七年级数学上册3.3勾股定理的应用举例教学设计3鲁教版五四制
七年级数学上册鲁教版(五四制):3.3勾股定理的应用举例
思
例1 在我国古代数学著作《九章算术》中记载了一个有趣的问题,这个问题
的意思是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池的
中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与一边垂直的方
向拉向岸边,那么它的顶端恰好到达岸边的水面.这个水池的深度和这根芦苇
的长度各是多少?
OB=OC
1尺
C
D
A
5尺
B
10尺
O
展展议
例1 在我国古代数学著作《九章算术》中记载了一个有趣的问题,这个问题
的意思是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池的
中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与一边垂直的方
关键 构建直角三角形
O
数学 已知直角三角形的一直角边
D
C 问题 和斜边求另一直角边
方法二 比较另一直角边与车高的大小
A
B
检
如图,一座城墙高11.7m,墙外有一条宽为9m的护 城河,那么一个长为15m的云梯能否到达城墙的顶端?
收获平台
这节课我学会了…… 我发现了…… 使我体会最深的是…… 使我感到困难的是…… 我想我将…
义务教育教科书山东教育出版社七年级上册
测
勾股定理
导
学习目标
1、应用勾股定理解决简单的实际问题,当所构 造的直角三角形中只有一边已知时,可以根据勾股 定理列方程解决问题
2、在探究问题解决方法的过程中感受方程思想 方法,感受构建方程模型的必要性;在探究问题过 程中如何构造直角三角形,体会转化的数学思 想方法
鲁教版七年级数学上册《勾股定理的应用举例》教案
《勾股定理的应用举例》教案教学目标教学知识点能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.能力训练要求1、学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2、在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求:1、通过有趣的问题提高学习数学的兴趣.2、在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.教学重点难点重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题. 教学过程1、创设问题情境,引入新课前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt △ABC中,AB2=AC2+B C2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:①蚂蚁怎么走最近?A BA B出示问题:有一个圆柱,它的高等于12cm ,底面上圆的周长等于18cm .在圆行柱的下底面点A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,沿圆柱侧面爬行的的最短路程是多少?(1)自己做一个圆柱,尝试从A 点到B 点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图1-12,将圆柱侧面剪开展开成一个长方形,从A 点到B 点的最短路线是什么?你画对了吗?(3)蚂蚁从A 点出发,想吃到B 点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形,好了,现在咱们就用剪刀沿母线AA ′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:(1)A →A ′→B ; (2)A →B ′→B ;(3)A →D →B ; (4)A →B .哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.②做一做李叔叔想要检测雕塑底座正面的边AD 和边BC 是否分别垂直于底边AB ,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?(2)李叔叔量得边AD 长是30cm ,边AB 长是40cm ,边BD 长是50cm ,AD 边垂直于AB 边吗?为什么?(3)小明随身只有一个长度为20cm 的刻度尺,他能有办法检验边AD 是否垂直于边AB 吗?边BC 与边AB 呢?也就是要检测∠DAB =90°,∠CBA =90°.连结BD 或AC ,也就是要检测△DAB 和△C BA 是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题.解答:(2) ∴AD 和AB 垂直.③随堂练习(1)甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6km /h 的速度向正东行走.1时后乙出发,他以5km /h 的速度向正北行走.上午10∶00,甲、乙两人相距多远?分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A 是甲、乙的出发点,10∶00时甲到达B 点,则AB =2×6=12(km );乙到达C 点,则AC =1×5=5(km).