高等数学所有公式汇总教案资料

合集下载

(完整版)高数公式汇总

(完整版)高数公式汇总

高数公式汇总经管学生会内部资料导数公式:(tgx) sec x(ctgx) csc x(secx) secx tgx(cscx) cscx ctgx(a x) a x l na(log a x) 1xl na基本积分表:tgxdxctgxdxsecxdxcscxdxdx~ 2a xdx~ 2x adx~ 2a xdx2a x 高等数学公式In cosx CIn sinx CIn secx tgx C In cscx ctgx C 1 x-arctg — Ca a1 x a —— C 2a x a1 a x —— C 2a a xarcs in仝C aI n2sin xdx cos x2 2 a 'x2 2 a 'a2x2dxdxdxo三角函数的有理式积分:2usin x 2, c osx1 u22u2,1 u(arcsin x)(arccos x)(arctgx)(arcctgx)dx2~ cosxdx~~~2-sin xxdxx 2—x22 ax 2—x22 ax 21 a2 xn2otg i,111 x211 x2sec2 xdx tgx C2csc xdx ctgx Csecx tgxdx secx Ccscx ctgxdx cscx Cxa x dx — CIn ashxdx chx Cchxdx shx C2 2----------- In( x 、x a ) C2 2 v 7 x aI n2 a —In( x22 a .一In x22a . x arcs in C2x2 a2) C、x2 a2dx2du1 u2高数公式汇总 经管学生会内部资料两个重要极限:sin x ’lim 1x 0 xlim(1 -)x e 2.718281828459045…xarchx In (x x 21)三角函数公式:•诱导公式:-和差角公式:sin( )sin COS COS sin COS ( )COSCOS sin sintg()汽tg1 tg tgCtg()CtgCtg 1Ctg Ctg-和差化积公式:sin sin 2 si nCOS 2 2sinsin2 COSsin22COS COS 2 COSCOS --2 2COS COS2 si nsin2 2一些初等函数: xe e x2xxe e2shx x e x echx x e x ex 21)arthx llnl 双曲正弦:shx双曲余弦:chx双曲正切:thx高数公式汇总经管学生会内部资料sin 2 2sin cos cos2 2cos 2 1ctg2ctg 212ctgtg2 2tg 21 tg•倍角公式: 1 2si n 2-半角公式: 2cos 2sinsin3 3sin 4sin 3 cos3 4cos 3costg33tg tg 31 3tg 2tg 2sin — 2 1 cos 1 cos sin sin 1 cos-余弦定理:-正弦定理:a b sin A sinB c si nC2Rc 2 a 2 b 2 2ab cosC•反三角函数性质: arcs inx arccosx 2 arctgx arcctgx高阶导数公式 ------ 莱布尼兹( Leibniz )公式:2! k ! 中值定理与导数应用:拉格朗日中值定理: f(b) f(a) f ( )(b a) 柯西中值定理:丄型 f (a) f () F(b) F(a) F () n (n) k (n k) (k)(uv) C n u v k 0(n) (n 1) n(n 1) (n 2) n(n 1) (n k 1) (n k) (k)u v nu v u vu v当F(x) x 时,柯西中值定理就是 拉格朗日中值定理 曲率:uv(n)高数公式汇总 经管学生会内部资料弧微分公式:ds .1 y 2dx,其中y tg平均曲率:K .:从M 点到M 点,切线斜率的倾角变 化量;s : MM 弧长。

学科数学公式总结教案高中

学科数学公式总结教案高中

学科数学公式总结教案高中
学科:数学
年级:高中
课时:1课时
教学目标:通过本节课的学习,学生能够掌握高中数学常见公式的应用和推导,提升数学
学习的效率和深度。

