第九章《反比例函数》单元检测卷(含答案)
(完整版)九年级数学反比例函数单元测试题及答案(最新整理)
v/(km/h) O
v/(km/h)
A.
B.
C.
D.
4、若 y 与 x 成正比例,x 与 z 成反比例,则 y 与 z 之间的关系是( ).
A、成正比例 B、成反比例 C、不成正比例也不成反比例 D、无法确定
k
5、一次函数 y=kx-k,y 随 x 的增大而减小,那么反比例函数 y= 满足( ).
的取值范围是( ).
2017 年 3 月测试题
1
1
A、m<0 B、m>0 C、m< D、m>
2
2
10、如图,一次函数与反比例函数的图象相交于 A、B 两
点,则图中使反比例函数的值小于一次函数的值的 x 的取值范围
是( ).
A、x<-1 B、x>2
C、-1<x<0 或 x>2 D、x<-1 或 0<x<2
A、逐渐增大 B、逐渐减小 C、保持不变 D、无法确定
op x
7、在一个可以改变容积的密闭容器内,装有一定质量
m 的某种气体,当改变容积 V 时,气体的密度ρ也随之改变.
m ρ与 V 在一定范围内满足ρ= ,它的图象如图所示,则该
V
气体的质量 m 为( ).
A、1.4kg B、5kg C、6.4kg D、7kg
2017 年 3 月测试题
反比例函数综合检测题
一、选择题(每小题 3 分,共 30 分)
n5
1、反比例函数 y=
图象经过点(2,3),则 n 的值是( ).
x
A、-2 B、-1 C、0 D、1
k
2、若反比例函数 y= (k≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).
二、填空题(每小题 3 分,共 30 分)
第九章反比例测试2
第九章 反比例函数单元检测班级 姓名 学号 得分一 选择题(请将你的答案填在下表中,4分⨯9=36分)1.下列关系中,y 是x 的反比例函数的是 ( )A x (y —1)=1B CD2.如果反比例函数 的图象在第二,四象限,那么m 的取值范围是( )A m>2B m<2C m>0.5D m<0.53.如果反比例函数的图象经过点(3,2),那么它一定经过的点是( )A (-3,2)B (-2,3)C 3(6,2D 2(9,34.在同一直角坐标系中,函数a y x=和y ax a a =-≠的图象大致是( )A ①②B ②③C ③④D ②④5.某乡的粮食总产量为(a a 为常量)吨,设该乡平均每人占有粮食y 吨,人口数为x 人,则y 与x 之间的函数关系的图象大致为( )11+=x y 21xy =xy 31=xmy 21-=6.若反比例函数 21m y x--=的图象上有A (,B ( 两点,且 ,设 , 则a 的值为( )A 正数B 负 数C 非正 数D 不能确定 7.一次函数y kx b =+与反比例函数1y x=的图象在第三象限内有两个不同的交点,则下列判断正确的是( ) Ak b >>B 0,0k b >< C 0,0k b <> D 0,0k b <<8.如图,函数3y x=在第一象限内的图象关于x 轴对称的图象所对应的函数是( )A 3(0)y x x =-<B 3(0)y x x=-> C 1(0)3y x x=-< D 1(0)3y x x=>9.已知反比例函数12m y x-=的图象上有两点A11(,)x y ,B22(,)x y ,当120x x <<时,有12y y <,则m 的取值范围是( ) A m <0 B m >0 C 12m < D 12m >二.填空题(4分⨯7=28分)10.写出一个反比例函数,使它的图象在同一个象限内,y 随x 的增大而增大11.反比例函数k y x=的图象经过点(32-,5),(a ,-3),(10,b ),则a =b = 12.21039nn y x--=的图象在第一象限内,y 随x 的增大而增大,则n=13.已知y -2与x 成反比例,当x=3时,y=1,则当x=6时,y=15..直线14y x =和双曲线3y x=的交点坐标为),11y x ),22y x 210x x <<a y y =-21三..解答题.16.某商场一个季度的电视机采取分批进货,预计一个季度进货量为300台,每批都进货x台,且每批的运费200元.(1)写出该商场电视机一个季度进货总运费y(元)与每批进货的电视机台数x(台)的函数关系式(2)画出此函数图象.(3)如果要求一个季度进货总运费不超过1000元,那么每批进货的电视机台数至少为多少?17.如图所示,反比例函数kyx=(0k<)的图象经过点A(1,m-),过A作A B x⊥轴于点B,且△AOB的面积为1.(1)求k和m的值(2)若一次函数1y ax=+的图象经过点A,并且与x轴相交于点C,求∠ACO的度数(3)若直线与双曲线在第四象限内的交点的纵坐标为-1,求使一次函数的值大于反比例函数的值的x的取值范围.。
九年级数学反比例函数单元测试题及答案
九年级数学反比例函数单元测试题及答案Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT反比例函数综合检测题一、选择题(每小题3分,共30分)1、反比例函数y =x n 5图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、1 2、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1)B 、(-21,2) C 、(-2,-1) D 、(21,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该 气体的质量m 为( ).Q pxyot /h ) O t /h ) O t /h )O t /h v /(km/h ) O A . B . C . D .A 、B 、5kgC 、D 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两 点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 .12、已知反比例函数x ky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)x m2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)x m2-9m +19是反比例函数,且图象在每个象限内y 随x的增大而减小,则可列方程(不等式组)为 . 18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________. 20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、 y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式. 22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例: 函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =xs23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12. 三、解答题21、y =-x6.22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =x 2(x >0). x … 1 2 … y…421…(只要是生活中符合反比例函数关系的实例均可) 画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2;(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =xk ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2. (2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值. 26、解(1)由已知,得-4=1-k ,k =4,∴y =x4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2. (2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA+S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x 4,知两边相等,∴P 点在反比例函数图象上.。