在Rt △ABC 中,BC 2=AC 2+AB 2=52+122=169=132,所以BC =13km .即甲、乙两人相距13km .例题:1、在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?我们可以将这个实际问题转化成数学模型.解:如图,设水深为x 尺,则芦苇长为(x +1)尺,由勾股定理可求得(x +1)2=x 2+52,x 2+2x +1=x 2+25解得x =12则水池的深度为12尺,芦苇长13尺.2、某隧道的界面是一个半径为4.2m 的半圆形,一辆高3.6m ,宽3m的卡250040302222=+=+AB AD 25002=BD 222BD AB AD =+∴车能通过该隧道吗?课时小结这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题.我们从中可以发现用数学知识解决这些实际问题,更为重要的是将它们转化成数学模型.课后作业课本习题3.4、3.5.。
2016年秋季鲁教版五四制七年级数学上学期3.3勾股定理的应用举例教案4
M B N
图2
O A
2、 2,是一个直角三角形,请你以它的某一边所在直线为对称轴,画出另一个与/CD.△ABE 是等腰三角形吗?请
D
说说你的理由。
B
E
C
板书 设计 例1 、
复 例3 、
习
课
例2 、
演练:
教学后记或反思(课堂设计理念、实际教学效果及改进设想等)
轴对称 1、通过生活中的具体实例理解轴对称及其性质; 2、体会轴对称图形与两图成轴对称的区别与联系; 教学 1、 掌握角平分线,线段垂直平分线的性质,并能用它解决实际问题; 目标 2、 能利用轴对称进行简单的图案设计。 3、 能根据轴对称的性质画出已知图形关于某条直线的对称图形。 1、 三种重要的轴对称图形:角、线段、等腰三角形, (1) 角平分线所在的直线是角的对称轴, 角平分线上的点到角的两边的 距离相等。 重点 (2) 线段的垂直平分线是线段的对称轴, 线段垂直平分线上的点到线段 两个端点的距离相等。 (3) 等腰三角形顶角的平分线、底边上的高、底边上的中线三线重合, 它们所在的直线是等腰三角形的对称轴。 1、几条又用的轴对称的性质 (4) 对应点所连线段被对称轴垂直平分。 (5) 对应线段相等,对应角相等。 难点 (6) 对应线段(或其延长线)如果相交,那么交点在对轴上。 2、 画轴对称图形的方法: 画某一图形关于一条直线的轴对称图形时,只要画出图形中的特殊点 (如线段的端点、角的顶点)的对称点,然后连接对称点即可。 教学过程(课程导入、新课解析、例题精讲、课堂练习、作业设计等) 例 1 、两个大小不同的圆可以组成多种情况,针对下列三种,请求找出每种情况的对称轴, 并说一说它们的对称轴有什么共同的特点?
(1)
(2)
(3)
七年级数学上册3.3勾股定理的应用举例教学设计2鲁教版五四制
勾股定理的应用举例●教材分析:本节位于七年级上册教材第三章第3节,在前面学习了应用勾股定理及勾股定理的逆定理的基础之上进行的探究勾股定理及勾股定理的逆定理的应用,学生能够通过简单操作发现在圆柱侧面找最短路径方法,会利用勾股定理解决问题,初步感受应用勾股定理解决问题的思路,为后面探究它的应用做铺垫●学情分析:学生对于勾股定理是一个新的认识,初二的学生对于符号语言不是很规范,所以在讲解时,注意扮演步骤。
且本节课的内容较难,所以一定要让学生多动手操作,引导他们多发现问题,多交流●教学目标学习目标:应用勾股定理及勾股定理的逆定理解决实际问题,能力目标:1、通过解决实际问题,培养学生分析问题,解决问题的能力,进一步发展学生的应用意识2、动手操作实践的过程中,探索发现立体图形中求两点距离最短的方法,渗透转化的数学思想。
情感目标:1、应用定理解决问题时,感受勾股定理的奥妙2、在进行探索的活动过程中发展学生的探究意识和合作交流的习惯●教学重点:利用勾股定理求立体图形侧面两点的最短距离●教学难点:如何把立体图形侧面转化为平面图形●教学方法:启发、诱导法.动手操作以及学生的互动合作相结合.●教学工具:圆柱体,多媒体,导纲●教学过程:是上底面的直径。
点我们叫上下两底面的相对点。
你能沿侧面画出连接A,C的最短的五、探究活动二:勾股定理的逆运用六、硕果飘香——小结你知道了什么知识?你体会了什么数学思想?你还有疑问吗?七、拓展提高:一个长方体盒子,它的长、宽、高分,8cm,12cm,一只蚂蚁想沿侧面从盒底的点A爬到盒顶的点,最短路径是多少?九、布置作业作业:勾股定理的应用举例(1)教学设计。
2018-2019学年鲁教版(五四制)七年级数学上册全册教案
单元备课第一章三角形七学科数学单元一年级主备人1、使学生在观察、操作、画图和实验等活动中,发现并认识三角形的特征,知道三角形的底和高,认识三角形的分类方法及三角形的内角单和。
2、能按要求画三角形,并画出和量出三角形的高,能灵活应用知识解元决实际问题。
3、使学生通过学习和实践,进一步体会数学与现实生活的密切联系,教感受与同学合作交流的意义和价值,增强用数学眼光观察生活现象、解决生活问题的意识。
学4、使学生在探索图形特征和相关结论的活动中,发展空间观念,锻炼思维能力。
目 5、增强学生学习数学的兴趣和学好数学的自信心。
标重点:1、认识三角形的特征及分类。
2、认识三角形的内角和及底、画高。
3、知道三角形任意两边之和大单于第三边。
元教学难点: 1、画不同三角形的高。
教2、灵活应用三角形两边之和大于第三边的规律解决实际问题。
