决胜2017高考之全国优质试题文数分项汇编系列(第01期) 专题09立体几何原卷版 Word版缺答案
2017年高考数学试题分项版—解析几何(解析版)
2017年高考数学试题分项版—解析几何(解析版)一、选择题1.(2017·全国Ⅰ文,5)已知F是双曲线C:x2-错误!=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.错误!B.错误!C.错误!D.错误!1.【答案】D【解析】因为F是双曲线C:x2-错误!=1的右焦点,所以F(2,0).因为PF⊥x轴,所以可设P的坐标为(2,y P).因为P是C上一点,所以4-错误!=1,解得y P=±3,所以P(2,±3),|PF|=3。
又因为A(1,3),所以点A到直线PF的距离为1,所以S△APF=错误!×|PF|×1=错误!×3×1=错误!.故选D.2.(2017·全国Ⅰ文,12)设A,B是椭圆C:错误!+错误!=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞) B.(0,错误!]∪[9,+∞)C.(0,1]∪[4,+∞) D.(0,错误!]∪[4,+∞)2.【答案】A【解析】方法一设焦点在x轴上,点M(x,y).过点M作x轴的垂线,交x轴于点N,则N(x,0).故tan∠AMB=tan(∠AMN+∠BMN)=错误!=错误!。
又tan∠AMB=tan 120°=-错误!,且由错误!+错误!=1,可得x2=3-错误!,则错误!=错误!=-错误!。
解得|y|=错误!.又0<|y|≤错误!,即0<错误!≤错误!,结合0<m<3解得0<m≤1.对于焦点在y轴上的情况,同理亦可得m≥9.则m的取值范围是(0,1]∪[9,+∞).故选A.方法二当0<m<3时,焦点在x轴上,要使C上存在点M满足∠AMB=120°,则错误!≥tan 60°=错误!,即错误!≥错误!,解得0<m≤1.当m>3时,焦点在y轴上,要使C上存在点M满足∠AMB=120°,则错误!≥tan 60°=错误!,即错误!≥错误!,解得m≥9。
2017年高考全国名校试题数学分项汇编专题10 立体几何(原卷版)
一、填空题1. 【2016高考冲刺卷(9)【江苏卷】】如图,已知三棱柱ABC - A 1B l C 1中,点D 是AB 的中点,平面A 1DC 分此棱柱成两部分,多面体A 1ADC 与多面体A 1B 1C 1DBC体积的比值为2. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】【在体积为2的四面体ABCD 中,AB ⊥平面BCD ,1AB =,2BC =,3BD =,则CD 长度的所有值为 .3. 【2016高考冲刺卷(6)【江苏卷】】已知四棱锥P-ABCD 的底面ABCD 是边长为2、锐角为︒60的菱形,侧棱PA ⊥底面ABCD,PA=3.若点M 是BC 的中点,则三棱锥M-PAD 的体积为4. 【2016高考冲刺卷(5)【江苏卷】】已知三棱锥S ABC -的体积为1,E 是SA 的中点,F 是SB 的中点,则三棱锥F BEC -的体积是 ▲ .5. 【2016高考冲刺卷(3)【江苏卷】】一个正四棱柱的侧面展开图是一个边长为8cm 的正方形,则它的体积是 cm 2.6. 【2016高考冲刺卷(1)【江苏卷】】已知矩形ABCD 的边4=AB ,3=BC 若沿对角线AC 折叠,使得平面DAC ⊥平面BAC ,则三棱锥ABC D -的体积为 .7. 【2016高考押题卷(2)【江苏卷】】如图,已知平面⋂α平面l =β,βα⊥,B A ,是直线l 上的两点,D C ,是平面β内的两点,且l CB l DA ⊥⊥,,DA=4,AB=6,CB=8,P 是平面α上的一动点,且有BPC APD ∠=∠,则四棱锥ABCD P -体积的最大值是8. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】设棱长为a 的正方体的体积和表面积分别为1V ,1S ,底面半径和高均为r 的圆锥的体积和侧面积分别为2V ,2S ,若123=V V p ,则12S S 的值为 ▲ . 9. 【南京市、盐城市2016届高三年级第二次模拟考试】如图,正三棱柱ABC —A 1B 1C 1中,AB=4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A —A 1EF 的体积是▲________.10. 【2016高考冲刺卷(2)【江苏卷】】 如图,长方体1111ABCD A B C D -中,O 为1BD 的中点,三棱锥O ABD -的体积为1V ,四棱锥11O ADD A -的体积为2V ,则12V V 的值为 ▲ .11. 【2016高考押题卷(3)【江苏卷】】若半径为2的球O 内切于一个正三棱柱111C B A ABC -中,则该三棱柱的体积为 .12. 【2016高考押题卷(1)【江苏卷】】已知一个圆锥的母线长为2,侧面展开是半圆,则该(第7题图) AB CA 1B 1FC 1E1A A圆锥的体积为_______.13. 【2016年第一次全国大联考【江苏卷】】已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3, 斜高长为4,则此正五棱锥体积为_______.14. 【2016年第四次全国大联考【江苏卷】】已知正三棱柱的各条棱长均为1,圆锥侧面展开图为半径为2的半圆,那么这个正三棱柱与圆锥的体积比是_______.15. 【2016年第三次全国大联考【江苏卷】】已知正六棱锥P-ABCDEF 的侧棱SA=32,则它的体积最大值是 .16. 【 2016年第二次全国大联考(江苏卷)】已知正六棱锥的底面边长为2则该正六棱锥的表面积为_______.二、解答题1. 【 2016年第二次全国大联考(江苏卷)】(本小题满分14分)如图,平行四边形⊥ABCD 平面CDE , DE AD ⊥.(Ⅰ)求证: ⊥DE 平面ABCD ;(Ⅱ)若M 为线段BE 中点,N 为线段CE 的一个三等分点,求证:MN 不可能与平面ABCD 平行.2. 【2016年第三次全国大联考【江苏卷】】(本小题满分14分)如图所示,在直四棱柱1111-ABCD A B C D 中,=DB BC , ⊥DB AC ,点M 是棱1BB 上的一点.A BCD E(1)求证:11//B D 面1A BD ;(2)求证:⊥MD AC ; (3)试确定点M 的位置,使得平面1DMC ⊥平面11CC D D .3. 【2016年第四次全国大联考【江苏卷】】(本小题满分14分)如图,在四棱锥E -ABCD 中,底面ABCD 是正方形,AC 与BD 交于点O ,EC ⊥底面ABCD ,F 为BE 上一点,G 为EO 中点.(Ⅰ)若DE //平面ACF ,求证:F 为BE 的中点;(Ⅱ)若ABCE ,求证:CG ⊥平面BDE.4. 【2016年第一次全国大联考【江苏卷】】(本小题满分14分)在四棱锥P ABCD -中,平面四边形ABCD 中AD //BC ,BAD ∠为二面角B PA D --一个平面角.(1)若四边形ABCD 是菱形,求证:BD ⊥平面PAC ;(2)若四边形ABCD 是梯形,且平面PAB 平面PCD l =,问:直线l 能否与平面ABCD 平行?请说明理由. M A BCDA 1B 1C 1D 15. 【2016高考押题卷(1)【江苏卷】】(本小题满分14分)如图,在正三棱锥111ABC A B C -中,E ,F 分别为1BB ,AC 的中点.(1)求证://BF 平面1A EC ;(2)求证:平面1A EC ⊥平面11ACC A.6. 【2016高考押题卷(3)【江苏卷】】(本小题满分14分)在三棱锥ABC P -中,若E D AC BD ,,2=分别为PC AC ,的中点,且⊥DE 平面PBC .(1)求证://PA 平面BDE ;(2)求证:⊥BC 平面PAB .CBAPA BC D7. 【2016高考押题卷(2)【江苏卷】】(本小题满分14分)如图,在四棱锥ABCD P -中,四边形ABCD 为矩形,N M BP AB ,,⊥分别为PD AC ,的中点.(1)求证://MN 平面ABP ;(2)求证:平面ABP ⊥平面APC 的充要条件是BP PC ⊥.8. 【2016高考冲刺卷(2)【江苏卷】】(本小题满分14分)如图,在三棱锥P ABC -中,90PAC BAC ∠=∠=︒,PA PB =,点D ,F 分别为BC ,AB 的中点.(1)求证:直线//DF 平面PAC ;(2)求证:PF ⊥AD .9. 【2016高考冲刺卷(4)【江苏卷】】(本小题满分14分)如图,在三棱锥P —ABC 中,平面PAB ⊥平面ABC ,PA ⊥PB ,M ,N 分别为AB ,PA 的中点.(1)求证:PB ∥平面MNC ;(2)若AC =BC ,求证:PA ⊥平面MNC .A NBPM C(第16题图)10. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】 (本小题满分14分) 在直三棱柱111ABC A B C -中,CA CB =,1AA , D 是AB 的中点.(1)求证:1BC ∥平面1ACD ; (2)若点P 在线段1BB 上,且114BP BB =,求证:AP ⊥平面1ACD .11. 【2016高考冲刺卷(1)【江苏卷】】(本小题满分14分)如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中, E ,F 分别是AB ,BC 的中点,A 1C 1 与B 1D 1交于点O .(1)求证:A 1,C 1,F ,E 四点共面;(2)若底面ABCD 是菱形,且OD ⊥A 1E ,求证:OD ⊥平面A 1C 1FE .12. 【2016高考冲刺卷(3)【江苏卷】】(本小题满分14分)如图,在四棱锥ABCD P -中,ABCD 为菱形,⊥PD 平面ABCD ,8,6==BD AC ,E 是棱PB 上的动点,AEC ∆面积的最小值是3.C B 1A 1P DCBA1 E A B(1)求证:DE AC ⊥;(2)求四棱锥ABCD P -的体积.13. 【盐城市2016届高三年级第三次模拟考试】(本小题满分14分)如图,四棱锥P ABCD -中,底面ABCD 是矩形,2AB AD =,PD ⊥底面ABCD ,,E F 分别为棱,AB PC 的中点.(1)求证://EF 平面PAD ;(2)求证:平面PDE ⊥平面PEC .14. 【2016高考冲刺卷(6)【江苏卷】】如图,在四棱柱1111ABCD A B C D -中,1BB ⊥底面ABCD ,//AD BC ,90BAD ∠=,AC BD ⊥.(Ⅰ)求证:1//B C 平面11ADD A ; D 1 DAC 1A 1B 1 B CPA CDE第16题图 F(Ⅱ)求证:1AC B D ⊥;(Ⅲ)若12AD AA =,判断直线1B D 与平面1ACD 是否垂直?并说明理由.15. 【2016高考冲刺卷(7)【江苏卷】】如图,在四棱锥A EFCB -中,AEF ∆为等边三角形,平面AEF ⊥平面EFCB ,2EF =,四边形EFCB//EF BC ,O 为EF 的中点.(1)求证:AO CF ⊥;(2)求O 到平面ABC 的距离. 16. 【】(本小题满分14分)在四棱锥A BCDE -中,底面BCDE 为菱形,侧面ABE 为等边三角形,且侧面ABE ⊥底面BCDE ,,O F 分别为,BE DE 的中点.(Ⅰ)求证:AO CD ⊥;(Ⅱ)求证:平面AOF ⊥平面ACE ;(Ⅲ)侧棱AC 上是否存在点P ,使得//BP 平面AOF ?若存在,求出AP PC 的值;若不存在,请说明理由.C B 1A 1P D CB A。
决胜2017高考之全国优质试题理数分项汇编(全国新课标1特刊):(第03期)专题14+选讲部分(原卷版)
第十四章 选讲部分一、解答1. 【2016年4月湖北省七市(州)教科研协作体高三联合考试】(本小题满分10分)选修4-1:几何证明选讲已知ABC ∆中,AB AC =,D 是ABC ∆外接圆劣弧AC 上的点(不与点,A C 重合),延长BD至E ,延长AD 至F .(1)求证:ABC EDF ∠=∠;(2)若75ABC ∠= ,ABC ∆中BC 边上的高为2+ABC ∆外接圆的面积.2. 【2016年4月湖北省七市(州)教科研协作体高三联合考试】(本小题满分10分)选修4-4:坐标系与参数方程已知曲线1C 的参数方程是22cos 2sin x y θθ=-+⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程是4sin ρθ=. (1)求曲线1C 与2C 交点的坐标;(2),A B 两点分别在曲线1C 与2C 上,当||AB 最大时,求OAB ∆的面积(O 为坐标原点).3. 【2016年4月湖北省七市(州)教科研协作体高三联合考试】(本小题满分10分)选修4-5:不等式选讲 设函数()|26|f x x =-.(1)求不等式()f x x ≤的解集;(2)若存在x 使不等式()2|1|f x x a --≤成立,求实数a 的取值范围.4. 【洛阳市2016年高三综合练习题(五)】(本小题满分10分)选修4-1:几何证明选讲如图,AB 是O 的直径,弦BD CA 、延长线相交于点,E F 为BA 延长线上一点,且BD BE BA BF = ,求证:(1)EF FB ⊥;(2)090DFB DBC ∠+∠=.5. 【洛阳市2016年高三综合练习题(五)】(本小题满分10分)选修4-4:坐标系与参数方程已知平面直角坐标系xOy ,曲线C的方程为2cos 2sin x y ϕϕ=⎧⎪⎨=⎪⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P点的极坐标为6π⎛⎫⎪⎝⎭,直线l 的极坐标方程为cos 2sin 7ρθρθ+=.(1)写出点P 的直角坐标及曲线C 的普通方程;(2)若Q 为曲线C 上的动点,求PQ 中点M 到直线l 距离的最小值.6. 