式的关系,理解分式的概念。

2.掌握分式的基本性质,能够进行简单的分式运算。

3.培养学生的抽象思维能力,提高学生解决问题的能力。

四. 教学重难点1.分式概念的理解。

2.分式基本性质的掌握。

3.分式运算的熟练运用。

五. 教学方法采用问题驱动法,通过引导学生思考分数与分式的关系,激发学生的学习兴趣,培养学生独立思考的能力。

同时,运用案例分析法,通过具体的例子让学生理解分式的概念和性质。

六. 教学准备1.准备相关的分数和分式的案例。

2.准备分式运算的练习题。

3.准备PPT,用于辅助教学。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的知识,激发学生的学习兴趣。

例如:“你们知道分数是什么吗?分数有什么特点?”2.呈现(10分钟)通过PPT展示分数与分式的关系,引导学生思考并总结出分式的概念。

例如:“分数可以表示一个数与另一个数的比,那么分式可以表示什么呢?”3.操练(10分钟)让学生通过PPT上的例子,练习分式的基本性质。

例如:“请同学们观察这个例子,分式的分子和分母同时乘以一个数,分式的值会发生什么变化?”4.巩固(10分钟)让学生进行分式运算的练习,巩固所学知识。

例如:“请同学们完成这个分式的运算,并解释你的思路。

”5.拓展(10分钟)引导学生思考分式在实际生活中的应用,拓展学生的知识视野。

例如:“你们能想到分式在实际生活中有哪些应用吗?”6.小结(5分钟)对本节课的主要内容进行总结,让学生明确学习重点。

新人教版 数学 八年级上册 第十五章 分式 15.1.1从分数到分式1教案2

新人教版 数学 八年级上册 第十五章 分式 15.1.1从分数到分式1教案2

15.1.1 从分数到分式课标依据1、借助现实情境了解分式,进一步理解用字母表示数的意义。

2、能分析简单问题中的数量关系,并用代数式(分式)表示。

一、教材分析“从分数到分式”是人教版九年制义务教育课本中八年级上第十五章的第一节内容,是中学知识体系的重要组成部分。

分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。

学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。

学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。

从分数有意义到分式有意义,从判断分母是否为0到求解分母何时值为0,并将此规律应用于求解最简单的分式方程(分式值为0),既是知识的同化迁移,也包括了调整和重组的因素.这部分内容是本课的教学难点.二、学情分析我校是农村初中,学习基础有较大的差异,大部分学生数学基础比较薄弱,对数学学习感觉很困难,导致学习兴趣低下。

为了激发学生的学习数学的兴趣,平时我在课堂上鼓励学生积极发言、小组讨论、合作探究等多种形式调动学生学习的积极性。

三、教学目标知识与技能1.理解分式的概念,会辨别分式与整式.2.会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.过程与方法能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.情感态度与价值观通过生活中的实例让学生体验发现身边的数学,激发学生对数学的学习兴趣,进一步引导探究,培养学生严谨创新的思维能力.四、教学重点难点教学重点准确理解分式的概念;教学难点会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.五、教法学法本节课运用启发类比的教学方法,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。

八年级数学上册第十五章分式《分式:从分数到分式》

八年级数学上册第十五章分式《分式:从分数到分式》

教学设计2024秋季八年级数学上册第十五章分式《分式:从分数到分式》一、教学目标(核心素养)1.知识与技能:学生能够理解分数与分式之间的联系与区别,掌握分式的概念及其基本形式,能够识别并构造简单的分式。

2.数学思维:通过分数到分式的过渡,培养学生的抽象概括能力、逻辑推理能力和代数表达能力。

3.问题解决:学会将实际问题中的数量关系抽象为分式模型,初步运用分式解决实际问题。

4.情感态度:激发学生对数学的兴趣,培养探索未知、勇于挑战的学习态度。

二、教学重点•分数与分式的联系与区别。

•分式的概念及其基本形式。

•识别并构造简单的分式。

三、教学难点•理解分数到分式的抽象过程,把握其本质特征。

•灵活运用分式的概念解决实际问题,特别是涉及多个变量的复杂情境。

四、教学资源•多媒体课件(包含分数与分式的对比图、分式实例展示)•教科书及配套习题集•黑板与粉笔•学生练习本五、教学方法•讲授法:介绍分数与分式的联系、分式的概念及基本形式。

