求数列通项公式的方法教案例题习题定稿版
求数列通项公式的十种方法(例题+详解)
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n na a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解: 22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=-- (2)分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1。
已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
求数列通项公式的十种方法(例题+详解)
求数列通项公式的十种方法一.公式法 例1已知数列{勺}满足d”|=2勺+3x2", q=2,求数列{勺}的通项公式。
扌,故数列{影}是 以沪知为首项,以扌为公差的等差数列,由等差数列的通项公式,畤“+心)|,3 1 所以数列{©}的通项公式为a n =(-n —)2\2 2评注:本题解题的关键是把递推关系式。
心=2©+3><2”转化为增一牛=3,说明数列 2 2 2 {*}是等差数列,再直接利用等差数列的通项公式求出*=1+5—1)_,进而求出数列 2 2 2{q r }的通项公式。
例2.若S”和7;分别表示数列{©}和0}的前"项和,对任意正整数a n =-2(n + l), T n -3S n =4n.求数列{b K }的通项公式;解:•/ a fj = -2(n + I)/. “] = -4 cl = -2 = 一昇 一 3n.・.坊=3»+4"=-3舁2_5加 2 分 当 ”=1 时,7j 訥=—3—5=—8 当 n>2^\,b f J =T f J —7^2—1 =-6/2—2 ........... . ^=—6/2—2. 4 分I练习:1.已知正项数列{an },其前n 项和Sn 满足10Sn=an 2+5a n +6且a 】,a3,a 】5成等 比数列,求数列{%}的通项%. 解:T 105>訂+5/+6,① ・:108产日「+5/+6,解之得创=2或力产3,又 10$-产②-:+5②T +6(〃$2),②由①—②得 10a = (a^—a…-i 2) +6(a…—a…-x ),即(8”+$Q (%—/一】—5) =0T 色+/_1>0 , 二 a :—乔产5 (77^2) •当 ai =3 时,a.\— 13* ^i5=73. EL \* 越,去不成等比数列Si^3; 当 ai —2 时» 3.\— 12 9 ai5=72,有 &3 二日15 、二2, • • @7二5/7 —3,三、累加法 例3已知数列{©}满足如=©+2几+ 1, q=l,求数列{©}的通项公式。
求数列通项公式的办法(教案+例题+习题)
求数列的通项公式的方法1.定义法:①等差数列通项公式;②等比数列通项公式。
例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =, 32n a f ++=经验证11=a 也满足上式,所以])1(2[312---+=n n n a 点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.练一练:①已知{}n a 的前n 项和满足2log (1)1n S n +=+,求n a ;②数列{}n a 满足11154,3n n n a S S a ++=+=,求n a ;3.作商法:已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
如数列}{n a 中,,11=a 对所有的2≥n 都有2321n a a a a n = ,则=+53a a ______;4.累加法:若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥。
例3.已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
解:由条件知:111121-===-+a a n n 21a a ⋅⋅⋅(n (1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
①1n n a ka b -=+解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中pq t -=1,再利用换元法转化为等比数列求解。
求数列的通项公式列(教案+例题+习题)
求数列的通项公式(教案+例题+习题)第一章:数列的定义与通项公式的概念1.1 数列的定义引导学生回顾数列的定义:数列是按照一定的顺序排列的一列数。
强调数列的三个要素:项、项数、排列顺序。
1.2 通项公式的概念解释通项公式的定义:数列中第n项与项数n之间的关系式。