九年级数学反比例函数单元测试题及答案(word文档良心出品)
反比例函数综合检测题一、选择题(每小题3分,共30分) 1、反比例函数y =xn 5图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1)B 、(-21,2) C 、(-2,-1) D 、(21,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )定5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk 满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂运动线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向时,Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定v /(km/O v /(km/O v /(km/O A . B . C . D .7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该 气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两 点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)x m2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa (a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)xm 2-9m +19是反比例函数,且图象在每个象限内y随x 的增大而减小,则可列方程(不等式组)为 . 18、过双曲线y =xk (k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________. 20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、 y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 . 三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例: 函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk 在第一象限内的分支上的两点,连结OA 、OB . (1)试说明y 1<OA <y 1+1y k; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk 的图象交于M 、N 两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点.(1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =xs23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y=-x12. 三、解答题 21、y =-x6.22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =2(x >0).(只要是生活中符合反比例函数关系的实例均可)画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk上,故x 1=1y k,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2;(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6. 25、(1)将N (-1,-4)代入y =xk ,得k =4.∴反比例函数的解析式为y =x4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y=2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA+S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3.(3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。
九年级数学反比例函数单元测试题及标准答案
九年级数学反比例函数单元测试题及答案————————————————————————————————作者:————————————————————————————————日期:反比例函数综合检测题一、选择题(每小题3分,共30分) 1、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2)3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该 气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).Q pxy ot /h v /(Ot /h v /(Ot /hv /(Ot /hv /(O A .B .C .D .A 、m <0B 、m >0C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .14、反比例函数y =(m +2)x m 2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)x m2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______. 19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、 y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分) 21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例:函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2. 求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题 11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =x s 23 ; 16、y =-x5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12.三、解答题 21、y =-x6. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =x2(x >0).x (2)11 232 … y…4234 1…(只要是生活中符合反比例函数关系的实例均可) 画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2; (2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM=21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =xk ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y=x 4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。
初三数学反比例函数单元测试题及答案
