第1章 基本概念 工程热力学(第四版)课件
工程热力学课件教学PPT作者刘宝兴工程热力学1-8(全套课件齐)课件.
17
参数可以细分成两类,强度参数和广延参数。
强度参数不依赖系统的大小,例如温度和压力。
广延参数依赖于系统的大小,例如质量和体积。
而单位质量的广延参数,如比体积,具有强度参
数的性质。
18
平衡 — 只要系统内各处参数是均匀的,才有确定 的参数值。这时系统就该参数来说是平衡的。
11
直接的能量转换
(1) 燃料电池,它将化学能直接转换成电 能,图1-4示意表示利用氢和氧的燃料 电池。 (2) 热电发生器
12
图1-4示意表示利用氢和氧的燃料电池。
13
地热发电厂 - 蒸汽动力装置的另一种形式 太阳能 必须开发经济实用的一些方法。以 降低储存成本和设计出经济的房屋辅助采 暖系统。
8
图1-2描述一个简单蒸汽动力装置循环。
9
燃气发动机 — 热力学可分析预测可从发动 机得到多少功,如何降低发动机排气污染。 燃气轮机是另一种动力源。 基于微型燃气轮机的冷热电三联供系统, 见图1-3。 如何更有效地将燃料的化学能转换成机械 能?
10
微型燃气轮机的冷热电三联供系统示意图。
4
热力学是一门研究能的科学,是研 究物质性质和能量转换之间关系的基 础工程学科。 热转换成功,或化学能转换成电能 就是能的形式的转换,热力学提供了 对它们进行分析的科学工具。
5
1.1 应用领域
在许多工程系统和其他生活方面常常遇到热力学的应用: 心脏不断地将血液泵到人体全身。 体细胞中的各种能量转换。 体热不停地排放到环境。 一间普通的房屋在某些方面就是一间充满热力学奇妙的
25
工程热力学课件ppt
热力系统的环境影响评价
环境影响
环境影响是指人类活动对环境产生的各种影响,包括正面和负面 影响。
生命周期评价
生命周期评价是一种用于评估产品或服务在整个生命周期内对环境 的影响的方法。
热力系统的环境影响
热力系统在运行过程中会产生各种环境影响,如排放污染物、消耗 能源等。
可持续性与可再生能源在热力学中的应用
高效热力系统的研究与开发
高效热力系统设计
针对不同应用场景,研究开发高效热 力系统,如高效燃气锅炉、高效空调 系统等,通过优化系统结构和运行参 数,降低能耗和提高能效。
高效热力系统评估
建立和完善高效热力系统的评估体系 ,制定相关标准和规范,为实际应用 提供指导和依据。
热力学在可再生能源利用中的应用
热力学在工程中的应用
热力发动机
热力发动机原理
热力发动机利用燃料燃烧产生的 热能转化为机械能,通过活塞、 转子或涡轮等机构输出动力。
热力发动机类型
热力发动机有多种类型,如内燃 机、蒸汽机和燃气轮机等,每种 类型都有其特点和应用领域。
热力发动机效率
提高热力发动机效率是重要的研 究方向,通过优化设计、改善燃 烧过程和减少热量损失等方法可 以提高效率。
新型热力材料与技术
新型热力材料
随着科技的发展,新型热力材料不断涌现,如纳米材料、复合材料等,这些材料 具有优异的热物理性能和热力学特性,为热力系统的优化和能效提升提供了新的 可能性。
新型热力技术
新型热力技术如热管技术、热泵技术、热电技术等在工程热力学领域的应用越来 越广泛,这些技术能够实现高效能的热量传递和转换,提高能源利用效率。
要点二
详细描述
热力系数是衡量热力学系统转换效率的参数,表示系统输 出功与输入功的比值。它反映了系统转换能量的能力,是 评价系统性能的重要指标之一。热力效率是衡量系统能量 转换效率的参数,表示系统输出有用功与输入总功的比值 。它反映了系统在能量转换过程中的损失程度,也是评价 系统性能的重要指标之一。
朱明善清华大学工程热力学全集ppt课件
.
教材与参考书
教 材:《工程热力学》朱明善等编
参考书:《工程热力学》(第二版) 庞麓鸣等编
《工程热力学》(第四版 ) 沈维道编 2007年
《工程热力学》严家騄编 2007年
.
绪论
工程热力学是重要的专业基础课
工程热力学
是一门研究热能有效利用及 热能和其它形式能量转换规律 的科学
.