强调通项公式的作用:可以确定数列中任意一项的值。
第二章:等差数列的通项公式2.1 等差数列的定义引导学生回顾等差数列的定义:相邻两项之差为常数的数列。
强调等差数列的特点:相邻两项的差是固定的。
2.2 等差数列的通项公式推导等差数列的通项公式:an = a1 + (n-1)d解释公式中的参数:an表示第n项的值,a1表示首项的值,d表示公差,n表示项数。
第三章:等比数列的通项公式3.1 等比数列的定义引导学生回顾等比数列的定义:相邻两项之比为常数的数列。
强调等比数列的特点:相邻两项的比是固定的。
3.2 等比数列的通项公式推导等比数列的通项公式:an = a1 q^(n-1)解释公式中的参数:an表示第n项的值,a1表示首项的值,q表示公比,n表示项数。
第四章:数列的通项公式求法4.1 观察法介绍观察法求通项公式的方法:通过观察数列的规律,找出通项公式。
举例讲解观察法的应用。
4.2 递推法介绍递推法求通项公式的方法:通过数列的递推关系式,推导出通项公式。
举例讲解递推法的应用。
第五章:数列通项公式的应用5.1 求数列的前n项和引导学生回顾数列的前n项和的定义:数列前n项的和。
讲解利用通项公式求数列的前n项和的方法。
5.2 求数列的特定项的值讲解利用通项公式求数列中特定项的值的方法。
5.3 数列的极限引导学生回顾数列极限的定义:数列项数趋于无穷大时,数列的和或特定项的值的趋近值。
讲解利用通项公式分析数列极限的方法。
第六章:多项式数列的通项公式6.1 多项式数列的定义引导学生回顾多项式数列的定义:数列的每一项都是多项式。
强调多项式数列的特点:每一项都可以表示为变量的幂次乘以系数。
高中数学必修五求数列通项公式方法总结和典型例题附详细答案[精品文档]
数列专项-2 类型Ⅰ 观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项。
例1.写出下列数列的一个通项公式a n(1)-1,4,-9,16,-25,36,......;(2)2,3,5,9,17,33,......。
类型Ⅱ 公式法:若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩构造两式作差求解。
用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即1a 和n a 合为一个表达,(要先分1n =和2≥n 两种情况分别进行运算,然后验证能否统一)。
例2.设数列{}a n 的前n 项和为()()*∈-=N n a S n n 131 (1)求21a a 、;(2)求数列n a 的通项公式。
例3.设数列{}a n 的前n 项和为()*∈+=N n a S nn 12,求证n a 为等比数列并求其通项公式。
类型Ⅲ 累加法:形如)(1n f a a n n +=+型的递推数列(其中)(n f 是关于n 的函数)可构造: 11221(1)(2)..(1.)n n n n a a f n a a f n a a f ----=⎧⎪⎪⎨--=--=⎪⎪⎩ 将上述1-n 个式子两边分别相加,可得:1(1)(2)...(2)(1),(2)n a f n f n f f a n =-+-+++≥适用于)(n f 是可求和的情况。
①若()f n 是关于n 的一次函数,累加后可转化为等差数列求和;例4.设数列{}a n 满足11=a ,121+=-+n a a n n ,求数列的通项公式。
② 若()f n 是关于n 的指数函数,累加后可转化为等比数列求和;例5.设数列{}a n 满足21=a ,n n n a a 21=-+,求数列的通项公式。
数列通项公式的求法最全教案
第22页/共33页
类型七、特征根法、不动点法
(一)理论部分:
第23页/共33页
试求斐波那数列(兔子数列):1,1,2,3,5,8,13,21,34,55,89…… 的通项公式
第24页/共33页
类型七、特征根法、不动点法
(三)不动点法:
第25页/共33页
类型七、特征根法、不动点法
类型一 观察法:已知前几项,写通项公式
一、普通数列:
方法规律总结:1.正负号用(-1)n或(-1)n+1来调节。分式形式观察分母间关系和分子间关系的同时还要观察分子与分母间的关系,有时还要把约分后的分式还原后观察。2.如0.7,0.77,0.777…类的数列,要用“归九法”3.两个循环的数列是0,1,0,1…的变形。可以拆成一个常数列b,b,b,b…与
(三)不动点法:
第26页/共33页
不动点法理论纯字母推导比较难,看一个具体的例题,帮助理解
第27页/共33页
特征根法对待定系数的妙用:
第28页/共33页
类型八、其他方法
(一)开方、平方法
求递推数列的通项的主要思路是通过转化, 构造新的熟知数列,使问题化陌生为熟悉.我们要根据不同的递推关系式,采取不同的变形手段,从而达到转化的目的.
