2020年高考理科数学易错题《排列组合》题型归纳与训练

合集下载

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式: ()()()C A A n n n m m n m n m nm nm mm ==--+=-11……!!!! 10=nC 规定:组合数性质:.2 nn n n n m n m n m n m n n mnC C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12mm 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

【高考数学 易错专练】知识点 排列组合综合 易错点5 混淆分堆与分配问题(学生版)

【高考数学 易错专练】知识点 排列组合综合  易错点5 混淆分堆与分配问题(学生版)

知识点排列组合综合易错点5 混淆分堆与分配问题知识点排列组合综合易错点5 混淆分堆与分配问题【易错诠释】(1)分堆与分配问题:将一组n个不同元素平均分给A、B、C等不同的单位,每个单位m个,可先从n个中选取m个给A,再从剩下的n-m个中选取m个给B,…,依次类推,不同方法种数为C C…C个;将一组n个不同元素平均分成k堆,每堆m个,由于某m个元素先选和后选分堆结果是一样的,故不同分堆方法数为.(2)相同元素分配,每单位至少含有一个元素,可用插板法;相同元素分组,按元素最多的组分类,用数数法.【典例】有12本不同的书,分成4堆.(1)若每堆3本,有几种方法?(2)若4堆依次为1本,3本,4本,4本,有几种分法?(3)若4堆依次为1本,2本,3本,6本,有几种分法?(只要求列出算式)【错解】(1)有C C C C种分法;(2)有C C C C种分法;(3)有C C C C种分法.【错因】A、B、C、D四本书平均为分两堆,只有AB,CD;AC,BD;AD,BC三种分法,而C·C=6,显然计数错误,原因是先从4本书中选取AB,再取CD和先取CD,再取AB 是同一种分法,上述错解犯了相同的错误.【正解】(1)有分法种.(2)有分法种.(3)有分法C C C C种【针对练习】1.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答).2.有5本不同的书,全部借给3人,每人至少1本,共有______种不同的借法.3.若将五本不同的书全部分给三个同学,每人至少一本,则有________种不同的分法. 4.将7名应届师范大学毕业生分配到3所中学任教.(最后结果用数字表示)(1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?(2)一所学校安排4个人,一所学校安排2个人,一所学校1个人,有多少种不同的分配方案?(3)其中有两所学校都各安排3个人,另一所学校安排1个人,有多少种不同的分配方案?5.(1)4本不同的书平均分成两堆,每堆两本,有几种分法?(2)10人坐成一排,要求甲、乙、丙三人按从左到右的顺序就坐(不一定要相邻),有几种坐法?。

排列组合十种解题技巧与易错题归纳总结

排列组合十种解题技巧与易错题归纳总结

排列组合问题十种题型及其解题技巧、易错归纳(一)至少变恰好例题1 某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( ) A .36B .72C .108D .144【解析】根据题意,分3步进行分析:①单位甲在6人中任选2人招聘,要求至少招聘一名男生,有226312C C -=种情况,②单位乙在剩下的4人中任选2人招聘,有246C =种情况,③单位丙在剩下的2人中任选1人招聘,有122C =种情况, 则有1262144⨯⨯=种不同的录取方案,选D巩固1 2019年高考结束了,有5为同学(其中巴蜀、一中各2人,八中1人)高考发挥不好,为了实现“南开梦”来到南开复读,现在学校决定把他们分到123、、三个班,每个班至少分配1位同学,为了让他们能更好的融入新的班级,规定来自同一学校的同学不能分到同一个班,则不同的分配方案种数为( ) A .84B .48C .36D .28【解析】设这五人分别为1212,,,,A B B C C ,若A 单独为一组时,只要2种分组方法;若A 组含有两人时,有11428C C ⋅=种分组方法;若A 组含有三人时,有11224C C ⋅=种分组情况;于是共有14种分组方法,所以分配方案总数共有331484A =,故选A. (二)插空法例题2 电视台在电视剧开播前连续播放6个不同的广告,其中4个商业广告2个公益广告,现要求2个公益广告不能连续播放,则不同的播放方式共有( )A .5424A A ⋅B .5424C C ⋅C .4267A A ⋅ D .4267C C ⋅【解析】先排4个商业广告,有44A 种排法,然后利用插空法,4个商业广告之间有5个空,插2个公益广告,有25A 种排法,根据分步计数原理,所以共有5424A A ⋅种排法,选A.巩固2 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩下的4个车位连在一起,那么不同的停放方法的种数为( ) A .18B .24C .32D .64【解析】首先安排三辆车的位置,假设车位是从左到右一共7个,当三辆车都在最左边时,有车之间的一个排列33A ,当左边两辆,最右边一辆时,有车之间的一个排列33A , 当左边一辆,最右边两辆时,有车之间的一个排列33A ,当最右边三辆时,有车之间的一个排列33A ,总上可知,共有不同的排列法33424A ⨯=种结果,所以选B(三)特殊元素优先例题3 某所大学在10月份举行秋季越野接力赛,每个专业四人一组,其中计算机专业的甲、乙、丙、丁四位大学生将代表本专业参加拉力赛,需要安排第一棒到第四棒的顺序,四个人去询问教练的安排,教练对甲说:“根据训练成绩,你和乙都不适合跑最后一棒”;然后又对乙说:“你还不适合安排在第一棒”,仅从教练回答的信息分析,要对这四名同学讲行合理的比赛棒次安排,那么不同情形的种数共有( ) A .6B .8C .12D .24【解析】根据条件乙只能安排在第二棒或第三棒;若“乙”安排在第二棒,此时有:1222C A 4=种,若“乙”安排在第三棒,此时有:1222C A 4=种,则一共有8种,选B.(四)捆绑法例题4 为迎接双流中学建校80周年校庆,双流区政府计划提升双流中学办学条件.区政府联合双流中学组成工作组,与某建设公司计划进行6个重点项目的洽谈,考虑到工程时间紧迫的现状,工作组对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有() A .240种B .188种C .156种D .120种【解析】第一类:当甲在第1位时,第一步,丙、丁捆绑成的整体有4种方法,第二步,丙、丁内部排列用22A 种方法,第三步,其他三人共33A 种方法,共23234A A 42648=⨯⨯=种方法;第二类:当甲在第2位时,第一步,丙、丁捆绑成的整体有3种方法, 后面两步与第一类方法相同,共23233A A 32636=⨯⨯=种方法; 第三类:当甲在第3为时,与第二类相同,共36种方法; 总计,完成这件事的方法数为483636120N =++=,故选D.巩固3 某校迎新晚会上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校迎新晚会节目演出顺序的编排方案共有( ) A .120种B .156种C .188种D .240种【解析】先考虑将丙、丁排在一起的排法种数,将丙、丁捆绑在一起,与其他四人形成五个元素,排法种数为25252120240A A =⨯=,利用对称性思想,节目甲放在前三位或后三位的排法种数是一样的, 因此,该校迎新晚会节目演出顺序的编排方案共有2401202=种,选A. (五)不在问题的间接法例题5 某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是( ) A .320B .313C .79D .1778【解析】设事件A :数学不排第一节,物理不排最后一节. 设事件B :化学排第四节.()41134333555578A C C A P A A A +==,()31123222555514A C C A P AB A A +==,故满足条件的概率是()()739P AB P A =.故选C.巩固4 某公司安排五名大学生从事A B C D 、、、四项工作,每项工作至少安排一人且每人只能安排一项工作,A 项工作仅安排一人,甲同学不能从事B 项工作,则不同的分配方案的种数为( ) A .96B .120C .132D .240【解析】若甲同学在A 项工作,则剩余4人安排在B 、C 、D 三项工作中,共有1211342136C C C C =种 若甲同学不在A 项工作,,则在C 或D 工作,共有111112423323()96C C C C C C ++=种,共36+96=132种,选C 巩固5 某次文艺汇演为,要将A ,B ,C ,D ,E ,F 这六个不同节目编排成节目单,如下表:序号 1 2 3 4 5 6 节目如果A ,B 两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有 A .192种B .144种C .96种D .72种【解析】由题意知A ,B 两个节目要相邻,且都不排在第3号位置, 可以把这两个元素看做一个,再让他们两个元素之间还有一个排列,A ,B 两个节目可以排在1,2两个位置,可以排在4,5两个位置,可以排在5,6两个位置, 这两个元素共有种排法,其他四个元素要在剩下的四个位置全排列,节目单上不同的排序方式有,选B .(六)走街道问题例题6 如图,某城市中,M 、N 两地有整齐的道路网,若规定只能向东或向北两个方向沿途中路线前进,则从M 到N 不同的走法共有( )A .10B .13C .15D .25【解析】因为只能向东或向北两个方向,向北走的路有5条,向东走的路有3条,走路时向北走的路有5种结果,向东走的路有3种结果,根据分步计数原理知共有3515⨯=种结果,选C (七)隔板法例题7 设有1n +个不同颜色的球,放入n 个不同的盒子中,要求每个盒子中至少有一个球,则不同的放法有( )A .()1!n +种B .()1!n n ⋅+种C .()11!2n +种 D .()11!2n n ⋅+种 【解析】将两个颜色的球捆绑在一起,再全排列得21!(1)!2n n C n n +=+ 选D巩固6 将4个大小相同,颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放球方法有( )种. A .7B .10C .14D .20【解析】根据题意,每个盒子里的球的个数不小于该盒子的编号, 分析可得,1号盒子至少放一个,最多放2个小球,分情况讨论: ①1号盒子中放1个球,其余3个放入2号盒子,有C 41=4种方法;②1号盒子中放2个球,其余2个放入2号盒子,有C 42=6种方法;则不同的放球方法有4+6=10种,选B . (八)回归原始的方法例题8 某次演出共有6位演员参加,规定甲只能排在第一个或最后一个出场, 乙和丙必须排在相邻的顺序出场,请问不同的演出顺序共有( ) A .24种B .144种C .48种D .96种【解析】第一步,先安排甲有12A 种方案;第二步,安排乙和丙有2124A A 种方案;第三步,安排剩余的三个演员有33A 种方案,根据分步计数原理可得共有1213224396A A A A =种方案.故选D.巩固7 如图,下有七张卡片,现这样组成一个三位数:甲从这七张卡片中随机抽出一张,把卡片上的数字写在百位,然后把卡片放回;乙再从这七张卡片中随机抽出一张,把卡片上的数字写在十位,然后把卡片放回;丙又从这七张卡片中随机抽出一张,把卡片上的数字写在个位,然后把卡片放回。