学重难点课 1、认识三角形…… 5课时 2、图像的全等…… 1课时时 3、探索三角形全等的条件…… 4课时 4、用尺规作三角形…… 1课时划 5、利用三角形全等测距…… 1课时分教材分析:本单元教材是教学分三段安排:第一段认识三角形的基本特征。
包括认识三角形的底和高,了解三角形;两边大于第三边。
第二段,学习三角形的分类与内角和;第三段认识等腰三角形、等边三角形及其特征,教材编排特点是1、让学生联系现实情境认识三角形;2、让学生在丰富的活动中探索并发现三角形的一些特征;3、在动手实践和解释交流中加深对所学内容的认识。
教学理念:教1、设计有效的实践活动。
有效的实践活动是学生获取数学知识的重要途径,尤其是本节课的教学内容,必须使学生有充分的实践活动机材会,通过量一量、画一画、比一比等操作过程,学生在亲身经历数学知识的探究与发现的过程中学习数学,在观察中思考,在思考中猜测,在分操作中验证。
2、创设有效的教学情境。
“兴趣是最好的老师。
”低年级学生活泼好动,析注意力时间短,喜欢有趣的事物,针对学生的特点,在教学中创设有效及的符合学生实际、符合教学需要的教学情境是非常有必要的,通过创设教情境,引发学生的认知冲突,使他们体会到分米、毫米知识产生的必要性,从而产生探究新知的愿望。
最新2019-2020年度鲁教版五四制七年级数学上册《勾股定理的应用举例》1教学设计-评奖教案
《勾股定理的应用举例》教学设计教学内容课题:七年级上册第三章第三节《勾股定理的应用举例》本节课的教材内容主要围绕勾股定理及其逆定理,按照“问题情景—建立模型—解释—应用与拓展”的模式展开活动,让学生能够应用勾股定理及直角三角形的判定条件解决实际问题。
本节课的综合性和拓展性较强,教材图文并茂,既能吸引学生的注意力,又能激发学生的学习兴趣。
通过本课的学习,引导学生将所学知识与实际生活紧密联系,增强合作精神,培养学生数形结合能力和实践能力。
教学目标知识与技能:会用勾股定理解决实际问题。
过程与方法:将实际问题转化为含有直角三角形的数学模型。
在数学活动中发展学生的探究意识和合作交流的习惯情感态度与价值观:1.让学生感受生活中的数学,体会数学的应用性。
2.培养学生运用所学知识解决实际问题的意识,通过与同伴交流,培养协作与交流的意识。
3.敢于面对数学学习中的困难,增加遇到困难时选择其他方法的经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.教学重点:1.能熟练运用勾股定理解决实际问题,掌握最短路径问题。
2.探索空间与平面图形之间的关系。
3.掌握两个定理之间的联系与区别。
教学难点:熟练运用勾股定理解决最短路径实际问题,增强学生的数学应用能力。
课前准备:制作长方体、彩纸、白纸、圆柱、双面胶。
.教法方法:互动式教学、合作探究学习教学过程一、回顾与思考(一)1. 复习勾股定理,巩固勾股定理的公式、符号语言及变形公式。
2. 小结:勾股定理实质是在直角三角形中,已知两条边,可以求出第三条边。
[设计意图]:通过定理的回顾熟悉知识,引导学生建立找直角三角形和求边长的意识。
二、定理的应用(一)1.问题情景一:爸爸指着墙角的桌子对小明说:“桌面的角是直角,我测出来两条桌边的长是5分米和12分米,你能计算出桌面的对角线的长度吗?”“太简单了。
”你知道小明是如何计算的吗?[设计意图]:(1)轻松的话题引到在桌面(一个平面)的求边的问题,从而给学生建立起一种构造直角三角形解决问题的模型。
鲁教版七年级数学上第三章勾股定理3.3勾股定理应用举例 导学案
鲁教版七年级数学上第三章勾股定理3.3勾股定理应用举例导学案【学习目标】1.能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2.在将实际问题抽象成几何图形过程中,提高学生分析问题、解决问题的能力,渗透数学建模的思想.【学习过程】一、自学指导1.如图,有一个圆柱,它的高等于12 cm,底面上圆的周长等于18 cm.在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面爬行的最短路程是多少?(π的值取3)(1)同学们可自己做一个圆柱,尝试从点A到点B沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?(2)如图,将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?(3)蚂蚁从点A出发,想吃到点B处的食物,它沿圆柱侧面爬行的最短路程是多少?二、合作探究1.李叔叔想要检测如图所示雕塑底座正面的边AD和边BC是否分别垂直于底边AB,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?(2)李叔叔量得边AD长是30 cm,边AB长是40 cm,点B,D之间的距离是50 cm.边AD垂直于边AB吗?(3)小明随身只有一个长度为20 cm的刻度尺,他能有办法检验边AD是否垂直于边AB吗?边BC与边AB呢?2.[例1]有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇沿与一边垂直的方向拉向岸边,那么它的顶端恰好到达岸边的水面.这个水池的水深和这根芦苇的长度各是多少?3.[例2]如图,某隧道的截面是一个半径为4.2 m的半圆形,一辆高3.6 m、宽3 m的卡车能通过该隧道吗?4.归纳小结【当堂训练】1.甲、乙两位探险者,到沙漠进行探险.