教学重点:掌握高中数学常见公式的应用和推导。

教学难点:灵活运用公式解决问题。

教学过程:
一、引入(5分钟)
引导学生回顾高中数学学习中常见的公式,通过询问和讨论激发学生对数学公式的兴趣。

二、讲解(15分钟)
1. 给学生讲解高中数学常见的公式,并结合具体的例题进行演示和解答。

2. 强调公式的推导和应用,让学生理解公式背后的原理和运用方法。

三、练习(25分钟)
1. 让学生结合课堂讲解的公式,完成一些相关练习题,检测他们对公式的掌握情况。

2. 设计一些拓展性的问题,让学生灵活运用公式解决实际问题,提高他们的数学思维能力。

四、总结(5分钟)
对本节课的教学内容进行总结,强调数学公式的重要性和应用价值,鼓励学生多多练习,
巩固所学知识。

五、作业布置(5分钟)
布置相关习题作业,让学生巩固所学知识,并鼓励他们主动学习和研究更多数学公式。

板书设计:
学科数学公式总结
公式推导与应用
总结:学好数学公式,事半功倍。

教学反思:
通过本节课的教学,我发现学生对数学公式的掌握程度还有待提高,需要更多的实际练习和应用来加深理解。

下节课我将设计更加具体和实用的练习题,帮助学生更好地掌握数学公式的应用。

高等数学公式汇总

高等数学公式汇总

高等数学公式汇总高等数学公式汇总第一章一元函数的极限与连续1.一些初等函数公式:,2.极限Ø 常用极限:;; Ø Ø 两个重要极限Ø3.连续:定义:第二章导数与微分1.基本导数公式:2.高阶导数:² 牛顿-莱布尼兹公式:3.微分:第三章微分中值定理与微分的应用1.基本定理2. ² 常用初等函数的展式:3.第四章不定积分1.常用不定积分公式:2.常用凑微分公式:3.有特殊技巧的积分第五章定积分1.基本概念,2.常用定积分公式:;;;; Wallis公式:无穷限积分:瑕积分:; ,第六章定积分应用1.平面图形的面积:直角坐标情形:;;参数方程情形:极坐标情形:2.空间立体的体积:由截面面积:旋转体:绕x轴旋转:绕y轴旋转:3.平面曲线的弧长:变力做功:抽水做功:液体压力做功:第七章向量代数与空间解析几何两点间距离公式:,方向余弦:单位向量:数量积:,夹角余弦:向量积:,,空间位置关系:平面的方程:点法式:;一般式:截距式:两平面的夹角:点到平面的距离:两平行平面的距离:直线与平面的夹角:空间曲线,曲线的投影,空间立体,曲面,曲面的投影球面:椭圆柱面:;双曲柱面:;抛物柱面:旋转曲面:圆柱面:;圆锥面:;双叶双曲面:单叶双曲面:;旋转椭球面: ;旋转抛物面:二次曲面:椭球面:抛物面:椭圆抛物面:;双曲抛物面:单叶双曲面:;双叶双曲面:椭圆锥面:总结求极限方法:1.极限定义;2.函数的连续性;3.极限存在的充要条件;4.两个准则;5.两个重要极限;6.等价无穷小;7.导数定义;8利用微分中值定理;9.洛必达法则;10.麦克劳林公式展开;求导法:1.导数的定义(求极限);2.导数存在的充要条件;3.基本求导公式;4.导数四则运算及反函数求导;5.复合函数求导;6.参数方程确定的函数求导;7.隐函数求导法;8.高阶导数求导法(莱布尼茨公式/常用的高阶导数);等式与不等式的证明:1.利用微粉中值定理;2.利用泰勒公式展开;3.函数的单调性;4.最大最小值;5.曲线的凸凹性第八章多元函数微分法及其应用一. 定义:二. 微分:,,全微分:三.四.曲线的切线和法平面1.曲线方程,切线:,法平面:2.曲线方程,切线:,法平面:3.曲线方程,切向量,切线:四.曲面的切平面和法线,法向量:,切平面:,法线:2.,切平面,法线:五.方向导数:梯度:第九章:重积分一. 二重积分:二.三重积分:1.直角坐标系:2.柱面坐标系:3.球面坐标系:二.重积分的应用:1.体积:2.曲面面积:3.质量:或4.质心:或5. 转动惯量:或第章:曲线积分和曲面积分一.第一类曲线积分:(对弧长的曲线积分):二.第二类曲线积分(对坐标的曲线积分):1.计算公式:2.格林公式:3.Stokes公式:4.封闭曲线围城的面积:三.第一类曲面积分:四.第二类曲面积分:1.计算公式:2.投影转化法:3.高斯公式:4第一章无穷级数一.常数项级数二.幂级数:1.收敛半径:2.常用等式:,,,,3.泰勒展开:三.第二章微分方程第20 页共20 页。

