算法设计题详解

合集下载

算法分析与设计与数据结构专升本试题详解

算法分析与设计与数据结构专升本试题详解

算法分析与设计与数据结构专升本试题详解一、算法分析与设计算法分析与设计是计算机专业中极为重要的一门课程。

该课程旨在培养学生解决实际问题时的算法设计、分析和评估能力。

以下是一些算法分析与设计的试题及其详解。

1. 问题描述:假设有一个长度为n的数组A,数组中的元素表示一些商品的价格。

设计一个算法,找出数组中两个价格之差的最大值。

解析:该问题可以通过暴力搜索法来解决。

我们可以对数组中的所有元素进行两两比较,求出所有差值的最大值。

算法的时间复杂度为O(n^2)。

2. 问题描述:给定一个无序数组A,设计一个算法,将其按照从小到大的顺序进行排序。

解析:该问题可以使用冒泡排序算法来解决。

冒泡排序的基本思想是,从数组的第一个元素开始,依次比较相邻的两个元素,将较大的元素向后移动。

重复该过程,直至数组整体有序。

算法的时间复杂度为O(n^2)。

给定一个整数数组A和一个目标值target,设计一个算法,判断数组中是否存在两个元素的和等于目标值target。

解析:该问题可以使用哈希表来解决。

我们可以遍历数组A,对于每个元素,计算目标值与当前元素的差值,然后查找哈希表中是否存在该差值。

若存在,则返回真;否则,将当前元素加入哈希表继续遍历。

算法的时间复杂度为O(n)。

二、数据结构数据结构是计算机科学中的核心概念之一,它用于组织和存储数据,实现各种操作。

以下是一些数据结构的试题及其详解。

1. 问题描述:设计一个数据结构,使得插入和删除操作的时间复杂度均为O(1),并能高效地获取最小值。

解析:该问题可以使用双向链表和哈希表来解决。

我们可以使用双向链表存储元素,并使用哈希表记录每个元素在链表中的位置。

插入和删除操作可以通过在链表中插入和删除元素来实现,时间复杂度为O(1)。

同时,我们可以使用额外的变量记录链表中的最小值,以实现高效获取最小值。

设计一个数据结构,使得插入、删除和查找操作的时间复杂度均为O(log n),其中n为数据的规模。

算法设计与分析复习题目及答案详解

算法设计与分析复习题目及答案详解

算法设计与分析复习题目及答案详解分治法1、二分搜索算法是利用(分治策略)实现的算法。

9.实现循环赛日程表利用的算法是(分治策略)27、Straen矩阵乘法是利用(分治策略)实现的算法。

34.实现合并排序利用的算法是(分治策略)。

实现大整数的乘法是利用的算法(分治策略)。

17.实现棋盘覆盖算法利用的算法是(分治法)。

29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。

不可以使用分治法求解的是(0/1背包问题)。

动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。

下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。

(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。

矩阵连乘问题的算法可由(动态规划算法B)设计实现。

实现最大子段和利用的算法是(动态规划法)。

贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。

回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。

剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。

分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。

分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是(分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除(栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

算法设计与分析习题答案

算法设计与分析习题答案

算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。

以下是一些典型的算法设计与分析习题及其答案。

习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。

答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。

这个过程会不断重复,直到找到目标值或搜索范围为空。

```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。

答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。

```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。

算法分类题库及答案详解

算法分类题库及答案详解

算法分类题库及答案详解1. 算法按其设计方法可以分为哪几类?A. 暴力解法B. 贪心算法C. 分治算法D. 动态规划E. 所有以上答案:E2. 以下哪个算法不属于贪心算法?A. 活动选择问题B. 最小生成树C. 快速排序D. 霍夫曼编码答案:C3. 分治算法的基本思想是什么?A. 将问题分解成更小的子问题B. 直接求解问题C. 选择最优子问题D. 迭代求解答案:A4. 动态规划与分治算法的主要区别是什么?A. 动态规划需要存储中间结果B. 分治算法需要存储中间结果C. 动态规划不需要分解问题D. 分治算法不需要分解问题答案:A5. 暴力解法通常用于什么问题?A. 问题规模较小B. 问题规模较大C. 需要最优解D. 需要近似解答案:A6. 以下哪个算法是使用贪心算法解决的?A. 汉诺塔问题B. 旅行商问题C. 背包问题D. 八皇后问题答案:C7. 快速排序算法属于哪种算法类别?A. 暴力解法B. 贪心算法C. 分治算法D. 动态规划答案:C8. 动态规划通常用于解决什么问题?A. 线性问题B. 组合问题C. 排序问题D. 查找问题答案:B9. 以下哪个问题可以通过贪心算法得到最优解?A. 旅行商问题B. 背包问题C. 0/1背包问题D. 所有以上答案:B10. 汉诺塔问题通常使用什么算法解决?A. 暴力解法B. 贪心算法C. 分治算法D. 动态规划答案:C11. 以下哪个算法是动态规划算法的典型应用?A. 斐波那契数列B. 最长公共子序列C. 最短路径问题D. 所有以上答案:D12. 贪心算法在哪些情况下可能无法得到最优解?A. 问题具有最优子结构B. 问题不具有最优子结构C. 问题具有重叠子问题D. 问题不具有重叠子问题答案:B13. 动态规划算法的一般步骤是什么?A. 确定状态B. 确定状态转移方程C. 确定边界条件D. 所有以上答案:D14. 分治算法的一般步骤包括哪些?A. 分解问题B. 解决子问题C. 合并子问题的解D. 所有以上答案:D15. 以下哪个算法不是排序算法?A. 冒泡排序B. 选择排序C. 快速排序D. 霍夫曼编码答案:D16. 快速排序算法的时间复杂度在最坏情况下是多少?A. O(n log n)B. O(n^2)C. O(n)D. O(1)答案:B17. 动态规划算法在解决什么问题时会使用记忆化搜索?A. 线性问题B. 组合问题C. 排序问题D. 查找问题答案:B18. 贪心算法在选择策略时通常遵循什么原则?A. 选择当前最优B. 选择全局最优C. 选择随机D. 选择平均最优答案:A19. 以下哪个问题不适合使用贪心算法?A. 单源最短路径问题B. 旅行商问题C. 背包问题D. 霍夫曼编码答案:B20. 分治算法在解决哪些问题时特别有效?A. 线性问题B. 组合问题C. 排序问题D. 查找问题答案:B。