•对比法:通过分数与分式的对比,帮助学生理解其异同点。

•实例分析法:通过具体实例展示分式的应用,增强学生的直观感受。

•讨论法:组织学生讨论分数到分式的过渡过程,分享学习心得。

•练习法:通过练习巩固学生对分式概念的理解和应用能力。

六、教学过程导入新课•情境导入:创设一个与分数相关的生活情境(如分配糖果、计算比例等),引导学生回顾分数的概念及其应用。

•问题引出:提出一个稍微复杂的问题,其中涉及到多个变量或需要更一般化的表示方法,从而引出分式的概念。

新课教学1.分数与分式的联系与区别•对比讲解:从形式、意义、应用范围等方面对比分数与分式的异同点。

•实例展示:给出几个分数与分式的例子,让学生尝试区分并说明理由。

2.分式的概念及其基本形式•定义阐述:明确分式是两个整式相除的商式,强调分子、分母及除法的意义。

•形式分析:分析分式的基本形式,指出其中的关键要素(如分母不能为0)。

3.识别与构造分式•例题演示:给出几个实际问题或数学表达式,引导学生识别其中的分式结构,并尝试构造新的分式。

人教版数学八年级上册 15.1.1:从分数到分式-说课教案设计

人教版数学八年级上册 15.1.1:从分数到分式-说课教案设计

15.1.1 从分数到分式教学设计一、教材地位作用“从分数到分式”是人教版八年级上第十五章第一节内容,是中学知识体系的重要主成部分。

本节课的内容是分式的定义、分式有无意义的条件、分式值为零的条件。

它是以分数知识为基础,类比归纳出分式的概念,把学生对“式”的认识由整式扩充到有理式。

学号本节知识是进一步学习分式、函数、方程等知识做好铺垫。

二、教学目标1.知识与技能了解分式的概念,能求出分式有无意义的条件、分式值为零的条件。

2.过程与方法通过对分数与分式的类比,学生亲身经历探究整式到分式的过程,初步学会用类比转化的思想方法研究数学问题3.情感态度价值观通过探究分式的概念,让学生体会生生交流合作的作用,体会数学的应用价值。

三、教学重难点重点:分式的概念及分式有无意义的条件、分式值为零的条件。

难点:分式值为零的条件四、教法学法教法:利用导学案引导发现教学法学法:自主探索、交流发现五、教学过程(一)章前简介设计意图:通过章前简介、与分数的类比,让学生对分式的整章知识体系有大致了解,在学习方法学习思路既有熟悉感又有新鲜感,从而激发学生学习的欲望、并有战胜它值信心决心。

(二)展示学习目标设计意图:明确学习目标,并为之努力。

(三)展示学生课前学习情况(学生展示)设计意图:培养学生自主学习的习惯,并在解决第3题时引出课题:(四)普读求是探究(一):分式的概念1.一艘轮船在静水中的航速为30km/h,顺流航行90km所用时间,与逆流航行60km所用时间相等,求江水的平均流速。

设江水的平均流速xkm/h,则顺流航行90km所用的时间为h;逆流航行60km所用时间为 h;依题意所列方程为。

2.长方形的面积为10 cm2,长为7cm,宽应为cm;长方形的面积为s cm2,长为a cm,宽应为cm;3.把200cm3的水倒入底面积为33cm2的圆柱形容器中,水面高度为cm;把体积为 V cm3的水倒入底面积为(a + b) cm2的圆柱形容器中,水面高度为cm;4.某班有n个同学,数学月考总分为4320分,则人均分为分;从以上得到式子中,有什么发现?能你类比分数给出分式的定义?分式的概念:。

八年级上册数学教案《从分数到分式》

八年级上册数学教案《从分数到分式》

八年级上册数学教案《从分数到分式》学情分析本节课是《分式》整章的起始课,主要内容是分式的概念、有意义的条件和用分式表示实际问题中的数量关系。

本节课是在学生学习了分数和整式相关知识的基础上学习的,也为后面学习分式性质、运算、解分式方程以及后续学习反比例函数做好铺垫,在教材中起到了承上启下的作用。

七年级学生经历了从有理数到整式的思维提升:本节课学生的思维还要经历从分数到分式的提升,对“式”的认识由整式扩充到有理式,在认知上是一次大的飞跃。

教学目的1、理解分式的概念,能确定分式有意义的条件,能确定使分式值为0的条件。

2、通过解决实际问题,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一种代数式。

3、体会类比与抽象概括能力。

教学重难点理解分式的概念,能确定分式有意义的条件,能确定使分式值为0的条件。

教学方法讲授法、讨论法、练习法教学过程一、复习导入填空,找出其中的整式(1)长方形的面积为10cm2,长为7cm,则宽为(10/7)cm。

长方形的面积为Scm2,长为7cm,则宽为(S/7)cm。

长方形的面积为Scm2,长为acm,则宽为(S/a)cm。

(2)把体积为200cm2的水倒入底面积为33cm2 的园柱形容器中,则水面高度为200/33cm。

把体积为V的水倒入底面积为S的园柱形容器中,则水面高度为V/S。

整式有:10/7,S/7,200/33二、学习新知1、观察剩下的两个式子S/a,V/s与整式相比,有什么异同点?①都是A/B的形式②A与B都是整式③B中含有字母。