某日早晨8:00甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10:00,甲、乙两人相距多远?2.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少?3.如图,是一个滑梯示意图.若将滑道AC水平放平刚好与AB一样长,已知滑梯的高度CE=3 m,CD=1 m,试求滑道AC的长.4.欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?5.(2020广饶期中)如图,圆柱的底面周长是14 cm,圆柱高为24 cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,需要爬行的最短距离是.6.如图是一个棱长为6的正方体木箱,点Q在上底面的棱上,AQ=2,一只蚂蚁从P点出发沿木箱表面爬行到点Q,则蚂蚁爬行的最短路程是.7.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm,底面周长为10 cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A 处,求蚂蚁吃到饭粒需爬行的最短路径长.8.如图,已知某学校A与直线公路BD相距AB=3 000 米,且与该公路上一个车站D相距5 000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?9.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5 m远的水底,竹竿高出水面0.5 m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为() (A)2 m (B)2.5 m (C)2.25 m (D)3 m【基础训练】1.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5 cm,3 cm和1 cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路线长( )(A)13 cm (B)12 cm (C)10 cm (D)9 cm2.如图,圆柱的高BC为20 cm,底面周长是32 cm,一只蚂蚁从点A爬到点P处吃食,且PC=BC,则最短路线长为( )(A)20 cm (B)13 cm (C)14 cm (D)18 cm3.如图,AB=1.2 m,BC=0.5 m,AD=CE=0.2 m,则加固小树的木棒DE的长是 m.4.(2020广饶期中)如图,将一根长24 cm的筷子,置于底面直径为 5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的取值范围是.5.(2020莱州期末)受台风影响,一棵树在离地面4 m处断裂,树的顶部落在离树根底部3 m处,这棵树折断前有多高?【综合训练】6.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m的C处,发现此时绳子末端距离地面2 m,则旗杆的高度(滑轮上方的部分忽略不计)为( )(A)12 m (B)13 m (C)16 m (D)17 m7.如图,长方体的底面边长分别为1 cm和3 cm,高为 6 cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要 cm.8.如图,有一块四边形的绿地,其中 AB=20米,BC=15米,CD=14米,AD=25米,且∠B=90°,求这块绿地的面积是多少平方米?【提高训练】9.如图所示,点A是一个半径为 400 m 的圆形森林公园的中心,在森林公园附近有B,C两个村庄,现要在B,C两村庄之间修一条长为1 000 m的笔直公路将两村连通,经测量得AB=600 m,AC=800 m,问此公路是否会穿过该森林公园?请通过计算说明.。
鲁教版数学七上3.3《勾股定理的应用举例》
问题1:
地面上,一只蚂蚁在爬行到A处想吃在B处 的食物怎样走最近?用数学知识解释?
蛋糕 B
A
问题2
如图,有一个圆柱体,它的高 等于12厘米,底面周长等于18厘米, 在圆柱下底面的A点有一只蚂蚁, 它想吃到上底面与A点相对的B处的 食物,问:
(1)蚂蚁在圆柱体表面爬向食物时,沿怎样的路线 爬行,路程最短?你是怎样想的?能曲面的问题转化 为平面的问题解决吗?试画出最短路线图
蛋糕 B
A
(2)你能用相关的知识求出需要爬行的最短路程是多少?
O
蛋糕 B
C
9cm
B
高 12cm
12
A
A
长18cm
解:蚂蚁沿如图路线走最短 ∵ AB2=AC2+BC2 =92+122=81+144=225= 152 ∴ AB=15(cm)
蚂蚁爬行的最短路程是15厘米.
变式训练
有一个棱柱,它的 高等于12厘米,底面边长 等于2.5厘米,在棱柱下底 面上的A点有一只蚂蚁, 它想从点A爬到点B , 蚂 我怎么走 会最近呢? D A C G H F B
蚁沿着需要爬行的最短
路程是多少?
试一试
( 1 )从 A 点到 B 点沿棱柱侧面画出的几条路 线,你觉得哪条路线最短呢?
H H
G
F
B G
F
B G
H F
B
D A C
D
D A C
A
C
提示:你能把A点和B点所在的侧面变成同 一平面吗?有几种展开方法?那条最短?
G
F
B
H G A
H
A
C
D
C
A
E
(2) 将棱柱沿侧棱剪开,展成一个长方形,从A点到 B点的最短线路是什么?