《算法设计综合实训》题目讲解

《算法设计综合实训》题目讲解

算法设计综合实训题目0.逆序数字(借助栈)编写一个函数,接收一个4位整数值,返回这个数中数字逆序后的结果值。

例如,给定数7631,函数返回1367.输入:第一行一个正整数T(T<=10),表示有T组测试数据; 以下T行,每行一个非负的整数N。

输出:共T行,对于每组输入数据输出一行,即数字逆序后的结果值。

样本输入:3763110185158样本输出:1367810185151.人见人爱A+B这个题目的A和B不是简单的整数,而是两个时间,A和B 都是由3个整数组成,分别表示时分秒,比如,假设A为34 45 56,就表示A所表示的时间是34小时 45分钟 56秒。

输入:输入数据有多行组成,首先是一个整数N,表示测试实例的个数,然后是N行数据,每行有6个整数AH,AM,AS,BH,BM,BS,分别表示时间A和B所对应的时分秒。

题目保证所有的数据合法。

输出:对于每个测试实例,输出A+B,每个输出结果也是由时分秒3部分组成,同时也要满足时间的规则(即:分和秒的取值范围在0-59),每个输出占一行,并且所有的部分都可以用32位整数表示。

样本输入:21 2 3 4 5 634 45 56 12 23 34样本输出:5 7 947 9 302.敲七【问题描述】输出7和7的倍数,还有包含7的数字例如(17,27,37...70,71,72,73...)【要求】【数据输入】一个整数N。

(N不大于30000)【数据输出】从小到大排列的不大于N的与7有关的数字,每行一个。

【样例输入】20【样例输出】714173.统计同成绩学生人数问题【问题描述】读入N名学生的成绩,将获得某一给定分数的学生人数输出。

【要求】【数据输入】测试输入包含若干测试用例,每个测试用例的格式为第1行:N第2行:N名学生的成绩,相邻两数字用一个空格间隔。

第3行:给定分数当读到N=0时输入结束。

其中N不超过1000,成绩分数为(包含)0到100之间的一个整数。

算法设计及参考答案

算法设计及参考答案

算法设计1.设二叉树以二叉链表形式存放。

设计非递归算法,实现二叉树的中序遍历。

typedef struct BiTnode{/*用二叉链表存储二叉树*/TElemType data;struct BiTnode *lchild,*rchild;}BiTnode,*BiTree;Status InOrderTraverse(BiTree root, Status (*visit)(TElemType 2)){InitStack(S);// 初始化栈空间BiTNode* p = root;while(p!=NULL||!StackEmpty(S)){ /*不是空树*/if(p) { Push(S,p); p = p->lchild;}else{Pop(S,p);Visist(p->data);p=p->rchild;}/*else*/}/*while*/return OK;}/*InOrderTraverse*/2.设二叉排序树以二叉链表形式存放,设计非递归算法判断二叉排序树中是否存在值为X的结点,若存在,返回其地址,否则返回空指针。

typedef struct BiTnode{/*用二叉链表存储二叉树*/int data;struct BiTnode *lchild,*rchild;}BSTnode,*BSTree;BSNode* InsertBST(BSTree Tptr,KeyType key){BSTNode *f,*p=TPtr; //p的初值指向根结点while(p){ //查找插入位置if(p->key==key) return p;//找到key,返回其地址p=(p->key>key)?p->lchild:p->rchild;//若p->key>key,则在左子树中查找,否则在右子树中查找} //endwhilereturn 0;} //InsertBST3.举例说明二分查找的基本思想,并用类C语言设计算法实现二分查找(折半查找)。

算法设计与分析常见习题及详解

算法设计与分析常见习题及详解

算法设计与分析常见习题及详解⽆论在以后找⼯作还是⾯试中,都离不开算法设计与分析。

本博⽂总结了相关算法设计的题⽬,旨在帮助加深对贪⼼算法、动态规划、回溯等算法的理解。

1、计算下述算法执⾏的加法次数:输⼊:n =2^t //t 为整数输出:加法次数 k K =0while n >=1 do for j =1 to n do k := k +1 n = n /2return k解析:第⼀次循环执⾏n次加法,第⼆次循环执⾏1/2次加法,第三次循环执⾏1/次加法…因此,上述算法执⾏加法的次数为==2n-12、考虑下⾯每对函数 f(n) 和 g(n) ,如果它们的阶相等则使⽤Θ记号,否则使⽤ O 记号表⽰它们的关系解析:前导知识:,因为解析:,因为解析:,因为解析:解析:3、在表1.1中填⼊ true 或 false解析:利⽤上题的前导知识就可以得出。

2=21/4n +n +21n +41...+1n +n −n +21n −21n +41....−1f (n )=(n −2n )/2,g (n )=6n1<logn <n <nlogn <n <2n <32<n n !<n ng (n )=O (f (n ))f (n )=Θ(n ),g (n )=2Θ(n )f (n )=n +2,g (n )=n n 2f (n )=O (g (n ))f (n )=Θ(n ),g (n )=Θ(n )2f (n )=n +nlogn ,g (n )=n nf (n )=O (g (n ))f (n )=Θ(nlogn ),g (n )=Θ(n )23f (n )=2(log ),g (n )=n 2logn +1g (n )=O (f (n ))f (n )=log (n !),g (n )=n 1.05f (n )=O (g (n ))4、对于下⾯每个函数 f(n),⽤f(n) =Θ(g(n))的形式,其中g(n)要尽可能简洁,然后按阶递增序排列它们(最后⼀列)解析:最后⼀个⽤到了调和公式:按阶递增的顺序排列:、、、、、、、、、(n −2)!=Θ((n −2)!)5log (n +100)=10Θ(logn )2=2n Θ(4)n 0.001n +43n +31=Θ(n )4(lnn )=2Θ(ln n )2+3n logn =Θ()3n 3=n Θ(3)n log (n !)=Θ(nlogn )log (n )=n +1Θ(nlogn )1++21....+=n1Θ(logn )=∑k =1nk 1logn +O (1)1++21....+n 15log (n +100)10(lnn )2+3n logn log (n !)log (n )n +10.001n +43n +313n 22n (n −2)!5、求解递推⽅程前导知识:主定理前导知识:递归树:例⼦:递归树是⼀棵节点带权的⼆叉树,初始递归树只有⼀个结点,标记为权重W(n),然后不断进⾏迭代,最后直到树种不再含有权为函数的结点为⽌,然后将树根结点到树叶节点的全部权值加起来,即为算法的复杂度。