【洛阳市2016年高三综合练习题(五)】(本小题满分10分)选修4-5:不等式选讲已知函数()1f x x x a =+-+.(1)若0a =,求不等式()0f x ≥的解集;(2)若方程()f x x =有三个不同的解,求a 的取值范围.7. 【名校学术联盟﹒2015-2016学年度高考押题卷一】(本小题满分10分)选修4-1:几何证明选讲已知AB 是O 的直径,AP 是O 的切线,A 为切点,BP 与O 交于C 点,AP 的中点为D .(1)求证:四点,,,O A D C 共圆; (2)求证:AC AP PC AB = .8. 【名校学术联盟﹒2015-2016学年度高考押题卷一】(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为()3cos 2sin x y θθθ=⎧⎨=⎩为参数,在同一平面直角坐标系中,将曲线C 上的点按坐标变换1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩得到曲线C ',以原点为极点,x 轴的正半轴为极轴,建立极坐标系.(1)写出曲线 C 与曲线C '的极坐标的方程; (2)若过点4A π⎛⎫⎪⎝⎭(极坐标)且倾斜角为3π的直线l 与曲线C 交于,M N 两点,试求AM AN 的值.9. 【名校学术联盟﹒2015-2016学年度高考押题卷一】(本小题满分10分)选修4-5:不等式选讲设函数()211f x x x =-++. (1)求()2f x ≥的解集;(2)若函数()f x 的最小值为,,m a b 均为正实数,a b m +=,求22a b +的最小值.10. 【湖南省2016届高考冲刺卷数学(理)试题(三)】(本小题满分10分)选修4-1:几何证明选讲已知AD 是ABC ∆的外角EAC ∠的平分线, 交BC 的延长线于点D ,延长DA 交ABC ∆的外接圆于点F ,连接,FB FC.(1)求证:FB FC =;(2)若AB 是ABC ∆外接圆的直径,120,EAC BC ∠== 求AD 的长.11. 【湖南省2016届高考冲刺卷数学(理)试题(三)】(本小题满分10分)选修4-4:坐标系与参数方程已知直线l的参数方程为12(1x t t y ⎧=⎪⎪⎨⎪=⎪⎩为参数), 曲线C的极坐标方程为4πρθ⎛⎫=+⎪⎝⎭,直线l 与曲线C 交于,A B 两点, 与y 轴交于点P . (1)求曲线C 的直角坐标方程; (2)求11PA PB+的值. 12. 【湖南省2016届高考冲刺卷数学(理)试题(三)】(本小题满分10分)选修4-5:不等式选讲设()13f x x x =--+. (1)解不等式()2f x >;(2)若不等式()1f x kx ≤+在[]3,1x ∈--上恒成立, 求实数k 的取值范围.13. 【洛阳市2015-2016学年高中三年级统一考试(理A )】(本小题满分10分)选修4-1:几何证明选讲如图,AB 与圆O 相切于点B ,CD 为圆O 上两点,延长AD 交圆O 于点E ,//BF CD 且交ED 于点F .(1)证明:BCE ∆∽FDB ∆;(2)若BE 为圆O 的直径,EBF CBD ∠=∠,2BF =,求AD ED ∙.14. 【洛阳市2015-2016学年高中三年级统一考试(理A )】(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是2ρ=,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l的参数方程为12x t y =+⎧⎪⎨=+⎪⎩(t 为参数).(1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)设曲线C 经过伸缩变换''12x xy y ⎧=⎪⎨=⎪⎩得到曲线'C ,设(,)M x y 为曲线'C上任一点,求222x y +的最小值,并求相应点M 的坐标.15. 【洛阳市2015-2016学年高中三年级统一考试(理A )】(本小题满分10分)选修4-5:不等式选讲已知函数()|2||23|f x x a x =-++,()|1|2g x x =-+. (1)解不等式|()|5g x <;(2)若对任意的1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.16. 【2016届高三年级第四次四校联考】(本小题满分10分)选修4-1:几何证明选讲如图,ABC ∆的两条中线AD 和BE 相交于点G ,且G E C D ,,,四点共圆. (Ⅰ)求证:ACG BAD ∠=∠; (Ⅱ) 若1GC =,求AB .17. 【2016届高三年级第四次四校联考】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为,sin cos 3⎩⎨⎧==ααy x (其中α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系中,直线l 的极坐标方程为24sin =⎪⎭⎫⎝⎛-πθρ. (1)求C 的普通方程和直线l 的倾斜角;(2)设点P (0,2),l 和C 交于B A ,两点,求PB PA +.18. 【2016届高三年级第四次四校联考】(本小题满分10分)选修4-5:不等式选讲 已知)0(41)(,)(1)(<++=∈-+-=x xx x g R a a x x x f (1)若3=a ,求不等式4)(≥x f 的解集; (2)对)0,(,21-∞∈∀∈∀x R x 有)()(21x g x f ≥恒成立,求实数a 的取值范围.19. 【广东省深圳市2016届高三第二次调研考试数学(理)】(本小题满分10分)选修4-1:几何证明选讲如图,AB 为圆O 的直径,C 在圆O 上,CF AB ⊥于F ,点D 为线段CF 上任意一点,延长AD 交圆O于E ,030AEC ∠=.(1)求证:AF FO =;(2)若CF =AD AE 的值.20. 【广东省深圳市2016届高三第二次调研考试数学(理)】(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合.若曲线C 的参数方程为32cos 2sin x y αα=+⎧⎨=⎩(α为参数),直线l sin 14πθ⎛⎫-= ⎪⎝⎭.(1)将曲线 C 的参数方程化为极坐标方程;(2)由直线l 上一点向曲线C 引切线,求切线长的最小值.21. 【广东省深圳市2016届高三第二次调研考试数学(理)】(本小题满分10分)选修4-5:不等式选讲若关于x 的不等式231x x m --+≥+有解,记实数m 的最大值为M . (1)求M 的值;(2)正数,,a b c 满足2a b c M ++=,求证:111a b b c+≥++. 22. 【河南省豫北重点中学2016届高三下学期第二次联考(理科)】(本小题满分10分)选修4-1:几何证明选讲如图所示,在ABC ∆中,CD 是ACB ∠的角平分线,ADC ∆的外接圆交线段BC 于点E ,3BE AD =.(1)求证:3AB AC =;(2)当4,3AC AD ==时,求CD 的长.23. 【河南省豫北重点中学2016届高三下学期第二次联考(理科)】(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线1C 的参数方程为431x ty t =⎧⎨=-⎩(t 为参数),当0t =时,曲线1C 上对应的点为P ,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为ρ=(1)求证:曲线1C 的极坐标方程为3cos 4sin 40ρθρθ--=; (2)设曲线1C 与曲线2C 的公共点为,A B ,求PA PB ∙的值.24. 【河南省豫北重点中学2016届高三下学期第二次联考(理科)】(本小题满分10分)选修4-5:不等式选讲已知函数()21f x x x =-++. (1)解关于x 的不等式()4f x x ≥-;(2)设,{()}a b y y f x ∈=,试比较2()a b +与4ab +的大小.25. 【湖北省武汉市武昌区2016届高三5月调研考试(理科)】(本小题满分10分)选修4-1:几何证明选讲如图,O 和O ' 相交于A B 、两点,过A 作两圆的切线分别交两圆于C D 、两点,连结DB 并延长交O 于点E ,已知3AC BD ==.(1)求AB AD 的值;(2)求线段AE 的长.26. 【湖北省武汉市武昌区2016届高三5月调研考试(理科)】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为2152x y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρθ=. (1)把曲线C 的极坐标方程化为直角坐标方程,并说明它表示什么曲线;(2)若P 是直线l 上的一点,Q 是曲线C 上的一点,当PQ 取得最小值时,求P 的直角坐标.27. 【湖北省武汉市武昌区2016届高三5月调研考试(理科)】(本小题满分10分)选修4-5:不等式选讲已知0,0a b >>,函数()f x x a x b =-++的最小值为2. (1)求a b +的值;(2)证明:22a a +>与22b b +>不可能同时成立.28. 【湖南省郴州市2016届高三第四次教学质量检测】(本小题满分10分)选修4-1:几何证明选讲如图, 已知AB 为圆O 的直径,C 为圆O 上一点, 连接AC 并延长使AC CP =,连接PB 并延长交圆O 于点D ,过点P 作圆O 的切线, 切点为E.(1)证明:2AB DP EP = ;(2)若AB EP ==求BC 的长度.29. 【湖南省郴州市2016届高三第四次教学质量检测】(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合, 极轴与直角坐标系的x 轴的正半轴重合,设点O 为坐标原点, 直线:22x tl y t=⎧⎨=+⎩(参数t R ∈)与曲线C 的极坐标方程为2c o s 2s i n ρθθ=.(1)求直线l 与曲线C 的普通方程;(2)设直线l 与曲线C 相交于A 、B 两点, 证明:0OA OB =.30. 【湖南省郴州市2016届高三第四次教学质量检测】(本小题满分10分)选修4-5:不等式选讲已知函数()()21,f x x g x x a =+=+. (1)当0a =时, 解不等式()()f x g x ≥;(2)若存在x R ∈,使得()()f x g x ≤成立, 求实数a 的取值范围.31. 【山西晋城市2016届高三下学期第三次模拟考试】(本小题满分10分)选修4-1:几何证明选讲如图,O 是ABC ∆的外接圆,BAC ∠ 的平分线AD 交BC 于D ,交O 于E ,连接CO 并延长, 交AE 于G ,交AB 于F .(1)证明:AF FG CDAB GC BD= ; (2)若3,2,1,AB AC BD ===求AD 的长.32. 【山西晋城市2016届高三下学期第三次模拟考试】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中, 直线l 的方程是6y =,圆C 的参数方程是cos (1sin x y ϕϕϕ=⎧⎨=+⎩为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)分别求直线l 和圆C 的极坐标方程; (2)射线:OM θα= (其中0)2πα<<与圆C 交于,O P 两点, 与直线l 交于点M ,射线:2ON πθα=+与圆C 交于,O Q 两点, 与直线l 交于点N ,求OP OQ OM ON的最大值. 33. 【山西晋城市2016届高三下学期第三次模拟考试】(本小题满分10分)选修4-5:不等式选讲设函数()12f x x a x a=++-. (1)当1a =时, 解不等式()3f x x <+;(2)当0a >时, 证明:()f x ≥.34. 【2015-2016学年度下学期衡水中学高三年级猜题卷】(本小题满分10分)选修4-1:几何证明选讲如图,PA 为四边形ABCD 外接圆的切线,CB 的延长线交PA 于点P ,AC 与BD 相交于点M ,且//PA BD .(1)求证:ACD ACB ∠=∠;(2)若3PA =,6PC =,1AM =,求AB 的长.35. 【2015-2016学年度下学期衡水中学高三年级猜题卷】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,已知点()1,2P -,直线1:2x t l y t=+⎧⎨=-+⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=,直线l 和曲线C 的交点为,A B .(1)求直线l 和曲线C 的普通方程;(2)求PA PB +.36. 【2015-2016学年度下学期衡水中学高三年级猜题卷】(本小题满分10分)选修4-5:不等式选讲 已知函数()21f x x a =--,()2g x x m =-+,a ,m R ∈,若关于x 的不等式()1g x ≥-的整数解有且仅有一个值为-2.(1)求整数m 的值;(2)若函数()y f x =的图象恒在函数1()2y g x =的上方,求实数a 的取值范围. 37. 【湘西自治州2016届高三第二次质量检测】(本小题满分10分)选修4-1:几何证明选讲如图所示,点P 是圆O 直径AB 延长线上的一点,PC 切圆O 于点C ,直线PQ 平分APC ∠,分别交AC BC 、于点M N 、.求证:(1)CMN ∆为等腰三角形;(2)PB CM PC BN =. 38. 