高中数学公式教案

高中数学公式教案

高中数学公式教案
课时数:1课时
适用对象:高中学生
教学内容:数学公式
教学目标:学会运用常见的数学公式解决问题,提高数学应用能力
教学步骤:
1.导入:通过简单的数学问题引入今天的教学内容,引发学生兴趣和思考。

2.讲解:依次介绍常见的数学公式,包括但不限于:
- 一次函数的一般式 y=kx+b
- 二次函数的顶点坐标公式 x=-b/2a, y=-Δ/4a
- 三角函数的基本关系公式sin^2θ+cos^2θ=1
- 平面几何中的勾股定理 a^2+b^2=c^2
3.练习:请学生尝试运用这些公式解决一些实际问题或数学题目,引导学生独立思考和解决问题的能力。

4.总结:在课程结束前,对学生掌握的数学公式进行总结和梳理,强化学生对知识点的记忆和理解。

5.作业:布置作业,要求学生继续练习运用数学公式解决问题,巩固所学内容。

扩展阅读:学生可以通过自主学习拓展更多数学公式的知识,提高数学应用能力。

教学评估:观察学生在课堂上的表现和练习题的解答情况,评估学生对数学公式的掌握情况并给予针对性的反馈。

教师备课:提前准备好课件和练习题,确保教学内容有条理和清晰度,能够有效引导学生学习和理解。

小结:通过本节课的学习,学生应该掌握各种常见数学公式,提高数学应用能力,为更高水平的数学学习打下坚实基础。

(完整版)高数公式大全(费了好大的劲),推荐文档

(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C

高等数学公式汇总(大全)

高等数学公式汇总(大全)

高等数学公式汇总(大全)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高等数学公式汇总(大全)一 导数公式:二 基本积分表:三 三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ四 一些初等函数: 五 两个重要极限:六 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( x xarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ七 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑八 中值定理与导数应用:拉格朗日中值定理。

(完整word版)高等数学公式大全,推荐文档

(完整word版)高等数学公式大全,推荐文档

体积公式圆柱体的体积公式:体积=底面积×高,如果用h代表圆柱体的高,则圆柱=S底×h长方体的体积公式:体积=长×宽×高如果用a、b、c分别表示长方体的长、宽、高则长方体体积公式为:V长=abc正方体的体积公式:体积=棱长×棱长×棱长.如果用a表示正方体的棱长,则正方体的体积公式为V正=a·a·a=a³锥体的体积=底面面积×高÷3 V 圆锥=S底×h÷3台体体积公式:V=[ S上+√(S上S下)+S下]h÷3圆台体积公式:V=(R²+Rr+r²)hπ÷3球缺体积公式=πh²(3R-h)÷3球体积公式:V=4πR³/3棱柱体积公式:V=S底面×h=S直截面×l(l为侧棱长,h为高)棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h注:V:体积;S1:上表面积;S2:下表面积;h:高。

------几何体的表面积计算公式圆柱体:表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体:表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形名称符号周长C和面积S正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形d,D-对角线长α-对角线夹角S=dD/2·sinα 平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα 菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα 梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh 圆r-半径d-直径C=πd=2πr S=πr2=πd2/4 扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长S=r2/2·(πα/180-sinα)b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2h-矢高=παr2/360 - b/2·[r2-(b/2)2]1/2r-半径=r(l-b)/2 + bh/2α-圆心角的度数≈2bh/3 圆环R-外圆半径S=π(R2-r2)r-内圆半径=π(D2-d2)/4D-外圆直径d-内圆直径椭圆D-长轴S=πDd/4d-短轴高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

高等数学公式大全(完整版)

高等数学公式大全(完整版)

高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ函数 角A sin cos tg ctg -α-si nα cos α -tg α -ct gα 90°-α cos α sin α ctg α tg α 90°+α cos α -si nα -ct gα -tg α 180°-α sin α -co sα -tg α -ct gα 180°+α -si nα -co sα tg α ctg α 270°-α -co sα -si nα ctg α tg α 270°+α -co sα sin α -ct gα -tg α 360°-α -si nα cos α -tg α -ct gα 360°+αsin αcos αtg αctg α·和差角公式:·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式:空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