归纳:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。

其中A叫做分子,B叫做分母。

2、练习:下列式子中,哪些是整式?哪些是分式?1/x,x/3,m-n / m+n,a-b/3(a-b),3/Π整式:x/3,3/Π分式:1/x,m-n / m+n,a-b/3(a-b)注意:Π不是字母,分母中含Π的不是分式。

3、复习除法的相关概念,类比研究分式a、0不能作除数。

人教版八年级数学上册15.1从分数到分式优秀教学案例

人教版八年级数学上册15.1从分数到分式优秀教学案例
5.作业小结:教师设计具有挑战性的作业题目,巩固本节课所学的知识。同时,教师及时批改作业,给予学生评价和反馈,帮助学生调整学习方法,提高学习效果。
本节课的案例亮点体现了以学生为中心的教学理念,注重培养学生的自主学习能力、团队协作能力和解决问题的能力。同时,教师关注学生的个体差异,给予每个学生公正、客观的评价,激发学生的学习动力。这种教学方法不仅有助于提高学生的学习成绩,还能培养学生的综合素质,符合教育现代化的要求。
二、教学目标
(一)知识与技能
1.让学生理解分式的概念,掌握分式的基本性质和运算方法。
2.培养学生运用分式解决实际问题的能力,提高学生的数学应用意识。
3.引导学生了解分式在生活中的应用,拓宽学生的知识视野,提高学生的学习兴趣。
4.通过对分式的学习,培养学生逻辑思维能力、创新能力和团队协作能力。
(二)过程与方法
1.采用案例教学法,让学生在具体的情境中感受和理解分式的概念和运算方法。
2.运用探究式学习法,引导学生主动发现分式的规律,提高学生的自主学习能力。
3.利用小组讨论法,培养学生的团队协作精神,提高学生的沟通能力。
4.设计具有挑战性的数学问题,激发学生的思考,培养学生解决问题的能力。
(三)情感态度与价值观
3.采用多元化评价方式,既要关注学生的知识与技能掌握情况,也要关注学生在过程中表现出的态度、情感和价值观。
4.教师要关注学生的个体差异,给予每个学生公正、客观的评价,激发学生的学习动力。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入分式的概念,如计时、购物等,让学生感受分式在生活中的应用。
2.展示分式的数学问题,引发学生的思考,激发学生的学习兴趣。
3.回顾已学的分数知识,为学生学习分式打下基础。

16.1.1 从分数到分式1

16.1.1 从分数到分式1

班级: 组别: 姓名: 钢屯中学八年级导学案(2011-2012学年度第二学期) 学科:数学 编号: 1 个性天地 课 题16.1.1 从分数到分式 课型 自学课 总 课 时 1 主创人 刘国利 教研组长签字 领导签字 个性天地学习目标:1、了解分式的概念以及分式与整式概念的区别与联系。

2、掌握分式有意义的条件,进一步理解用字母表示数的意义,发展符号感。

3、以描述实际问题中的数量关系为背景,体会分式是刻画现实生活中数量关系的一类代数式。

学习重点: 分式的概念和分式有意义的条件。

学习难点: 分式的特点和分式有意义的条件。

学法指导: 1、学生独立阅读课本P 1—P 3,探究课本基础知识,提升自己的 阅读理解能力。

2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。

3、教师巡视,及时指导、帮助学生解决疑难问题。

导学流程: 一、旧知回顾 1.什么是整式? ,整式中如有分母,分母中 (含、不含)字母。

2.下列各式中,哪些是整式?哪些不是整式?两者有什么区别? a 21;2x+y ;2y x - ;a 1 ;x y x 2- ;3a ;5 . 二、基础知识探究 1.阅读“引言”, “引言”中出现的式子是整式吗? 2.自主探究:完成p 2的“思考”,通过探究发现,a s 、s V 、v +20100、v -2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 。