鲁教版初中数学七年级上册《勾股定理的应用举例(1)》导学案
勾股定理的应用举例(1)【学习目标】能运用勾股定理及直角三角形的判别条件解决简单的实际问题.【学习重点】勾股定理及直角三角形的判别条件的运用.【学习重点】直角三角形模型的建立.【学习过程】一.课前复习1.勾股定理及直角三角形的判别条件的内容.2.练习题:(1)直角三角形两直角边分别为5cm,12cm,其斜边上的高为cm. (2)ΔABC中的三边分别是m2-1,2m,m2+1(m 1),那么().A.ΔABC是直角三角形,且斜边为m2+1B.ΔABC是直角三角形,且斜边为2mC.ΔABC是直角三角形,但斜边长由m的大小决定D.ΔABC不是直角三角形(3)ΔABC中,∠A、∠B、∠C的对边分别是a、b、c,则下列说法中错误的是().A.如果∠C-∠B=∠A,那么ΔABC是直角三角形,且∠C=90ºB.如果c2=b2-a2,那么ΔABC是直角三角形,且∠C=90ºC.如果(c+a)(c-a)=b2,那么ΔABC是直角三角形D.如果∠A∶∠B∶∠C=5∶2∶3,那么ΔABC是直角三角形二.新课学习如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?(1)自己做一个圆柱,尝试从A 点到B 点沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?(2)如图所示,将圆柱侧面沿AC 剪开,展成一个长方形,从A 点到B 点的最短路线是多少?你画对了吗?(3)蚂蚁从A 点出发,想吃到B 点上的食物,它沿圆柱侧面爬行的最短路程是多少?注:几何体表面最短距离问题通常都是将几何体的表面展开,求展开图中两点之间的最短距离.但一定要注意展开图中点的相应的位置.做一做李叔叔想要检测雕塑底座正面的AD 边和BC 边是否分别垂直于底边AB ,但池随身只带了卷尺.(1)你能替他想办法完成任务吗?(2)李叔叔量得 AD 长是 30cm ,AB 长是40cm ,BD 长是50cm . AD 边垂直于AB 边吗?(3)小明随身只有一个长度为20cm 的刻度尺,他能有办法检验AD 边是否垂直干AB 边吗? BC 边与AB 边呢?CB A · B A C三.自我演练课本:随堂练习及习题.四.自我小结解题中注意把空间中的最短路程问题转化为平面图形的最短路程问题,从而利用“两点之间线段最短”加以解决.。
新鲁教版(五四制)七年级数学上册教案:第三章3.3勾股定理的应用举例教案
尺.如果把这根芦苇拉向
岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?
解:设水池的水深AC为x尺, 则这
根芦苇长为
AD=AB=(x+1)尺,在直角三角形
ABC中,BC=5尺.
由勾股定理得:BC2+AC2=AB2. 即
52+ x2= (x+1)).
25+x2= x2+2x+1.
2x=24.
x=12, x+1=13.
答:水池的水深12尺,这根芦苇长13尺.
2、第二站:(学生自做,计时5分钟竞赛)
你想知道博物馆旗杆的高度,而又不能把旗杆放倒测量,当地工作人员发现旗杆顶端的绳子垂到地面还多2米,当他们把绳子下端拉开8米后,绳子刚好斜着拉直下端接触地面,你能算算旗杆的高度吗?
~尸十严 ~~尸 k h ~
3、第三站:
美食街是个单行车道,你乘坐的车要通过一个拱门,此拱门的截面是一个半径为3.9m的半圆形,你乘坐的车高3.5m、宽3m你能顺利通过该拱门吗?(本环节是教学重点:1、我通过演示拱门和汽车模型进行分析,通过演示,让学生明白汽车过拱门单行道走中间。
2、学生会根据立体图形画出几何图形,进行合理探究。
)
利用三种方法进行探究,方法一、先引导学生通过已知汽车宽度、半径、求出能通过的汽车的最大高度,与已知高度进行比较进行决策;方法二、利用已知高、宽求能通过
的最小拱门的半径,再与已知半径进行比较进行决策(这是课本的方法);方法三、利用已知高、半径求能通过的汽车的最大宽度,与已知宽度进行比较进行决策(学生自己总结此方法)。
本环节主要探究第一种,其他两种孩子自然就很容易想到。
板书设计教学反思。
2019-2020学年鲁教版(五四制)七年级数学上册全册教案