二、递推数列:
条件:f(1)+ f(2)+… f(n-1)的和要可以求出才可用
第4页/共33页
例2:
条件:f(1)f(2)… f(n-1)的积要可以求出才可用
第5页/共33页
则可考虑待定系数法设
通用方法:待定系数法
第6页/共33页
例3:
分析:构造等比数列{an+x},若可以观察x值更好
数列求通项的方法(完整版本)
四、连续迭代型:形如 an2 pan1 qan (其中 p,q 均为常数) 。先把原递推公式转化为
s t p an2 san1 t (an1 san ) 其中 s,t 满足 st q
2、设等比数列 an 1 f (n) ,公比为 4、比较系数求 1 , 2
3、列出关系式 an1 1 f (n 1) 2 [an 2 f (n)] 5、解得数列 an 1 f (n) 的通项公式
6、解得数列 an 的通项公式
为了方便同学们更好地掌握待定系数法求通项,以下再进行分类。 1)常数型。可转化为特殊数列{a n +k}的形式求解。一般地,形如 a n1 =p a n +q(p≠1,pq ≠0)型的递推式均可通过待定系数法对常数 q 分解法:设 a n1 +k=p(a n +k)与原式比较 系数可得 pk-k=q,即 k= 系数就行。 1、数列{a n }满足 a 1 =1, 3an1 an 7 0 ,求数列{a n }的通项公式。
2. 已知数列 {an } 满足 a1 2,
1 a n 1
1 2 ,求数列 an 的通项公式; an
3. 已知数列 {an } 满足 a1 2, an 3an1 (n 1) ,求数列 {an } 的通项公式;
4.已知数列 {an } 满足 a1 2,a2 4且an2 an an1 公式;
高中数学常见求数列通项的方法
一、公式法。即是题目说清楚该数列是等比或者等差数列时,直接套用公式。但是难点在 于,一旦给出的条件,不是具体的数字而是字母参数时,就是对个人运算能力的考验。 1.已知数列 {an } 满足 a1 2, an an1 1(n 1) ,求数列 {an } 的通项公式;
数列通项公式的完整求法,还有例题详解
一.观察法之宇文皓月创作例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,……∴通项公式为:110-=n n a(2);122++=n n n a n(3);12+=n a n(4)1)1(1+⋅-=+n na n n.点评:关键是找出各项与项数n的关系。
二、公式法:当已知条件中有a n 和s n 的递推关系时,往往利用公式:a n =1*1(1)(2,)n n s n s s n n N -=⎧⎪⎨-≥∈⎪⎩来求数列的通项公式。
例1: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)=q 2,b 3 =f (q -1)=(q -2)2,∴2213)2(qq b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·qn-1=4·(-2)n -1例 2. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A)122-=n a n (B)42+=n a n (C) 122+-=n a n(D)102+-=n a n解析:设等差数列的公差位d ,由已知⎩⎨⎧==+⋅⋅+12348)()(3333a d a a d a , 解得⎩⎨⎧±==243d a ,又{}n a 是递减数列, ∴2-=d ,81=a ,∴=--+=)2)(1(8n a n 102+-n ,故选(D)。
数列通项公式的常用方法及例题
数列通项公式的常用方法及例题一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.二、n s 与n a 的关系式法:⎩⎨⎧≥-==-2,1,11n S S n S a n n n 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a .例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a .三、累加法:()n f a a n n =--1,()的函数是一个关于n n f例4:12,011-+==+n a a a n n ,求通项n a四、累乘法:()1n n a f n a -=,()的函数是一个关于n n f 例5:111,1n n n a a a n -==- ()2,n n N *≥∈ 求通项n a五、构造法: ㈠、两边加常数:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:处理方法:设1n n a ka b λλ-+=++ 则1()n n b a k a kλλ-++=+ b k λλ+=令 1b k λ∴=- 111111n n n n b b a k a k k b a k k b a k --⎛⎫∴+=+ ⎪--⎝⎭+-∴=⎛⎫+ ⎪-⎝⎭ ∴数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 为公比,11b a k +-以为首项的等比数列,借助它去求n a 例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a(二)两边加指数函数式:在数列{}n a 中有m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)型的数列求通项n a . 处理方法:两边同除以1+n c,得到一个“1n n a ka b -=+”型的数列,再用上面(一)方法处理,便可求出nn c a 的通式,从而求出n a . 例7:{}1113,232,.n n n n n a a a a a ++==+数列满足:求(三)、取倒数法:适用于11n n n ka a ma p --=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例8:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a(四)、取对数法:适用于1(2)p q n n a a n -=≥(,p q 为非零常数) 例9:已知()2113,2n n a a a n -==≥ 求通项n a能力提升1.