高等数学公式汇总

高等数学公式汇总

高等数学公式汇总高等数学公式汇总如下:1. 幂函数:指数函数:f(x) = cos(x) + i*sin(x)f(x) = exp(x) - 1/(2*exp(2x))f(x) = frac{1}{1-x^2}f(x) = sqrt(x)/x2. 三角函数:正弦函数:s(x) = sin(x)/cos(x)s(x) = frac{1}{sqrt{1-x^2}}s(x) = frac{cos(x) - x*sin(x)}{sqrt{1-x^2}}s(x) = frac{2*cos(x)/2}{sqrt{1-x^2}}3. 余弦函数:c(x) = cos(x)c(x) = cos(x)/s(x)c(x) = frac{1}{sqrt{1-x^2}}c(x) = frac{2*cos(x) - x*sin(x)}{sqrt{1-x^2}}4. 正切函数:tan(x) = sin(x)/cos(x)tan(x) = frac{sin(x) + cos(x)}{2*cos(x)/sin(x) -sin(x)/cos(x)}tan(x) = frac{1}{sqrt{1-sin^2(x)/cos^2(x)}}5. 指数函数和三角函数的组合:e^x = cos(x) + i*sin(x)e^x = exp(x) - 1/(2*exp(2x))e^x = frac{1}{1-x^2}e^x = sqrt(x)/x6. 对数函数:log(x) = ln(x/e) + i*π/2log(x) = ln(x) - ln(2*sqrt(x))log(x) = ln(1+x)7. 微积分中的基本公式:导数:f"(x) = lim(Δx->0)*frac{f(x+Δx) - f(x)}{Δx}f"(x) = lim(Δx->0)*frac{f(x+Δx) + f(x-Δx)}{2Δx}f"(x) = lim(Δx->0)*frac{f(x)/(x+Δx) - f(x)/(x-Δx)}{Δx/(x+Δx) + Δx/(x-Δx)}f"(x) = lim(Δx->0)*frac{f(x)/x}{1 + frac{f(x)}{x/2}} 微分中的基本公式:d/dx (a^x) = a^x*ln(a)d/dx (e^x) = e^x*ln(e)d/dx (1/x) = 1/x*ln(x)d/dx (a^x) * a^(-x) = e^xd/dx (x^n) = nx^(n-1)d/dx (sin(x)) = cos(x)d/dx (cos(x)) = -sin(x)d/dx (tan(x)) = sin(x)/cos(x)8. 积分基本公式:积分一:∫dx = x + C∫dx = 1/2*ln(|x| + 1) + C∫dx = 1/(2*sqrt(x^2 + 1)) + C∫dx = 1/(2*sqrt(x)) + C积分二:∫dx/dx = 1/x∫dx/(2x) = 1/(2*x^2)∫dx/(x^2 + z) = -1/(x^3 + z^2) + C积分三:∫e^x dx = e^x + C∫e^x dx = 1/(2*sqrt(e)*ln(e)) + C∫e^x dx = 1/(2*sqrt(e)*sin(x)) + C积分四:∫a^x dx = a^x + C∫a^x dx = 1/(2*sqrt(a^2 + 1)) + C∫a^x dx = 1/(2*sqrt(a)) + C9. 链式法则:链式法则:∫[(x+a)^2 - (x-a)^2] dx = x^3 + 3x^2*a + 3x*a^2 - (a^3 + a^2*a + a*a^2)= x^3 + 3x^2*a + 3x*a^2 - a^3 - a^2*a + a*a^2= (x-a)(x^2 + 3x*a + 3a^2) - a^310. 微积分中的常数和极限:常数:C = lim(n->无穷大)*sum(1/n)C = lim(n->无穷大)*sqrt(1+4n^2)C = lim(n->无穷大)*frac{1}{2*(1-2n^2) }C = lim(x->正无穷大)*log(1+x)C = lim(x->负无穷大)*log(1-x)极限:趋于1:s(n) = frac{1}{n} + 1/(n^2 + 2)趋于0:s(n) = frac{1}{n} + 1/(n^2)趋于正无穷:s(n) = frac{1}{n} + O(1/n^3)趋于负无穷:s(n) = frac{1}{n} + O(1/n^2)。

高等数学公式汇总(大全)