【湘西自治州2016届高三第二次质量检测】(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,已知三点()0,0,2,,24O A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. (1)求经过,,O A B 的圆1C 的极坐标方程;(2)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角 坐标系,圆2C 的参数方程为1cos 1sin x a y a θθ=-+⎧⎨=-+⎩ (θ是参数),若圆1C 与圆2C 外切,求实数a 的值.39. 【湘西自治州2016届高三第二次质量检测】(本小题满分10分)选修4-5:不等式选讲 已知()11f x x x =++-,不等式()4f x <的解集为M .(1)求M ;(2)若不等式()0f x a +<有解,求a 的取值范围.40. 【广东省湛江市2016年普通高考测试题(二)数学理试题】(本小题满分10分)选修4-1:几何证明选讲如图,直线AB 为O 的切线,切点为B ,点C 、D 在圆上,DB DC =,作BE BD ⊥交圆于点E .(Ⅰ)证明:CBE ABE ∠=∠;(Ⅱ)设O 的半径为2,BC =CE 交AB 于点F ,求BCF ∆外接圆的半径.41. 【广东省湛江市2016年普通高考测试题(二)数学理试题】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程()()22121x y -+-=,以原点O 为极点,以x 轴正半轴为极轴建立极坐标系.(Ⅰ)求圆C 的极坐标方程; (Ⅱ)若直线l的参数方程为112x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),求圆C 上的点到直线l 的距离的取值范围.42. 【广东省湛江市2016年普通高考测试题(二)数学理试题】(本小题满分10分)选修4-5:不等式选讲已知函数()121f x x x =+--.(Ⅰ)求不等式()1f x ≥的解集;(Ⅱ)求函数()f x 的图象与x 轴围成的三角形的面积S .43. 【太原市2016年高三年级模拟试题(三)】(本小题满分10分)选修4-1:几何证明选讲如图,ABC ∆内接于圆O ,BC 为圆O 的直径,过点A 作圆O 的切线交CB 的延长线于点P ,BAC ∠的平分线分别交BC 和圆O 于点,D E ,若210PA PB ==.(1)求证:2AC AB =;(2)求AD DE ∙的值.44. 【太原市2016年高三年级模拟试题(三)】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,已知曲线1C :4cos 3sin x t y t =-+⎧⎨=+⎩(t 为参数),2C :8cos 3sin x y θθ=⎧⎨=⎩(θ为参数). (1)求12,C C 的普通方程,并说明它们分别表示什么曲线;(2)若1C 上的点P 对应的参数2t π=,Q 为2C 上的动点,求PQ 中点M 到直线3:(cos 2sin )7C ρθθ-=距离的最小值.45. 【太原市2016年高三年级模拟试题(三)】(本小题满分10分)选修4-5:不等式选讲 已知函数()|1|f x x =-.(1)解不等式(1)(3)6f x f x -++≥;(2)若||1,||1a b <<,且0a ≠,求证:()||()bf ab a f a>. 46. 【湖北省黄冈市黄冈中学2016届高三5月第一次模拟考试数学(理)】(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 是圆O 的内接四边形,AB 是圆O 的直径,BC CD =,AD 的延长线与BC 的延长线交于点E ,过C 作CF AE ⊥,垂足为点F .(1)证明:CF 是圆O 的切线;(2)若4,9BC AE ==,求CF 的长.47. 【湖北省黄冈市黄冈中学2016届高三5月第一次模拟考试数学(理)】(本小题满分10分)选修4-4:坐标系与参数方程已知直线l的参数方程为22x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l上.(1)若直线l 与曲线C 交于,A B 两点,求||||FA FB 的值;(2)求曲线C 的内接矩形的周长的最大值. 48. 【湖北省黄冈市黄冈中学2016届高三5月第一次模拟考试数学(理)】(本小题满分10分)选修4-5:不等式选讲已知函数2()|sin |f x x θ=+,2()2|cos |g x x θ=-,[0,2]θπ∈,且关于x 的不等式2()()f x a g x ≥-对x R ∀∈恒成立.(1)求实数a 的最大值m ;(2)若正实数,,a b c 满足232a b c m ++=,求222a b c ++的最小值.49. 【邯郸市2016届高三第二次模拟考试】(本小题满分10分)选修4-1:几何证明选讲如图,在ABC ∆中,CD 是ACB ∠的角平分线,ACD ∆的外接圆交BC 于E ,2.AB AC = (1)求证:2BE AD =;(2)当12AC BC ==,时,求AD 的长.50. 【邯郸市2016届高三第二次模拟考试】(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程为4cos ρθ=,以极点为原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l的参数方程为512x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数). (1)求曲线C 的直角坐标方程与直线l 的普通方程;(2)设曲线C 与直线l 相交于P Q 、两点,以PQ 为一条边作曲线C 的内接矩形,求该矩形的面积.51. 【邯郸市2016届高三第二次模拟考试】(本小题满分10分)选修4-5:不等式选讲 已知函数()|1||2|f x x x =-+-.(1)求证: ()1f x ≥;(2)若方程2()f x =有解,求x 的取值范围.52. 【湖南省四大名校2016届高三3月联考数学(理)试题】(本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于,E C 两点, PD 切圆于,D G 为CE 上一点且PG PD =,连接DG 并延长交圆于点,A作弦,AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径;(2)若AC BD =,求证:AB ED =.53. 【湖南省四大名校2016届高三3月联考数学(理)试题】(本小题满分10分)选修4-4:坐标系与参数方程已知直线l的参数方程为1(12x t y t ⎧=-⎪⎪⎨⎪=⎪⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin 6πρθ⎛⎫=-⎪⎝⎭. (1)求圆C 的直角坐标方程;(2)若(),P x y 是直线l 与圆面4sin 6πρθ⎛⎫≤- ⎪⎝⎭的公共点,y +的取值范围. 54. 【湖南省四大名校2016届高三3月联考数学(理)试题】(本小题满分10分)选修4-5:不等式选讲已知函数()2f x x a a =-+.(1)若不等式()6f x ≤的解集为{}23x x -≤≤,求实数a 的值;(2)在(1)的条件下,若存在实数n 使()()f n m f n ≤--成立,求实数m 的取值范围. 55. 【陕西省2016届高考全真模拟(四)考试数学(理)试题】(本小题满分10分)选修4-1:几何证明选讲如图,,AB CD 是圆O 的两条互相垂直的直径,E 是圆O 上的点, 过E 点作圆O 的切线交AB 的延长线于F .连结CE 交AB 于G 点.(1)求证:2FG FA FB = ;(2)若圆O 的半径为OB =,求EG 的长.56. 【陕西省2016届高考全真模拟(四)考试数学(理)试题】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中, 在坐标原点为极点,x 轴正半轴为极轴建立极坐标系, 已知曲线1C 的极坐标方程为2222cos 3sin 3ρρ+=,曲线2C 的参数方程是(1x t y t⎧=⎪⎨=+⎪⎩为参数). (1)求曲线1C 和2C 的直角坐标方程;(2)设曲线1C 和2C 交于两点,A B ,求以线段AB 为直径的圆的直角坐标方程. 57. 【陕西省2016届高考全真模拟(四)考试数学(理)试题】(本小题满分10分)选修4-5:不等式选讲已知函数()()4,f x x a x x R a R =---∈∈的值域为[]2,2-.(1)求实数a 的值;(2)若存在0x R ∈,使得()20f x m m ≤-,求实数m 取值范围. 58. 【厦门外国语学校2016届高三适应性考试】已知直线l的参数方程为(x m t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为12)sin21(22=+θρ,且曲线C 的左焦点F 在直线l 上.(I )求实数m 和曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于,A B 两点,求BFAF 11+的值. 59. 【厦门外国语学校2016届高三适应性考试】已知函数()|21|f x x =-. (Ⅰ)若不等式1()21(0)2f x m m +≥+>的解集为(][),22,-∞-+∞ ,求实数m 的值;(Ⅱ)若不等式()2|23|2y ya f x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.60. 【山西省右玉一中2016届高三下学期模拟考试数学(理)】(本小题满分10分)选修4-1:几何证明选讲已知如图,四边形ABCD 是圆O 的内接四边形,对角线,AC BD 交于点E ,直线AP 是圆O 的切线,切点为A ,PAB BAC ∠=∠.(1)若5,2BD BE ==,求AB 的长;(2)在AD 上取一点F ,若FED CED ∠=∠,求BAF BEF ∠+∠的大小.61. 【山西省右玉一中2016届高三下学期模拟考试数学(理)】(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,圆C 的方程为2sin (0)a a ρθ=≠,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,设直线的参数方程为223x t y t =+⎧⎨=+⎩(θ为参数). (1)求圆C 的直角坐标方程和直线的普通方程;(2)若直线l 与圆C 恒有公共点,求实数a 的取值范围.62. 【山西省右玉一中2016届高三下学期模拟考试数学(理)】(本小题满分10分)选修4-5:不等式选讲已知函数()|||4|f x x a x =++-.(1)若1a =,解不等式()2|4|f x x ≤-;(2)若()3f x ≤恒成立,求a 的取值范围.。
2017高考全国卷1数学试题及答案解析(理科)
2017年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}{}131x A x x B x =<=<,,则() A .{}0=<A B x x B .AB =RC .{}1=>A B x xD .A B =∅2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π43. 设有下面四个命题,则正确的是()1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p , 4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1B .2C .4D .85. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x的取值范围是() A .[]22-,B .[]11-,C .[]04,D .[]13,6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为A .15B .20C .30D .357. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A .10B .12C .14D .16 8. 右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9. 已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10. 已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .1011. 设x ,y ,z 为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x<<D .325y x z <<12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110 二、 填空题:本题共4小题,每小题5分,共20分。
十年真题(-2019)高考数学真题分类汇编 专题09 立体几何与空间向量选择填空题 理(含解析)