0-1 热能及其利用
主 0-2 热能转换装置的工
要
作过程
内
0-3 工程热力学的研究
容
对象及其主要内容
0-4 热力学的研究方法
.
0-1 热能及其利用
风 能
燃
水 力 能
化 学 能
核 能
地 热 能
太
一次能源
阳 (天然存在)
能
料 电 池
风 车
水水 轮车 机
燃 烧
聚裂 变变
热
供 光转 光 暖 热换 电
转 能 90% 换
机械能
发电 电动
.
内燃机装置
空气、油
废气
吸气
压缩 点火
.
膨胀
排气
内燃机装置基本特点
1、热源,冷源 2、工质(燃气) 3、膨胀做功 4、装置
压气机 — 吸入来自蒸发器 的低压蒸汽,将其压缩 ( 耗 功 ) 产生高温高压的蒸汽。
冷凝器 — 使气体冷凝,得 到常温高压的液体。
容积变化功
压缩功 膨胀功
.
1-2 状态 平衡状态
一、状态与状态参数 状态:某一瞬间热力系所呈现的宏观状况 状态参数:描述系统所处状态的宏观物理量。
二、平衡状态与非平衡状态 平衡状态:热力系宏观性质不随时间变化。 非平衡状态:热力系宏观性质随时间变化。
《工程热力学》课件
理想气体混合物
理想气体混合物的性质
理想气体混合物具有加和性、均匀性、 扩散性和完全互溶性等性质。
VS
理想气体混合物的计算
通过混合物的总压力、总温度和各组分的 摩尔数来计算混合物的各种物理量。
真实气体近似与修正
真实气体的近似
真实气体在一定条件下可以近似为理想气体。
真实气体的修正
由于真实气体分子间存在相互作用力,因此需要引入修正系数对理想气体状态方程进行 修正。
特点
工程热力学是一门理论性较强的学科 ,需要掌握热力学的基本概念、定律 和公式,同时还需要了解其在工程实 践中的应用。
工程热力学的应用领域
能源利用
工程热力学在能源利用领域中有 着广泛的应用,如火力发电、核 能发电、地热能利用等。
工业过程
工程热力学在工业过程中也发挥 着重要的作用,如化工、制冷、 空调、热泵等。
稳态导热问题
稳态导热是指物体内部温度分布不随时间变 化的导热过程,其特点是热量传递达到平衡 状态。
对流换热和辐射换热的基本规律
对流换热的基本规律
对流换热主要受牛顿冷却公式支配,即物体 表面通过对流方式传递的热量与物体表面温 度和周围流体温度之间的温差、物体表面积 以及流体性质有关。
辐射换热的基本规律
辐射换热主要遵循斯蒂芬-玻尔兹曼定律, 即物体发射的辐射能与物体温度的四次方成
正比,同时也与周围环境温度有关。
传热过程分析与计算方法简介
要点一
传热过程分析
要点二
计算方法简介
传热过程分析主要涉及热量传递的三种方式(导热、对流 和辐射)及其相互影响,需要综合考虑物性参数、几何形 状、操作条件等因素。
常用的传热计算方法包括分析法、实验法和数值模拟法。 分析法适用于简单几何形状和边界条件的传热问题;实验 法需要建立经验或半经验公式;数值模拟法则通过计算机 模拟传热过程,具有较高的灵活性和通用性。
工程热力学PPT课件
还有一种表述是,自然发生的热传递总是向着熵增加的方向进行,即系统总是向着熵增加的方向演化。
热力学第二定律的应用
01
在能源利用领域,热力学第二定律指导我们如何更有效地利用能源,避免能源 浪费。例如,在发电厂中,利用热力学第二定律可以优化蒸汽轮机的设计和运 行,提高发电效率。
热力学第二定律的实质
热力学第二定律的实质是揭示了自然界的不可逆性,即自然界的自发过程总是向着熵增加的方向进行 。这意味着自然界的能量转化和物质转化总是向着无序和混乱的方向发展,而不是向着有序和规则的 方向发展。
热力学第二定律的实质还表明了人类对自然界的干预和改造是有限制的,我们不能违背自然规律来无 限地利用能源和资源。因此,我们需要更加珍惜和合理利用自然界的能源和资源,以实现可持续发展 和环境保护的目标。
热力学第一定律的表述
01
热力学第一定律的表述是:能量既不能凭空产生,也不能凭空 消失,它只能从一种形式转化为另一种形式,或者从一个物体
传递给另一个物体。
02
热力学第一定律也可以表述为:在封闭系统中,能量守恒。
03
热力学第一定律也可以表述为:系统总能量的变化等于系 统与环境之间传递的热量和系统对外界所做的功之和。
制冷与空调技术
制冷与空调技术
制冷和空调技术是利用热力学原理实现热量转移和控制的工程技术。
制冷剂的选择
制冷剂是制冷和空调技术中的重要物质,需要具备适当的热力学性质 和环保性能。
制冷循环的类型
制冷循环有多种类型,如压缩式、吸收式和吸附式等,每种类型都有 其特定的应用场景。
空调系统的优化
为了提高空调系统的效率和降低能耗,需要对空调系统进行优化设计, 如采用变频技术、智能控制等措施。