反比例函數綜合檢測題一、選擇題(每小題4分,共40分)1、反比例函數y =xn 5+圖象經過點(2,3),則n の值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函數y =xk (k ≠0)の圖象經過點(-1,2),則這個函數の圖象一定經過點( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2) 3、已知甲、乙兩地相距s (km ),汽車從甲地勻速行駛到乙地,則汽車行駛の時間t (h )與行駛速度v (km/h )の函數關係圖象大致是( )4、若y 與x 成正比例,x 與z 成反比例,則y 與z 之間の關係是().A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、無法確定5、一次函數y =kx -k ,y 隨x の增大而減小,那麼反比例函數y =xk 滿足( ). A 、當x >0時,y >0 B 、在每個象限內,y 隨x の增大而減小C 、圖象分佈在第一、三象限D 、圖象分佈在第二、四象限6、如圖,點P 是x 軸正半軸上一個動點,過點P 作x 軸の垂線PQ 交雙曲線y =x1於點Q ,連結OQ ,點P 沿x 軸正方向運動時, Rt △QOP の面積( ).A 、逐漸增大B 、逐漸減小C 、保持不變D 、無法確定7、在一個可以改變容積の密閉容器內,裝有一定品質m の某種氣體,當改變容積V 時,氣體の密度ρ也隨之改變.ρ與V 在一定範圍內滿足ρ=Vm ,它の圖象如圖所示,則該 氣體の品質m 為( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三點都在函數y =-x1の圖象上,則y 1,y 2,y 3の大小關係是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 29、已知反比例函數y =xm 21-の圖象上有A (x 1,y 1)、B (x 2,y 2)兩點,當x 1<x 2<0時,y 1<y 2,則m の取值範圍是( ). A 、m <0 B 、m >0 C 、m <21 D 、m >21 A . B . C . .10、如圖,一次函數與反比例函數の圖象相交於A 、B 兩點,則圖中使反比例函數の值小於一次函數の值のx の取值範圍是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2二、填空題(每小題5分,共25分)11、若反比例函數y =x b 3-和一次函數y =3x +b の圖象有兩個交點,且有一個交點の縱坐標為6,則b = .12、反比例函數y =(m +2)x m 2-10の圖象分佈在第二、四象限內,則m の值為 .13、如圖,點M 是反比例函數y =xa (a ≠0)の圖象上一點, 過M 點作x 軸、y 軸の平行線,若S 陰影=5,則此反比例函數解析式為 .14. 如圖,直線y =kx(k >0)與雙曲線xy 4=交於A (x 1,y 1), B (x 2,y 2)兩點,則2x 1y 2-7x 2y 1=___________.15、如圖,長方形AOCB の兩邊OC 、OA 分別位於x 軸、y 軸上,點B の座標為B (-320,5),D 是AB 邊上の一點, 將△ADO 沿直線OD 翻折,使A 點恰好落在對角線OB 上の點E 處,若點E 在一反比例函數の圖象上,那麼該函數の解析式是 .三、解答題(共60分)16、(12分)如圖,已知反比例函數y =-x8與一次函數 y =kx +b の圖象交於A 、B 兩點,且點A の橫坐標和點B の縱坐標都是-2.求:(1)一次函數の解析式;(2)△AOB の面積.17、(10分)如圖,一次函數y =ax +b の圖象與反比例函數y =xk の圖象交於M 、N 兩點. (1)求反比例函數與一次函數の解析式;(2)根據圖象寫出使反比例函數の值大於一次函數の值のx の取值範圍.18、(15分)如圖, 已知反比例函數y =x kの圖象與一次函數y =a x +b の圖象交於M (2,m )和N (-1,-4)兩點.(1)求這兩個函數の解析式;(2)求△MON の面積;(3)請判斷點P (4,1)是否在這個反比例函數の圖象上,並說明理由.。
反比例函数单元测试题(附答案)
九年级(下) 反比例函数单元测试题一、选择题1. 下列函数是反比例函数的是( )A.3x y =B.y =C. y =x 2+2xD. y =4x +82. 若y 与x 成正比,y 与z 的倒数成反比,则z 是x 的( )A.正比例函数B.反比例函数C.一次函数D.z 随x 增大而增大3. 在第三象限中,下列函数,y 随x 的增大而减小的有( )。
①3xy =- ②8xy =③y =-2x +5 ④y =5x -6A. 1个B. 2个C. 3个D. 4个4. 若点(3,4)是反比例函数ky x=图象上一点,则此函数图象必经过点( )A.(3,-4)B.(2,-6)C.(4,-3)D. (2,6)5. 函数3y x=的图象上有三点1(1,)A y -、2(2,)B y 3(3,)C y ,那么下列结论正确的是( ) A.123y y y <<B. 132y y y <<C. 231y y y <<D. 321y y y <<6. 下列反比例函数的图象在每一个象限内,y 随x 增大而减小的一定是( )A.ay x= B.2a y x -=C.21a y x+=D.21a y x--=7. 已知反比例函数5my x-=的图象在每一个象限内,y 随x 增大而增大,则( ). A.m≥5 B.m<5 C.m>5 D.m≤58. 已知某村今年的荔枝总产量是p 吨(p 是常数),设该村荔枝的人均产量为y (吨),人口总数为x (人),则y 与x 之间的函数图象是( )9. 如图,已知关于x 的函数(1)y k x =-和y =k-(k ≠0), 它们在同一坐标系内的图象大致是( )10. 函数y kx =与(0)y k x=≠的图象的交点个数是( ) A. 2B.1C. 0D.11. 如图,点P 是反比例函数y =kx图象上一点,过点P 分别作x 轴、y •轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 ( )A.y =2x-B. y =2xC.y =4x-D.y =4x12. 反比例函数xk y 1-=的图象经过点(-3, 4), 给出下列结论: ①点(2, -6)在函数的图象上;②当x 1<x 2时, 一定有y 1<y 2;③当x >0时, 函数的图象在第四象限;④过函数图象上一点P 向坐标轴作垂线, 与坐标轴围成的图形面积为12.其中正确的结论是( ).A.①②③B.①②④C.①③④D.①②③④二、填空题.13. 请写一个在一、三象限的反比例函数的解析式:_________. 14. 若函数y =4x 与y =x1的图象有一个交点是(12,2),则另一个交点坐标是15. 如图,在反比例函数2y x=(0x>)的图象上,有点1234P P P P ,,,, 它们的横坐标依次为1、2、3、4,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= . 16. 如图,双曲线ky x=经过矩形ABCD 的顶点B 、D ,若A (2,1), 且8=矩形ABCD S ,则k = .三、解答题 17. 反比例函数xky =的图象经过点)3,2(A . (1)求这个函数的解析式;(2)请判断点)6,1(B 是否在这个反比例函数的图象上,并说明理由.A .B .C .D .18. 如图,一次函数y=kx+b 的图像与反比例函数y=xm的图像相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图像写出使一次函数的值小于反比例函数的值的x 的取值范围.19. 某地区探测出一处储藏1亿吨的稀土矿,政府准备进行有组织、有计划的开采. (1)求开采年限y(年)与年开采量x(吨)的关系式;(2)政府初步决定每年开采100万吨,那么这处矿藏的开采年限为多少年?(3)为了造福子孙,节约资源,政府决定将开采年限为150年,那么开采的速度应为每年多少万吨才能达到要求?(结果保留整数)20. 如图,点P 是一个反比例函数与正比例函数2y x =-的图象的交点,PQ 垂直于x 轴,且Q (1,0)(1) 求这个反比例函数的解析式.(2) 如果点M 在这个反比例函数的图象上,且△MPQ 的面积为3,求点M 的坐标.21. 如图,点P 是直线122y x =+与双曲线k y x=在第一象限内的一个交点,直线12y x =+与x轴、y 轴的交点分别为A 、C ,过P 作PB 垂直于x 轴,若AB +PB =9. (1)求k 的值;(2)求△PBC 的面积.22.