算法分析与设计试题及答案

算法分析与设计试题及答案

算法分析与设计试题及答案一、选择题1. 下列哪个是属于分治算法的例子?A. 冒泡排序B. 归并排序C. 顺序查找D. 选择排序答案:B2. 在排序算法中,时间复杂度最优的是:A. 冒泡排序B. 插入排序C. 归并排序D. 快速排序答案:C3. 哪个不是动态规划的特点?A. 具有重叠子问题B. 通过递归求解C. 需要保存子问题的解D. 具有最优子结构答案:B4. 在图的广度优先搜索算法中,使用的数据结构是:A. 栈B. 队列C. 数组D. 堆栈答案:B5. 在最小生成树算法中,下列哪个不属于贪心策略?A. Kruskal算法B. Prim算法C. Dijkstra算法D. Prim-Kruskal混合算法答案:C二、简答题1. 请简述分治算法的思想和应用场景。

答案:分治算法的思想是将原问题分解成若干个规模较小且类似的子问题,然后解决子问题,最后将子问题的解合并得到原问题的解。

其应用场景包括排序算法(如归并排序、快速排序)、搜索算法(如二分查找)等。

2. 什么是动态规划算法?请给出一个动态规划算法的示例。

答案:动态规划算法是一种通过将问题分解成子问题并解决子问题来解决复杂问题的方法。

它的特点是具有重叠子问题和最优子结构性质。

以斐波那契数列为例,可以使用动态规划算法求解每一项的值,而不需要重复计算。

3. 图的深度优先搜索和广度优先搜索有什么区别?答案:图的深度优先搜索(Depth First Search,DFS)是一种先访问子节点再访问兄弟节点的遍历算法,通常使用递归或者栈实现。

而广度优先搜索(Breadth First Search,BFS)则是以层次遍历的方式展开搜索,使用队列来实现。

DFS更适合用于搜索路径,BFS则适用于寻找最短路径等。

4. 请简述贪心算法的特点及其应用场景。

答案:贪心算法的特点是每一步都采取当前状态下最优的选择,以期望得到全局最优解。

然而,贪心算法并不一定能求解所有问题的最优解,但对于一些特定问题,贪心算法往往能得到近似最优解。

算法分析与设计作业及参考答案

算法分析与设计作业及参考答案

算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在实际中的应用场景。

2、设计一个算法,用于在一个未排序的整数数组中找到第二大的元素,并分析其时间复杂度。

3、比较贪心算法和动态规划算法的异同,并分别举例说明它们在解决问题中的应用。

参考答案1、冒泡排序算法时间复杂度:冒泡排序的基本思想是通过相邻元素的比较和交换,将最大的元素逐步“浮”到数组的末尾。

在最坏情况下,数组完全逆序,需要进行 n 1 轮比较和交换,每一轮比较 n i 次(i 表示当前轮数),所以总的比较次数为 n(n 1) / 2,时间复杂度为 O(n^2)。

在最好情况下,数组已经有序,只需要进行一轮比较,时间复杂度为 O(n)。

平均情况下,时间复杂度也为 O(n^2)。

空间复杂度:冒泡排序只在原数组上进行操作,不需要额外的存储空间,空间复杂度为 O(1)。

应用场景:冒泡排序算法简单易懂,对于规模较小的数组,或者对算法的简单性要求较高而对性能要求不是特别苛刻的场景,如对少量数据进行简单排序时,可以使用冒泡排序。

例如,在一个小型的学生成绩管理系统中,需要对一个班级的少量学生成绩进行排序展示,冒泡排序就可以满足需求。

2、找到第二大元素的算法以下是一种使用遍历的方法来找到未排序整数数组中第二大元素的算法:```pythondef find_second_largest(arr):largest = arr0second_largest = float('inf')for num in arr:if num > largest:second_largest = largestlargest = numelif num > second_largest and num!= largest:second_largest = numreturn second_largest```时间复杂度分析:这个算法需要遍历数组一次,所以时间复杂度为O(n)。

黄宇《算法设计与分析》课后习题解析(二)精选全文

黄宇《算法设计与分析》课后习题解析(二)精选全文

黄宇《算法设计与分析》课后习题解析(⼆)第2章:从算法的视⾓重新审视数学的概念2.1:(向下取整)题⽬:请计算满⾜下⾯两个条件的实数的区间解析:根据向下取整的含义,令,讨论a的取值范围即可解答:令,则可得:即:故的取值区间为:2.2: (取整函数)题⽬:证明:对于任意整数,(提⽰:将n划分为)。