传热学课件第四版-第一章
b c d
微电子: 电子芯片冷却 生物医学:肿瘤高温热疗;生物芯片;组织与器 官的冷冻保存 军 事:飞机、坦克;激光武器;弹药贮存
e
f
制
冷:跨临界二氧化碳汽车空调/热泵;高温
传 热 学
(Heat Transfer)
第一章 绪 论
§1-1 概 述
1.1.1 传热学(Heat Transfer)的研究内容
1 传热学: 研究热量传递规律的科学,具体来讲主要
有热量传递 的机理、规律、计算和测试方法
热量传递过程的推动力:温差
热力学第二定律:热量可以自发地由高温热源传给 低温热源 有温差就会有传热 温差是热量 传递的推动力
1.1.2 传热学研究中的连续介质假设
基本假定: 所研究的物体中的温度、密度、速度、压力 等物理参数都是空间坐标的连续函数。 对于气体而言,所研究物体的几何尺寸要远大于 分子间的平均自由程。 在微机电系统中,所研究物体的几何尺寸常在微 米到毫米之间,微机电系统内的流动和传热问题不满 足连续介质的基本假定。
0
q dx
tw2
tw1
dt q
tw1 tw2
q
t w1 t w 2 t w1 t w 2
t r t R
t
t w1
dt
dx
Φ
A
Q
tw2
R A
r
0
x
导热热阻
t w1
Q
t w2
单位导热热阻
图1-3
《工程热力学》课件
空调技术
空调系统的运行与热力学密切相关。制冷和 制热循环的原理、空调系统的能效分析以及 室内空气品质的保障等方面均需要热力学的
支持。
热力发电与动力工程
热力发电
热力学在热力发电领域的应用主要体现在锅炉、汽轮机和燃气轮机等设备的能效分析和 优化上。通过热力学原理,提高发电效率并降低污染物排放。
动力工程
热力学与材料科学的关系
材料科学主要研究材料的组成、结构、性质以及应用,而热力学为材料科学提供了材料制备、性能优 化和失效分析的理论基础。
在材料制备过程中,热力学可以帮助人们了解和控制材料的相变、结晶和熔融等过程,优化材料的性能 。
在材料性能优化方面,热力学为材料科学家提供了理论指导,帮助人们理解材料的热稳定性、抗氧化性 等性能,从而改进材料的制备工艺和应用范围。
热力学与其他学科的联系
热力学与物理学的关系
热力学与物理学在研究能量转换和传递方面有 密切联系。物理学中的热学部分为热力学提供 了基本概念和原理,如温度、热量、熵等。
热力学的基本定律,如热力学第一定律和第二 定律,是物理学中能量守恒和转换定律的具体 应用。
物理学中的气体动理论和分子运动论为热力学 提供了微观层面的解释,帮助人们理解热现象 的本质。
高效热能转换与利用技术
高效热能转换技术
随着能源需求的不断增加,高效热能转换与利用技术 成为研究的重点。例如,高效燃气轮机、超临界蒸汽 轮机等高效热能转换设备的研发和应用,能够提高能 源利用效率和减少污染物排放。
热能利用技术
除了高效热能转换技术外,热能利用技术的进步也是工 程热力学领域的重要发展方向。例如,热电转换技术、 热光转换技术等新型热能利用技术,为能源的可持续利 用提供了新的解决方案。
工程热力学第四版严家禄(习题及答案)1-8章修正后
工程热力学(第四版)严家禄编著第一章基本概念思考题:2、4 习题布置:1-4、1-6 2、“平衡”和“均匀”有什么区别和联系答:平衡(状态)值的是热力系在没有外界作用(意即热力、系与外界没有能、质交换,但不排除有恒定的外场如重力场作用)的情况下,宏观性质不随时间变化,即热力系在没有外界作用时的时间特征-与时间无关。
所以两者是不同的。
如对气-液两相平衡的状态,尽管气-液两相的温度,压力都相同,但两者的密度差别很大,是非均匀系。
反之,均匀系也不一定处于平衡态。
但是在某些特殊情况下,“平衡”与“均匀”又可能是统一的。
如对于处于平衡状态下的单相流体(气体或者液体)如果忽略重力的影响,又没有其他外场(电、磁场等)作用,那么内部各处的各种性质都是均匀一致的。
4、“过程量”和“状态量”有什么不同?答:状态量是热力状态的单值函数,其数学特性是点函数,状态量的微分可以改成全微分,这个全微分的循环积分恒为零;而过程量不是热力状态的单值函数,即使在初、终态完全相同的情况下,过程量的大小与其中间经历的具体路径有关,过程量的微分不能写成全微分。
因此它的循环积分不是零而是一个确定的数值。
习题答案:1-4用斜管式压力计测量锅炉管道中烟气的真空度。
管子的倾角30α=,压力计中使用密度为800Kg/m 3的煤油。
倾管中液柱长度为l=200mm 。