2019-2020学年七年级数学上册学期备课教学措施第一章三角形课题 1.1认识三角形教学目标1、了解三角形中线、高线、角平分线的概念及性质。
2、能画出三角形中线、高线、角平分线3,会运用三角形中线、高线、角平分线解决问题教学重点能画出三角形中线、高线、角平分线教学难点深入理解中线、高线、角平分线教具准备导学过程二次备课活动一:数学活动激发兴趣用铅笔支起一张均匀的三角形卡片教师活动:你知道怎样确定这个支撑点的位置吗?【设计意图】通过从小游戏活动入手,激发学生的探求欲望;同时经过小游戏创设一种宽松、和谐的学习氛围,让学生以轻松、愉快的心态进入探究新知的过程,同时也能感受到数学来源于生活。
活动二:揭示本质、归纳定义在三角形中,连接一个顶点与它对边的中点的线段,叫做这个三角形的中线.如图3,连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC•的边BC上的中线.注:三角形的中线是线段.由定义知:如果AD是△ABC的中线,那么有BD=DC=12 BC.活动三:通过画图折纸等方法在教师为其准备的各类三角形上画出它们的中线,你会发现什么?师生行为:学生动手操作、讨论、教师巡视指导,画中线时,可以让学生折纸,也可以让他们用刻度尺.活动结论:三角形的三条中线交于一点.三角形三条中线的交点叫做三角形的重心.【设计意图】通过本活动,进一步培养学生的动手、动脑能力,发展其空间观察.活动四:在一张薄纸上画一个三角形,然后画出它的一个内角的平分线.想一相: 1.什么是三角形的角平分线?2.三角形的角平分线与一个角的平分线有何区别?你能通过折纸的方法得到它吗?师生行为:学生动手做,讨论,归纳,教师指导.【设计意图】通过其活动,一来让学生理解三角形的角平分线的定义,二来使学生能进一步准确画出一角的平分线活动结论:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线注意:1.三角形的角平分线是一条线段而不是射线,•它与一个角的平分线不同.2.一个内角的平分线与它的对边是相交的,•这个角的顶点与交点之间的线段才是这个内角的平分线,即三角形的角平分线.如图4,AD是△ABC的角平分线.那么有∠BAD=∠DAC=12∠BAC.活动五:1.四个同学为一个合作小组;每个小组学生分别画出锐角三角形、钝角三角形、•直角三角形的三条角平分线.2.讨论在每个三角形中,这三条角平分线之间有怎样的位置关系.【设计意图】培养学生的动手能力、归纳能力.师生行为:学生动手操作,教师指导.活动结论:1、任一个三角形都有三条角平分线,且它们都在三角形的内部;2.任一个三角形的三条角平分线相交于一点。
鲁教版(五四学制)七年级上册第三章勾股定理勾股定理的应用举例课件
小试牛刀
1.甲、乙两位探险者到沙漠进行探险, 某日早晨8:00甲先出发,他以6 km/h的 速度向正东行走,1小时后乙出发,他以 5 km/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?
小试牛刀
解:如图:已知A是甲、乙的出发点, 10:00甲到达B点,乙到达C点.则:
北
AB=2×6=12(km)
做一做
(2)李叔叔量得AD长是30 cm, AB长是40 cm,BD长是50 cm,AD 边垂直于AB边吗?为什么?
解:AD²+AB²=900+1600=2500
BD²=2500 所以AD²+AB²=BD² 所以三角形ABD是直角三角 形 ∴AD和AB垂直.
做一做
(3)小明随身只有一个长度为 20 cm的刻度尺,他能有办法检 验AD边是否垂直于AB边吗?BC边 与AB边呢?
食物
B
A
举一反三
1.如图,在棱长为10 cm 的正方体的一 个顶点A处有一只蚂蚁,现要向顶点B处 爬行,已知蚂蚁爬行的速度是1cm/s,且 速度保持不变,问蚂蚁能否在20 s内从A
B
爬到B?
B
A
举一反三
2.在我国古代数学著作《九章算术》 中记载了一道有趣的问题,这个问题的 意思是:有一个水池,水面是一个边长 为10尺的正方形,在水池的中央有一根 新生的芦苇,它高出水面1尺,如果把 这根芦苇垂直拉向岸边,它的顶端恰好 到达岸边的水面,请问这个水池的深度 和这根芦苇的长度各是多少?
中国古代人民 的聪明才智真 是令人赞颂 !