排列组合知识点归纳总结高考题

排列组合知识点归纳总结高考题

排列组合知识点归纳总结高考题编号一:排列组合基础知识在高考数学中,排列组合是一个重要的考点。

掌握排列组合知识对于解决相关题目至关重要。

本文将对排列组合的基础知识进行归纳总结,并配以高考题进行实例分析。

1. 排列排列是从若干个元素中取出一部分元素,按照一定的顺序进行排列,形成不同的序列。

排列有两种情况:有重复元素的排列和无重复元素的排列。

1.1 有重复元素的排列当从 n 个元素中取出 r 个进行排列时(r ≤ n),若这些元素中有重复元素,则排列的总数为 P(n;r) = n! / (n1! × n2! × ... × nr!),其中 ni 表示第 i 个元素的个数。

【例题1】:某班上有 10 名学生,其中 5 名男生和 5 名女生,现要从这 10 人中选出 3 人组成一支足球队。

求不同的组队方案数。

解:由于男生和女生分别占一定数量,该问题属于有重复元素的排列。

根据公式可知,解法为 P(5;3) = 5! / (2! × 3!) = 10 种。

1.2 无重复元素的排列当从 n 个不同元素中取出 r 个进行排列时(r ≤ n),排列的总数为P(n;r) = n! / (n-r)!。

【例题2】:有 9 个不同的球队参加一场篮球比赛。

其中第一名和第二名分别获得冠军和亚军。

请问这 9 支球队的比赛有多少种可能的结果?解:由于每个球队的位置是不同的,问题属于无重复元素的排列。

根据公式可知,解法为 P(9;2) = 9! / 7! = 72 种。

2. 组合组合是从若干个元素中取出一部分元素,不考虑顺序,形成不同的组合。

同样地,组合也有两种情况:有重复元素的组合和无重复元素的组合。

2.1 有重复元素的组合当从 n 个元素中取出 r 个进行组合时(r ≤ n),若这些元素中有重复元素,则组合的总数为 C(n;r) = (n+r-1)! / (r! × (n-1)!)。

排列组合题型总结及易错点提示

排列组合题型总结及易错点提示

八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒有44A 种方法,根据分步计数原理装球的方法共有2454C A练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法 练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有列方式的种数为254254A A A2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排。

相邻名额之间形成9个空隙。

在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

二班七班练习题:1.10个相同的球装5个盒中,每盒至少一有多少装法? 49C2 .100x y z w +++=求这个方程组的自然数解的组数 3103C十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。

《排列组合》知识点总结+典型例题+练习(含答案)

《排列组合》知识点总结+典型例题+练习(含答案)