当时大气压力B=745mmHg ,问烟气的真空度为多少毫米汞柱?绝对压力为多少毫米汞柱? [解]: (1) 根据式(1-6)式有(2) 根据(1-5)式有3745784.575006210739.12v P B P mHg-=-=-⨯⨯=*此题目的练习真空度,绝对压力,表压之间的关系及压力单位之间的换算关系。
1-6有一容器,内装隔板,将容器分成A 、B 两部分 (图1-14)。
容器两部分中装有不同压力的气体,并在A 的不同部位安装了两V 2P glsin308009.806650.20.5=784.5Pa=80mmH Oρ==⨯⨯⨯图 1-13图1-14个刻度为不同压力单位的压力表。
《工程热力学》PPT课件
n从到0,放热→0 →吸热;等温线右内能增加,左内能减少。 例如压缩机压缩过程:K>n>1
第五节 热力学第二定律
重点掌握:
1、热力学第二定律的表述; 2、热力循环的热效率; 3、卡诺循环的热效率。
一、热力学第二定律的表述
1、热量不可能自发的、不付任何代价的由一个低温物 体传至高温物体。—热量不可能自发地从冷物体转移到
K= cp/cν:绝热指数
3、参数间的关系: 由 Pvk=常数 →P1v1k=P2v2k →P1/P2=(v2/v1)k 又 Pv=RT →P=RT/v →Tvk-1=常数 →T1/T2=(v2/v1)k-1 →T2=T1(v1/v2)k-1 =T1εk-1 4、过程量的计算: 推出: w=-u q=w+ u q=0
一、定容过程
1、定义:过程进行中系统的容积(比容)保持不变
的过程。
2、过程方程式:ν =常数 3、参数间的关系: 由 PV=RT 知,P/T=常数, 所以: P1/P2=T1/T2, P1/T1=P2/T2 4、过程量的计算: 又 q=Δ u+w, 由 W=∫PdV, 且 dV=0
→ w=0
→ q=Δ u
热力系统从一个平衡状 态到另一个平衡状态的变 化历程。
力过程。
二、膨胀功W(J)
气体在热力过程中由于体 积发生变化所做的功(又 称为容积功)
规定:热力系统对外界做功为正,外界对热
力系统做功为负。 由δ W=PdV得: dV>0,膨胀,δ W>0, 系统对外界做功; dV<0,压缩,δ W<0, 外界对系统做功; dV=0,δ W=0, 系统与外界之间无功量 传递。
四、课程的特点、要求、学时分配、考核
特点:本课程理论性较强,无多少实物供参照,课堂上的 讲授以理论分析和推导为主。
工程热力学全部课件pptx
与外界没有物质和能量交 换的系统。
孤立系统
封闭系统
开放系统
热力学基本定律
热力学第零定律
如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统也必定处于热平衡状态。
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持 不变。
热力学第二定律
热力学循环
由一系列热力学过程组成的闭合路径,如卡诺循环、布雷顿循环 等。
02 热力学第一定律
能量守恒原理
1
能量不能自发地产生或消失,只能从一种形式转 换为另一种形式。
2
在一个孤立系统中,总能量始终保持不变。
3
能量转换过程中,各种形式的能量在数量上保持 平衡。
热力学第一定律表达式
Q = ΔU + W
其中,Δ(mv^2)/2表示系 统动能的变化量;
开口系统能量方程可表示 为:Q = ΔU + Δ(mv^2)/2 + Δ(mgh) + Δ(mΦ)。
Δ(mgh)表示系统势能的 变化量;
03 热力学第二定律
热力学第二定律表述
不可能从单一热源取热,使之完全转 换为有用的功而不产生其他影响。
热力学系统内的不可逆过程总是朝着 熵增加的方向进行。
具有加和性
理想气体基本过程
01
等温过程
温度保持不变的过程,如等温膨胀 和等温压缩
等容过程
体积保持不变的过程,如等容加热 和等容冷却
03
02
等压过程
压力保持不变的过程,如等压加热 和等压冷却
绝热过程
系统与外界没有热量交换的过程, 如绝热膨胀和绝热压缩
04
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1kPa 1 103 Pa
22
六、比体积和密度
比体积(specific volume)
V v m
单位质量工质的体积
m3 /kg
kg/m3
密度(density)
m V
单位体积工质的质量
两者关系:
v
1
23
1-4 平衡状态
一、平衡状态(thermodynamic equilibrium state)
注意:1)不计恒外力场影响;