高等数学公式汇总(大全)

高等数学公式汇总(大全)导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学所有公式大全

高等数学所有公式大全

高等数学所有公式大全高等数学是一门涉及到多个概念和公式的学科,其中包括微积分、线性代数、概率论等的知识。

下面将介绍一些高等数学中常见的公式。

微积分部分:1. 泰勒展开式:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... +f^n(a)(x-a)^n/n! + R_n(x),其中 f'(a) 表示函数 f(x) 在点 a 处的导数,f''(a) 表示函数 f(x) 在点 a 处的二阶导数,f^n(a) 表示函数 f(x) 在点 a 处的 n 阶导数。

2. 拉格朗日中值定理:如果函数 f(x) 在闭区间 [a, b] 上连续,在开区间 (a, b) 上可导,则存在一点 c ∈ (a, b),使得 f(b)-f(a) = f'(c)(b-a)。

3. 法拉第定律:对于闭曲线 C 上的可微函数 f(x, y),有∮C f(x, y)ds = 0,其中 ds 表示 C 上的长度元素。

4. 一元函数积分学基本公式:- 定积分的线性性质:∫[a, b] (f(x) + g(x))dx = ∫[a, b] f(x)dx +∫[a, b] g(x)dx。

- 定积分的加减法则:∫[a, b] f(x)dx - ∫[a, c] f(x)dx = ∫[c, b]f(x)dx。

- 定积分的换元法则:∫[a, b] f(g(x))g'(x)dx = ∫[g(a), g(b)]f(u)du。

- 分部积分法:∫[a, b] u(x)v'(x)dx = [u(x)v(x)]_[a, b] - ∫[a, b]u'(x)v(x)dx。

线性代数部分:1. 向量的线性变换:对于一个 n 维向量 V 和一个实数 a,线性变换 T(aV) = aT(V)。

2. 矩阵乘法:对于一个 m×n 的矩阵 A 和一个 n×p 的矩阵 B,它们之间的乘积为一个 m×p 的矩阵 C,其中C(i,j) = ∑[k=1->n] A(i,k)B(k,j)。

完整版)数学分析复习资料及公式大全

完整版)数学分析复习资料及公式大全

完整版)数学分析复习资料及公式大全导数公式:求导是微积分的重要内容之一,掌握导数公式对于解题至关重要。

常见的导数公式如下:tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)·tan(x)csc(x)的导数为-csc(x)·cot(x)ax的导数为ax·ln(a)log_a(x)的导数为1/(x·ln(a))基本积分表:积分是微积分的重要内容之一,掌握基本积分表对于解题至关重要。

常见的基本积分表如下:arcsin(x)的导数为1/(sqrt(1-x^2))arccos(x)的导数为-1/(sqrt(1-x^2))arctan(x)的导数为1/(1+x^2)arcctan(x)的导数为-1/(1+x^2)tan(x)dx=-ln|cos(x)|+Ccot(x)dx=ln|sin(x)|+Csec(x)dx=ln|sec(x)+tan(x)|+Ccsc(x)dx=ln|csc(x)-cot(x)|+Cdx/x=ln|x|+Csin(x)dx=-cos(x)+Ccos(x)dx=sin(x)+Cdx/(x^2+a^2)=1/a·arctan(x/a)+Cdx/(a^2-x^2)=1/(2a)·ln|(a+x)/(a-x)|+C dx/(a^2+x^2)=1/a·ln|(a+x)/x|+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+C e^x dx=e^x+Csin^2(x)dx=1/2·(x-sin(x)cos(x))+C cos^2(x)dx=1/2·(x+sin(x)cos(x))+Csec(x)·tan(x)dx=sec(x)+Ccsc(x)·cot(x)dx=-csc(x)+Ca^x dx=a^x/ln(a)+Csinh(x)dx=cosh(x)+Ccosh(x)dx=sinh(x)+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+Cπ/2+πn (n为整数)lim(1+x)→∞=e=2.xxxxxxxxxxxxxxx。