排列组合考纲要求1.了解排列的意义,理解排列数公式,并能用它们解决一些简单的实际问题.2.了解组合的意义,理解组合数公式,并能用它们解决一些简单的实际问题.3. 了解组合数性质. 知识点一:排列1.排列的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.若m <n ,这样的排列叫选排列;若m =n ,这样的排列叫全排列.2.排列数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有排列的个数,从n 个不同元素中取出m 元素的排列数,记作mn P .(1) P m n =n (n -1)(n -2) … (n -m +1); (2) ==!P n n n n (n -1)(n -2) … 3×2×1; (3) P m n =()!!n n m -; 规定:0!=1.知识点二:解决排列问题的基本方法.1. 优限法:即先排特殊的元素,或者特殊的位置.2.捆绑法:相邻问题,把相邻的元素看成一个整体,然后再参与其他元素的排列. 3.插空法:对元素互不相邻的排列问题,常常采用插空法,首先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空位中.4. 排除法:即从正面难以考虑时可以考虑它的对立面,用全部结果数减去对立事件的方法数.5.枚举法:即将所有排列按照一定的规律,一一列举出来的方法. 知识点三:组合1.组合的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有组合的个数,从n个不同元素中取出m 元素的组合数,记作mn C .(1)()()()121P C P !mm nnmn n n n n m m ---+==;(2)()!C !!mn n m n m =-(n ,*N ∈m ,且m ≤n ).3. 组合数性质:(1) C =C m n mn n-; (2) 111C +C C m m m n n n +++=.知识点四:解组合问题的方法1.分类讨论:即分析题中的限定条件将所给元素按性质适当分类,并侧重其中一类,相应各类分类讨论,分类时要做到不重不漏.2.等价转化:即把所求问题转化为与之等价的组合问题去解决.3.排除法.4.枚举法.知识点五:计数需注意问题1.排列为有序问题,组合为无序问题,两者都是不重复问题.2.排列包括两个要素,一个是不同的元素,另一个是确定的顺序. 即排列可分成两步,第一步取出元素,第二步排列顺序.3.组合只有一个要素,就是取出元素即可,与元素的排列顺序无关.4.要注意区分分类和分步计数原理,排列和组合,元素允许重复是直接用计数原理,而元素不允许重复的是排列和组合问题. 题型一 排列定义例1 五个同学站一排照相,共多少种排法?分析:把5个元素放在5个位置上,相当于5的全排列,也共有120P 55=种排法. 解答:N =120P 55=种排法题型二 排列数公式例2 设x N *∈,10x <,(20)(21)(30)().x x x --⋅⋅⋅-=A. 1020P x -B. 1120P x -C. 1030P x -D. 1130P x -分析:排列数公式 P m n =n (n -1)(n -2)…(n -m +1)的特点: (1)等号右边最大的数是n ; (2)等号右边最小的数是n -m +1; (3)共有m 个连续自然数相乘. 解答:30n x =-,(30)(20)111m x x =---+=,∴ (20)(21)(30)x x x --⋅⋅⋅-=1130P x -题型三 解决排列应用题 例3 用1、2、3、4、5、6个数. (1)可以组成多少个五位数?(2)可以组成多少个没有重复数字的五位数? (3)可以组成多少个1和2相邻的六位数? (4)可以组成多少个1和2不相邻的六位数?分析:先考虑是用分类分步还是用排列组合,就是要观察一下数字是否允许重复,数字允许重复用分类分步计数原理,数字不允许重复用排列组合,数字相邻用捆绑法,数字不相邻用插空法.解答:(1)数字可以重复,所以用分步计数原理,每个数位上都有6个数字可选,因此共有5666666⨯⨯⨯⨯=个.(2)数字不可以重复,还有顺序,所以用排列,共720P 56==N 个.(3)1和2相邻,用捆绑法,先排1和2共22P 种,与余下的4个元素共有55P 种,则共有240P P 5522=个.(4)1和2不相邻,插空法,先排余下的4个元素44P 种,,再从5个空中挑选2个即25P 种,则共有480P P 2544=个.题型四 组合定义及组合数公式例4 从8名男生2名女生中任选5人, (1)共有多少种不同的选法? (2)恰好有一名女生的不同选法? 分析:选取元素干同一件事就组合问题.解答:(1)所有不同选法数就从10人中任选5人的组合数即252C 510=种.(2)从2名女生中任选1人的选法有12C 种,从8名男生中选出4人的选法有48C 种,由分步计数原理,恰有一名女生的选法有140C C 4812=种.题型五 组合数公式例5 (1)已知321818C C -=x x 则x =____. (2)=+97999899C C _____.分析:灵活运用组合数性质.解答:(1)根据题意得 23x x =-或(23)18x x +-=则3x =或7x =.(2)4950299100C C C C 21009810097999899=⨯===+. 题型六 解组合应用题例6 从8件不同的服装快递,2件不同的食品快递中任选5件. (1)至少有一件食品快递的不同选法总数? (2)最多有一件食品快递的不同选法总数?分析:解决带有限制条件的组合应用题要根据题意正确地分类或分步,巧妙运用直接法或间接法.解答:(1)法一(直接法)分两类情况求解,第一类恰有一件食品快递选法有4812C C 种,第二类恰有两件食品快递选法有3822C C 种,由分类计数原理得至少有一件食品快递的不同选法共有196C C C C 38224812=+种.法二(排除法)从10件快递中任选5件选法总数减去选出的5件全为服装快递的总数即至少有一件为食品快递的不同选法有55108196C C -=种.(2) 最多有一件食品快递可分为以下两类,第一类选出的五件快递中恰有一件食品快递有1428C C 种选法,第二类选出的五件快递中恰有0件食品快递,有0528C C 种选法,由分类计数原理知最多有一件食品快递的选法有14052828196C C C C +=种.一、选择题1.设*x N ∈,10x <,则(10)(11)(17)x x x --⋅⋅⋅-用排列数符号表示为( ).A.x x --1017PB.817P x -C. 717P x -D. 810P x -2.从4人中任选2人担任正副班长,结果共有( )种.A. 4B. 6C. 12D. 243.将5本不同的笔记本分配给4个三好学生(每个学生只能拥有一本笔记本),则所有的分法种数为( ).A. 5!B. 20C. 54D. 454.5名学生报考4所不同的学校(每名学生只能报考一所学校),则所有的报考方法有( )种.A. 5!B. 20C. 54D. 455.将6名优秀教师分配到4个班级,要求每个班有1名教师,则不同的分法种数有( )种.A. 46PB. 46C. 46CD. 646.为抗击郑州水患,某医院派3名医生和6名护士支援郑州,他们被分配到郑州的三所医院,每个医院分配1名医生和2名护士,共有( )种不同的分配方法.A. 24122613P P P P +B. 221124122613P P P P P P ++ C. 121212362412C C C C C C ⋅⋅⋅⋅⋅ D. 121212362412C C C C C C ⋅+⋅+⋅7.