2)复相系未必不均匀—湿蒸汽; 单元系未必均匀—气液平衡分离状态。
10
2. 按系统与外界质量交换
闭口系(closed system) (控制质量CM) —没有质量越过边界 开口系(open system) (控制体积CV) —通过边界与外界有质量交换
11
3. 按能量交换 绝热系(adiabatic system)— 与外界无热量交换;
pv RgT
pV mRgT
pV nRT
T K
摩尔质量
p Pa N/m 2 v m3 /kg
Rg —气体常数 (gas constant) J/(kg K)
R 8.3145J/(mol K) R—通用气体常数 (universal(molargas constant )
热是无条件的;
功是有条件、限度的。
43
思考题:
容器为刚性绝热,抽去隔板, 重又平衡,过程性质。
逐个抽去隔板,又如何?
44
1-7 热力循环
一、定义:
封闭的热力过程 特性:一切状态参数恢复原值,即
dx 0
二、可逆循环与不可逆循环(reversible cycle and irreversible cycle )
温度的定义: 测温的基础—热力学零定律 (zeroth law of thermodynamics) 热力学温标和国际摄氏温标 (thermodynamics scale; Kelvin scale;absolute temperature scale and internal Celsius temperature scale)
第一章 基本概念
Basic Concepts and Definition
1-1 热能和机械能相互转换过程
1-2 热力系统
1-3 工质的热力学状态及其基本状态参数 1-4 平衡状态 1-5 工质的状态变化过程
1-6 功和热量 1-7 热力循环
1
1-1 热能和机械能相互转换的过程
一、热能动力装置(Thermal power plant)
非准静态过程 (nonequilibrium process) 准静态过程,不可逆
pA F cos pb A ( f 0)
准静态过程,可逆
35
讨论: 1.可逆=准静态+没有耗散效应
2.准静态着眼于系统内部平衡,可逆着眼于
系统内部及系统与外界作用的总效果
3.一切实际过程不可逆
4.内部可逆过程的概念
37
4.功的符号约定: 系统对外作功为“+”
外界对系统作功为“-”
5.功和功率的单位:
J
或 kJ
J/s W kJ/s kW
附:
1kWh 3600kJ
38
6.讨论 有用功(useful work)概念
Wu W Wl W p
其中:
pb
f
W—膨胀功(compression/expansion work); Wl—摩擦耗功; Wp_排斥大气功。
5.可逆过程可用状态参数图上实线表示
36
1-6 功和热量
一、功(work)的定义和可逆过程的功
1.功的力学定义 2.功的热力学定义:通过边界传递的能量其全部 效果可表现为举起重物。 3.可逆过程功的计算
W δW
1
2
pAdx pdV
1 1
2
2
▲功是过程量 ▲功可以用p-v图上过程线 与v轴包围的面积表示
1.定义:无外界影响系统保持状态参数不随时间而改变的状态 •热平衡(thermal equilibrium) : 在无外界作用的条件下,系统内部、系统与外界 处处温 度相等。 •力平衡(mechanical equilibrium): 在无外界作用的条件下,系统内部、系统与外 界处处压力相等。
•热力平衡的充要条件 —系统同时达到热平衡和力平衡。
v
V m
工程热力学约定用小写字母表示单位质量参数。
17
三、系统状态相同的充分必要条件 系统两个状态相同的充要条件: 所有状态参数一一对应相等 简单可压缩系两状态相同的充要条件: 两个独立的状态参数对应相等
18
四、温度和温标(temperature and temperature scale)
• 系统(thermodynamic system, system) 人为分割出来,作为热力学 研究对象的有限物质系统。 • 外界(surrounding ): 与体系发生质、能交换的物系。 • 边界(boundary):
系统与外界的分界面(线)。
5
二、系统及边界示例
• 汽车发动机
6
• 汽缸-活塞装置(闭口系例)
12
四、热力系示例
1.刚性绝热气缸-活塞系统,B侧设有电热丝 红线内 ——闭口绝热系 黄线内不包含电热丝 ——闭口系 黄线内包含电热丝 ——闭口绝热系 兰线内 ——孤立系
13
2.刚性绝热喷管
取红线为系统— 取喷管为系统—
闭口系 开口系绝热系?