解析:根据提⽰将n进⾏划分,根据取整函数的定义⽤k表⽰取整函数,即可证明;证明如下:因为对于任意整数,可划分为,则:① ;② ;综上:对于任意整数,, 得证;2.3: (斐波拉契数列)对于斐波拉契数列,请证明:1)题⽬:是偶数当且仅当n能被3整除解析:由斐波拉契数列的递归定义式,容易联想到数学归纳法;证明如下:(采⽤数学归纳法)i)当n = 1,2,3时,依次为1,1,2,符合命题;ii)假设当(k>=1)时命题均成⽴,则:① 当n = 3k+1时,是奇数,成⽴;② 当n = 3k+2时,是奇数,成⽴;③ 当 n = 3(k+1)时,是偶数,成⽴;综上:归纳可得为偶数当且仅当,得证;2)题⽬:x x =1+a (0<a <1)x =1+a (0<a <1)⌊x ⌋=1⇒⌊x ⌋=21⌊x ⌋=2⌊1+a +22a ⌋=1a +22a <1⇒0<a <−21⇒1<a +1<⇒21<x <2x (1,)2n ≥1⌈log (n +1)⌉=⌊logn ⌋+12≤k n ≤2−k +11n ≥12≤k n ≤2−k +11k +1=⌈log (2+k 1)⌉≤⌈log (n +1)⌉≤⌈log (2)⌉=k +1k +1=>⌈log (n +1)⌉=k +1k =⌊log (2)⌋≤k ⌊logn ⌋≤⌊log (2−k +11)⌋=k =>⌊logn ⌋=k n ≥1⌈log (n +1)⌉=k +1=⌊logn ⌋+1F n F n n ≤3k F =n F +n −1F =n −2F +3k F =3k −1>F 3k +1F =n F +3k +1F =3k >F 3k +2F =n F +3k +2F =3k +1>F 3k +3F n 3∣n F −n 2F F =n +1n −1(−1)n +1解析:同1)理,容易联想到数学归纳法证明如下:(采⽤数学归纳法)i)当n = 2时,, 易知成⽴;ii)假设当 n = k 时命题成⽴,① 若k = 2m, 则,当n = k+1 = 2m+1时,要证命题成⽴,即证: => ,代⼊递推式, 得:, 易知是恒等式,故命题成⽴;②当 k=2m+1时,同①理可证命题成⽴;综上:归纳可得,得证;2.4:(完美⼆叉树)给定⼀棵完美⼆叉树,记其节点数为,⾼度为,叶节点数为,内部节点数为1)题⽬:给定上述4个量中的任意⼀个,请推导出其他3个量解析:根据完美⼆叉树的结构特点易得解答:(仅以已知⾼度h推导其他三个量为例,其余同理)已知⾼度为h,可得:节点数:叶节点数:内部节点数:2)题⽬:请计算完美⼆叉树任意⼀层的节点个数:① 如果任意指定深度为的⼀层节点,请计算该层节点个数;② 如果任意指定⾼度为的⼀层节点,请计算该层节点个数;解析:根据完美⼆叉树的结构特点易得(注意节点深度和节点⾼度是互补的,相加为树⾼)解答:① ; ② ;2.5: (⼆叉树的性质)对于⼀棵⾮空的⼆叉树T,记其中叶节点的个数为,有1个⼦节点的节点个数为,有两个⼦节点的节点个数为1)题⽬:如果T是⼀棵2-tree,请证明。

软件工程师中的常见算法题解析

软件工程师中的常见算法题解析

软件工程师中的常见算法题解析在软件工程师的日常工作中,算法是必不可少的一部分。

解决算法问题不仅需要掌握常用的数据结构和算法,还需要理解问题的本质,并能够运用合适的算法来解决。

本文将对软件工程师中常见的算法题进行解析,帮助读者更好地理解和应用这些算法。

一、排序算法排序算法是算法领域中最基本和常见的问题之一。

在软件开发中经常需要对一系列数据进行排序,以满足需要按照某种顺序展示或处理数据的要求。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序等。

1. 冒泡排序冒泡排序是最简单的排序算法之一,它通过不断地交换相邻的元素来将最大(或最小)的元素“冒泡”到列表的一端。

具体实现可以通过嵌套循环来比较并交换元素,直至整个列表有序。

2. 选择排序选择排序是一种简单直观的排序算法,每次从未排序的数据中选择最小(或最大)的元素,与未排序部分的第一个元素交换位置。

通过重复这个过程,最终整个序列有序。

3. 插入排序插入排序工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后往前扫描,找到相应位置并插入。

可以通过比较相邻元素的大小并进行位置交换来实现。

4. 快速排序快速排序是一种高效的排序算法,通过选择一个基准元素,将列表分成两部分,一部分小于基准元素,一部分大于基准元素。

然后分别对这两部分进行递归排序,最终得到有序列表。

快速排序的效率取决于选取的基准元素。

二、查找算法查找算法是另一个常见的算法问题。

在软件开发中,我们经常需要在大量数据中查找目标元素,以满足用户的查询需求。

常见的查找算法包括线性查找、二分查找、哈希表等。

1. 线性查找线性查找是最简单直观的查找算法,它从头到尾按顺序扫描列表,逐个比较每个元素,直到找到目标元素或遍历完整个列表。

2. 二分查找二分查找适用于已排序的列表,通过将目标元素与中间元素进行比较,进而将查找范围缩小一半,再继续进行二分查找。

通过逐步缩小查找范围,最终找到目标元素。

3. 哈希表哈希表是一种根据关键字直接访问内存存储位置的数据结构,可以实现在常数时间内进行查找。

软件工程师常见算法题解析

软件工程师常见算法题解析

软件工程师常见算法题解析在软件工程师的日常工作中,经常需要解决各种算法问题。

算法作为计算机科学的基石,扮演着重要的角色。

本文将围绕软件工程师常见的算法题目展开讨论,并提供相应问题的解析。

一、排序算法排序算法是软件工程师经常会遇到的算法问题之一。

常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。

下面以快速排序为例进行解析。

快速排序(Quicksort)是一种常用的排序算法,它的基本思想是通过一趟排序将待排序的记录分割成独立的两部分,其中一部分的所有记录均比另一部分的所有记录小,然后再分别对这两部分记录进行排序,以达到整个序列有序的目的。