专题09立体几何与空间向量选择填空题历年考题细目表题型年份考点试题位置单选题2019表面积与体积2019年新课标1理科12单选题2018几何体的结构特征2018年新课标1理科07单选题2018表面积与体积2018年新课标1理科12单选题2017三视图与直观图2017年新课标1理科07单选题2016三视图与直观图2016年新课标1理科06单选题2016空间向量在立体几何中的应用2016年新课标1理科11单选题2015表面积与体积2015年新课标1理科06单选题2015三视图与直观图2015年新课标1理科11单选题2014三视图与直观图2014年新课标1理科12单选题2013表面积与体积2013年新课标1理科06单选题2013三视图与直观图2013年新课标1理科08单选题2012三视图与直观图2012年新课标1理科07单选题2012表面积与体积2012年新课标1理科11单选题2011三视图与直观图2011年新课标1理科06单选题2010表面积与体积2010年新课标1理科10填空题2017表面积与体积2017年新课标1理科16填空题2011表面积与体积2011年新课标1理科15填空题2010三视图与直观图2010年新课标1理科14历年高考真题汇编1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由PA=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是PA,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.4.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.5.【2016年新课标1理科06】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1理科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴1。
2017-2019高考文数真题分项解析-立体几何
B. 2 5
C.3
D.2
6.【2018 年高考全国Ⅲ卷文数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部
分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方
体,则咬合时带卯眼的木构件的俯视图可以是
7.【2018 年高考全国 I 卷文数】在长方体 ABCD A1B1C1D1 中, AB BC 2 , AC1 与平面 BB1C1C 所成
专题 05 立体几何(选择题、填空题)
1.【2019 年高考全国Ⅱ卷文数】设 α,β 为两个平面,则 α∥β 的充要条件是 A.α 内有无数条直线与 β 平行 B.α 内有两条相交直线与 β 平行 C.α,β 平行于同一条直线 D.α,β 垂直于同一平面
2.【2019 年高考全国Ⅲ卷文数】如图,点 N 为正方形 ABCD 的中心,△ECD 为正三角形,平面 ECD⊥平 面 ABCD,M 是线段 ED 的中点,则
含端点),设 SE 与 BC 所成的角为 θ1,SE 与平面 ABCD 所成的角为 θ2,二面角 S−AB−C 的平面角为 θ3, 则
A.θ1≤θ2≤θ3
B.θ3≤θ2≤θ1
C.θ1≤θ3≤θ2
D.θ2≤θ3≤θ1
14.【2018 年高考北京卷文数】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为
平面 SCA⊥平面 SCB,SA=AC,SB=BC,三棱锥 S−ABC 的体积为 9,则球 O 的表面积为________.
33.【2017 年高考全国Ⅱ卷文数】长方体的长,宽,高分别为 3, 2,1,其顶点都在球 O 的球面上,则球 O 的
表面积为
.
34.【2017 年高考天津卷文数】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为 18,
2017年全国高考数学考前复习专题4.1立体几何和答案
【知识网络】【考点聚焦】对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C 表示).一.空间几何体的结构、三视图及表面积与体积1.【原题】(必修2第15页练习第4题)如图是一个几何体的三视图,想象它的几何结构特征,并说出它的名称.正视图侧视图【原题解读】(1)知识上;需要明确三视图的原则即;主俯长对正,主侧高对齐,俯侧宽相等。
(2)思路方法上;需要经历由三视图对原几何体的直观想象,操作确认(由三视图画出直观图),思辨论证(由所画的直观图,再看是否能获得对应的三视图)。
(3)考察空间想象能力及推理论证能力。
变式.【2014湖北高考】在如图所示的空间直角坐标系xyzO 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②【答案】D【解析】设)2,2,2(2,0,0(DCBA,0,2,2(),),1,2,1(),在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.2. 【原题】(必修2第28页习题1.3第3题) 如图将一个长方体沿相邻三个面的对角线截出一个棱锥,求棱锥的体积与剩下的几何体体积的比。
【原题解读】本题以最为熟悉的几何体长方体为背景,进行截取并求体积。
可采用分解的思想,即求出长方体和三棱锥的体积,而剩下体积可减出。
从而求出体积比。
体现了基本运算能力、空间想象能力和分解与组合的思想。
变式.【2015高考新课标2】一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .81B .71C .61D .51【答案】D3.【原题】(必修2第29习题1.3 B组1)如图是一个奖杯的三视图,是根据奖杯的三视图计算它的表面积和体积(尺寸如图,单位:cm,π取3.14,结果分别精确到1cm²,1cm³,可用计算器)。
立体几何-备战2017高考高三数学(文)全国各地一模金卷分项解析版含解析
【备战2017高考高三数学全国各地一模试卷分项精品】专题八立体几何一、选择题【2017湖南衡阳上学期期末】一个四面体的三视图如图所示,则该四面体的外接球的表面积为()A。
B. 4πC。
D. 2π【答案】B【点睛】本题考查了由三视图求几何体外接球的表面积,解题的关键是根据三视图判断几何体的性质,求得外接球的半径.【2017荆、荆、襄、宜四地七校联考】已知在四面体ABCD 中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF⊥AB,则EF与CD 所成角的度数是()A。
B。
C. D.【答案】D【解析】取BC中点M,则EF⊥EM,EF与CD所成角等于EF与FM所成角,又EM=1,FM=2,所以,因此EF与CD所成角的度数是,选D.【2017荆、荆、襄、宜四地七校联考】某几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D。
【答案】B【2017山西五校联考】某几何体的三视图如图所示,则该几何体的表面积为()A。
B.C. D. 8(√3+1)【答案】A【解析】该几何体为长方体挖去了一个圆锥,圆锥的底面半径为1,母线长为2,几何体的表面积为,故选A.【2017云南师大附中月考】某几何体的三视图如图所示,则该几何体的体积为()A。
8 B。
6√2 C. 4√2D。
4【答案】A【2017云南师大附中月考】四面体PABC的四个顶点都在球的球面上,,且平面平面ABC,则球的表面积为()A. 64πB. 65πC。
66πD。
128π【答案】B【解析】如图,D,E分别为BC,PA的中点,易知球心点在线段DE上,因为PB=PC=AB=AC,则.又∵平面平面ABC,平面平面ABC=BC,∴平面ABC,∴PD⊥AD,∴PD=AD=4√2.因为点是PA的中点,∴ED⊥PA,且DE=EA=PE=4.设球心的半径为,OE=x,则OD=4−x,在中,有R2= 16+x2,在中,有R2=4+(4−x)2,解得R2=654,所以,故选B.【点睛】本题主要考查球内接多面体,球的表面积,属于中档题,其中依据题意分析出球心必位于两垂直平面的交线上,然后再利用勾股定理,即可求出球的半径,进而可求出球的表面积,此类题目主要灵活运用线面垂直的判定及性质,面面垂直的判定及性质是解题的关键.【2017江西上饶一模】设某几何体的三视图如图所示,则该几何体的体积为()A。
2017高考试题分类汇编之立体几何(精校版)(2021年整理精品文档)
(完整版)2017高考试题分类汇编之立体几何(精校版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2017高考试题分类汇编之立体几何(精校版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2017高考试题分类汇编之立体几何(精校版)的全部内容。
2017年高考试题分类汇编之立体几何一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017课标I 理)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形。
该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) 10.A 12.B 12.C16.D2。
(2017课标II 理)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( ) π90.A π63.B π42.C π36.D3。
(2017北京理)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ) 23.A 32.B 22.C 2.D4.(2017课标II 理)已知直三棱柱111C B A ABC -中,1,2,12010====∠CC BC AB ABC ,则异面直线1AB 与1BC 所成角的余弦值为( )23.A 515.B 510.C 33.D 5。
(2017课标III 理)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) π.A 43.πB 2.πC 4.πD 6.(2017浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )(第1题)(第2题)(第3题)是( )12.+πA 32.+πB 123.+πC 323.+πD 7。
历年(2019-2023)全国高考数学真题分项(立体几何)汇编(附答案)
历年(2019-2023)全国高考数学真题分项(立体几何)汇编考点一 空间几何体的侧面积和表面积1.(2021( )A .2B .C .4D .2.(2022•上海)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 .3.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为 .4.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为 .5.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( ) A .1B .2C .4D .86.(2020•浙江)已知圆锥的侧面积(单位:2)cm 为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:)cm 是 .7.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积22(1cos )S r πα=-(单位:2)km ,则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%考点二 空间几何体的体积9.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l 剟,则该正四棱锥体积的取值范围是( )A .[18,81]4B .27[4,814C .27[4,643D .[18,27]10.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为2140.0km ;水位为海拔157.5m 时,相应水面的面积为2180.0km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为 2.65)(≈ ) A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯11.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+B .C .563D .312.【多选】(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:)m 的正方体容器(容器壁厚度忽略不计)内的有( ) A .直径为0.99m 的球体 B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体13.【多选】(2022•新高考Ⅱ)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,//FB ED ,2AB ED FB ==.记三棱锥E ACD -,F ABC -,F ACE -的体积分别为1V ,2V ,3V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =14.【多选】(2021•新高考Ⅰ)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则( ) A .当1λ=时,△1AB P 的周长为定值 B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 15.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .16.(2023•新高考Ⅰ)在正四棱台1111ABCD A B C D -中,2AB =,111A B =,1AA =,则该棱台的体积为 . 17.(2020•海南)已知正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点,则三棱锥1A NMD -的体积为 .18.(2022•上海)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.19.