设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .642.已知数列{a n }满足a 1=0,a n +1=a n +2n ,则a 2 013等于( )A .2 013×2 014B .2 012×2 013C .2 011×2 012D .2 013×2 0133.已知数列{x n }满足x 1=1,x 2=23,且1x n -1+1x n +1=2x n(n ≥2),则x n 等于( ) A .(23)n -1 B .(23)n C.n +12 D.2n +14.已知数列{a n }中a 1=1,a n =12a n -1+1(n ≥2),则a n =( ) A .2-(12)n -1 B .(12)n -1-2 C .2-2n -1 D .2n -1 5.若数列{a n }的前n 项和为S n =32a n -3,则这个数列的通项公式a n =( ) A .2(n 2+n +1) B .2·3n C .3·2n D .3n +16.在数列{a n }中,a 1=3,a n +1=a n +()11+n n ,则通项公式a n =________. 7.已知数列{a n }的首项a 1=12,其前n 项和S n =n 2a n (n ≥1),则数列{a n }的通项公式为 8.在数列{a n }中,a 1=1,当n ≥2时,有a n =3a n -1+2,则a n =________.9.在数列{a n }中,a 1=2,a n =2a n -1+2n +1(n ≥2),则a n =________.10.若数列{a n }满足a 1=1,a n +1=2n a n ,则数列{a n }的通项公式a n =________.11.已知{a n }满足a 1=1,且a n +1=a n 3a n +1(n ∈N *),则数列{a n }的通项公式为________. 12.数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }满足: a n =b 13+1+b 232+1+b 333+1+…+b n 3n +1,求数列{b n }的通项公式.。
求数列的通项公式列(教案+例题+习题)
求数列的通项公式(教案+例题+习题)一、教学目标1. 理解数列的概念,掌握数列的基本性质。
2. 学会求解数列的通项公式,并能应用于实际问题。
3. 培养学生的逻辑思维能力和运算能力。
二、教学内容1. 数列的概念与基本性质2. 数列的通项公式的求法3. 数列通项公式的应用三、教学重点与难点1. 教学重点:数列的概念,数列的通项公式的求法及应用。
2. 教学难点:数列通项公式的推导和应用。
四、教学方法1. 采用讲授法,讲解数列的概念、性质及通项公式的求法。
2. 利用例题,演示数列通项公式的应用过程。
3. 布置习题,巩固所学知识。
五、教学过程1. 引入数列的概念,讲解数列的基本性质。
2. 讲解数列通项公式的求法,引导学生掌握求解方法。
3. 通过例题,演示数列通项公式的应用,让学生理解并掌握公式。
4. 布置习题,让学生巩固所学知识,并提供解题思路和指导。
5. 总结本节课的重点内容,布置课后作业。
教案结束。
例题:已知数列的前n项和为Sn = n(n+1)/2,求该数列的通项公式。
解答:由数列的前n项和公式可知,第n项的值为Sn S(n-1)。
将Sn = n(n+1)/2代入上式,得到第n项的值为:an = Sn S(n-1) = n(n+1)/2 (n-1)n/2 = n/2 + 1/2。
该数列的通项公式为an = n/2 + 1/2。
习题:1. 已知数列的前n项和为Sn = n^2,求该数列的通项公式。
2. 已知数列的通项公式为an = 2n + 1,求该数列的前n项和。
3. 已知数列的通项公式为an = (-1)^n,求该数列的前n项和。
4. 已知数列的通项公式为an = n^3 6n,求该数列的前n项和。
5. 已知数列的通项公式为an = 3n 2,求该数列的前n项和。
六、教学目标1. 掌握数列的递推关系式,并能运用其求解数列的通项公式。
2. 学习利用函数的方法求解数列的通项公式。
3. 提升学生分析问题、解决问题的能力。
数列求通项公式专题,方法大全,11种方法(全面模型+精选例题+习题附答案)精编材料pdf版
六、求数列通项公式专题1.公式法等差数列通项公式: 1(1)n a a n d =+-,()n m a a n m d =+-. 等比数列通项公式:11n n a a q -=,n m n m a a q -=.2.已知n S 与n a 的关系求通项已知n S 求n a 公式:11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩.3.累加法适用形式:1()n n a a f n +=+.变为1()n n a a f n +-=,下标依次递减1写出等式,直至写到21(1)a a f -=,最后把1n -个等式相加即可得到结果.2114.累乘法适用形式:1()n n a a f n +=.变为1()n n a f n a +=,下标依次递减1写出等式,直至写到21(1)af a =,最后把1n -个等式相乘即可得到结果.,,⋅=.5.构造法(1)形如1n n a qa p +=+,用待定系数法构造等比数列.即令1()n n a x q a x ++=+,则1(1)n n a qa q x +=+-,与1n n a qa p +=+对比可知1p x q =-,故数列{}1n pa q +-是公比为q 的等比数列.形如1()n n a qa f n +=+,用待定系数法构造等比数列,令1(1)()n n a A n B q a An B ++++=++,利用系数相等求出A 和B .(2)形如11n n n a pa qp ++=+,采用两边同除法构造等差数列.两边同除以1n p +得到11n n n n a a q p p ++=+,故数列{}nna p 是公差为q 的等差数列.11n n nqa p a pa ++=,即1n n a a p +=+,故{}n a 是公差为qp的等差数列.