快速排序的实现过程可以分为以下几个步骤:1. 选择一个基准元素,通常是待排序数组的第一个元素。

2. 将数组按照基准元素进行分割,比基准元素小的放在左边,比基准元素大的放在右边。

3. 递归地对左右两个子数组进行快速排序。

4. 合并左右两个已排序的子数组,即得到最终的有序数组。

快速排序的时间复杂度为O(nlogn),是一种较高效的排序算法。

但需要注意的是,在最坏情况下,快速排序的时间复杂度可能达到O(n^2),因此在实际应用中需要对其进行优化。

二、查找算法查找算法是软件工程师在处理大数据集时经常需要使用的算法。

常见的查找算法包括顺序查找、二分查找、哈希查找等。

下面以二分查找为例进行解析。

二分查找(Binary Search)是一种高效的查找算法,它的前提是待查找的数组有序。

基本思想是通过将待查找区间不断缩小一半,直到找到目标元素或者确定目标元素不存在。

二分查找的实现过程可以分为以下几个步骤:1. 确定待查找区间的左右边界。

2. 计算中间元素的索引。

3. 比较中间元素和目标元素的大小。

4. 如果相等,则找到目标元素;如果大于目标元素,则在左半区间继续查找;如果小于目标元素,则在右半区间继续查找。

5. 重复执行步骤3和步骤4,直到找到目标元素或者待查找区间为空。

10个经典的算法问题与解决方案

10个经典的算法问题与解决方案

10个经典的算法问题与解决方案算法问题是计算机科学中非常重要的一部分,对于准备面试或提升自己的技能都是很有帮助的。

下面列举了10个经典的算法问题及其解决方案:1.两数之和(Two Sum)问题描述:给定一个整数数组和一个目标值,找出数组中和为目标值的两个数。

解决方案:使用哈希表记录每个数字的索引,然后遍历数组,查找目标值减当前数的差是否存在于哈希表中。

2.盛最多水的容器(Container With Most Water)问题描述:给定一个非负整数数组,数组中的每个表示一条柱子的高度,找出两个柱子,使得它们与x轴构成的容器可以容纳最多的水。

解决方案:维护两个指针,分别指向数组的开始和结尾,计算当前指针所指的两条柱子之间的面积,并更新最大面积。

然后移动指向较小柱子的指针,重复计算直到两个指针相遇。

3.三数之和(3Sum)问题描述:给定一个整数数组,找出数组中所有不重复的三个数,使得它们的和为0。

解决方案:首先对数组进行排序,然后固定一个数字,使用双指针在剩余的数字中寻找另外两个数使得它们的和为相反数。

4.最大子序和(Maximum Subarray)问题描述:给定一个整数数组,找到一个具有最大和的连续子数组(子数组最少包含一个元素)。

解决方案:使用动态规划的思想,从数组的第一个元素开始依次计算以当前位置结尾的子数组的最大和,并保存最大值。

5.二分查找(Binary Search)问题描述:给定一个排序的整数数组和一个目标值,使用二分查找算法确定目标值是否存在于数组中,并返回其索引。

解决方案:通过比较目标值与数组的中间元素来确定目标值是在左半部分还是右半部分,并更新搜索范围进行下一轮查找。

6.背包问题(Knapsack Problem)问题描述:给定一组物品和一个背包,每个物品都有自己的重量和价值,在不超过背包容量的情况下,找到一个组合使得总价值最大化。

解决方案:使用动态规划的思想,定义一个二维数组表示背包容量和物品数量,从左上角开始计算每个格子可以放置的最大价值。

数据结构算法设计题及答案

数据结构算法设计题及答案

数据结构算法设计题及答案在计算机科学领域,数据结构和算法是至关重要的概念。

数据结构是一种组织和存储数据的方式,而算法是解决问题和执行任务的步骤和规则。

合理设计的数据结构和高效的算法可以提高程序的性能和效率,对于解决各种复杂问题和优化问题解决过程至关重要。

本文将介绍几个典型的数据结构算法设计题,并给出相应的答案。

1. 题目:实现一个栈数据结构并提供以下操作:入栈(push)、出栈(pop)、获取栈顶元素(top)、判断栈是否为空(isEmpty)。

解答:栈是一种后进先出(LIFO)的数据结构。

可以使用数组或链表来实现。

```pythonclass Stack:def __init__(self):self.stack = []def push(self, item):self.stack.append(item)def pop(self):if self.isEmpty():return Nonereturn self.stack.pop()def top(self):if self.isEmpty():return Nonereturn self.stack[-1]def isEmpty(self):return len(self.stack) == 0```2. 题目:实现一个队列数据结构并提供以下操作:入队(enqueue)、出队(dequeue)、获取队头元素(front)、判断队列是否为空(isEmpty)。

解答:队列是一种先进先出(FIFO)的数据结构。

可以使用数组或链表来实现。

```pythonclass Queue:def __init__(self):self.queue = []def enqueue(self, item):self.queue.append(item)def dequeue(self):if self.isEmpty():return Nonereturn self.queue.pop(0)def front(self):if self.isEmpty():return Nonereturn self.queue[0]def isEmpty(self):return len(self.queue) == 0```3. 题目:实现一个链表数据结构,并提供以下操作:插入节点(insert)、删除节点(delete)、查找节点(search)。

算法设计及分析习题答案解析1_6章

算法设计及分析习题答案解析1_6章

习题11. 图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图1.7是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n2.2 n=r2.3 r=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C++描述。

//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。

银行家算法例题详解算法设计题详解

银行家算法例题详解算法设计题详解

银行家算法例题详解算法设计题详解算法设计的特征:有穷性,确定性,输入和输出,可行性运行算法的时间:硬件的速度。

书写程序的语言。

问题的规模,编译生成程序的代码质量算法复杂度: 时间复杂度和空间复杂度1.迭代法迭代法又称为辗转法,是用计算机解决问题的一种基本方法,为一种不断用变量的旧值递推新值的过程,与直接法相对应,一次性解决问题。

迭代法分为精确迭代和近似迭代,“二分法”和“牛顿迭代法”属于近似迭代法。

迭代法利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

利用迭代算法解决问题,需要做好以下三个方面的工作:1. 确定迭代变量(在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