(2020•上海)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.考点三 空间中直线与直线之间的位置关系20.(2022•上海)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q21.(2021•浙江)如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B22.(2020•上海)在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线交正方体于P 、Q 两点,则Q 点所在的平面是( )A .11AAB BB .11BBC CC .11CCD DD .ABCD23.(2023•上海)如图所示,在正方体1111ABCD A B C D -中,点P 为边11A C 上的动点,则下列直线中,始终与直线BP 异面的是( )A .1DDB .ACC .1ADD .1B C考点四 异面直线及其所成的角24.【多选】(2022•新高考Ⅰ)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒考点五 空间中直线与平面之间的位置关系25.(2019•上海)已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a α⊆,b β⊆,c γ⊆,则直线a 、b 、c 不可能满足以下哪种关系( )A .两两垂直B .两两平行C .两两相交D .两两异面26.【多选】(2021•新高考Ⅱ)如图,下列正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点,则满足MN OP ⊥的是( )A .B .C .D .考点六 直线与平面所成的角27.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为)O ,地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A .20︒B .40︒C .50︒D .90︒28.(2021•上海)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =. (1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积; (2)求直线1AB 与平面11ACC A 的夹角大小.29.(2021•浙江)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(Ⅰ)证明:AB PM ⊥;(Ⅱ)求直线AN 与平面PDM 所成角的正弦值.30.(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,QB =,求PB 与平面QCD 所成角的正弦值.31.(2020•上海)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.32.(2020•山东)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.33.(2020•浙江)如图,在三棱台ABC DEF -中,平面ACFD ⊥平面ABC ,45ACB ACD ∠=∠=︒,2DC BC =. (Ⅰ)证明:EF DB ⊥;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.34.(2019•上海)如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1A C 和平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.35.(2019•浙江)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A A C AC ==,E ,F 分别是AC ,11A B 的中点.(Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.考点七 二面角的平面角及求法36.(2022•浙江)如图,已知正三棱柱111ABC A B C -,1AC AA =,E ,F 分别是棱BC ,11A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ剟B .βαγ剟C .βγα剟D .αγβ剟37.(2019•浙江)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<38.【多选】(2023•新高考Ⅱ)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45︒,则( )A .该圆锥的体积为πB .该圆锥的侧面积为C .AC =D .PAC ∆39.(2023•上海)已知直四棱柱1111ABCD A B C D -,AB AD ⊥,//AB CD ,2AB =,3AD =,4CD =. (1)证明:直线1//A B 平面11DCC D ;(2)若该四棱柱的体积为36,求二面角1A BD A --的大小.40.(2023•新高考Ⅱ)如图,三棱锥A BCD -中,DA DB DC ==,BD CD ⊥,60ADB ADC ∠=∠=︒,E 为BC 中点.(1)证明BC DA ⊥;(2)点F 满足EF DA =,求二面角D AB F --的正弦值.41.(2023•新高考Ⅰ)如图,在正四棱柱111ABCD A B C D -中,2AB =,14AA =.点2A ,2B ,2C ,2D 分别在棱1AA ,1BB ,1CC ,1DD 上,21AA =,222BB DD ==,23CC =. (1)证明:2222//B C A D ;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P .42.(2022•浙江)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为AE ,BC 的中点.(Ⅰ)证明:FN AD ⊥;(Ⅱ)求直线BM 与平面ADE 所成角的正弦值.43.(2022•新高考Ⅱ)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 为PB 的中点. (1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.44.(2022•新高考Ⅰ)如图,直三棱柱111ABC A B C -的体积为4,△1A BC 的面积为 (1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.45.(2021•新高考Ⅱ)在四棱锥Q ABCD -中,底面ABCD 是正方形,若2AD =,QD QA ==3QC =.(Ⅰ)求证:平面QAD ⊥平面ABCD ; (Ⅱ)求二面角B QD A --的平面角的余弦值.46.(2021•新高考Ⅰ)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点. (1)证明:OA CD ⊥;(2)若OCD ∆是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.考点八 立体几何的交线问题47.(2020•山东)已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ∠=︒.以1D 为半径的球面与侧面11BCC B 的交线长为 .参考答案考点一 空间几何体的侧面积和表面积1.(2021,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .C .4D .【详细解析】由题意,设母线长为l ,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有2l ππ=⋅,解得l =所以该圆锥的母线长为 故选:B .2.(2022•上海)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 . 【详细解析】因为圆柱的底面积为9π,即29R ππ=, 所以3R =,所以224S Rh ππ==侧.故答案为:24π.3.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为 .【详细解析】如图1,上底面圆心记为O ,下底面圆心记为O ',连接OC ,过点C 作CM AB ⊥,垂足为点M , 则12ABC S AB CM ∆=⨯⨯, 根据题意,AB 为定值2,所以ABC S ∆的大小随着CM 的长短变化而变化,如图2所示,当点M 与点O 重合时,CM OC ==,此时ABC S ∆取得最大值为122⨯=;如图3所示,当点M 与点B 重合,CM 取最小值2, 此时ABC S ∆取得最小值为12222⨯⨯=.综上所述,ABC S ∆的取值范围为.故答案为:.4.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为 . 【详细解析】圆柱的底面半径为1r =,高为2h =, 所以圆柱的侧面积为22124S rh πππ==⨯⨯=侧. 故答案为:4π.5.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( ) A .1B .2C .4D .8【详细解析】如图,则21142133V ππ=⨯⨯=,22121233V ππ=⨯⨯=,∴两个圆锥的体积之比为43223ππ=. 故选:B .6.(2020•浙江)已知圆锥的侧面积(单位:2)cm 为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:)cm 是 .【详细解析】 圆锥侧面展开图是半圆,面积为22cm π,设圆锥的母线长为acm ,则2122a ππ⨯=,2a cm ∴=,∴侧面展开扇形的弧长为2cm π,设圆锥的底面半径OC rcm =,则22r ππ=,解得1r cm =. 故答案为:1cm .7.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π3=4=,如图,设球的半径为R 1=,解得5R =, ∴该球的表面积为24425100R πππ=⨯=.当球心在台体内时,如图,1=,无解. 综上,该球的表面积为100π. 故选:A .8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积22(1cos )S r πα=-(单位:2)km ,则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%【详细解析】由题意,作出地球静止同步卫星轨道的左右两端的竖直截面图,则36000640042400OP =+=,那么64008cos 4240053α==; 卫星信号覆盖的地球表面面积22(1cos )S r πα=-,那么,S 占地球表面积的百分比为222(1cos )4542%4106r r παπ-=≈.故选:C .考点二 空间几何体的体积9.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l 剟,则该正四棱锥体积的取值范围是( )A .[18,814B .27[4,814C .27[4,643D .[18,27]【详细解析】如图所示,正四棱锥P ABCD -各顶点都在同一球面上,连接AC 与BD 交于点E ,连接PE ,则球心O 在直线PE 上,连接OA , 设正四棱锥的底面边长为a ,高为h ,在Rt PAE ∆中,222PA AE PE =+,即222221(22l h a h =+=+, 球O 的体积为36π,∴球O 的半径3R =,在Rt OAE ∆中,222OA OE AE =+,即222(3)(2R h =-+, ∴221602a h h +-=,∴22162a h h +=,26l h ∴=,又3l 剟∴3922h剟, ∴该正四棱锥体积2232112()(122)4333V h a h h h h h h ==-=-+,2()282(4)V h h h h h '=-+=- ,∴当342h <…时,()0V h '>,()V h 单调递增;当942h <…时,()0V h '<,()V h 单调递减,()max V h V ∴=(4)643=, 又327(24V = ,981()24V =,且278144<,∴2764()43V h 剟, 即该正四棱锥体积的取值范围是27[4,643, 故选:C .10.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为2140.0km ;水位为海拔157.5m 时,相应水面的面积为2180.0km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为 2.65)(≈ )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯【详细解析】26214014010km m =⨯,26218018010km m =⨯,根据题意,增加的水量约为661401018010(157.5148.5)3⨯+⨯⨯-9=6693(32060 2.65)103143710 1.410m ≈+⨯⨯⨯=⨯≈⨯.故选:C .11.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+B .C .563D 【详细解析】解法一:如图1111ABCD A B C D -为正四棱台,2AB =,114A B =,12AA =. 