(4)含有n a ,1n a +的二次三项式,通过因式分解转化为常见数列求解.(5)形如21n n n a pa qa ++=+,用待定系数法转化为211()() n n n n a a p a a λλλ++++=++,化简对比求出λ,则1{}n n a a λ++是公比为p λ+的等比数列,再根据情况求出n a .(6)形如1rn n a pa +=,采用两边取对数法,变形为1lg lg lg n n a r a p +=+,再用待定系数法(7)换元法:适用于含有根式的递推关系式,把根式整体代换为一个简单数列来表示. 1=+即12n b +=构造为b6.数学归纳法根据数列前几项的值猜想数列的通项公式,首先带入第一项验证成立,然后假设第k项成练习题:答案解析:n S n =+类型:累加法2⨯⨯⨯n+.1),⨯.2!n,则当1n k =+时1228(1)(21)(23)k k k a a k k ++=+++2222(21)18(1)(21)(21)(23)k k k k k +-+=++++ 22222(21)(23)(23)8(1)(21)(23)k k k k k k ++-+++=++ 22(23)1(23)k k +-=+ 22[2(1)1]1[2(1)1]k k ++-=++ 由此可知,当1n k =+等式也成立故22(21)1(21)n n a n +-=+.数学浪子整理制作,侵权必究。
数列通项公式与求和习题定稿版
数列通项公式与求和习题数列通项与求和一.求数列通项公式1.定义法(①等差数列通项公式;②等比数列通项公式。
)例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.2.公式法:已知n S (即12()n a a a f n +++=)求n a ,用作差法:11,(1),(2)n nn a n a S S n -=⎧=⎨-≥⎩例.设正整数数列{}n a 前n 项和为n S ,满足21(1)4n n S a =+,求n a3.累加法:若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥。
例.已知数列,且a 1=2,a n +1=a n +n ,求a n .4.累乘法:已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅(2)n ≥ 例.已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
5.已知递推关系求n a ,用构造法(构造等差.等比数列)。
例. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 二.数列求和1. 公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:1123(1)2n n n ++++=+,222112(1)(21)6n n n n +++=++,33332(1)123[]2n n n +++++=. 例1.已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.例2. 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).例3.求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 4.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法). 例4.求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………5.裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①111(1)1n n n n =-++;②1111()()n n k k n n k=-++;③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<=.例5.求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和. 练习:1. 已知数列 ,3219,1617,815,413试写出其一个通项公式:__________2.已知数列{a n }的首项a 1=35,a n+1=n n 32+1a a ,n=1,2,…,求{a n }的通项公式;3.设正值数列{n a }的前n 项和为n s ,满足2)21(+=n n a s (1)求1a ,2a ,3a (2)求出数列{n a }的通项公式(3)设n 11n n b a a +=求数列{n b }的前n 项和n T 作业:1.数列{a n }的通项公式为a nm 项和S m =9,则m 为( )A . 99B .98C .10D .92.数列1,1+2,l+2+22,…,1+2+22+…+2n-1前n 项和等于( )A .2n+1-nB .2nC .2n -nD .2n+1-n-23.设数列{a n }的前n 项和为S n =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2-a 1)=b 1(l)求数列{a n }和{b n }的通项公式;(2)设c n =n n ab ,求数列{c n }的前n 项和T n 。
专题11 数列通项公式的求解方法(教案)【解题新方法系列】2023届高考数学二轮专题复习
(十一)数列·通项公式的求解方法一、基础求法1·累加法:二、基础求法2·累乘法:三、基础求法3·同除次方法:用,因此我们在解题时一般先选择特征根法和待定系数法,实在不行再用同除次方法(计算量大)四、基础求法4·待定系数法:1n n +1n [注1]:若特征为q mn pn ka a n n +++=+21也可用待定系数法,设的时候及设为)()1()1(221C Bn An a k C n B n A a n n +++=++++++,因此更高次的也可以用待定系数法[注2]:若特征为n n n qa pa a +=++12也可用待定系数法,设的时候及设为)(112n n n n Aa a B Aa a +=++++然后向已知式子n n n qa pa a +=++12化简比较系数即可!五、基础求法5·特征根法:例题展示:已知数列{}n a 满足12212,3,32(*)n n n a a a a a n ++===-∈N ,求数列{}n a 的通项n a .六、进阶求法1·不动点法(强基计划/竞赛):。