)2. 建立迭代关系式(所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以顺推或倒推的方法来完成。

)3. 对迭代过程进行控制(在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

)2.穷举搜索法穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。

即本方法使用可以理解为暴力循环方法,穷举所有可能性,一般这种方法的时间效率太低,不易使用。

但是方法简单,易理解。

3.递推法递推是计算机数值计算中的一个重要算法,思路是通过数学推导,将复杂的运算化解为若干重复的简单运算,以充分发挥计算机长于重复处理的特点。

计算机算法设计和分析习题及答案解析

计算机算法设计和分析习题及答案解析

计算机算法设计与分析习题及答案一.选择题1、二分搜索算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是 A ;A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是 A ;A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是B ;A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是 C ;A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是 D ;A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是D ;A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是D ;A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形; BA、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为B ;A、On2nB、OnlognC、O2nD、On13.分支限界法解最大团问题时,活结点表的组织形式是B ;A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是B;A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是A ;A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是C ;A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解17.回溯法的效率不依赖于下列哪些因素 DA.满足显约束的值的个数B. 计算约束函数的时间C.计算限界函数的时间D. 确定解空间的时间18.下面哪种函数是回溯法中为避免无效搜索采取的策略BA.递归函数 B.剪枝函数 C;随机数函数 D.搜索函数19. D是贪心算法与动态规划算法的共同点;A、重叠子问题B、构造最优解C、贪心选择性质D、最优子结构性质20. 矩阵连乘问题的算法可由 B 设计实现;A、分支界限算法B、动态规划算法C、贪心算法D、回溯算法21. 分支限界法解旅行售货员问题时,活结点表的组织形式是 A ;A、最小堆B、最大堆C、栈D、数组22、Strassen矩阵乘法是利用A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法23、使用分治法求解不需要满足的条件是 A ;A 子问题必须是一样的B 子问题不能够重复C 子问题的解可以合并D 原问题和子问题使用相同的方法解24、下面问题 B 不能使用贪心法解决;A 单源最短路径问题B N皇后问题C 最小生成树问题D 背包问题25、下列算法中不能解决0/1背包问题的是 AA 贪心法B 动态规划C 回溯法D 分支限界法26、回溯法搜索状态空间树是按照 C 的顺序;A 中序遍历B 广度优先遍历C 深度优先遍历D 层次优先遍历27.实现合并排序利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法28.下列是动态规划算法基本要素的是D ;A、定义最优解B、构造最优解C、算出最优解D、子问题重叠性质29.下列算法中通常以自底向下的方式求解最优解的是 B ;A、分治法B、动态规划法C、贪心法D、回溯法30.采用广度优先策略搜索的算法是A ;A、分支界限法B、动态规划法C、贪心法D、回溯法31、合并排序算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法32、背包问题的贪心算法所需的计算时间为 BA、On2nB、OnlognC、O2nD、On33.实现大整数的乘法是利用的算法C ;A、贪心法B、动态规划法C、分治策略D、回溯法34.0-1背包问题的回溯算法所需的计算时间为AA、On2nB、OnlognC、O2nD、On35.采用最大效益优先搜索方式的算法是A;A、分支界限法B、动态规划法C、贪心法D、回溯法36.贪心算法与动态规划算法的主要区别是B;A、最优子结构B、贪心选择性质C、构造最优解D、定义最优解37. 实现最大子段和利用的算法是B ;A、分治策略B、动态规划法C、贪心法D、回溯法38.优先队列式分支限界法选取扩展结点的原则是 C ;A、先进先出B、后进先出C、结点的优先级D、随机39.背包问题的贪心算法所需的计算时间为 B ;A、On2nB、OnlognC、O2nD、On40、广度优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法41. 一个问题可用动态规划算法或贪心算法求解的关键特征是问题的 B ;A、重叠子问题B、最优子结构性质C、贪心选择性质D、定义最优解42.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为 B ;A 、On2nB 、OnlognC 、O2nD 、On43. 以深度优先方式系统搜索问题解的算法称为 D ;A 、分支界限算法B 、概率算法C 、贪心算法D 、回溯算法44. 实现最长公共子序列利用的算法是B ;A 、分治策略B 、动态规划法C 、贪心法D 、回溯法45. Hanoi 塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B46. 动态规划算法的基本要素为 CA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用 47. 能采用贪心算法求最优解的问题,一般具有的重要性质为: AA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用48. 回溯法在问题的解空间树中,按 D 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先49. 分支限界法在问题的解空间树中,按 A 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先50. 程序块 A 是回溯法中遍历排列树的算法框架程序;A.B. C. D. 51. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO 分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO 分支限界法与优先队列式分支限界法;1.算法的复杂性有 时间 复杂性和 空间 ;2、程序是 算法用某种程序设计语言的具体实现;3、算法的“确定性”指的是组成算法的每条 指令 是清晰的,无歧义的;4. 矩阵连乘问题的算法可由 动态规划 设计实现;5、算法是指解决问题的 一种方法 或 一个过程 ;6、从分治法的一般设计模式可以看出,用它设计出的程序一般是 递归算法 ;7、问题的 最优子结构性质 是该问题可用动态规划算法或贪心算法求解的关键特征;8、以深度优先方式系统搜索问题解的算法称为 回溯法 ;9、计算一个算法时间复杂度通常可以计算 循环次数 、 基本操作的频率 或计算步; Hanoi 塔A. void hanoiint n, int A, int C, int B{ if n > 0{ hanoin-1,A,C, B;moven,a,b; hanoin-1, C, B, A; }} B. void hanoiint n, int A, int B, int C { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }D. void hanoiint n, int C, int A, int B { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } } void backtrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1; swapxt, xi; } } void backtrack int t { if t>n outputx;elsefor int i=0;i<=1;i++ { xt=i; if legalt backtrackt+1; } }void backtrack int t { if t>n outputx; else for int i=0;i<=1;i++ { xt=i; if legalt backtrackt-1; } }voidbacktrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1;}}10、解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是动态规划 ,需要排序的是回溯法 ,分支限界法 ;11、使用回溯法进行状态空间树裁剪分支时一般有两个标准:约束条件和目标函数的界,N皇后问题和0/1背包问题正好是两种不同的类型,其中同时使用约束条件和目标函数的界进行裁剪的是 0/1背包问题 ,只使用约束条件进行裁剪的是 N皇后问题 ;12、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;13、矩阵连乘问题的算法可由动态规划设计实现;14.