在等腰梯形11A B BA 中,过A 作11AE A B ⊥,可得14212A E -==,AE ==. 连接AC ,11A C ,AC ==,11A C ==,过A 作11AG A C ⊥,12A G -==AG ==, ∴正四棱台的体积为:V h =22243+== 解法二:作出图形,连接该正四棱台上下底面的中心,如图,该四棱台上下底面边长分别为2,4,侧棱长为2,∴该棱台的记h ==下底面面积116S =,上底面面积24S =, 则该棱台的体积为:1211((16433V h S S =++=+=故选:D .12.【多选】(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:)m 的正方体容器(容器壁厚度忽略不计)内的有( )A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体【详细解析】对于A ,棱长为1的正方体内切球的直径为10.99>,选项A 正确; 对于B ,如图,正方体内部最大的正四面体11D A BC - 1.4=>,选项B 正确;对于C ,棱长为1 1.8<,选项C 错误;对于D ,如图,六边形EFGHIJ 为正六边形,E ,F ,G ,H ,I ,J 为棱的中点,高为0.01米可忽略不计,看作直径为1.2米的平面圆,六边形EFGHIJ 棱长为2米,30GFH GHF ∠=∠=︒,所以FH ===米,故六边形EFGHIJ而223()(1.2) 1.4422=>=,选项D 正确. 故选:ABD .13.【多选】(2022•新高考Ⅱ)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,//FB ED ,2AB ED FB ==.记三棱锥E ACD -,F ABC -,F ACE -的体积分别为1V ,2V ,3V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【详细解析】设22AB ED FB ===, 114||33ACD V S ED ∆=⨯⨯=,212||33ABC V S FB ∆=⨯⨯=,如图所示,连接BD 交AC 于点M ,连接EM 、FM ,则FM =EM =,3EF =,故12EMF S ∆==,3112332EMF V S AC ∆=⨯=⨯⨯=,故C 、D 正确,A 、B 错误. 故选:CD .14.【多选】(2021•新高考Ⅰ)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则( )A .当1λ=时,△1AB P 的周长为定值 B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【详细解析】对于A ,当1λ=时,1BP BC BB μ=+ ,即1CP BB μ= ,所以1//CP BB,故点P 在线段1CC 上,此时△1AB P 的周长为11AB B P AP ++,当点P 为1CC 的中点时,△1AB P ,当点P 在点1C 处时,△1AB P 的周长为1, 故周长不为定值,故选项A 错误;对于B ,当1μ=时,1BP BC BB λ=+ ,即1B P BC λ= ,所以1//B P BC, 故点P 在线段11B C 上, 因为11//B C 平面1A BC ,所以直线11B C 上的点到平面1A BC 的距离相等, 又△1A BC 的面积为定值,所以三棱锥1P A BC -的体积为定值,故选项B 正确;对于C ,当12λ=时,取线段BC ,11B C 的中点分别为M ,1M ,连结1M M , 因为112BP BC BB μ=+,即1MP BB μ= ,所以1//MP BB ,则点P 在线段1M M 上,当点P 在1M 处时,1111A M B C ⊥,111A M B B ⊥, 又1111B C B B B = ,所以11A M ⊥平面11BB C C ,又1BM ⊂平面11BB C C ,所以111A M BM ⊥,即1A P BP ⊥, 同理,当点P 在M 处,1A P BP ⊥,故选项C 错误;对于D ,当12μ=时,取1CC 的中点1D ,1BB 的中点D , 因为112BP BC BB λ=+ ,即DP BC λ= ,所以//DP BC ,则点P 在线的1DD 上,当点P 在点1D 处时,取AC 的中点E ,连结1A E ,BE ,因为BE ⊥平面11ACC A ,又1AD ⊂平面11ACC A ,所以1AD BE ⊥, 在正方形11ACC A 中,11AD A E ⊥, 又1BE A E E = ,BE ,1A E ⊂平面1A BE ,故1AD ⊥平面1A BE ,又1A B ⊂平面1A BE ,所以11A B AD ⊥, 在正方体形11ABB A 中,11A B AB ⊥,又11AD AB A = ,1AD ,1AB ⊂平面11AB D ,所以1A B ⊥平面11AB D , 因为过定点A 与定直线1A B 垂直的平面有且只有一个, 故有且仅有一个点P ,使得1A B ⊥平面1AB P ,故选项D 正确.故选:BD .15.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .【详细解析】如图所示,根据题意易知△11SO A SOA ∆∽,∴11112SO O A SO OA ===,又13SO =, 6SO ∴=,13OO ∴=,又上下底面正方形边长分别为2,4,∴所得棱台的体积为1(4163283⨯++⨯=.故答案为:28.16.(2023•新高考Ⅰ)在正四棱台1111ABCD A B C D -中,2AB =,111A B =,1AA =,则该棱台的体积为 . 【详细解析】如图,设正四棱台1111ABCD A B C D -的上下底面中心分别为M ,N ,过1A 作1A H AC ⊥,垂足点为H ,由题意易知12A M HN ==,又AN =,2AH AN HN ∴=-=,又1AA =,1A H MN ∴==∴该四棱台的体积为1(143⨯++故答案为:6.17.(2020•海南)已知正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点,则三棱锥1A NMD -的体积为 .【详细解析】如图,正方体1111ABCD A B C D -的棱长为2,M 、N 分别为1BB 、AB 的中点, ∴111122ANM S ∆=⨯⨯=, ∴111112323A NMD D AMN V V --==⨯⨯=.故答案为:13.18.(2022•上海)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.【详细解析】(1)在三棱锥P ABC -中,因为PO ⊥底面ABC ,所以PO AC ⊥, 又O 为AC 边中点,所以PAC ∆为等腰三角形,又2AP AC ==.所以PAC ∆是边长为2的为等边三角形,PO ∴=,三棱锥体积2112133P ABC ABC V S PO -∆=⋅==, (2)以O 为坐标原点,OB 为x 轴,OC 为y 轴,OP 为z 轴,建立空间直角坐标系,则(0P ,0,B 0,0),(0C ,1,0),M 12,0),(2PM = ,12,, 平面PAC的法向量OB =0,0), 设直线PM 与平面PAC 所成角为θ,则直线PM 与平面PAC所成角的正弦值为3sin ||||||PM OB PM OB θ⋅===⋅所以PM 与面PAC所成角大小为arcsin4. 19.(2020•上海)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.【详细解析】(1)PD ⊥ 平面ABCD ,PD DC ∴⊥. 3CD = ,5PC ∴=,4PD ∴=,2134123P ABCD V -∴=⨯⨯=,所以四棱锥P ABCD -的体积为12.(2)ABCD 是正方形,PD ⊥平面ABCD , BC PD ∴⊥,BC CD ⊥又PD CD D = BC ∴⊥平面PCDBC PC ∴⊥异面直线AD 与PB 所成角为60︒,//BC AD ∴在Rt PBC ∆中,60PBC ∠=︒,3BC =故PC =在Rt PDC ∆中,3CD =PD ∴=考点三 空间中直线与直线之间的位置关系20.(2022•上海)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q【详细解析】线段MN 上不存在点在线段1A S 、1B D 上,即直线MN 与线段1A S 、1B D 不相交,因此所求与1D 可视的点,即求哪条线段不与线段1A S 、1B D 相交,对A 选项,如图,连接1A P 、PS 、1D S ,因为P 、S 分别为AB 、CD 的中点, ∴易证11//A D PS ,故1A 、1D 、P 、S 四点共面,1D P ∴与1A S 相交,A ∴错误;对B 、C 选项,如图,连接1D B 、DB ,易证1D 、1B 、B 、D 四点共面, 故1D B 、1D R 都与1B D 相交,B ∴、C 错误;对D 选项,连接1D Q ,由A 选项分析知1A 、1D 、P 、S 四点共面记为平面11A D PS , 1D ∈ 平面11A D PS ,Q ∉平面11A D PS ,且1A S ⊂平面11A D PS ,点11D A S ∉, 1D Q ∴与1A S 为异面直线,同理由B ,C 选项的分析知1D 、1B 、B 、D 四点共面记为平面11D B BD , 1D ∈ 平面11D B BD ,Q ∉平面11D B BD ,且1B D ⊂平面11D B BD ,点11D B D ∉,1D Q ∴与1B D 为异面直线,故1D Q 与1A S ,1B D 都没有公共点,D ∴选项正确.故选:D .21.(2021•浙江)如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【详细解析】连接1AD ,如图:由正方体可知11A D AD ⊥,1A D AB ⊥,1A D ∴⊥平面1ABD , 11A D D B ∴⊥,由题意知MN 为△1D AB 的中位线,//MN AB ∴,又AB ⊂ 平面ABCD ,MN ⊂/平面ABCD ,//MN ∴平面ABCD .A ∴对; 由正方体可知1A D 与平面1BDD 相交于点D ,1D B ⊂平面1BDD ,1D D B ∉, ∴直线1A D 与直线1D B 是异面直线,B ∴、C 错;//MN AB ,AB 不与平面11BDD B 垂直,MN ∴不与平面11BDD B 垂直,D ∴错.故选:A .22.(2020•上海)在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线交正方体于P 、Q 两点,则Q 点所在的平面是( )A .11AAB B B .11BBC C C .11CCD DD .ABCD【详细解析】如图,由点P 到11A D 的距离为3,P 到1AA 的距离为2,可得P 在△1AA D 内,过P 作1//EF A D ,且1EF AA 于E ,EF AD 于F , 在平面ABCD 中,过F 作//FG CD ,交BC 于G ,则平面//EFG 平面1A DC .连接AC ,交FG 于M ,连接EM ,平面//EFG 平面1A DC ,平面1A AC ⋂平面11A DC A C =,平面1A AC ⋂平面EFM EM =, 1//EM A C ∴.在EFM ∆中,过P 作//PQ EM ,且PQ FM 于Q ,则1//PQ A C .线段FM 在四边形ABCD 内,Q 在线段FM 上,Q ∴在四边形ABCD 内. ∴则Q 点所在的平面是平面ABCD .故选:D .23.(2023•上海)如图所示,在正方体1111ABCD A B C D -中,点P 为边11A C 上的动点,则下列直线中,始终与直线BP 异面的是( )A .1DDB .ACC .1ADD .1B C【详细解析】对于A ,当P 是11A C 的中点时,BP 与1DD 是相交直线; 对于B ,根据异面直线的定义知,BP 与AC 是异面直线; 对于C ,当点P 与1C 重合时,BP 与1AD 是平行直线; 对于D ,当点P 与1C 重合时,BP 与1B C 是相交直线. 故选:B .考点四 异面直线及其所成的角24.【多选】(2022•新高考Ⅰ)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒ 【详细解析】如图,连接1B C ,由11//A B DC ,11A B DC =,得四边形11DA B C 为平行四边形, 可得11//DA B C ,11BC B C ⊥ ,∴直线1BC 与1DA 所成的角为90︒,故A 正确;111A B BC ⊥ ,11BC B C ⊥,1111A B B C B = ,1BC ∴⊥平面11DA B C ,而1CA ⊂平面11DA B C ,11BC CA ∴⊥,即直线1BC 与1CA 所成的角为90︒,故B 正确;设1111A C B D O = ,连接BO ,可得1C O ⊥平面11BB D D ,即1C BO ∠为直线1BC 与平面11BB D D 所成的角,1111sin 2OC C BO BC ∠== ,∴直线1BC 与平面11BB D D 所成的角为30︒,故C 错误; 1CC ⊥ 底面ABCD ,1C BC ∴∠为直线1BC 与平面ABCD 所成的角为45︒,故D 正确.故选:ABD .考点五 空间中直线与平面之间的位置关系25.(2019•上海)已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a α⊆,b β⊆,c γ⊆,则直线a 、b 、c 不可能满足以下哪种关系( )A .两两垂直B .两两平行C .两两相交D .两两异面【详细解析】如图1,可得a 、b 、c 可能两两垂直; 如图2,可得a 、b 、c 可能两两相交; 如图3,可得a 、b 、c 可能两两异面;故选:B .26.