3.归纳:分式的定义: 。

代数式a 1 、x y x 2-、a s 、s V 、v +20100、v -2060都是 。

分数有意义的条件是 。

那么分式有意义的条件是 。

三、综合应用探究 1.在下列各式中,哪些是整式?哪些是分式? (1)5x-7 (2)3x 2-1 (3)123+-a b (4)7)(p n m + (5)—5 (6)1222-+-x y xy x (7)72 (8)c b +54 2.填空:(1)当x 时,分式x 32有意义 (2)当x 时,分式1-x x 有意义 (3)当b 时,分式b 351-有意义 (4)当x 、y 满足关系 时,分式y x y x -+有意义 3.x 或ɑ为何值时,下列分式有意义? (1)1-x x (2)15622++-x x x (3)242+-a a 4.拓展延伸: 例4、x 为何值时,下列分式的值为0? (1)11+-x x (2)392+-x x (3)11--x x 四、反馈检测: 1、下列各式中,(1)y x y x -+(2)132+x (3)x x 13-(4)π22y xy x ++(5)5b a -(6)0.(7)43(x+y )整式是 ,分式是 。

人教版八年级数学上册15.1.1《从分数到分式》说课稿

人教版八年级数学上册15.1.1《从分数到分式》说课稿

人教版八年级数学上册15.1.1《从分数到分式》说课稿一. 教材分析人教版八年级数学上册15.1.1《从分数到分式》是分式单元的第一课时,主要内容是分数与分式的概念及其性质。

本节课的内容是学生学习分式的基础,对于后续的分式运算、分式方程等知识有着重要的影响。

教材从学生已知的分数入手,通过分数与除法的关系,引出分式的概念,并介绍了分式的基本性质。

教材的处理方式由浅入深,符合学生的认知规律。

二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除等运算比较熟悉。

但是,学生对于分数与除法的关系的理解并不深刻,对于分式的概念和性质的认识还是陌生的。

因此,在教学过程中,我需要引导学生从已知的分数知识出发,建立起分式的概念,并理解分式的性质。

三. 说教学目标1.知识与技能目标:学生能够理解分式的概念,掌握分式的基本性质,能够进行简单的分式运算。

2.过程与方法目标:通过观察、分析、归纳等方法,学生能够自主探究分式的性质,培养学生的动手操作能力和逻辑思维能力。

3.情感态度与价值观目标:学生能够体验到数学与实际生活的联系,激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.教学重点:分式的概念及其基本性质。

2.教学难点:分式与分数的联系与区别,分式的性质的理解和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的动手操作能力和逻辑思维能力。

2.教学手段:利用多媒体课件,生动形象地展示分式的概念和性质,提高学生的学习兴趣和效果。

六. 说教学过程1.导入:通过分数的知识,引导学生思考分数与除法的关系,从而引出分式的概念。

2.新课讲解:讲解分式的概念,并通过实例让学生理解分式的性质。

3.课堂练习:设计一些练习题,让学生巩固所学的内容,并提供解题指导。

4.小组讨论:让学生分组讨论分式与分数的联系与区别,并分享讨论成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.1.1从分数到分式
一、 教学目标
1. 了解分式概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
二、重点、难点
1.重点:理解分式有意义的条件,分式的值为零的条件.
2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
3.认知难点与突破方法
难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.
三、课堂引入
1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,s
v .
2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为x 千米/时.
轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v
-2060小时,所以v +20100=v
-2060.
3. 以上的式子v +20100,v -2060,a s ,s
v ,有什么共同点?它们与分数有什么相同点和不同点? 设计意图:本章从实际问题引出分式方程v +20100=v
-2060,给出分式的描述性的定义:像
这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.
1.本节进一步提出P4[思考]让学生自己依次填出:7
10,a s ,33200,s v .为下面的[观察]提供具体的式子,就以上的式子v +20100,v
-2060,a s ,s v ,有什么共同点?它们与分数有什么相同点和不同点? 可以发现,这些式子都像分数一样都是 (即A ÷B )的形式.分数的分子A 与分母B 都是整数,而这些式子中的A 、B 都是整式,并且B 中都含有字母.
P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别. 希望老师注意:分式比分数更具有一般性,例如分式
B
A 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .
[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,
B
A
用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B ≠0时,分式
B
A 才有意义. 四、例题讲解
P5例1. 当x 为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母x 的取值范围.
设计意图:该例题是应用分式有意义的条件—分母不为零,解出字母x 的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.
(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.
五、随堂练习
1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 2
38y y -,91-x 2. 当x 取何值时,下列分式有意义?
(1) (2) (3) 3. 当x 为何值时,分式的值为0?
(1) (2) (3) 六、课后练习 1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.
(3)x 与y 的差于4的商是 .
2.当x 取何值时,分式 无意义? 3. 当x 为何值时,分式
的值为0?
1-m m 3
2+-m m 112+-m m 4522--x x x x 235-+2
3+x x x 57+x
x 3217-x x x --21x
x x --212
312-+x x。

相关文档
最新文档