14
3.A、B两部落“鸡、犬之声相闻, 民至老死不相往来”
定义:从燃料燃烧中获得热能并利用热能得到动力 的整套设备。 气体动力装置(combustion gas power plant) 内燃机(internal combustion gas engine) 燃气轮机装置(gas turbine power plant) 喷气发动机(jet power plant) …… 蒸气动力装置 (steam power plant)
例A7001331
39
用外部参数计算不可逆过程的功
W
2
1
pdV
?
40
W p 0 AH p 0 V
三、热量(heat)
1.定义:仅仅由于温差而 通过边界传递的能量。 2.符号约定:系统吸热“+”; 放热“-” 3.单位: J kJ 4.计算式及状态参数图 (T-s图上)表示
分 类
共同本质:由媒介物通过吸热—膨胀作功—排热
2
二、工质(working substance; working medium)
定义:实现热能和机械能相互转化的媒介物质。
对工质的要求:
1)膨胀性 2)流动性 物质三态中 气态最适宜。
3)热容量
4)稳定性,安全性 5)对环境友善 6)价廉,易大量获取
1.状态参数是宏观量,是大量粒子的统计平均效 应,只有平 衡态才有状参,系统有多个状态参数,如
p,V , T ,U , H , S
16
2.状态的单值函数。 物理上—与过程无关; 数学上—其微量是全微分。
dx 0
1b 2
dx dx
1a 2
3.状态参数分类 广延量(extensive property) 强度量(intensive property ) 又:广延量的比性质具有强度量特性,如比体积
3
三、热源(heat source; heat reservoir)
定义:工质从中吸取或向之排出热能的物质系统。 • 高温热源—热源 ( heat source ) 低温热源—冷源(heat sink) • 恒温热源(constant heat reservoir) 变温热源
4
一、定义
1-2 热力系统(热力系、系统、体系) 外界和边界
24
讨论: 1)系统平衡与均匀 2)平衡与稳定
— 平衡可不均匀
— 稳定未必平衡
25பைடு நூலகம்
三、纯物质的状态方程 (pure substance state equation)
状态方程
f p, v, T 0
1.理想气体状态方程 (ideal-gas equation; Clapeyron’s equation)
Q TdS
1
2
(可逆过程)
δQ TdS
热量是过程量
42
四、热量与功的异同:
1.均为通过边界传递的能量; 2.均为过程量; 3.功传递由压力差推动,比体积变化是作功标志; 热量传递由温差推动,比熵变化是传热的标志; 4.功是物系间通过宏观运动发生相互作用传递的能量; 热是物系间通过紊乱的微粒运动发生相互作用而传递的 能量。 功 热
32
1-5 工质的状态变化过程
一、准静态过程(quasi-static process; quasi-equilibrium process)
定义:偏离平衡态无穷小,随时 恢复平衡的状态变化过程。 进行条件: 破坏平衡的势—
p, T 无穷小
过程进行无限缓慢 工质有恢复平衡的能力 准静态过程可在状态参数图上用连续实线表示
45
三、动力循环(正向循环)(power cycle; direct cycle )
输出净功; 在p-v图及T-s图上顺时针进行; 膨胀线在压缩线上方;吸热线在放热线上方。
46
四、逆向循环(reverse cycle)
▲制冷循环(refrigeration cycle) ▲热泵循环(heat-pump cycle)
t C T K 273.15