【多选】(2021•新高考Ⅱ)如图,下列正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点,则满足MN OP ⊥的是( )A .B .C .D .【详细解析】对于A ,设正方体棱长为2,设MN 与OP 所成角为θ,则1tan 12θ==,∴不满足MN OP ⊥,故A 错误; 对于B ,如图,作出平面直角坐标系,设正方体棱长为2,则(2N ,0,0),(0M ,0,2),(2P ,0,1),(1O ,1,0),(2MN = ,0,2)-,(1OP = ,1-,1),0MN OP ⋅= ,∴满足MN OP ⊥,故B 正确;对于C ,如图,作出平面直角坐标系,设正方体棱长为2,则(2M ,2,2),(0N ,2,0),(1O ,1,0),(0P ,0,1),(2MN =- ,0,2)-,(1OP =- ,1-,1),0MN OP ⋅= ,∴满足MN OP ⊥,故C 正确;对于D ,如图,作出平面直角坐标系,设正方体棱长为2,则(0M ,2,0),(0N ,0,2),(2P ,1,2),(1O ,1,0),(0MN = ,2-,2),(1OP = ,0,2),4MN OP ⋅= ,∴不满足MN OP ⊥,故D 错误.故选:BC .考点六 直线与平面所成的角27.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为)O ,地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为( )A .20︒B .40︒C .50︒D .90︒【详细解析】可设A 所在的纬线圈的圆心为O ',OO '垂直于纬线所在的圆面,由图可得OHA ∠为晷针与点A 处的水平面所成角,又OAO '∠为40︒且OA AH ⊥,在Rt OHA ∆中,O A OH '⊥,40OHA OAO '∴∠=∠=︒,另解:画出截面图,如下图所示,其中CD 是赤道所在平面的截线.l 是点A 处的水平面的截线,由题意可得OA l ⊥,AB 是晷针所在直线.m 是晷面的截线,由题意晷面和赤道面平行,晷针与晷面垂直,根据平面平行的性质定理可得//m CD ,根据线面垂直的定义可得AB m ⊥,由于40AOC ∠=︒,//m CD ,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与A 处的水平面所成角为40BAE ∠=︒,故选:B .28.(2021•上海)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =.(1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积;(2)求直线1AB 与平面11ACC A 的夹角大小.【详细解析】(1)如图,在长方体1111ABCD A B C D -中,1112322332C PAD PAD C PAD V S h -∆-⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭平面; (2)连接1111A C B D O = ,AB BC = ,∴四边形1111A B C D 为正方形,则11OB OA ⊥,又11AA OB ⊥,111OA AA A = ,1OB ∴⊥平面11ACC A ,∴直线1AB 与平面11ACC A 所成的角为1OAB ∠,∴111sin OB OAB AB ∠=== ∴直线1AB 与平面11ACC A所成的角为29.(2021•浙江)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(Ⅰ)证明:AB PM ⊥;(Ⅱ)求直线AN 与平面PDM 所成角的正弦值.【详细解析】(Ⅰ)证明:在平行四边形ABCD 中,由已知可得,1CD AB ==,122CM BC ==,60DCM ∠=︒, ∴由余弦定理可得,2222cos60DM CD CM CD CM =+-⨯⨯︒11421232=+-⨯⨯⨯=, 则222134CD DM CM +=+==,即CD DM ⊥,又PD DC ⊥,PD DM D = ,CD ∴⊥平面PDM ,而PM ⊂平面PDM ,CD PM ∴⊥,//CD AB ,AB PM ∴⊥;(Ⅱ)解:由(Ⅰ)知,CD ⊥平面PDM ,又CD ⊂平面ABCD ,∴平面ABCD ⊥平面PDM ,且平面ABCD ⋂平面PDM DM =,PM MD ⊥ ,且PM ⊂平面PDM ,PM ∴⊥平面ABCD ,连接AM ,则PM MA ⊥,在ABM ∆中,1AB =,2BM =,120ABM ∠=︒, 可得2114212(72AM =+-⨯⨯⨯-=,又PA =Rt PMA ∆中,求得PM ==,取AD 中点E ,连接ME ,则//ME CD ,可得ME 、MD 、MP 两两互相垂直,以M 为坐标原点,分别以MD 、ME 、MP 为x 、y 、z 轴建立空间直角坐标系,则(A ,2,0),(0P ,0,,1,0)C -,又N 为PC的中点,1(22N ∴-,5(,22AN =- , 平面PDM 的一个法向量为(0,1,0)n = ,设直线AN 与平面PDM 所成角为θ,则5||sin |cos ,|6||||AN n AN n AN n θ⋅=<>===⋅ . 故直线AN 与平面PDM所成角的正弦值为6.30.(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l上的点,QB =,求PB 与平面QCD 所成角的正弦值.【详细解析】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥ 平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CD PD D = ,BC ∴⊥平面PCD ,设m 为平面PCD 中任意一条直线,则BC m ⊥,//l BC ,l m ∴⊥,由线面垂直的定义是l ⊥平面PCD ;(2)解:如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,1PD AD == ,Q 为l上的点,QB =,PB ∴=,1QP =,则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),作//PQ AD ,则PQ 为平面PAD 与平面PBC 的交线为l,因为QB =,QAB ∆是等腰直角三角形,所以(1Q ,0,1),则(1DQ = ,0,1),(1PB = ,1,1)-,(0DC = ,1,0),设平面QCD 的法向量为(n a = ,b ,)c ,则00n DC n DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,∴00b a c =⎧⎨+=⎩,取1c =,可得(1n =- ,0,1),|cos n ∴<,||||||||n PB PB n PB ⋅>=== , PB ∴与平面QCD所成角的正弦值为3. 31.(2020•上海)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.【详细解析】(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成, 221214S πππ∴=⨯⨯+⨯=.故该圆柱的表面积为4π.(2) 正方形11ABC D ,1AD AB ∴⊥, 又12DAD π∠=,1AD AD ∴⊥,AD AB A = ,且AD 、AB ⊂平面ADB ,1AD ∴⊥平面ADB ,即1D 在面ADB 上的投影为A ,连接1CD ,则1D CA ∠即为线段1CD 与平面ABCD 所成的角,而11cos 3AC D CA CD ∠==, ∴线段1CD 与平面ABCD所成的角为3. 32.(2020•山东)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.【详细解析】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线, PD ⊥ 平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CD PD D = ,BC ∴⊥平面PCD , 设平面PCD 中有任一直线l ',则BC ⊥直线l ',//l BC ,l ∴⊥直线l ',∴由线面垂直的定义得l ⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz-则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),设(Q m ,0,1),(DQ m = ,0,1),(1PB = ,1,1)-,(0DC = ,1,0),设平面QCD 的法向量为(n a = ,b ,)c ,则00n DC n DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,∴00b am c =⎧⎨+=⎩,取1a =-,可得(1n =- ,0,)m , cos n ∴<,||||n PB PB n PB ⋅>==⋅ , PB ∴与平面QCD。
2017年高考数学试题分项版—立体几何(解析版)
2017年高考数学试题分项版—立体几何(解析版)一、选择题1.(2017·全国Ⅰ文,6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()1.【答案】A【解析】A项,作如图①所示的辅助线,其中D为BC的中点,则QD∥AB.∵QD∩平面MNQ=Q,∴QD与平面MNQ相交,∴直线AB与平面MNQ相交;B项,作如图②所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;C项,作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;D项,作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴AB∥NQ,又AB ⊄平面MNQ ,NQ ⊂平面MNQ ,∴AB ∥平面MNQ .故选A.2.(2017·全国Ⅱ文,6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π2.【答案】B【解析】方法一 (割补法)如图所示,由几何体的三视图,可知该几何体是一个圆柱被截去上面虚线部分所得.将圆柱补全,并将圆柱体从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意,知12V 圆柱<V 几何体<V 圆柱. 又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B.3.(2017·全国Ⅲ文,9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π43.【答案】B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r = 1-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.4.(2017·全国Ⅲ文,10)在正方体ABCDA 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC4.【答案】C【解析】方法一 如图,∵A 1E 在平面ABCD 上的投影为AE ,而AE 不与AC ,BD 垂直,∴B ,D 错;∵A 1E 在平面BCC 1B 1上的投影为B 1C ,且B 1C ⊥BC 1,∴A 1E ⊥BC 1,故C 正确;(证明:由条件易知,BC 1⊥B 1C ,BC 1⊥CE ,又CE ∩B 1C =C ,∴BC 1⊥平面CEA 1B 1. 又A 1E ⊂平面CEA 1B 1,∴A 1E ⊥BC 1)∵A 1E 在平面DCC 1D 1上的投影为D 1E ,而D 1E 不与DC 1垂直,故A 错.故选C.方法二 (空间向量法)建立如图所示的空间直角坐标系,设正方体的棱长为1,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫0,12,0,∴A 1E →=⎝⎛⎭⎫-1,12,-1,DC 1→=(0,1,1),BD →=(-1,-1,0),BC 1→=(-1,0,1),AC →=(-1,1,0),∴A 1E →·DC 1→≠0,A 1E →·BD →≠0,A 1E →·BC 1→=0,A 1E →·AC →≠0,∴A 1E ⊥BC 1.故选C.5.(2017·北京文,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .105.【答案】D【解析】由三视图画出如图所示的三棱锥P -ACD ,过点P 作PB ⊥平面ACD 于点B ,连接BA ,BD ,BC ,根据三视图可知,底面ABCD 是矩形,AD =5,CD =3,PB =4,所以V 三棱锥P ACD =13×12×3×5×4=10. 故选D.6.(2017·浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 6.【答案】A【解析】由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是2的等腰直角三角形,高为3的三棱锥的组合体,∴该几何体体积为V =13×12π×12×3+13×12×2×2×3=π2+1. 故选A.7.(2017·浙江,9)如图,已知正四面体DABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CR RA=2,分别记二面角DPRQ ,DPQR ,DQRP 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α7.