八、进阶求法3·对数变换法(强基计划/竞赛):[注1]:能用迭代法的都可以用对数变换法,但反过来不一定【针对训练】(练习一)已知数列{}n a 中,122,3a a ==,其前n 项和n S 满足1121n n n S S S +-+=+,其中2n ≥,*n N ∈.求证:数列{}n a 为等差数列,并求其通项公式.递推法:由()*11212,n n n S S S n n N +-+=+≥∈可得()()111n n n n S S S S +----=即()112n n a a n +-=≥又211a a -=∴数列{}n a 是首项12a =,公差为1的等差数列∴通项公式()2111n a n n =+-⨯=+ 综上所述,结论为:数列{}n a 是等差数列,通项公式1n a n =+.(练习二)已知等差数列{}n a 满足3712a a +=,6820a a +=,数列{}n b 满足11b =,13n n n b b +-=.求{}n a ,{}n b 的通项公式 1,,n n b b --1133313n n --++==-n 122n n -;(练习三)已知正项数列{}n a 满足1212222,log log log (2)log (1)1n n a a a n n +=-=+-+-.求数列{}n a 通项公式当1n =时,1022a ==成立,所以12-=n n a ; (练习四)已知数列{}n a 中,12a =,且对任意*n ∈N ,都有121n n a a +=-.求数列{}n a 的通。
数列的通项公式的求法以及典型习题练习
数列的通项公式的求法以及典型习题练习数列解题方法与研究顺序一、累加法累加法是最基本的两个数列解题方法之一,适用于广义的等差数列,即an+1=an+f(n)。
1.若an+1-an=f(n)(n≥2),且a2-a1=f(1),则可得an+1-a1=∑f(n)(k=1至n)。
例1:已知数列{an}满足an+1=an+2n+1,a1=1,求数列{an}的通项公式。
解:由题可知,f(n)=2n+1,故an+1-an=f(n)=2n+1,且a2-a1=f(1)=3.根据累加法得an+1-a1=∑f(n)=∑(2n+1)=n(n+1)+n= n^2+2n,即an=n^2+2n。
所数列{an}的通项公式为an=n^2+2n。
2.若an+1-an=f(n),则可得an+1/an=f(n)。
例2:已知数列{an}满足an+1=an+2×3+1,a1=3,求数列{an}的通项公式。
解:由题可知,f(n)=2×3+1=7,故an+1-an=f(n)=7.根据累乘法得an+1/an=f(n)=7,即an=3×7^(n-1)。
所以数列{an}的通项公式为an=3×7^(n-1)。
二、累乘法累乘法是最基本的两个数列解题方法之二,适用于广义的等比数列,即an+1=f(n)×an。
1.若an+1/an=f(n),则可得an+1/an=∏f(k)(k=1至n)。
例3:已知数列an=an-1/n,a1=2,求数列的通项公式。
解:由题可知,f(n)=1/n,故an+1/an=f(n)=1/n。
根据累乘法得an+1/an=∏f(k)=∏(1/k)=1/n。
即an=n!/n。
所以数列的通项公式为an=n!/n。
2.若an+1/an=f(n),则可得an+1×an=f(n)。
例4:已知数列{an}满足an+1=2(n+1)5×an,a1=3,求数列{an}的通项公式。
解:由题可知,f(n)=2(n+1)5,故an+1/an=f(n)=2(n+1)5.根据累乘法得an+1×an=∏f(k)=∏2(k+1)5=2^(n+1)×3^(n(n+1)/2),即an=3^n×2^(n-1)。
求数列通项公式的十种方法(例题+详解)
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解:22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
(完整版)数列通项公式的求法(较全)
常见数列通项公式的求法公式:1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可.例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式.练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何*n N ∈都有1234127,0,,,,6954n n n c a b c c c c =-====分别求出此三个数列的通项公式.2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,()11n n a a f n --=-,()122n n a a f n ---=-,()322a a f -=,()211a a f -=,以上()1n -个等式累加得()()()()11+221n a a f n f n f f -=--+++ 1n a a ∴=+()()()()1+221f n f n f f --+++(3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项.①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和;③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n+==++求求{}n a 的通项公式.3、 累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.给递推公式()()1,n na f n n N a ++=∈中的n 依次取1,2,3,……,1n -,可得到下面1n -个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-例3、已知数列{}n a 满足11,2,31n n n na a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式.