高数的全部公式大全

高数的全部公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

数学教案小学数学公式高中

数学教案小学数学公式高中

数学教案小学数学公式高中教学内容:数学公式适用年级:小学、高中1. 教学目标:小学:掌握加法、减法、乘法、除法等基本运算的公式,能够熟练运用求解简单算术题目。

高中:掌握常见的代数、几何公式,能够灵活运用解决复杂数学问题。

2. 教学重点:小学:加法、减法、乘法、除法等基本运算的公式。

高中:常见的代数、几何公式。

3. 教学内容:小学阶段:1)加法公式:a + b = c2)减法公式:a - b = c3)乘法公式:a × b = c4)除法公式:a ÷ b = c高中阶段:1)代数公式:- 一元二次方程的求解公式:ax^2 + bx + c = 0,x = (-b ±√(b^2-4ac))/(2a)- 四则运算公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^22)几何公式:- 圆的面积公式:S = πr^2- 三角形的面积公式:S = 1/2 × 底 × 高4. 教学方法:采用示例分析、练习应用的方式,让学生通过具体的算术题目和实例来理解和掌握公式的运用方法。

5. 教学过程:小学阶段:1)加法公式练习:给出多个算术题目,让学生用加法公式计算答案。

2)减法公式练习:同上,让学生通过减法公式计算答案。

3)乘法公式练习:同上,让学生通过乘法公式计算答案。

4)除法公式练习:同上,让学生通过除法公式计算答案。

高中阶段:1)代数公式练习:给出一元二次方程等代数题目,让学生运用公式求解。

2)几何公式练习:给出圆的面积、三角形的面积等几何题目,让学生灵活运用公式计算。

6. 教学反馈:布置作业,让学生在家中练习巩固所学的数学公式知识,然后在下节课进行检查和评价。

通过以上教学活动,学生将能够更好地掌握和应用数学公式,提高数学解题的能力和技巧。

(完整版)高数常用公式手册

(完整版)高数常用公式手册

高等数学复习公式1、乘法与因式分解公式2、三角不等式■Ti3、一元二次方程U H-珀+巴=0 的解4、某些数列的前n项和5、二项式展开公式6、基本求导公式7、基本积分公式8—些初等函数两个重要极限9、三角函数公式正余弦定理10、莱布尼兹公式11、中值定理12、空间解析几何和向量代数13、多元函数微分法及应用14、多元函数的极值15、级数16、微分方程的相关概念1、乘法与因式分解公式1.1a3'—护=(口一卜)(& + b)1.2八土护干必十們n ■ n / ■ 、/ n 1 n 2.g a b (a b)(a a b2、三角不等式2.1 匕■. J -2.2 ■' > r - L2.3 二;•- * 门'2.4 ■- ■- ■- r - ■■- 2.6|训£ b 旨一常用高数公式(a-b)(a n~ (口十&)(厂十络十a" 皆---------------- a b n~2十矿+ ft Q —& t1+ '■' + fit —Q J伉为正整数)g为偶数)n 3 2 n 2 n 1、a b L ab b )( n 为奇数)3、一元二次方程 。