如图, 反比例函数8(0)y x x=>.(1)直线y =-x +6与双曲线交于A 、B 两点, 求△AOB 的面积;(2) 若直线y =kx +b 交双曲线于A 、B 两点, AC ⊥y 轴于C, BD ⊥y 轴于D, 若BD =2AC, 求△AOB 的面积.23. 如图, 反比例函数xk y =的图象经过点A(-1, b), 过点A 作AB ⊥x轴于点B, △AOB .(1) 求k 和b 的值;(2)若一次函数y m =+的图象经过点A, 并且与x 轴交于点M, 求一次函数解析式、 线段AB 及x 轴所围成的三角形的面积;(3) 在x 轴上是否存在点P, 例P 、A 、M 构成等腰三角形?若存在, 请写出点P 的坐标;若不存在, 请说明理由.2反比例函数单元测试题13、略 14、1(,2)2-- 15、32 16、6三、解答题17、(1)6y x =;(2)在 18、(1)2y x =-,1y x =--; (2)20x -<<或01x <<19、(1)810y x=; (2)当610x =时,100y =; (3)6720、(1)2y x =-; (2)M (4,12-)或M (-2,1)21、(1)设P (m ,122m +),则122PB m =+,172AB m =-,∴132m m =-,2m =∴P (2,3),k =6(2)3PBC OBC OCPBS S S ∆∆=-梯=22、(1)分别过A、B 作x 轴的垂线,垂足分别为C、D ,A (2,4),B (4,2),6AOB ACDB S S ∆==梯;(2)设A (a ,b ),则B (2a ,12b ),易证AOB ACDB S S ∆=梯,∴13(2)224AOB ACDB b S Sa a ab ∆=+=梯=又8ab =,∴364AOBACDB S S ab ∆==梯=.23、(1)k =,b (2)y =+M (2,0),132AMB S ∆=⨯; (3)1P (0,0),2P (-4,0)3P (2+),4P (2-)。
(完整版)初三数学反比例函数单元测试题及答案.docx
反比例函数综合检测题一、选择题 (每小题 4 分,共 40 分)1、反比例函数y =n5图象经过点( 2, 3),则 n 的值是().xA 、- 2B 、- 1C 、 0D 、12、若反比例函数 y = k( k ≠ 0)的图象经过点(- 1, 2),则这个函数的图象一定经过点().x1, 2)D 、( 1, 2)A 、( 2,- 1)B 、(-C 、(- 2,- 1)223、已知甲、乙两地相距 s ( km ),汽车从甲地匀速行驶到乙地, 则汽车行驶的时间 t ( h )与行驶速度 v ( km/h )的函数关系图象大致是( )t/ht/h t/ht/hOv/(km/h)Ov/(km/h)Ov/(km/h)Ov/(km/h)A .B .C .D .4、若 y 与 x 成正比例, x 与 z 成反比例,则 y 与 z 之间的关系是().A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定5、一次函数 y = kx - k , y 随 x 的增大而减小,那么反比例函数y = k满足().xA 、当 x > 0 时, y > 0B 、在每个象限内, y 随 x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限6、如图,点 P 是 x 轴正半轴上一个动点,过点P 作 x 轴的垂y 线 PQ 交双曲线 y = 1于点 Q ,连结 OQ ,点 P 沿 x 轴正方向运动时,xRt △ QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定7、在一个可以改变容积的密闭容器内,装有一定质量 Qopxm 的某种气体,当改变容积V 时,气体的密度 ρ也随之改变.ρ与 V 在一定范围内满足 ρ =m,它的图象如图所示,则该V气体的质量 m 为( ).A 、 1.4kgB 、5kgC 、 6.4kgD 、7kg8、若 A (- 3, y 1 ),B (- 2, y 2), C (- 1, y 3 )三点都在函数 y =-1的图象上,则 y 1, y 2, y 3 的大小x关系是().A 、 y 1 > y 2> y 3B 、y 1< y 2< y 3C 、 y 1= y 2= y 3D 、 y 1< y 3< y 29、已知反比例函数12m的图象上有 A ( x 1 1 2 21 2 <012,则 my =x,y )、B ( x ,y )两点,当 x< x 时, y< y的取值范围是().A 、 m < 0B 、 m > 0C 、 m <1D 、 m >110、如图,一次函数与反比例函数的图象相交于 A 、 B 两点,则图中使反比例函数的值小于一次函数的值的 x 的取值范围是().A 、 x <- 1B 、 x > 2C 、- 1<x < 0 或 x > 2D 、 x <- 1 或 0< x < 2 二、填空题 (每小题 5 分,共 25 分)11、若反比例函数y =b3和一次函数 y = 3x + b 的图象有两个交点,且有一个交点的纵坐标为6,则 bx= .12、反比例函数 y =( m + 2) x m 2m 的值为-10的图象分布在第二、四象限内,则 .13、如图,点 M 是反比例函数y = a( a ≠ 0)的图象上一点,x过 M 点作 x 轴、 y 轴的平行线,若S 阴影 = 5,则此反比例函数解析式为.14. 如图,直线 y = kx(k > 0)与双曲线 y4 交于 A ( x 1,y 1),xB ( x , y )两点,则 2xy -7xy1 2 = ___________.222115、如图,长方形 AOCB 的两边 OC 、 OA 分别位于 x 轴、 y 轴上,点 B 的坐标为 B (-20, 5), D 是 AB 边上的一点,3将△ ADO 沿直线 OD 翻折,使 A 点恰好落在对角线 OB 上的点 E 处,若点 E 在一反比例函数的图象上,那么该函数的解析式是.三、解答题 (共 60 分)16、( 12 分)如图,已知反比例函数y =-8与一次函数xy = kx + b 的图象交于 A 、 B 两点,且点 A 的横坐标和点 B 的纵坐标都是- 2.求:( 1)一次函数的解析式; ( 2)△ AOB 的面积.17、( 10 分)如图,一次函数 y= ax+ b 的图象与反比例函数y=k的图象交于 M 、N 两点.( 1)求反比例函数与一次函数的解析式;x( 2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.18、( 15 分)如图,已知反比例函数y=k的图象与一次函x数y= ax+b 的图象交于 M ( 2, m)和 N(- 1,- 4)两点.( 1)求这两个函数的解析式;( 2)求△ MON 的面积;( 3)请判断点 P( 4, 1)是否在这个反比例函数的图象上,并说明理由.。
(完整word版)九年级数学反比例函数单元测试题及答案
反比例函数综合检测题一、选择题(每小题3分,共30分)1、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1)B 、(-21,2)C 、(-2,-1)D 、(21,2)3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h)与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该气体的质量m 为( ).A 、1。