练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式.4、 奇偶分析法(1) 对于形如()1n n a a f n ++=型的递推公式求通项公式①当()1n n a a d d ++=为常数时,则数列为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n ++=,()11n n a a f n -+=-两式相减,得到()()+111n n a a f n f n --=--,分奇偶项来求通项.例4、数列{}n a 满足111,4n n a a a +=+=,求{}n a 的通项公式.练习:数列{}n a 满足116,6n n a a a +=+=-,求{}n a 的通项公式.例5、数列{}n a 满足110,2n n a a a n +=+=,求{}n a 的通项公式.练习1: 数列{}n a 满足111,1n n a a a n +=-+=-,求{}n a 的通项公式.练习2:数列{}n a 满足112,31n n a a a n +=+=-,求{}n a 的通项公式.(2) 对于形如()1n n a a f n +⋅=型的递推公式求通项公式①当()1n n a a d d +⋅=为常数时,则数列为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n +⋅=,()11n n a a f n -⋅=-两式相除,得到()()+111n n f n a a f n -=-,分奇偶项来求通项.例6、已知数列{}n a 满足112,4n n a a a +=⋅=,求{}n a 的通项公式.练习:已知数列{}n a 满足112,23n n a a a +=⋅=-,求{}n a 的通项公式.例7、已知数列{}n a 满足1113,2nn n a a a +⎛⎫=⋅= ⎪⎝⎭,求{}n a 的通项公式.练习1: 数列{}n a 满足112,3nn n a a a +=⋅=,求{}n a 的通项公式.练习2:数列{}n a 满足111,2nn n a a a +=⋅=,求{}n a 的通项公式.5、 待定系数法(构造法)若给出条件直接求n a 较难,可通过整理变形等从中构造出一个等差或等比数列,从而根据等差或者等比数列的定义求出通项.常见的有:(1)()1,n n a pa q p q +=+为常数(){}1,n n n a t p a t a t +⇒+=++构造为等比数列.(2)()11111,n p n n nn n n naa a pa tpt p t pp +++++=+−−−−−−→=+两边同时除以为常数 (3)()()11111,,,1n pn n nn n n na a p a pa tq t p q t q q q +++++=+−−−−−−→=+两边同时除以为常数再参考类型(4)()1,,n n a pa qn r p q r +=++是常数⇒ ()()11n n a n p a n λμλμ++++=++ (5)21+n n n a pa qa ++=(){}2111t ,t n n n n n n a ta p a a a a ++++⇒-=--构造等比数列例8、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则 例9、已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式.练习1:已知数列{}n a 中,113,22nn n a a a -=-=+,则=n a ________.练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅, 求{}n a 的通项公式.例10、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a ________.练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .练习3:已知数列{}n a ()n N *∈的满足:111113,432,,7n n n a k a a n k k R --⎛⎫=-=-≥≠∈ ⎪⎝⎭(1)判断数列47n n a ⎧⎫-⎨⎬⎩⎭是否成等比数列;(2)求数列{}n a 的通项公式.例11、数列{}n a 中已知111,23n n a a a n +==+, 求{}n a 的通项公式.练习1:数列{}n a 中已知112,32n n a a a n +==-+, 求{}n a 的通项公式.练习2:数列{}n a 中已知2112,322n n a a a n n +==+-+, 求{}n a 的通项公式.例12、已知数列{}n a 中,()12125,2,2+33n n n a a a a a n --===≥,求求{}n a 的通项公式.练习1:已知数列{}n a 中,12+2+1211,2,+33n n n a a a a a ===,求求{}n a 的通项公式.练习2:在数列{}n a 中,11a =,235a =,2n a +=135n a ++23n a ,令1n n n b a a +=- 。
求数列通项公式的十种方法-例题答案详解讲解【范本模板】
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式.等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ——-———--—-这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求数列通项公式的方法
教案例题习题
HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】
求数列的通项公式的方法
1.定义法:①等差数列通项公式;②等比数列通项公式。
例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,
255a S =.求数列{}n a 的通项公式.