贪心算法的基本要素是贪心选择性质和最优子结构性质 ;15. 动态规划算法的基本思想是将待求解问题分解成若干子问题 ,先求解子问题 ,然后从这些子问题的解得到原问题的解;16.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质;17、大整数乘积算法是用分治法来设计的;18、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法 ;19、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;20.快速排序算法是基于分治策略的一种排序算法;21.动态规划算法的两个基本要素是. 最优子结构性质和重叠子问题性质 ;22.回溯法是一种既带有系统性又带有跳跃性的搜索算法;23.分支限界法主要有队列式FIFO 分支限界法和优先队列式分支限界法;24.分支限界法是一种既带有系统性又带有跳跃性的搜索算法;25.回溯法搜索解空间树时,常用的两种剪枝函数为约束函数和限界函数 ;26.任何可用计算机求解的问题所需的时间都与其规模有关;27.快速排序算法的性能取决于划分的对称性 ;28.所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到 ;29.所谓最优子结构性质是指问题的最优解包含了其子问题的最优解 ;30.回溯法是指具有限界函数的深度优先生成法 ;31.用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为 Ohn ;32.回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;33.用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构;34.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构;35.旅行售货员问题的解空间树是排列树 ;三、算法填空1.背包问题的贪心算法void Knapsackint n,float M,float v,float w,float x{//重量为w1..n,价值为v1..n的 n个物品,装入容量为M的背包//用贪心算法求最优解向量x1..nint i; Sortn,v,w;for i=1;i<=n;i++ xi=0;float c=M;for i=1;i<=n;i++{if wi>c break;xi=1;c-=wi;}if i<=n xi=c/wi;}2.最大子段和: 动态规划算法int MaxSumint n, int a{int sum=0, b=0; //sum存储当前最大的bj, b存储bjfor int j=1; j<=n; j++{ if b>0 b+= aj ;else b=ai; ; //一旦某个区段和为负,则从下一个位置累和 ifb>sum sum=b;}return sum;}3.贪心算法求活动安排问题template<class Type>void GreedySelector int n, Type s, Type f, bool A{A1=true;int j=1;for int i=2;i<=n;i++if si>=fj{ Ai=true;j=i;}else Ai=false;}4.快速排序template<class Type>void QuickSort Type a, int p, int r{if p<r{int q=Partitiona,p,r;QuickSort a,p,q-1; //对左半段排序QuickSort a,q+1,r; //对右半段排序}}5. 回溯法解迷宫问题迷宫用二维数组存储,用'H'表示墙,'O'表示通道int x1,y1,success=0; //出口点void MazePathint x,int y{//递归求解:求迷宫maze从入口x,y到出口x1,y1的一条路径mazexy=''; //路径置为if x==x1&&y==y1 success=1; //到出口则成功else{if mazexy+1=='O' MazePathx,++y;//东邻方格是通路,向东尝试if success&&mazex+1y=='O' MazePath++x,y;//不成功且南邻方格是通路,向南尝试if success&&mazexy-1=='O' MazePathx,--y;//不成功且西邻方格是通路,向西尝试if success&&mazex-1y=='O' MazePath--x,y;//不成功且北邻方格是通路,向北尝试}if success mazexy=''; //死胡同置为}四、算法设计题1. 给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x,返回其在数组中的位置,如果未找到返回-1;写出二分搜索的算法,并分析其时间复杂度;template<class Type>int BinarySearchType a, const Type& x, int n{//在a0:n中搜索x,找到x时返回其在数组中的位置,否则返回-1Int left=0; int right=n-1;While left<=right{int middle=left+right/2;if x==amiddle return middle;if x>amiddle left=middle+1;else right=middle-1;}Return -1;}时间复杂性为Ologn2. 利用分治算法写出合并排序的算法,并分析其时间复杂度void MergeSortType a, int left, int right{if left<right {//至少有2个元素int i=left+right/2; //取中点mergeSorta, left, i;mergeSorta, i+1, right;mergea, b, left, i, right; //合并到数组bcopya, b, left, right; //复制回数组a}}算法在最坏情况下的时间复杂度为Onlogn;3.N皇后回溯法bool Queen::Placeint k{ //检查xk位置是否合法for int j=1;j<k;j++if absk-j==absxj-xk||xj==xk return false;return true;}void Queen::Backtrackint t{if t>n sum++;else for int i=1;i<=n;i++{xt=i;if 约束函数 Backtrackt+1;}}4.最大团问题void Clique::Backtrackint i // 计算最大团{ if i > n { // 到达叶结点for int j = 1; j <= n; j++ bestxj = xj;bestn = cn; return;}// 检查顶点 i 与当前团的连接int OK = 1;for int j = 1; j < i; j++if xj && aij == 0 // i与j不相连{OK = 0; break;}if OK { // 进入左子树xi = 1; cn++;Backtracki+1;xi = 0; cn--; }if cn+n-i>bestn { // 进入右子树xi = 0;Backtracki+1; }}5. 顺序表存储表示如下:typedef struct{RedType rMAXSIZE+1; //顺序表int length; //顺序表长度}SqList;编写对顺序表L进行快速排序的算法;int PartitionSqList &L,int low,int high //算法10.6b{//交换顺序表L中子表L.rlow..high的记录,枢轴记录到位,并返回其所在位置, //此时在它之前后的记录均不大小于它.int pivotkey;L.r0=L.rlow; //用子表的第一个记录作枢轴记录pivotkey=L.rlow.key; //枢轴记录关键字while low<high //从表的两端交替地向中间扫描{while low<high&&L.rhigh.key>=pivotkey --high;L.rlow=L.rhigh; //将比枢轴记录小的记录移到低端while low<high&&L.rlow.key<=pivotkey ++low;L.rhigh=L.rlow; //将比枢轴记录大的记录移到高端}L.rlow=L.r0; //枢轴记录到位return low; //返回枢轴位置}void QSortSqList &L,int low,int high{//对顺序表L中的子序列L.rlow..high作快速排序int pivotloc;if low<high //长度>1{pivotloc=PartitionL,low,high; //将L.rlow..high一分为二QSortL,low,pivotloc-1; //对低子表递归排序,pivotloc是枢轴位置 QSortL,pivotloc+1,high; //对高子表递归排序}}void QuickSortSqList &L{//对顺序表L作快速排序QSortL,1,L.length; }。