举一反三
解:设水池的水深AC为x尺,则这根芦苇 长为AD=AB=(x+1)尺,
在直角三角形ABC中,BC=5尺
最新鲁教版五四制七年级数学上册《勾股定理的应用举例》1教学设计-评奖教案
《勾股定理的应用举例》教学设计教学内容课题:七年级上册第三章第三节《勾股定理的应用举例》本节课的教材内容主要围绕勾股定理及其逆定理,按照“问题情景—建立模型—解释—应用与拓展”的模式展开活动,让学生能够应用勾股定理及直角三角形的判定条件解决实际问题。
本节课的综合性和拓展性较强,教材图文并茂,既能吸引学生的注意力,又能激发学生的学习兴趣。
通过本课的学习,引导学生将所学知识与实际生活紧密联系,增强合作精神,培养学生数形结合能力和实践能力。
教学目标知识与技能:会用勾股定理解决实际问题。
过程与方法:将实际问题转化为含有直角三角形的数学模型。
在数学活动中发展学生的探究意识和合作交流的习惯情感态度与价值观:1.让学生感受生活中的数学,体会数学的应用性。
2.培养学生运用所学知识解决实际问题的意识,通过与同伴交流,培养协作与交流的意识。
3.敢于面对数学学习中的困难,增加遇到困难时选择其他方法的经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.教学重点:1.能熟练运用勾股定理解决实际问题,掌握最短路径问题。
2.探索空间与平面图形之间的关系。
3.掌握两个定理之间的联系与区别。
教学难点:熟练运用勾股定理解决最短路径实际问题,增强学生的数学应用能力。
课前准备:制作长方体、彩纸、白纸、圆柱、双面胶。
.教法方法:互动式教学、合作探究学习教学过程一、回顾与思考(一)1. 复习勾股定理,巩固勾股定理的公式、符号语言及变形公式。
2. 小结:勾股定理实质是在直角三角形中,已知两条边,可以求出第三条边。
[设计意图]:通过定理的回顾熟悉知识,引导学生建立找直角三角形和求边长的意识。
二、定理的应用(一)1.问题情景一:爸爸指着墙角的桌子对小明说:“桌面的角是直角,我测出来两条桌边的长是5分米和12分米,你能计算出桌面的对角线的长度吗?”“太简单了。
”你知道小明是如何计算的吗?[设计意图]:(1)轻松的话题引到在桌面(一个平面)的求边的问题,从而给学生建立起一种构造直角三角形解决问题的模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的应用举例
教材与学情分析
本节课是在探究了勾股定理后运用勾股定理解决生活中的实际问题,本节内容分两课时,第一课时有两部分内容,第一部分立体图形表面上两点间最短距离,构造的直角三角形中已知两边,可以直接运用勾股定理解决实际问题;第二部分已知三角形的三边判断所构造的三角形是否为直角三角形,应用勾股定理的逆定理解决实际问题。
第二课时在第一课时的基础上,进一步研究勾股定理的两方面实际应用,第一是在直角三角形中已知一边和其他两边等量关系时,要运用方程思想求未知边;第二是决策问题:判断车能否过隧道问题,构造已知两边的直角三角形,判断第三边。
学生在学习勾股定理的直接应用后,当已知两边能熟练求直角三角形的第三边。
因此本课时的重点利用勾股定理的等量关系式列方程求未知边,和通过计算判断并作出决策。
其中难点是在决策问题中如何构造直角三角形。
教学目标
知识与技能
应用勾股定理解决简单的实际问题,当所构造的直角三角形中只有一边已知时,可以根据勾股定理列方程解决问题
应用勾股定理解决生活中一类决策问题
过程与方法
在探究问题解决方法的过程中感受方程思想方法,感受构建方程模型的必要性
在探究问题过程中如何构造直角三角形,体会转化的数学思想方法
情感态度与价值观
在讨论问题过程中,进一步认识勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智,从而增强学习数学的兴趣.
教学资源
PPT课件、几何画板课件、三角板等
教学设计思路
复习总结→创设问题引入新课→合作探究解决问题→巩固提升→梳理总结升华收获
五、教学实施过程:
(一)复习导入
师:同学们,前面学习了勾股定理,知道根据勾股定理能求出直角三角形的边长,请看:
1、如图,在Rt△ABC中,∠C=90°,则
总结并板书1)已知两直角边能求斜边
2)已知一直角边和斜边能求另一直角边
【设计意图】让学生明确直角三角形已知两边第三边能直接运用勾股定理求出第三边,为下面例1中只知一条边时求边要借助方程的方法,不能直接运用勾股定理做好铺垫.
师:勾股定理是一个非常重要的定理,从古代到现代,人们在生活中广泛应用。
那么在生活中人们运用它可以解决什么问题,在解决问题中运用了什么数学方法?今天继续学习《勾股定理的应用举例》,请看例1。
(二)新课讲解
活动一:求水池深、芦苇高问题
(出示例1)
例1 有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,
它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,问
这个水池的深度和这根芦苇的长度各是多少?
【教师活动】
问题1:你能得到哪些数学信息?能在图中表示吗?
学生自由发言,提出自己得到的数学信息,
【注意】教师重点说明两点:
一“水面是边长为10尺的正方形”指图中的BD,而不是AO,题目所给的图形是水池的纵截面
二“把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面”的含义,课件辅助展示芦苇的拉动过程,学生观察:在拉动过程中什么变了,什么没有变,引导学生得到OB=OC
问题2:图中哪条线段的长度表示水池的深度,哪条线段的长度表示芦苇的长度?问题3:图中有直角三角形吗?如果有,指出它的三边和直角
问题4:在Rt△ABC中,根据勾股定理你能得到什么结论?
问题5:在中已知边长是几条?未知边是几条?