解:设数列{}n a 公差为)0(>d d
∵931,,a a a 成等比数列,∴9123
a a a =, 即)8()2(1121d a a d a +=+d a d 12=⇒
∵0≠d , ∴d a =1………………………………①
∵255a S = ∴211)4(2
455d a d a +=⋅⨯+…………② 由①②得:531=a ,5
3=d ∴n n a n 5
353)1(53=⨯-+= 点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
练一练:已知数列 ,32
19,1617,815,413试写出其一个通项公式:__________; 2.公式法:已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)
n n n S n a S S n -==-≥。
例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。
解:由1121111=⇒-==a a S a
当2≥n 时,有
,)1(2)(211n n n n n n a a S S a -⨯+-=-=-- ,)1(22221----⨯+=n n n a a ……,.2212-=a a
经验证11=a 也满足上式,所以])1(2[3
212---+=n n n a 点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2
11n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能
合写时一定要合并.
练一练:①已知{}n a 的前n 项和满足2log (1)1n S n +=+,求n a ;
②数列{}n a 满足11154,3
n n n a S S a ++=+=,求n a ; 3.作商法:已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
如数列}{n a 中,,11=a 对所有的2≥n 都有2321n a a a a n = ,则=+53a a ______ ;
4.累加法:
若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-+
+-1a +(2)n ≥。
例3. 已知数列{}n a 满足211=a ,n
n a a n n ++=+211,求n a 。
解:由条件知:1
11)1(1121+-=+=+=-+n n n n n n a a n n 分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即
)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a 所以n
a a n 111-=- 211=a ,n
n a n 1231121-=-+=∴ 如已知数列{}n a 满足11a =,n n a a n n ++=
--11
1(2)n ≥,则n a =________ ; 5.累乘法:已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅(2)n ≥。
例4. 已知数列{}n a 满足321=a ,n n a n n a 1
1+=+,求n a 。
解:由条件知1
1+=+n n a a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即
又321=a ,n
a n 32=∴ 如已知数列}{n a 中,21=a ,前n 项和n S ,若n n a n S 2=,求n a
6.已知递推关系求n a ,用构造法(构造等差、等比数列)。
(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
①1n n a ka b -=+解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中p
q t -=1,再利用换元法转化为等比数列求解。
例5. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即
321-=⇒-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且23
311=++=++n n n n a a b b 所以{}n b 是以41=b 为首项,2为公比的等比数列,则11224+-=⨯=n n n b ,所以321-=+n n a .
②1n n n a ka b -=+解法:该类型较类型3要复杂一些。
一般地,要先在原递推公式两边同除以1+n q ,得:q q a q p q a n n n n 111+•=++引入辅助数列{}n b (其中n n n q a b =),得:q
b q p b n n 11+=+再应用1n n a ka b -=+的方法解决.。
例6. 已知数列{}n a 中,651=a ,11)2
1(31+++=n n n a a ,求n a 。
解:在11)21(31+++=n n n a a 两边乘以12+n 得:1)2(3
2211+•=•++n n n n a a 令n n n a b •=2,则1321+=+n n b b ,应用例7解法得:n n b )3
2(23-= 所以n n n
n n b a )31(2)21(32-== 练一练①已知111,32n n a a a -==+,求n a ;
②已知111,32n n n a a a -==+,求n a ;
(2)形如11n n n a a ka b --=
+的递推数列都可以用倒数法求通项。
例7:1,1
3111=+⋅=--a a a a n n n 解:取倒数:
11113131---+=+⋅=n n n n a a a a ⎭
⎬⎫⎩⎨⎧∴n a 1是等差数列,3)1(111⋅-+=n a a n 3)1(1⋅-+=n 231-=⇒n a n 练一练:已知数列满足1a =1
=n a ;
数列通项公式课后练习
1已知数列{}n a 中,满足a 1=6,a 1+n +1=2(a n +1) (n ∈N +)求数列{}n a 的通项公式。
2已知数列{}n a 中,a n >0,且a 1=3,1+n a =n a +1 (n ∈N +)
3已知数列{}n a 中,a 1=3,a 1+n =2
1a n +1(n ∈N +)求数列{}n a 的通项公式 4已知数列{}n a 中,a 1=1,a 1+n =3a n +2,求数列{}n a 的通项公式 5已知数列{}n a 中,a n ≠0,a 1=21,a 1+n =n n a a 21+ (n ∈N +) 求a n 6设数列{}n a 满足a 1=4,a 2=2,a 3=1 若数列{}n n a a -+1成等差数列,求a n 7设数列{}n a 中,a 1=2,a 1+n =2a n +1 求通项公式a n
8已知数列{}n a中,a1=1,2a1+n= a n+ a2+n求a n。