4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C(-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 29、已知反比例函数y =xm21-的图象上有A(x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21D 、m >2110、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).Qp xy o t /h Ot /hOt /hOt /hv /(km/h)OA .B .C . .A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 .12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而(填“增大”或“减小”或“不变").13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b= .14、反比例函数y =(m +2)xm2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)xm2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B(x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式. 22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例:函数表达式:23、(10分)如图,已知A(x 1,y 1),B(x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2. 求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P(4,1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B;9、D ; 10、D . 二、填空题 11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =x s 23 ; 16、y =-x5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12.三、解答题21、y =-x6.22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y(米)之间的函数关系式为y =x2(x >0).x…21 123 2 … y … 4 234 1…(只要是生活中符合反比例函数关系的实例均可) 画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D,则OD =x 1,AD =y 1,因为点A(x 1,y 1)在双曲线y =x k 上,故x 1=1y k,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2;(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM |=2,于是S △AOB =S △AOM +S △BOM =21|OM |·|y A |+21|OM |·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =x k ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P(4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。
第九章反比例函数练习题及答案
八年级数学学科第九章《反比例函数》质量检测试题总分:100 考试时间:60分钟一.选择题(每题3分,共36分)1.若函数y= (m+2)x|m|是反比例函数,则m的值是().A.2 B.? 2 C.±2 D.以上答案都不对2.下列函数中,是反比例函数的是()A.y = B.y = C.y = D.y =3.函数y = kx与y =(k≠0)的图象的交点个数是()A.0 B.1 C.2 D.不确定4.函数y = kx+b与y =(kb≠0)的图象可能是()A B C D5.若y与x成正比,y与z的倒数成反比,则z是x的()A.正比例函数B.反比例函数C.二次函数D.不能确定6.下列函数中y既不是x的正比例函数,也不是反比例函数的是()A.y = B.10x =5y C.y = 4D .xy =27.反比例函数y=2x的图象位于( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限8.已知点(3,1)是双曲线y=kx(k≠0)上一点,则下列各点中在该图象上的点是( )A.(13,-9) B.(3,1) C.(-1,3) D.(6,-12)9.某闭合电路中,电源电压为定值,电流IA.与电阻R(Ω)成反比例,如右图所表示的是该电路中电流I与电阻R之间的函数关系的图象,则用电阻R表示电流I•的函数解析式为( ).A .I =6RB .I =-6RC .I =3RD .I =2R10.函数y =1x 与函数y =x 的图象在同一平面直角坐标系内的交点个数是( ).A .1个B .2个C .3个D .0个11.若函数y =(m+2)|m|-3是反比例函数,则m 的值是( ).A .2B .-2C .±2D .×212.已知点A(-3,y1),B(-2,y2),C(3,y3)都在反比例函数y =4x 的图象上,则( ).A .y1<y2<y3B .y3<y2<y1C .y3<y1<y2D .y2<y1<y3二. 填空题(每题3分,共18分)13.一般地,函数__________是反比例函数,其图象是__________,当k<0时,图象两支在__________象限内.14.已知反比例函数y =,当y = 6时,x =_________.15.正比例函数y = x 与反比例函数y=的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD ⊥x 轴于D ,如图所示,则四边形ABCD 的面积为_______.16.反比例函数的图象过点(3,5),则它的解析式为_________.17.若函数y = 4x 与y =的图象有一个交点是(,2),则另一个交点坐标是18.已知圆柱的侧面积是10π cm2,若圆柱底面半径为r cm ,高为h cm ,则h 与r 的函数关系式是 _________.三.解答题(共46分)19.直线y = kx+b过x轴上的点A(,0),且与双曲线y =相交于B、C两点,已知B 点坐标为(?,4),求直线和双曲线的解析式.(7分)20.已知一次函数y = x+2与反比例函数y =的图象的一个交点为P(a,b),且P到原点的距离是10,求a、b的值及反比例函数的解析式.(7分)21.如图,已知一次函数y = kx+b(k≠0)的图象与x轴、y轴分别交于A、B•两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.(7分)22.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(8分)23.如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B•两点,且与反比例函数y=mx(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,•若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.(8分)24.如图,已知点A(4,m),B(-1,n)在反比例函数y=8x的图象上,直线AB•分别与x轴,y轴相交于C、D两点,(1)求直线AB的解析式.(2)C、D两点坐标.(3)S△AOC:S△BOD是多少?(8分)25.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(8分)(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.。
九年级数学反比例函数单元测试题及答案