问题6:当一个等式中出现两个未知量,应该采用什么数学方法?(方程)
【对应巩固练习】(课本80页随堂第2题)
一架梯子若靠墙直立时比窗户的下沿高1m,
若斜靠在墙上,当梯子的下端离墙4m时,
梯子的上端恰好与窗户的下沿对齐.
求梯子的长度.
【学生活动】独立完成,一学生上黑板板演
【教师活动】总结:在这一题中构建的直角三角形是Rt△ABC,它的三边中已知一边,所以要运用列方程的方法求出其他边(板书:已知一边方程)
活动二:判断车能否过隧道
【教师活动】由上面两个例子可以看出勾股定理在日常生活中测量深度、高度、长度等问题,现代生活中,人们应用勾股定理更是广泛。
请看例1
例2 如图,某隧道的截面是一个半径为4.2m的半圆形,一辆高3.6m、宽3m卡车能通
过该隧道吗?
【教师活动】提出问题并思考:
问题1:如果不能通过隧道,最可能是受到卡车的哪个部位的影响?
问题2:如果能通过隧道,卡车沿隧道的哪条线走最容易通过?
问题3:隧道是截面图,卡车通过这个隧道时的截面图是什么?
问题4:在长方形ABCD中,哪个点最有可能被半圆形卡住?
问题5:.长方形ABCD放在半圆形的什么位置表示“沿正中间走”?
【学生活动】利用几何画板探究OC与半径满足什么关系时卡车能通过?
请将卡车的截面图放到隧道截面图中表示“沿正中间走”的位置
问题1:当AB的中点O与半圆的圆心重合就一定能通过隧道吗?
问题2:当点C在什么位置表示卡车能通过隧道?点C在什么位置时表示卡车刚好不能通
过隧道?此时点C有什么性质?(OC表示半径,即OC=4.2m)
问题3:点C在半圆内时,OC与半径的大小关系是什么?
点C在半圆外时,OC与半径的大小关系是什么?
探讨的结论:当OC <4.2米时,卡车能通过,;当OC ≥4.2米时,卡车不能通过
【设计意图】
采用几何画板,让学生动手参与操作,在放、挪卡车截面图的过程中,真切感受卡车应沿着正中间走最容易通过,能从数学角度认识“隧道正中间”的含义,认识到在沿正中间走卡车需要满足什么条件?
师:由此我们只要计算出OC 的长度即可。
如图,OC 是Rt △BOC 的斜边,其他两直角边是由表示卡车一半车宽的线段OB 和表示车高的线段BC ,已知OB=1.5m ,BC=3.6m ,根据勾股定理可得
2115635122222...=+=+=BC OB OC
求出OC 与4.2比较大小较困难,还有什么方法不求OC,也能比较OC 与4.2的大小,引导出比较平方数,至此问题得到解决。
3、【教师活动】出示规范的解题步骤,并进行例题小结
4、小组合作交流
解决“判断卡车能否通过隧道”这一问题,关键构建直角三角形。
根据几何画板的操作探究,你能否找到其他构造直角三角形的方法?与你的同伴交流.
师总结:
构造Rt △BOE ,直角边OB 表示车宽的一半,斜边OE 表示隧道半径,这两边是已知的,另一直角边BE 表示恰好通不过的卡车的车高,比较BE 与实际车高3.6m.
在这一问题中构造的直角三角形可以已知两直角边,求斜边与半径比较大小;也可以已知斜边和一直角边,求另一直角边与实际车高比较
【设计意图】
5、巩固练习——课本80页习题第2题
如图,一座城墙高11.7m,墙外有一条宽为9m的护城河,那么一个长为15m的云梯能否到达城墙的顶端?
【学生活动】可以展示两种方法
方法1:如左图,由15m和9m的两条线段构建直角三角形,
求出BC与11.7m比较大小
方法2:如左图,由11.7m和9m的两条线段构建直角三角形
求出AB与15m比较大小
活动三:课堂总结
师:本节课我们学习了两个勾股定理的应用例子
一、求水池的深度和芦苇的长度转化已知一边方法方程
已知两直角边方法求斜边与半径比较
二、判断卡车能否过隧道转化已知两边
已知一直角边和斜边方法求另一直角边与实
际车高比较解决上述两类问题的关键是构造直角三角形
活动四:收获平台
这节课我学会了……
我发现了……
使我体会最深的是……
使我感到困难的是……
我想我将…
活动五:布置课后作业
必做:1. 习题第1题
2. 判断例2中的卡车能否通过隧道,你还有什么方法?
选做:例2中的隧道改为双车道其他条件不变,卡车还能通过该隧道吗?
【设计意图】布置第2题,目的是让学生能系统地认识到判断卡车能否通过隧道问题可以有三种方法,这三种方法实质上就是已知不同的两个直角边问题.
板书设计。