求数列通项公式和前n项和的常用方法(含高考题精选)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求数列通项公式和前n 项和的常用方法
一、求数列通项公式的常用方法
1.公式法:等差数列或等比数列的通项公式。
2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。
3.累乘法:利用3
21
121
(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+
类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递
推公式转化为:)(1t a p t a n n -=-+,其中p
q
t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )
。 (或1n
n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1
+n q ,得:q
q a q p q a n n n n
111+•=++引入辅助数列{}n b (其中n n n q a b =),得:q
b q p b n
n 1
1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =)
解法:1.利用⎩⎨
⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)
2()
1(11n S S n S a n n n 2.升降标相减法
二、数列求和的常用方法
1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2
)
1(2)(11-+=+=
(2)等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)
1(11)1()1(111q q q a a q
q a q na S n n
n
2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。
3.裂项求和法 (1)1
1
1)1(1+-
=+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为
几个等差、等比或常见的数列,然后分别求和,再将其合并。
5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)
三、数列高考题
1.(2011年高考辽宁卷理科17)(本小题满分12分) 已知等差数列{a n }满足a 2=0,a 6+a 8= -10
(I )求数列{a n }的通项公式; (II )求数列12n n a -⎧⎫
⎨
⎬⎩⎭
的前n 项和.
2... (2014全国1)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-
,其中λ为常数. (Ⅰ)证明:2n n a a λ+-=
;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.
3..(2016年全国III 高考)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.
(I )证明{}n a 是等比数列,并求其通项公式; (II )若531
32
S = ,求λ.
4..(2016年山东高考)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+
(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1
(1).(2)
n n n n
n a c b ++=+ 求数列{}n c 的前n 项和T n .
5. (2011年高考全国新课标卷理科17)(本小题满分12分)
等比数列{}n a 的各项均为正数,且2
12326231,9.a a a a a +== (1)求数列{}n a 的通项公式.
(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫
⎨⎬⎩⎭
的前项和.
6.(2015全国1) S n 为数列{a n }的前n 项和.已知a n >0,
(Ⅰ)求{a n }的通项公式:(Ⅱ)设 ,求数列
}的前n 项和
求数列通项公式和前n 项和的常用方法答案
1.(I )设等差数列{}n a 的公差为d ,由已知条件可得11
0,21210,a d a d +=⎧⎨+=-⎩解得11,
1.a d =⎧⎨=-⎩
故数列{}n a 的通项公式为2.n a n =- ………………5分 (II )设数列1
{
}2
n n n a n S -的前项和为,即2
111,122
n
n n a a S a S -=+++
=故, 12
.224
2n n
n
S a a a =+++
所以,当1n >时, 121
1111222211121()2422
121(1)22
n n n n n n
n n n n
S a a a a a a n n
------=+++--=-+++--=---
=
.2n n 所以1
.2
n n n S -=综上,数列11{}.22n n n n a n
n S --=的前项和 2.解(Ⅰ)由题设,1121
1,1n n n n n n a a Sa a S λλ
++++=-=- 两式相减得121()n n n n a a a a λ
+++-=,而10n a +≠,2n n a a λ+∴-= (Ⅱ)121111a a S a λλ
=-=-,而11a =,解得 21a λ=-
,又{}n a 令2132a a a =+,解得4λ=。此时12321,3,5,4n n
aa a aa +===-= ∴{}n a 是首项为1,公差为2的等差数列。 即存在λ=4,使得{}n a 为等差数列。 3.解