反比例函数综合检测题一、选择题(每小题3分,共30分) 1、反比例函数y =xn 5图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1)B 、(-21,2)C 、(-2,-1)D 、(21,2)3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x轴的垂方向运动时,线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该 气体的质量m 为( ).A 、B 、5kgC 、D 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21 的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <21D 、m >21 Qpxyo10、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 .12、已知反比例函数xk y =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =x b 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)x m 2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa (a ≠0)的图象上一点,过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)x m2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4 交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、 y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式. 22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例: 函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk 在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB的面积.25、(11分)如图,一次函数y=ax+b的图象与反比例函数yk的图象交于M、N两点.=x(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.k的图象与一次函26、(12分)如图,已知反比例函数y=x数y=a x+b的图象交于M(2,m)和N(-1,-4)两点.(1)求这两个函数的解析式;(2)求△MON的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D .二、填空题11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =xs23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12.三、解答题 21、y =-x6.22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =x2(x >0).x …21 123 2 …y … 4 234 1 …(只要是生活中符合反比例函数关系的实例均可) 画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k ; (2)△BOC 的面积为2.24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2;(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6. 25、(1)将N (-1,-4)代入y =xk ,得k =4.∴反比例函数的解析式为y =x4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y=2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3.(3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。
九年级数学反比例函数单元测试题及答案
反比例函数综合检测题一、选择题(每小题3分,共30分) 1、反比例函数y =xn 5图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1)B 、(-21,2) C 、(-2,-1) D 、(21,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )定5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂向运动线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方时,Rt △QOP 的面积( ).v /(km/O v /(km/O v /(km/O A . B . C . D .A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该 气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两 点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)x m2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa (a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)xm 2-9m +19是反比例函数,且图象在每个象限内y随x 的增大而减小,则可列方程(不等式组)为 . 18、过双曲线y =xk (k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________. 20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、 y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 . 三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式. 22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例: 函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk 在第一象限内的分支上的两点,连结OA 、OB . (1)试说明y 1<OA <y 1+1y k; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk 的图象交于M 、N 两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk 的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =xs23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x12. 三、解答题 21、y =-x6.22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y(米)之间的函数关系式为y =x2(x >0).x…12…y … 4 2 1 …(只要是生活中符合反比例函数关系的实例均可) 画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk 上,故x 1=1y k,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2;(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =xk ,得k =4.∴反比例函数的解析式为y =x4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S△MOA+S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3.(3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。
九年级数学反比例函数单元测试题及答案