从4名男生和5名女生中任取3人,其中男生至多有一人,则不同的取法共有( )种 . A. 30 B. 50 C. 70 D. 808.某小组有男生7人,女生3人,选出3人中有1名男生,2名女生的不同选法有( )种.A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅9.10件产品中有2件次品,任取3件至少有1件次品的不同抽法为( )种.A. 1229C C ⋅ B. 312828C C C +⋅ C. 33108C C - D. 12122928C C C C ⋅-⋅10.式子(1)(2)(15)16!x x x x ++⋅⋅⋅+(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C. 16x CD. 17x C妙记巧学,归纳感悟 二、判断题:1. 34567⨯⨯⨯⨯等于37P .( )2. 从甲、乙、丙、丁中任选两人做正、副班长,共有12种.( )3. 6个座位,3个人去坐,每人坐一个座位,则共36C 种.( ) 4. 6个点最多可确定26C 条直线.( ) 5. 6个点最多可确定26C 条有向线段.( ) 6. 某铁路有十个站点,共需准备210P 种车票.( )7. 某铁路有十个站点,有210P 种不同票价(同样的两个站点的票价相同).( ) 8. 某组学生约定,假期每两人互通一封信,共计12封,这个小组学生有5人.( ) 9. 把语文、数学、英语、美术、历史这五门课排在一天的五节课中,数学必须比美术先上的排法总数为44C 种.( )10.从3、5、7、9中任选两个,可以组成12个不同的分数值.( ) 妙记巧学,归纳感悟 三、填空题1.若57n n C C =,则n =_______..2.若56P 2=n ,则n =_______.3.从数字0、1、2、3、4、5中任选3个数,可组成______个无重复数字的三位偶数.4.将4本同样的书分给5名同学,每名同学至多分一本,而且书必须分完则不同的分法总数有______种.5.2名教师和5名学生中选3人去旅游,教师不能不去,也不能全去,则共有______种选法. 妙记巧学,归纳感悟 四、解答1.将5名学生排成一排照相,其中3名男生,2名女生,则以下情况各有多少种不同的排法?(1)甲乙必须相邻; (2)甲乙互不相邻; (3)甲乙必须站两端; (4)甲乙不在两端; (5)男女相间.2. 将6本不同的书,在下列情况下有多少种分法? (1)分成相等的三份; (2)平均分给甲乙丙三位同学;(3)分成三份,一份一本,一份两本,一份三本; (4)甲分一本,乙分两本,丙分三本;(5)如果一人分一本,一人分两本,一人分三本,分给甲乙丙. 高考链接1.(2018)某年级有四个班,每班组成一个篮球队,每队分别同其他三个队比赛一场,共需要比赛( )场.A. 4B. 6C. 5D. 7 2. 某段铁路共有9个车站,共需准备( )种不同的车票. A. 36 B. 42 C.64 D. 723. 甲袋中装有6个小球,乙袋中装有4个小球,所有小球颜色各不相同,现从甲袋中取两个小球,乙袋中取一个小球,则取出三个小球的不同取法共有( )种. A. 30 B. 60 C.120 D. 3604. 某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场顺序有______种. 积石成山10件产品中有2件次品任取3件,至多有一件次品的不同取法总数为( )种.A. 312828C C C +B. 1229C C C. 33108C C - D. 12122928C C C C -2. 从4名男生和5名女生中任取3人,其中至少有男生,女生各一名,则不同的取法有( )种.A. 140B. 84C. 70D. 353. 某医疗小队有护士7人,医生3人,任选3人的不同选法有( ).A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅4. 将4名优秀教师分配到3个班级,每个班至少分到一名教师,则不同的分配方案有( )种.A. 72B. 36C. 18D. 125. 5个人站成一排照相,甲不站排头,乙不站排尾的排法总数有( )种. A. 36 B. 78 C. 60 D. 486. 5个人站成一排照相,甲站中间的排法总数有( )种. A .24 B. 36 C. 60 D. 487. 5个人站成2排照相,第一排2人,第二排3人则不同的排法总数有( )种. A. 48 B. 78 C. 60 D. 1208. 从1、2、3、4中任选2个,再从5、6、7、8、9中任选2个可组成无重复的四位数的个数是( )个.A .720 B. 2880 C. 1440 D .1449. 某工作小组有9名工人,3名优秀工人,各抽5人参加比赛,要求优秀工人都参加不同的选法共有( )种.A. 12B.15C. 30D. 36 10. 式子(1)(2)(15)1!x x x x x ++⋅⋅⋅+-()(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C.16x C D .17x C排列组合答案一、选择题二、判断题三、填空题1.12 解析:根据组合数性质1得5712n =+=2.8 解析:2(1)56n P n n =-= 8n ∴=3. 52 解析:分两类,第一类个位是零则有2520P =个;第二类,个位不是零,则有11124432P P P =个,所以共有20+32=52个.4.5 解析:只需在五人中选四人得到书即可,书相同无需排序,则有455C =种. 5.20 解析:老师不能不去,也不能全去,则只能去一人即122520C C =种.妙记巧学,归纳感悟:答案全,结果简. 四、解答题1.解:(1)把甲乙捆绑在一起有22P 种,与余下的3名学生共有44P 种,则甲乙必须相邻,有242448P P =种排法.(2)先把余下的3名学生排好有33P 种,再从形成的4个空中任选两个甲乙来排有24P 种,则甲乙不相邻有323472P P =种排法.(3)甲乙必须站两端,先排甲乙有22P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙必须站两端有323212P P =种排法.(4)先从3个位置中选2个甲乙来排有23P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙不在两端有233336P P =种. (5)男女相间则有323212P P =种排法.2. 解:(1)平均分堆问题.有2226423315C C C P =种方法. (2)平均分配问题,每人均分得2本.甲先取两本26C 种,乙再取两本24C 种,丙最后取两本22C 种,由分步计数原理得222642C C C =90种方法.(3)不平均分堆问题,第一份16C 种,第二份25C 种,第三份33C 种,则共有123653C C C =60种方法.(4)不平均分配问题,甲先选一本16C 种,乙再选两本25C 种,丙最后选三本33C 种,则共有123653C C C =60种方法.(5)不平均分配问题,且没有指定对象,先分三份123653C C C 种,再把这三份分给甲乙丙三人有33P 种,则共有种12336533360C C C P =方法.妙记巧学,归纳感悟: 排列组合来相遇,先组后排无争议. 高考链接1.B2.D3.B4.2400 解析:相声节目不相邻,则用插空法先排5个小品节目共有55P 种,五个小品节目共形成六个空选三个空插入相声节目有36P 种,则共有53562400P P =种.积石成山。