十+斑十的解3.2(韦达定理)根与系数的关系:r >0万程口恂定一黄恨, 3-3利别朮 沪-伽彳=0方程有相尊二买抿”I < U 方程有决辄肆琅.4、某些数列的前 n 项和4.1T r - 亦 + 1)1十2十3十…•十沖= ------ ---- 4.21 十3 + B+ —十(2⑺一1) = □& 4.32+4 + 5+ ■■■ + (2 外)=n (n 十 1)44[十沪十护十…十卅=巾+ 1)帥+ 1)64.5 f 十护十扌十…十(亦章=吧-1)a4.61彳+尸+*+…+异+44.7P+孑十用+…十(加一⑵^一 1)4.81卄也十L )=*十挈+可'J5、二项式展开公式5.1 (一时—+严时答2-沪十捫一%一宀…+7 !U p+止土色土^右 忖十十屮Jd!6、基本求导公式:(C) 0 (C为常数)(cot x) csc 2 xsin "2x (sec x)(csc x)sec x tan xesc x cot x (arcsin x)(log a x)1 1(ln x)x x ln a(sin x) cos x (cos x) sin x(tan x) sec2 x1 cos2 x(x ) x 1 (为实数) (a x) a x lna (e x) e x(arccos(arctan7、基本积分公式:0dx x) x)(arc cot x)1 x211 ~x7x dx 1)Idx xxe dx lnxsec xdx ln secx tan x Ccsc xdx ln cscx cot x Cdxarctan x C1 x2dxarcsin x C疋1e x Ca x dxx—C Inadx2~ cosx2sec xdx tancosxdx sin x Csin xdx cosx C 8、一些初等函数:两个重要极限:双曲正弦:shx 双曲余弦:chxx x e e2x x e e2双曲正切:thxshx x echx x e arshx ln (x x2 1) archx ln (x .x21)xeedx2sin x2csc xdx cot x Csec x tan xdxcscx cot xdxlimx 0lim(1丄厂x xsecxcscx Ce 2.718281828459045…arthx Iln 1_-2 1 x 9、三角函数公式:高等数学复习公式sinsin 2si n-cos22sinsin2 cos-sin22 coscos2 cos-cos-22 coscos 2 sin --sin -22■倍角公式:■半角公式:c os —21 cosV 2cot —21cos 1 cos sin 1 cossin 1 cos柯西中值定理: 当F(x) x 时,柯西中值定理就是 拉格朗日中值定理sin( )sin cos cos sin cos()cos cos sin sintan() tan tan 1 tan tan、 cot cot 1cot()cot cot■和差化积公式:sin2tan — 2■正弦定理: a sin A b sin B — 2R •余弦定理:c 2 sin C 2 2a b 2abcosC•反三角函数性质: arcs in x arccosx arcta n x —arc cot x2(uv)(n) n C :u (nkJ)u (n)v (n 1) nu v n(n 1)u(n 2)vn(n 1) (n k 1) (n k )v(k )10、高阶导数公式一一莱布尼兹( Leibniz )公式: 2!k!11、中值定理与导数应用: U V(n)拉格朗日中值定理: f(b) f(a) f ( )(b a)■和差角公式:si n2 cos2 cot2 tan22sin cos 22 cos 1 cot 2 12cot 2ta n 1 tan 21 2si n 22cos.2 sinsi n3 3sin4s in 3cos3 4CO £3 cos tan33ta n tan 321 3ta n12、空间解析几何和向量代数:空间2点的距离:d M 1M 2 向量在轴上的投影:Pr j u ABPrj u@1 a ?) Pr ja 1 Prja ?a b cos a x b xa zb z ,是一个数量,代表平行六面体的体积平面的方程:1、点法式:A(x X o ) B(y y o ) C(z z o ) 0,其中 n{代 B,C}, M o (x o , y o ,z o )2、一般方程:Ax By Cz D o3、截距世方程:△ y z -1a b c平面外任意一点到该平面的距离:|Ax o By o d -- ------------- Cz o D〜 、‘A 2 B 2 C 2x X o mt空间直线的方程:xX o y y ozzt,其中s {m,n, p};参数方程:y y o ntmnPPtz z o二次曲面:22 21、椭球面:y_ 刍1 ab 2 c222、抛物面:丄 y_ z,(p, q 同号)2p 2q3、双曲面:222单叶双曲面:务y_ 刍1 ab 2c 222双叶双曲面:qy ~~2刍1(马鞍abc13、多元函数微分法及应用两向量之间的夹角: cos axb : x 2 2 一 a xa y a yb y T~' 2 a z ... b x a z b z 2 2 b y b zcab a xb x ay b y k a z ,c b z a b sin 例:线速度: 向量的混合积: [abc] (a b) c a x b x ayb y C ya zb z Czc cos ,为锐角时, (X 2 X 1)2 Q2 yJ 2 (Z 2 Z 1)2 AB cos ,是AB 与u 轴的夹角。

(完整版)高等数学公式汇总(大全)

(完整版)高等数学公式汇总(大全)

高等数学公式汇总(大全)一 导数公式:二 基本积分表:三 三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 四 一些初等函数:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ五 两个重要极限:六 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ七 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑八 中值定理与导数应用:拉格朗日中值定理。