反比例函数综合检测题一、选择题(每小题3分,共30分) 1、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2)3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定 、一次函数y =kx -k y 随x 的增大而减小,那么反比例函数y =x k满足( ). 、当x >0时,y > B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该 气体的质量m 为( ).A 、B 、5kgC 、D 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两 点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).Q pxy ot /h /(km/h ) t /h /(km/h ) t /h /(km/h ) t /hv /(km/h)O A . B . C . D .A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .14、反比例函数y =(m +2)xm2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 . 16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)xm2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______. 19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________. 20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、 y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 . 三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式. 22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例: 函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围. 26、(12分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题 11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =x s 23 ; 16、y =-x5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12. 三、解答题 21、y =-x6. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =x2(x >0).x … 1 2 … y…421…(只要是生活中符合反比例函数关系的实例均可)画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2; (2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =x k ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值. 26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。
九年级数学反比例函数单元测试题(卷)与答案
反比例函数综合检测题一、选择题(每小题3分,共30分) 1、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =x k(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2)3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该 气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).Q pxy ot /h Ot /h O t /hO t /h v /(km/h) O A . B . C . .A 、m <0B 、m >0C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .14、反比例函数y =(m +2)xm2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)xm2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______. 19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、 y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分) 21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例:函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2. 求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题 11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =x s 23 ; 16、y =-x5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12.三、解答题 21、y =-x6. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =x2(x >0).x (2)1 1 232 … y…4234 1…(只要是生活中符合反比例函数关系的实例均可) 画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2; (2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =x k ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 《反比例函数》单元检测卷(满分120分,考试时间120分钟)一、精心选一选(本题满分30分,共有10道小题,每小题3分。
下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将各小题所选答案的标号填写在题后面的括号内.) 1、下列函数中,图象经过点(1,-1)的反比例函数解析式是( )A .y=x 1B .y=-x 1C .y=x 2D .y=-x22、在反比例函数y=xk 3-图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( )A .k >3B .k >0C .k <3D . k <0 3、如图1,某反比例函数的图像过点M (,1),则此反比例函数表达式为( )A .y=x 2 B .y=-x 2 C .y=x 21 D .y=-x21图1 图2 图3 4、已知反比例函数y=xk的图象在第二、第四象限内,函数图象上有两点A (,y1)、B (5,y2),则y1与y2的大小关系为 ( ) A 、y1>y2 B 、y1=y2 C 、y1<y2 D 、无法确定5、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m3 ) 的反比例函数,其图象如图2所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应 ( )A .不小于45m 3 B .小于45m 3 C .不小于54m 3 D .小于54m 3 6、反比例函数xky =的图象如图3所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为 ( ) (A)2 (B)-2 (C)4 (D)-4 7、对于反比例函数xy 2=,下列说法不正确的是 ( ) A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限C .