(完整版)排列组合知识点总结+典型例题及答案解析

(完整版)排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

(完整word版)高中数学排列组合题型总结与易错点提示

(完整word版)高中数学排列组合题型总结与易错点提示

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有1m种不同的方法,在第2类办法中有2m种不同的方法,…,在第n类办法中有mn不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有1m种不同的方法,做第2步有2m种不同的方法,…,做第n步有n m种不同的3。

分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事.分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1。

由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。

先排末位共有13C443然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A=练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法。

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A=种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20三。

不相邻问题插空策略例3。

一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A不同的方法,由分步计数原理,节目的不同顺序共有5456A A种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为30四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

高中数学排列组合题型总结与易错点提示

高中数学排列组合题型总结与易错点提示

排列组合复习巩固1。

分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同得方法,在第2类办法中有种不同得方法,…,在第类办法中有种不同得方法,那么完成这件事共有:种不同得方法。

2、分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同得方法,做第2步有种不同得方法,…,做第步有种不同得方法,那么完成这件事共有:种不同得方法.3、分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事、分步计数原理各步相互依存,每步中得方法完成事件得一个阶段,不能完成整个事件、一。

特殊元素与特殊位置优先策略例1。

由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数、解:由于末位与首位有特殊要求,应该优先安排,以免不合要求得元素占了这两个位置. 先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得练习题:7种不同得花种在排成一列得花盆里,若两种葵花不种在中间,也不种在两端得花盆里,问有多少不同得种法?二。

相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同得排法。

解:可先将甲乙两元素捆绑成整体并瞧成一个复合元素,同时丙丁也瞧成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排、由分步计数原理可得共有种不同得排法例3.一个晚会得节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目得出场顺序有多少种?解:分两步进行第一步排2个相声与3个独唱共有种,第二步将4舞蹈插入第一步排好得6个元素中间包含首尾两个空位共有种不同得方法,由分步计数原理,节目得不同顺序共有 种新节目不相邻,那么不同插法得种数为 30四。

定序问题倍缩空位插入策略例4、 7人排队,其中甲乙丙3人顺序一定共有多少不同得排法解:(倍缩法)对于某几个元素顺序一定得排列问题,可先把这几个元素与其她元素一起进行排列,然后用总排列数除以这几个元素之间得全排列数,则共有不同排法种数就是:(空位法)设想有7把椅子让除甲乙丙以外得四人就坐共有种方法,其余得三个位置甲乙丙共有 1种坐法,则共有种方法。

冲刺2020年高考满分数学(理)纠错《专题25排列组合》(原卷版)

冲刺2020年高考满分数学(理)纠错《专题25排列组合》(原卷版)

专题25排列组合(原卷版)易错点1:没有理解两个基本原理出错排列组合问题基于两个基本计数原理,即加法原理和乘法原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提.易错点2:判断不出是排列还是组合出错在判断一个问题是排列还是组合问题时,主要看元素的组成有没有顺序性,有顺序的是排列,无顺序的是组合.易错点3:重复计算出错在排列组合中常会遇到元素分配问题、平均分组问题等,这些问题要注意避免重复计数,产生错误。

易错点4:遗漏计算出错在排列组合问题中还可能由于考虑问题不够全面,因为遗漏某些情况,而出错。

易错点5:忽视题设条件出错在解决排列组合问题时一定要注意题目中的每一句话甚至每一个字和符号,不然就可能多解或者漏解.来源:易错点6:未考虑特殊情况出错在排列组合中要特别注意一些特殊情况,一有疏漏就会出错.易错点7:题意的理解偏差出错易错点8:解题策略的选择不当出错题组一:两个计数原理1.(2016年全国II)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24 B.18 C.12 D.92.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有________个.题组二:分配问题3.(2017新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A.12种B.18种C.24种D.36种4.(2014新课标1)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.18B.38C.58D.785.(2012新课标)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有A.12种B.10种C.9种D.8种6.(2018全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有___种.(用数字填写答案)题组三:选择问题7.(2018全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.1188.(2013新课标2)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________.9.(2019全国I理6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.111610.(2018全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.118题组五:排数问题11.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)12.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)。

2020年高考数学排列组合专题

2020年高考数学排列组合专题

少及取出多少个元素.
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解
题策略
一.特殊元素和特殊位置优先策略
例 1.由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两
1
C
1 4
A
3 4
C
1 3
个位置. 先排末位共有 C31 然后排首位共有 C41 最后排其它位置共有 A43 由分步计数原理得 C41C31A43 288
个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,
那么不同插法的种数为 30
四.定序问题倍缩空位插入策略
例 4.7 人排队,其中甲乙丙 3 人顺序一定共有多少不同的排法
解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他
元素一起进行排列,然后用总排列数除以这几个元素之间的全排
允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素
的位置,一般地 n 不同的元素没有限制地安排在 m 个位置上的排列数为 mn 种
3
练习题: 1. 某班新年联欢会原定的 5 个节目已排成节目单,开演前又增加了两个
新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42 2. 某 8 层大楼一楼电梯上来 8 名乘客人,他们到各自的一层下电梯,下电梯的 方法 78
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完
成整个事件.
解决排列组合综合性问题的一般过程如下:
1.认真审题弄清要做什么事
2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进

2020年高考数学排列组合专题复习(后附答案)

2020年高考数学排列组合专题复习(后附答案)

2020年高考数学排列组合专题复习(后附答案)1、用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?2、三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?3、排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?4、某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.5、现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种?6、下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?7、7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法?8、从65432、、、、五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.9、计算下列各题:(1) 215A ; (2) 66A ; (3) 1111------⋅n n m n mn m n A A A ; (4) !!33!22!1n n ⋅++⋅+⋅+ (5) !1!43!32!21n n -++++10、f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法.对这个题目,A 、B 、C 、D 四位同学各自给出了一种算式:A 的算式是6621A ;B 的算式是441514131211)(A A A A A A ⋅++++;C 的算式是46A ; D 的算式是4426A C ⋅.上面四个算式是否正确,正确的加以解释,不正确的说明理由.11、八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?12、计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同陈列方式有( ).A .5544A A ⋅B .554433A A A ⋅⋅C .554413A A C ⋅⋅D .554422A A A ⋅⋅13、由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ).A .210B .300C .464D .60014、用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). A .24个 B .30个 C .40个 D .60个15、(1)计算88332211832A A A A ++++ .(2)求!!3!2!1n S n ++++= (10≥n )的个位数字.16、用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?17、一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?练习11. 某城市的电话号码,由六位升为七位(首位数字均不为零),则该城市可增加的电话部数 是( )A 3456789⨯⨯⨯⨯⨯⨯. B.698⨯ C.6109⨯ D.51081⨯ 2.由数字0、1、2、3、4可组成不同的三位数的个数是( )A.100B.125C.64D.803.某人有3个不同的电子邮箱,他要发5个电子邮件,有( )种发送方法 A.8 B.15 C.53 D.354.已知集合{}3,2,1-=M ,{}7,6,5,4--=N 从两个集合中各取一个元素作为点的坐标, 可得直角坐标系中第一、二象限不同点的个数是( )A.18B.16C.14D.10 5.从1到10的所有自然数中任取两个相加,所得的和为奇数的不同情形有_____ 种.6.设集合{}A b a A ∈=,,5,4,3,2,1,则方程122=+by a x 表示焦点位于y 轴上的椭圆有____个. 7.如图1-1-2所示:小圆圈表示网络的结点,结点之间的连线表示它们有网络联系,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A 向结点B 传 递信息,信息可以分开沿不同路线同时传递, 求单位时间内传递的最大信息量.8.有0,1,2,3,…,8这9个数字,用这9个数字组成四位的密码,共可组成多少个这样的密码?9.某城市有甲、乙、丙、丁四个城区,分布如图1-1-3所示,现用五种不同的颜色涂在该城市地图上,要求相邻区域的颜色不相同,不同的涂色方案共有多少种?10.某体育彩票规定:从01至36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,此人想把这种特殊要求的号买全,至少要花多少钱?图1-1-3图1-1-2一、选择题1.若346n n A C =,则n 的值为( )A .6B .7C .8D .92.某班有30名男生,30名女生,现要从中选出5人组成一个宣传小组, 其中男、女学生均不少于2人的选法为( )A .230C 220C 146CB . 555503020C C C --C .514415*********C C C C C --D . 322330203020C C C C +3.6本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是( )A .2264C C B .22264233C C C A C .336AD .36C 4.设含有10个元素的集合的全部子集数为S ,其中由3个元素 组成的子集数为T ,则TS的值为( ) A.20128 B .15128 C .16128 D .211285.若423401234(2x a a x a x a x a x =++++,则2202413()()a a a a a ++-+的值为( )A.1 B .1- C .0 D .26.在()nx y +的展开式中,若第七项系数最大,则n 的值可能等于( )A.13,14 B .14,15 C .12,13 D .11,12,137.不共面的四个定点到平面α的距离都相等,这样的平面α共有( ) A .3个 B .4个 C .6个 D .7个8.由0,1,2,3,...,9十个数码和一个虚数单位i 可以组成虚数的个数为( ) A.100 B .10 C .9 D .90 二、填空题1.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有 种?2.在△AOB 的边OA 上有5个点,边OB 上有6个点,加上O 点共个点,以这12个点为顶点的三角形有 个.3.从0,1,2,3,4,5,6这七个数字中任取三个不同数字作为二次函数2y ax bx c =++的系数,,a b c 则可组成不同的函数_______个,其中以y 轴作为该函数的图像的对称轴的函数有______个.4.若9a x ⎛- ⎝的展开式中3x 的系数为94,则常数a 的值为 . 5.若2222345363,n C C C C ++++=则自然数n =_____.6.若56711710m m mC C C -=,则8__________mC =. 7.50.991的近似值(精确到0.001)是多少?8.已知772127(12)o x a a a x a x -=++++,那么127a a a +++等于多少?三、解答题1.6个人坐在一排10个座位上,问(1)空位不相邻的坐法有多少种?(2) 4个空位只有3个相邻的坐法有多少种?(3) 4个空位至多有2个相邻的坐法有多少种?2.有6个球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?3.求54(12)(13)x x -+展开式中按x 的降幂排列的前两项.4.用二次项定理证明2289n C n +--能被64整除()n N ∈.5.求证:0212(1)22nn n n n n C C n C n -++++=+⋅.6.(1)若(1)nx +的展开式中,3x 的系数是x 的系数的7倍,求n ;(2)已知7(1)(0)ax a +≠的展开式中, 3x 的系数是2x 的系数与4x 的系数的等差中项,求a ;(3)已知lg 8(2)x x x+的展开式中,二项式系数最大的项的值等于1120,求x .。