高中数学公式辅导教案

高中数学公式辅导教案

高中数学公式辅导教案目标:通过本次辅导,学生能够熟练掌握高中数学常用公式,提升解题效率。

一、基本公式1. 一次函数:y = kx + b2. 二次函数:y = ax^2 + bx + c3. 利用韦达定理解二次方程:x = (-b ± √(b^2 - 4ac)) / 2a4. 三角函数:sin^2θ + cos^2θ = 1;tanθ = sinθ / cosθ5. 指数函数:a^x * a^y = a^(x+y);(a^x)^y = a^(xy)6. 对数函数:log_ab = x 则 a^x = b二、常见几何公式1. 三角形面积公式:S = 1/2 * 底边长度 * 高2. 直角三角形斜边长度:c = √(a^2 + b^2)3. 圆的面积公式:S = πr^24. 圆的周长公式:C = 2πr5. 圆柱体体积公式:V = πr^2h三、导数公式1. 基本导数公式:(x^n)' = nx^(n-1);(e^x)' = e^x;(lnx)' = 1/x2. 复合函数求导:(f(g(x)))' = f'(g(x)) * g'(x)3. 链式法则:(f(u))' = f'(u) * u'四、积分公式1. 不定积分公式:∫x^n dx = 1/(n+1) * x^(n+1) + C;∫e^x dx = e^x + C2. 定积分公式:∫[a,b] f(x) dx = F(b) - F(a)(其中F(x)为f(x)的不定积分)五、常见等式1. 二次根式的化简:√a * √b = √(ab);√a / √b = √(a/b)2. 同底数幂运算:a^x * a^y = a^(x+y);(a^x)^y = a^(xy)六、实例演练1. 计算函数y = 2x^2 - 3x + 1的导数。

2. 计算积分∫(2x + 3) dx。

高等数学公式大全(带书签及目录)

高等数学公式大全(带书签及目录)
高等数学公式大全(V1.00)
一、一元函数的极限与连续 .................................... 1 ㈠、和差公式与和差化积 ................................ 1 ㈡、积化和差公式 ............................................ 1 ㈢、倍角公式与半角公式 ................................ 1 ㈣、其它公式 .................................................... 2 ㈤、极限 ............................................................ 2 ㈥、连续 ............................................................ 2 二、导数与微分 ........................................................ 3 ㈠、基本导数公式 ............................................ 3 ㈡、高阶导数 .................................................... 3 ㈢、微分 ............................................................ 4 三、微分中值定理与微分的应用 ............................ 4 ㈠、基本定理 .................................................... 4 ㈡、泰勒公式及常用展开式 ............................ 4 ㈢、弧微分公式 ................................................ 5 四、不定积分 ............................................................ 5 ㈠、常用不定积分公式 .................................... 5 ㈡、常用凑微分公式 ........................................ 6 ㈢、有特殊技巧的积分 .................................... 6 五、定积分 ................................................................ 7 ㈠、基本概念 .................................................... 7 ㈡、常用定积分公式 ........................................ 7 六、定积分应用 ........................................................ 8 ㈠、平面图形的面积 ........................................ 8 ㈡、空间立体的体积 ........................................ 8 ㈢、平面曲线的弧长 ........................................ 9 七、向量代数与空间解析几何 ................................ 9 八、多元函数微分法及其应用 .............................. 11 ㈠、定义 .......................................................... 11 ㈡、微分 .......................................................... 11 ㈢、隐函数求导 .............................................. 12 ㈣、曲线的切线和法平面 .............................. 12 ㈤、曲面的切平面和法线 .............................. 12 ㈥、方向导数 .................................................. 13 ㈦、梯度 .......................................................... 13 九、重积分 .............................................................. 13 ㈠、 二重积分 ................................................ 13 ㈡、三重积分 .................................................. 13 ㈢、重积分的应用 .......................................... 14 十、曲线积分和曲面积分 ...................................... 15 ㈠、第一类曲线积分(对弧长的曲线积分) .... 15 ㈡、第二类曲线积分(对坐标的曲线积分) .... 15 ㈢、第一类曲面积分 ...................................... 15 ㈣、第二类曲面积分 ...................................... 16 十一、无穷级数 ...................................................... 17 ㈠、常数项级数

高数公式汇总

高数公式汇总

高等数学公式导数公式:基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ·倍角公式:·半角公式:·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖϖωψϕωψϕωψϕ方向导数与梯度:上的投影。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110ΛΛΛΛ抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖ⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A ϖϖ多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuF v uG F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖϖωψϕωψϕωψϕ方向导数与梯度:上的投影。

相关文档
最新文档