当时,随的增大而增大 D .当时,随的增大而减小8、已知反比例函数xy 2=,则这个函数的图象一定经过( ) A . (2,1) B . (2,-1) C .(2,4) D . (-21,2) 9、如图4,A 、B 是反比例函数xy 2=的图象上的两点.AC、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是 ( )A .21 B .41C.81 D .16110、在下图中,反比例函数xy k 12+=的图象大致是 ( )二、细心的填一填(本题有10个小题, 每小题3分, 共30分) 11、已知反比例函数xy 8-=的图象经过点P (a+1,4),则a=_____. 12、反比例函数xy 6-=图象上一个点的坐标是 . 13、已知点(1,-2)在反比例函数xky =的图象上,则 .14、已知反比例函数x ky =的图象经过点,则这个反比例函数的解析式是 .15、若反比例函数xy 1-=的图象上有两点,,则______(填“”或“”或“”).图416、写出一个图象在第一、三象限的反比例函数的解析式 . 17、请写出一个图象在第二、四象限的反比例函数关系式_____________ 18、已知反比例函数的图象经过点(3,2)和(m ,-2),则m 的值是__.19、在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图5所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.图5 图6 20、如图6,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .三、专心解一解(共60分)21、(本小题满分8分)如图,已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数xmy =的图象的两个交点. (1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.2y x=xyOP 1P 2P 3 P 4 1 23422、(本小题满分8分)从甲、乙两题中选做一题即可.如果两题都做,只以甲题计分. 题甲:如图,反比例函数xky =的图象与一次函数的图象交于A(1,3),B(n,-1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当取何值时,反比例函数的值大于一次函数的值.23、(本小题满分10分)如图,一次函数y=kx+b 的图象与反比例函数xmy =的图象交于A(-2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求的面积.24、(本小题满分14分)如图,已知直线y=21x 与双曲线y=xk(k >0)交于A,B 两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线y=xk(k >0)上一点的纵坐标为8,求的面积;(3)过原点O 的另一条直线交双曲线y=xk(k >0)于P,Q 两点(P 点在第一象限),若由点A,B,P,Q 为顶点组成的四边形面积为,求点的坐标.25、(本小题满分10分) 已知A(-1,M),B(2,m+33)是反比例函数xky =图象上的两个点.(1)求k 的值;(2)若点C(-1,0),则在反比例函数xky =图象上是否存在点D ,使得以A,B,C,D 四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.26、(本小题满分10分)如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O右侧用一个弹簧秤向下拉,改变弹簧秤与点O的距离x(cm),观察弹簧秤的示数y(N)的变化情况。
实验数据记录如下:(1线连接这些点并观察所得的图象,猜测y(N)与x(cm)之间的函数关系,并求出函数关系式;(2)当弹簧秤的示数为24N时,弹簧秤与O点的距离是多少cm?随着弹簧秤与O点的距离不断减小,弹簧秤上的示数将发生怎样的变化?参考答案一、1、B .y=-x12、A .根据反比例函数的性质知k >33、B .y=-x24、A 、图象在第儿、四象限,k <0,知y1>y25、C .不小于54m 36、D ;根据面积关系得-47、C .当时,随的增大而增大8、A .反比例函数xy 2=过点(2,1) 9、D .关系反比例函数的性质及面积关系得16110、D ;由k 2+1>0知图象过的一、三象限 二、11、-3;将点的坐标代入求得a 的值12、满足条件xy=-6的任一点(x,y)均可 13、-2;将点的坐标代入得k =-2 14、xy 18=15、<;关系反比例函数的性质16、解:答案不唯一,如:x y 2= 17、解:答案不唯一,如:xy 2-=18、-3;将两点坐标代入 19、0.5;根据反比例函数的性质 20、23;点拨 根据反比例函数的一个性质k=xy 即为矩形的面积 三、21、 解:(1) ∵ 点A (-4,2)和点B (n ,-4)都在反比例函数y =xm的图象上,∴ 解得又由点A (-4,2)和点B (2,-4)都在一次函数y =kx +b 的图象上, ∴解得∴ 反比例函数的解析式为xy 8-=,一次函数的解析式为y =-x -2 . (2)x 的取值范围是x >2或-4<x <0 . 22、解:(1)A(1,3)在xky =的图象上,,xy 3= 又在xy 3=的图象上,,即解得:,,反比例函数的解析式为3y x=, 一次函数的解析式为, (2)从图象上可知,当或时,反比例函数的值大于一次函数的值23、解:(1)点在反比例函数xmy =的图象上,.反比例函数的表达式为xy 2-=.点也在反比例函数xy 2-=的图象上,,即.把点,点代入一次函数中,得解得一次函数的表达式为.(2)在中,当时,得.直线与轴的交点为.线段将分成和,.24、解:(1)点横坐标为,当时,.点的坐标为.点是直线y=21x 与双曲线y=xk(k >0)的交点,.(2)解法一:如图-1,点在双曲线上,当时,点的坐标为.过点分别做轴,轴的垂线,垂足为,得矩形.,,,..解法二:如图-2,过点分别做轴的垂线,垂足为, 点在双曲线y=x8上,当时,.点的坐标为.点,都在双曲线y=x8上,..,.(3)反比例函数图象是关于原点的中心对称图形,,.四边形是平行四边形.. 设点横坐标为,得P(m,m8).过点分别做轴的垂线,垂足为, 点在双曲线上,.若,如图-3,,..解得,(舍去)..若,如图-4,,.∴21(2+m 8).(m -4)=6,解得,(舍去).∴P(8,1). 点P 的坐标是P(2,4)或P(8,1)25、解:(1)由,得,因此.(2)如图1,作轴,为垂足,则,,, 因此.由于点C 与点A 的横坐标相同,因此轴,从而.当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B , 故不符题意.当BC 为底时,过点作BC 的平行线,交双曲线于点D ,过点A,D 分别作轴,y 轴的平行线,交于点F .由于,设,则,,由点,得点.因此,解之得m 1=337(舍去),因此点D(6,33). 此时AD=3314,与的长度不等,故四边形是梯形.如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC=BC ,因此∠CAB=30º,从而∠ACD=150º.作DH ⊥x 轴,H 为垂足, 则∠DCH=60º,设CH=m 2(m 2>0),则DH=3m 2,CD=2m 2由点C(-1,0),得点D(-+m 2, 3m 2),因此(-1+m 2).3m 2=23.解之得m 2=2(m 2=-1舍去),因此点D(1,23).此时CD=4,与AB 的长度不相等,故四边形ABCD 是梯形.如图3,当过点C 作AB 的平行线,与双曲线在第三象限内的交点为时, 同理可得,点D(-2,- 3),四边形ABCD 是梯形.综上所述,函数xy 32 图象上存在点D ,使得以A,B,C,D 四点为顶点的四边形为梯形,点D 的坐标为:D(6,33)或D(1,23)或D(-2,- 3).26、解:(1)如图,猜测y 是x 的反比例函数,设y=xk ,把x=10, y=30代入,得k=30,所以 y=x30(x>0)。
(2)y=x 30, 当y=24时,解得x=12.5。