完整版)高考排列组合知识点归纳

完整版)高考排列组合知识点归纳

完整版)高考排列组合知识点归纳第四讲:排列组合一、分类计数原理与分步计数原理1.分类加法计数原理:对于一件事情,有两种不同的方案,第一类方案有m种不同的方法,第二类方案有n种不同的方法,那么完成这件事情共有m+n种不同的方法。

2.分步乘法计数原理:完成一件事情需要两个步骤,第一步有m种不同的方法,第二步有n种不同的方法,那么完成这件事情共有m×n种不同的方法。

二、排列数1.组合:从n个元素中取出m个元素,记作Cnmn!/m!(n-m)!2.排列:1)全排列:将n个元素全排列,记作Ann!2)从n个元素中取出m个元素,并将这m个元素全排列,记作Anmn!/ (n-m)!三、二项式定理a+b)nC n 0 a n b 0C n 1 a n-1 b 1 C n n abn1.二次项系数之和:Cnr2.展开式的第r项:Tr+1Cnr例题1:(x-1)4的展开式中的常数项是()A、6.B、4.C、-4.D、-6例题2:在二项式(x-2y) 5的展开式中,含x2y3的项的系数是()A、-20.B、-3.C、6.D、20 随堂训练:1、在二项式(x21)5的展开式中,含x4的项的系数是()A、-10.B、10.C、-5.D、52、(1/x-2x25的展开式中的常数项是()A、5.B、-5.C、10.D、-103、在二项式(x+3y)6的展开式中,含x2y4的项的系数是()A、45.B、90.C、135.D、2704、已知关于x的二项式(x+3an的展开式的二项式系数之和为32,常数项为80,则a的值为()A、1.B、±1.C、2.D、±25、(1-2x)(1-3x)4的展开式中,x2的系数等于?6、(ax21/2x-2)7的展开式中各项系数的和为243,则该展开式中常数项为?7、(x22)2x的展开式中常数项是70,则n=?若展开式(ax+)(2x+)5中常数项为-40,则a=?四、排列组合题型总结解决排列组合综合性问题的一般过程如下:1.认真审题,弄清要做什么事;2.确定采取分步还是分类,或分步与分类同时进行,确定分多少步及多少类;3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素;4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

2020高考排列组合难题21种题型及方法_

2020高考排列组合难题21种题型及方法_

4
个不同的盒内有
A
4 4
种方法,根据分步计数
原理装球的方法共有
C52
A
4 4
解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?
练习题:一个班有 6 名战士,其中正副班长各 1 人现从中选 4 人完成四种不
同的任务,每人完成一种任务,且正副班长有且只有 1 人参加,则不同
个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。 由分步计数原理可得共有 A55 A22 A22 480 种不同的排法
甲乙 丙丁
要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并 为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.
练习题:某人射击 8 枪,命中 4 枪,4 枪命中恰好有 3 枪连在一起的情形的不 同种数为 20
2020 高考数学排列组合难题 21 种方法
排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排 列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组 合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
1.分类计数原理(加法原理)
完成一件事,有 n 类办法,在第 1 类办法中有 m1 种不同的方法,在第 2 类
置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件
第1页共9页
练习题:7 种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不 种在两端的花盆里,问有多少不同的种法?
二.相邻元素捆绑策略 例 2. 7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一

[实用参考]高中数学排列组合题型总结与易错点提示.doc

[实用参考]高中数学排列组合题型总结与易错点提示.doc

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同3. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

2020高考数学备考复习易错题十二:排列、组合、二项式定理

2020高考数学备考复习易错题十二:排列、组合、二项式定理

的展开式中第 4 项与第 8 项的二项式系数相等,则奇数项的二项式系数和为
A.
B.
C.
D.
【答案】 D
【考点】 二项式系数的性质
【解析】 【解答】因为
的展开式中第 4 项与第 8 项的二项式系数相等,所以
,解得
,所
以二项式
中奇数项的二项式系数和为
.
【分析】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:
法求得结果,再排除 1 在左右两端的情况,问题得以解决.
5.( 2012?安徽) 6 位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交 换的两位同学互赠一份纪念品.已知 6 位同学之间共进行了 13 次交换,则收到 4 份纪念品的同学人数为
()
A. 1 或 3 【答案】 D
故选 D.
【分析】由题意,
,再分类讨论:仅有甲与乙,丙没交换纪念品;仅有甲与乙,丙
与丁没交换纪念品,即可得出收到 4 份纪念品的同学人数.
第 2页 共 8页
6. 在( 1+x) 6(1+y) 4 的展开式中,记 xm yn 项的系数为 f( m , n),则 f( 3, 0) +f( 2, 1) +f( 1, 2) +f ( 0, 3) =( )
B. 1 或 4
C. 2 或 3
D. 2 或 4
【考点】 排列、组合及简单计数问题,进行简单的合情推理
【解析】 【解答】解:由题意,
① 设仅有甲与乙,丙没交换纪念品,则收到
4 份纪念品的同学人数为 2 人
② 设仅有甲与乙,丙与丁没交换纪念品,则收到
4 份纪念品的同学人数为 4 人