考研算法试题及答案详解

考研算法试题及答案详解

考研算法试题及答案详解一、单项选择题1. 以下哪个算法的时间复杂度是O(nlogn)?A. 冒泡排序B. 快速排序C. 插入排序D. 选择排序答案:B2. 在图的遍历算法中,深度优先搜索(DFS)使用的是哪种数据结构?A. 队列B. 栈C. 链表D. 堆答案:B二、填空题1. 在动态规划中,状态转移方程通常表示为:\[ dp[i] =\min(dp[i], dp[j] + cost[i][j]) \],其中\[ cost[i][j] \]表示从状态\[ j \]到状态\[ i \]的转移代价。

答案:\[ \min \]2. 哈希表的平均查找时间复杂度是O(1),最坏情况下的时间复杂度是O(n),其中n是哈希表中元素的数量。

三、解答题1. 请描述二叉树的前序遍历算法。

答案:二叉树的前序遍历算法首先访问根节点,然后递归遍历左子树,最后递归遍历右子树。

2. 给定一个无向图,如何使用Floyd-Warshall算法计算图中所有顶点对之间的最短路径?答案:Floyd-Warshall算法是一种动态规划算法,用于在加权图中找到所有顶点对之间的最短路径。

算法步骤如下:- 初始化距离矩阵dist,其中dist[i][j]表示顶点i到顶点j的最短路径长度。

- 对于每个顶点k,更新dist[i][j],如果通过k的路径更短,则更新dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])。

- 遍历所有顶点k,更新dist[i][j]。

四、编程题1. 编写一个函数,实现字符串的反转。

答案:```pythondef reverse_string(s):return s[::-1]```2. 给定一个整数数组,请编写一个函数,找出数组中第二大的数。

答案:```pythondef find_second_max(nums):first_max = second_max = float('-inf')for num in nums:if num > first_max:second_max = first_maxfirst_max = numelif num > second_max and num != first_max:second_max = numreturn second_max ```。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计的特征:有穷性,确定性,输入和输出,可行性
运行算法的时间:硬件的速度。

书写程序的语言。

问题的规模,编译生成程序的代码质量算法复杂度: 时间复杂度和空间复杂度
1.迭代法
迭代法又称为辗转法,是用计算机解决问题的一种基本方法,为一种不断用变量的旧值递推新值的过程,与直接法相对应,一次性解决问题。

迭代法分为精确迭代和近似迭代,“二分法”和“牛顿迭代法”属于近似迭代法。

迭代法利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

利用迭代算法解决问题,需要做好以下三个方面的工作:
1.确定迭代变量(在可以用迭代算法解决的问题中,至少存在一个直接或间接地
不断由旧值递推出新值的变量,这个变量就是迭代变量。


2. 建立迭代关系式(所谓迭代关系式,指如何从变量的前一个值推出其下一个值
的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以顺推
或倒推的方法来完成。


3.对迭代过程进行控制(在什么时候结束迭代过程?这是编写迭代程序必须考虑
的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为
两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所
需的迭代次数无法确定。

对于前一种情况,可以构建一个固定次数的循环来实
现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程
的条件。


2.穷举搜索法
穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。

即本方法使用可以理解为暴力循环方法,穷举所有可能性,一般这种方法的时间效率太低,不易使用。

但是方法简单,易理解。

3.递推法
递推是计算机数值计算中的一个重要算法,思路是通过数学推导,将复杂的运算化解为若干重复的简单运算,以充分发挥计算机长于重复处理的特点。

递推法:
递推法实际上是一种递推关系,就是为了得到问题的解,把它推到比原问题简单的
问题求解,可分为顺推法和倒推法。

i.顺推法,就是先找到递推关系式,然后从初始条件出发,一步步地按
递推关系式递推,直至求出最终结果。

ii.倒推法,就是在不知道初始条件的情况下,经某种递推关系而获知问题的解,再倒过来,推知它的初始条件。

4.递归法(递推加回归)
一个过程或函数在其定义或说明中又间接或间接调用本身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题类似的规模较小的问题来求解,递
归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了
程序的代码量。

递归的能力在于用有限的语句来定义对象的无限集合。

用递归思想
写出的程序往往十分简洁易懂。

一般来说,递归需要有边界条件、递归前进段和递归前往段。

当边界条件不满脚时,递归前进;当边界条件满脚时,递归前往。

能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且
这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并
从这些更小问题的解构造出规模较大问题的解。

特别地,当规模N=1时,能直接
得解。

递归算法的执行过程分递推和回归两个阶段
5.分治法
分治法可以通俗的解释为:把一片领土分解,分解为若干块小部分,然后一块块地占领征服,被分解的可以是不同的政治派别或是其他什么,然后让他们彼此异
化。

分治法的精髓:
分--将问题分解为规模更小的子问题;
治--将这些规模更小的子问题逐个击破;
合--将已解决的子问题合并,最终得出“母”问题的解
几个分治策略的例子:合并排序,快速排序,折半查找,二叉遍历树及其相关特性。

6.动态规划
动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。

一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的
过程就称为动态规划。

基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺
序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。

在求解
任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部
解,丢弃其他局部解。

依次解决各子问题,最后一个子问题就是初始问题的解。

由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题
往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。

7.回溯法(试探部分+回溯部分)
回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。

但当探索到某一步时,发现原先选择并不优或达不到目标,就
退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某
个状态的点称为“回溯点”。

在包含问题的所有解的解空间树中,按照深度优先搜
索的策略,从根结点出发深度探索解空间树。

当探索到某一结点时,要先判断该结
点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包
含问题的解,则逐层向其祖先结点回溯。

(其实回溯法就是对隐式图的深度优先搜
索算法)。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子
树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个
解就可以结束
8.贪婪法
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。

也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局
部最优解。

贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,
选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,
只与当前状态有关。

1.建立数学模型来描述问题
⒉把求解的问题分成若干个子问题。

⒊对每一子问题求解,得到子问题的局部最优解。

⒋把子问题的解局部最优解合成原来解问题的一个解。

9.分支界限法
分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。

在分支限界法中,每一个活结点只有一次机会成为扩展结点。

活结点一旦成为扩展结点,就一次性产生其所有儿子结点。

在这些儿子结点中,导致不可行解或导
致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。

此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。


个过程一直持续到找到所需的解或活结点表为空时为止。

10. 概率算法。

概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可
能得到完全不同的效果。

这两次求解问题所需的时间甚至所得到的结果可能会有相
当大的差别。

相关文档
最新文档