(晨鸟)2020年高考理科数学《排列组合》题型归纳与训练

(晨鸟)2020年高考理科数学《排列组合》题型归纳与训练

2020 年高考理科数学《排列组合》题型归纳与训练【题型归纳】题型一计数原理的基本应用例1 某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有A.3种B.6种C.9种D.18种【答案】C.【解析】可分以下 2 种情况:①A类选修课选1门,B类选修课选2门,有 C21 C32 6种不同的选法;② A 类选修课选2门, B 类选修课选1门,有 C22 C 31 3种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9 种.故要求两类课程中各至少选一门,则不同的选法共有 9 种.故选:C【易错点】注意先分类再分步【思维点拨】两类课程中各至少选一门,包含两种情况: A 类选修课选1门, B 类选修课选 2 门; A 类选修课选2门, B 类选修课选1门,写出组合数,根据分类计数原理得到结果.题型二特殊元素以及特殊位置例 1 将A, B, C, D , E, F六个字母排成一排,且A, B 均在C的同侧,则不同的排法有()种 . (用数字作答)【答案】480【解析】考虑到 A, B, C 要求有顺序地排列,所以将这三个字母当作特殊元素对待。

先排 D , E, F 三个字母,有A63120 种排法;再考虑A, B,C 的情况:C在最左端有2种排法,最右端也是2 种排法,所以答案是 120 4480 种 .【易错点】注意特殊元素的考虑【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,可以考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高.题型三捆绑型问题以及不相邻问题例 1 由1,2,3,4,5,6组成没有重复数字且1,3 都不与 5 相邻的六位偶数的个数是()个.A.72种B.96种C.108种D.144种【答案】 C【解析】要求是偶数,所以先确定末尾数字,有2,4,6 一共 3 种情况;然后再确定 5 这个特殊数字的位置,本身有 5 种情况,但是考虑到要与1,3 不相邻,所以根据 5 的左右两侧情况,分为 5 这个特殊数字在十万位以及十位(只有 1 个相邻的位置),以及其它的 3 个位置;然后再考虑后面的情况.分析清楚情况后,答案就出来了:C31 (C 21C12 A33 C31 A22 A22)108 种.【易错点】需要考虑到不同位置对于后面步骤的不同影响,进行分类讨论.【思维点拨】对于相邻问题的捆绑法,以及不相邻问题的隔离法,需要考虑到先分类再分步的基本原则,以及瞻前顾后的原则,需要考虑到选择的不同带来的对于后续安排的不同影响.对于本题,5 这个数字本身有五种安排方法,但是需要注意到五个位置带来的,相邻位置的不同:如果 5 这个数字在首位,以及在十位时,只有 1 个邻位;但是如果在其它位置,就有两个邻位,所以需要分开讨论 .【巩固训练】题型一计数原理的基本应用1.如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24种B.18种C.12种D.9种【答案】 B【解析】这是个分步计数的灵活应用。

(晨鸟)2020年高考理科数学《排列组合》题型归纳与训练

(晨鸟)2020年高考理科数学《排列组合》题型归纳与训练

2020年高考理科数学《排列组合》题型归纳与训练【题型归纳】题型一计数原理的基本应用例1 某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有A .3种B .6种C .9种D .18种【答案】C .【解析】可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有62312C C 种不同的选法;②A 类选修课选2门,B 类选修课选1门,有31322CC 种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C【易错点】注意先分类再分步【思维点拨】两类课程中各至少选一门,包含两种情况:A 类选修课选1门,B 类选修课选2门;A 类选修课选2门,B 类选修课选1门,写出组合数,根据分类计数原理得到结果.题型二特殊元素以及特殊位置例 1 将F E D C B A ,,,,,六个字母排成一排,且B A,均在C 的同侧,则不同的排法有()种.(用数字作答)【答案】480【解析】考虑到C B A ,,要求有顺序地排列,所以将这三个字母当作特殊元素对待。

先排FE D ,,三个字母,有12036A种排法;再考虑C B A ,,的情况:C 在最左端有2种排法,最右端也是2种排法,所以答案是4804120种.【易错点】注意特殊元素的考虑【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,可以考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高.题型三捆绑型问题以及不相邻问题例1 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是()个.A .72种B .96种C .108种D .144种【答案】 C【解析】要求是偶数,所以先确定末尾数字,有2,4,6一共3种情况;然后再确定5这个特殊数字的位置,本身有5种情况,但是考虑到要与1,3不相邻,所以根据5的左右两侧情况,分为5这个特殊数字在十万位以及十位(只有1个相邻的位置),以及其它的3个位置;然后再考虑后面的情况.分析清楚情况后,答案就出来了:108(22221333121213)A A C AC C C种.【易错点】需要考虑到不同位置对于后面步骤的不同影响,进行分类讨论.【思维点拨】对于相邻问题的捆绑法,以及不相邻问题的隔离法,需要考虑到先分类再分步的基本原则,以及瞻前顾后的原则,需要考虑到选择的不同带来的对于后续安排的不同影响.对于本题,5这个数字本身有五种安排方法,但是需要注意到五个位置带来的,相邻位置的不同:如果5这个数字在首位,以及在十位时,只有1个邻位;但是如果在其它位置,就有两个邻位,所以需要分开讨论.【巩固训练】题型一计数原理的基本应用1.如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A .24种B .18种C .12种D .9种【答案】B【解析】这是个分步计数的灵活应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考理科数学《排列组合》题型归纳与训练
【题型归纳】
题型一 计数原理的基本应用
例1 某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有
A .3种
B .6种
C .9种
D .18种
【答案】 C .
【解析】 可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有
62312=⋅C C 种不同的选法;②A 类选修课选2门,B 类选修课选1门,有31322=⋅C C 种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C
【易错点】注意先分类再分步
【思维点拨】两类课程中各至少选一门,包含两种情况:A 类选修课选1门,B 类选修课选2门;A 类选修课选2门,B 类选修课选1门,写出组合数,根据分类计数原理得到结果. 题型二 特殊元素以及特殊位置
例 1 将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法有( )种.(用数字作答)
【答案】 480
【解析】考虑到C B A ,,要求有顺序地排列,所以将这三个字母当作特殊元素对待。

先排F
E D ,,三个字母,有12036
=A 种排法;再考虑C B A ,,的情况:C 在最左端有2种排法,最右端也是2种排法,所以答案是4804120=⨯种.
【易错点】注意特殊元素的考虑
【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,可以考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高.
题型三 捆绑型问题以及不相邻问题
例1 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是( )个.
A .72种
B .96种
C .108种
D .144种
【答案】 C
【解析】要求是偶数,所以先确定末尾数字,有2,4,6一共3种情况;然后再确定5这个特殊数字的位置,本身有5种情况,但是考虑到要与1,3不相邻,所以根据5的左右两侧情况,分为5这个特殊数字在十万位以及十位(只有1个相邻的位置),以及其它的3个位置;然后
再考虑后面的情况.分析清楚情况后,答案就出来了:108(22221333121213
=+⋅)A A C A C C C 种. 【易错点】需要考虑到不同位置对于后面步骤的不同影响,进行分类讨论.
【思维点拨】对于相邻问题的捆绑法,以及不相邻问题的隔离法,需要考虑到先分类再分步的基本原则,以及瞻前顾后的原则,需要考虑到选择的不同带来的对于后续安排的不同影响.对于本题,5这个数字本身有五种安排方法,但是需要注意到五个位置带来的,相邻位置的不同:如果5这个数字在首位,以及在十位时,只有1个邻位;但是如果在其它位置,就有两个邻位,所以需要分开讨论.
【巩固训练】
题型一 计数原理的基本应用
1.如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为
A .24种
B .18种
C .12种
D .9种
【答案】B
【解析】这是个分步计数的灵活应用。

注意一下问题的分析,从E 到F 的步骤,水平方向的情况确定了,整体的路径也就确定了。

水平方向如果沿一条路,有3种可能;如果沿两条路,有3种可能(注意由于要求最短路径,所以没有顺序):所以从E 到F 有3+3=6种情况;而从F 到G 有3种可能,所以可能的情况一共有3*6=18种情况。

2.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方
式共有( )
A .12种
B .18种
C .24种
D .36种
【答案】 D
【解析】 首先确定事情如何安排:要满足条件要求,得有1个人选择2项工作.哪两项工作24C ,
哪个人来做13C ,剩下2个人2项工作22A :所以总的安排形式共有36221324
=A C C 种情况. 3.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )
A .12种
B .10种
C .9种
D .8种
【答案】A
【解析】首先确定事情如何安排:安排好甲地的情况,乙地也就唯一确定了.对于甲地的安排,
需要1名教师2名学生,所以共有122412
=C C 种情况. 题型二 特殊元素以及特殊位置
1.将数字“124467”重新排列后得到不同的偶数的个数为
A .72种
B .120种
C .192种
D .240种
【答案】 D
【解析】 注意到题中要求得到的是偶数,所以特殊位置为末位,要求末位是个偶数;另外注意到题中给出的数字,有两个4,所以需要考虑到特殊元素4以及特殊位置末位;如果末位数
字为4,则前面元素可以任意排列,共有12055
=A 种情况;如果末位数字不是4,则必然是2,6中选择1个,前面的数字中,两个4是没有先后顺序的,或者只排列剩余的3个数字即可,
所以有1203512
=A C 种情况;两者合在一起,所以最后的答案为D. 2.我们把各位数字之和为7的四位数称为“北斗数”(如2014是“北斗数”),则“北斗数”中千位为2的共有 ( )个 .
【答案】21
【解析】给出的是个新定义,但是难度不大,需要认真读题仔细分析。

千位为2,要求后三位的和为5,三个数都相同的不存在,有两位相同的005,113,221,考虑先安排特殊的元素(如005为例,5的位置有3种情况,5排定后,就唯一确定了,所以有3种情况)各有3种,所
以有3*3=9种情况;三个元素都不相同的有014,023两种,进行全排列,各有633
=A 种情况,共有2*6=12种情况。

综合可知,符合要求的所谓“北斗数”共有9+12=21种情况.
3.某天下午要排物理,化学,生物和两节自习课共5节课,如果第一节不排生物,最后一节不排物理,那么不同的排法共有( )
A .36种
B .39种
C .60种
D .78种
【答案】B
【解析】注意到特殊元素有生物,物理,以及自习课(2节),特殊位置是第一节和最后一节.所以首先考虑事情如何安排,物理,化学,生物确定后,自习课也就唯一确定了.所以先安排课程,尤其是特殊的课程.首先安排生物,第一节不排,所以共有4种,但考虑到最后一节属于特殊位置,所以分成两种情况:①生物课排在中间位置,有3种情况,再安排物理,有3种情况,再安排化学,有3种情况,自习课也就唯一确定了,所以这种情况的可能性有3*3*3=27
种情况;如果生物课安排在最后一节,物理,化学就可以任意排列了,所以有123*424
==A 种可能.所以共有27+12=39种情况.
题型三 捆绑型问题以及不相邻问题
1.《红海行动》是一部现代化海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撒侨任务的故事.撒侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E 、F 必须排在一起,则这六项任务的不同安排方案共有( )
A .240种
B .188种
C .156种
D .120种
【答案】 D
【解析】考虑到特殊元素A 、E 、F 以及特殊位置前三位,所以首先规划事件的安排:①可以先分析特殊元素A ,考虑到要求E 、F 相邻以及前三位情况比较少,所以可以列举法:A 在首位时,E 、F 有4种情况,再加上可以调换位置,所以有4*2=8种情况,余下的三个元素进
行全排列633
=A 种情况,所以共有8*6=48种情况;同样,A 在第二位时的情况有3*2*33A =36种情况;A 在第三位时的情况有3*2*33A =36种情况;所以不同的安排方案共有48+36+36=120种情况.②也可以先考虑E 、F 的情况,由于要求E 、F 必须排在一起,所以共有5种情况,但注意到这5种情况有些属于一类的,考虑到是不是占了前三位的位置,所以分为三种情况(一二位和二三位情况相同,三四位一种情况,四五位和五六位情况相同),以一二位为例,E 、F 可以调换位置,有2种情况,A 只有1种情况,余下的三个位置进行全排列,所以共有2*1*33A =12种情况;同样E 、F 排在三四位有2*2*33A =24种情况;E 、F 排在四五位有2*3*33A =36
种情况;所以共有12*2+24+36*2=120种情况.
2.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )
A .18
B .24
C .30
D .36
【答案】C
【解析】4个人分到3个班,必然有2个人在一起,共有624=C 种情况;要求甲、乙两名学生不能分到同一个班,再排除1种,所以有5种情况,再进行全排列,所以不同分法的种数为30)1(3324=⋅-A C 种情况.
3.7个人排成一列,其中甲乙两人相邻且与丙不相邻的方法总数是( ).(结果用数字表示)
【答案】 960
【解析】由于要求甲乙两人相邻,所以可以用捆绑法;由于与丙不相邻,所以需要考虑到甲乙的相邻位置,这样就得分情况讨论,如果甲乙在首位或者末位,则相邻位置只有1个;如果在中间的话,相邻位置有2个,所以总的情况有2*3*44A *4+2*4*44A *2=576+384=960个.。

相关文档
最新文档