【答案】B【解析】如图①,作出点D 在底面ABC 上的射影O ,过点O 分别作PR ,PQ ,QR 的垂线OE ,OF ,OG ,连接DE ,DF ,DG ,则α=∠DEO ,β=∠DFO ,γ=∠DGO .由图可知它们的对边都是DO ,∴只需比较EO ,FO ,GO 的大小即可.如图②,在AB 边上取点P ′,使AP ′=2P ′B ,连接OQ ,OR ,则O 为△QRP ′的中心. 设点O 到△QRP ′三边的距离为a ,则OG =a ,OF =OQ ·sin ∠OQF <OQ ·sin ∠OQP ′=a ,OE =OR ·sin ∠ORE >OR ·sin ∠ORP ′=a ,∴OF <OG <OE ,∴OD tan β<OD tan γ<OD tan α, ∴α<γ<β.故选B.8.(2017·全国Ⅰ理,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .168.【答案】B【解析】观察三视图可知,该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这两个梯形的面积之和为2×12×(2+4)×2=12.故选B.9.(2017·全国Ⅱ理,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π9.【答案】B【解析】方法一 (割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B.10.(2017·全国Ⅱ理,10)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32 B.155 C.105 D.3310.【答案】C【解析】方法一 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .由题意知∠ABC =120°,AB =2,BC =CC 1=1, 所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1= 3. 又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105. 故选C.方法二 以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=25×2=105. 所以异面直线AB 1与BC 1所成的角的余弦值为105. 故选C.11.(2017·全国Ⅲ理,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB.3π4C.π2D.π4 11.【答案】B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r =12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =π×⎝⎛⎭⎫322×1=3π4. 故选B.12.(2017·北京理,7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .3 2B .2 3C .2 2D .212.【答案】B 【解析】在正方体中还原该四棱锥,如图所示,可知SD 为该四棱锥的最长棱.由三视图可知正方体的棱长为2,故SD =22+22+22=2 3.故选B.二、填空题1.(2017·全国Ⅰ文,16)已知三棱锥SABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥SABC 的体积为9,则球O 的表面积为________.1.【答案】36π【解析】如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径知,OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC 知,OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,∴三棱锥S -ABC 的体积V =13×(12SC ·OB )·OA =r 33, 即r 33=9,∴r =3,∴S 球表=4πr 2=36π. 2.(2017·全国Ⅱ文,15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.2.【答案】14π【解析】∵长方体的顶点都在球O 的球面上,∴长方体的体对角线的长度就是其外接球的直径.设球的半径为R ,则2R =32+22+12=14.∴球O 的表面积为S =4πR 2=4π×⎝⎛⎭⎫1422=14π. 3.(2017·天津文,11)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.3.【答案】9π2【解析】设正方体的棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32. 故球的体积V =43πR 3=43π×⎝⎛⎭⎫323=9π2. 4.(2017·山东文,13)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.4.【答案】2+π2【解析】该几何体由一个长、宽、高分别为2,1,1的长方体和两个半径为1,高为1的14圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2. 5.(2017·浙江,11)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________. 5.【答案】332【解析】作出单位圆的内接正六边形,如图,则OA =OB =AB =1,S 6=6S △OAB =6×12×1×32=332.6.(2017·江苏,6)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.6.【答案】32【解析】设球O 的半径为R ,∵球O 与圆柱O 1O 2的上、下底面及母线均相切, ∴圆柱O 1O 2的高为2R ,底面半径为R . ∴V 1V 2=πR 2·2R 43πR 3=32. 7.(2017·全国Ⅰ理,16)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.7.【答案】415【解析】如图,连接OD ,交BC 于点G ,由题意知,OD ⊥BC ,OG =36BC . 设OG =x ,x ∈⎝⎛⎭⎫0,52, 则BC =23x ,DG =5-x , 三棱锥的高h =DG 2-OG 2 =25-10x +x 2-x 2=25-10x ,S △ABC =12×23x ×3x =33x 2,则三棱锥的体积V =13S △ABC ·h =3x 2·25-10x =3·25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52,则f ′(x )=100x 3-50x 4. 令f ′(x )=0,得x =2.当x ∈(0,2)时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫2,52时,f ′(x )<0,f (x )单调递减,故当x =2时,f (x )取得最大值80,则V ≤3×80=415. 所以三棱锥体积的最大值为415 cm 3.8.(2017·全国Ⅲ理,16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 8.【答案】②③【解析】依题意建立如图所示的空间直角坐标系,设等腰直角三角形ABC 的直角边长为1.由题意知,点B 在平面xOy 中形成的轨迹是以C 为圆心,1为半径的圆.设直线a 的方向向量为a =(0,1,0),直线b 的方向向量为b =(1,0,0),CB →以Ox 轴为始边沿逆时针方向旋转的旋转角为θ,θ∈[)0,2π,则B (cos θ,sin θ,0), ∴AB →=(cos θ,sin θ,-1),|AB →|= 2. 设直线AB 与a 所成的夹角为α, 则cos α=|AB →·a ||a ||AB →|=22|sin θ|∈⎣⎡⎦⎤0,22,∴45°≤α≤90°,∴③正确,④错误; 设直线AB 与b 所成的夹角为β, 则cos β=|AB →·b ||b ||AB →|=22|cos θ|.当直线AB 与a 的夹角为60°,即α=60°时, 则|sin θ|=2cos α=2cos 60°=22, ∴|cos θ|=22,∴cos β=22|cos θ|=12. ∵45°≤β≤90°,∴β=60°,即直线AB 与b 的夹角为60°. ∴②正确,①错误.9.(2017·天津理,10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 9.【答案】92π【解析】设正方体棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32.故球的体积V =43πR 3=43π×⎝⎛⎭⎫323=92π.10.(2017·山东理,13)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.10.【答案】2+π2【解析】该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.三、解答题1.(2017·全国Ⅰ文,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.1.(1)证明 由已知∠BAP =∠CDP =90°, 得AB ⊥P A ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB , 所以平面P AB ⊥平面P AD .(2)解 如图,在平面P AD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,AB ⊥AD , 所以PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P ABCD 的体积V P ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得P A =PD =AB =DC =2,AD =BC =22,PB =PC =22, 可得四棱锥P ABCD 的侧面积为12P A ·PD +12P A ·AB +12PD ·DC +12BC 2sin 60°=6+2 3. 2.(2017·全国Ⅱ文,18)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.2.(1)证明 在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面P AD ,AD ⊂平面P AD , 故BC ∥平面P AD .(2)解 如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM . 设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3.所以四棱锥P ABCD 的体积V =13×2(2+4)2×23=4 3.3.(2017·全国Ⅲ文,19)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.3.(1)证明 如图,取AC 的中点O ,连接DO ,BO . 因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形, 所以AC ⊥BO . 又DO ∩OB =O ,所以AC ⊥平面DOB ,故AC ⊥BD . (2)解 连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.4.(2017·北京文,18)如图,在三棱锥P -ABC 中,P A ⊥AB ,P A ⊥BC ,AB ⊥BC ,P A =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:P A ⊥BD ;(2)求证:平面BDE ⊥平面P AC ;(3)当P A ∥平面BDE 时,求三棱锥E -BCD 的体积. 4.(1)证明 因为P A ⊥AB ,P A ⊥BC ,AB ∩BC =B , 所以P A ⊥平面ABC .又因为BD ⊂平面ABC ,所以P A ⊥BD .(2)证明 因为AB =BC ,D 是AC 的中点,所以BD ⊥AC . 由(1)知,P A ⊥BD , 又P A ∩AC =A , 所以BD ⊥平面P AC . 所以平面BDE ⊥平面P AC .(3)解 因为P A ∥平面BDE ,平面P AC ∩平面BDE =DE ,所以P A ∥DE . 因为D 为AC 的中点,所以DE =12P A =1,BD =DC = 2.由(1)知,P A ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E -BCD 的体积V =16BD ·DC ·DE =13.5.(2017·天津文,17)如图,在四棱锥P ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD =1,BC =3,CD =4,PD =2.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.5.(1)解 由已知AD ∥BC ,故∠DAP 或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 在Rt △PDA 中,由已知,得AP =AD 2+PD 2=5, 故cos ∠DAP =AD AP =55.所以异面直线AP 与BC 所成角的余弦值为55. (2)证明 由(1)知AD ⊥PD . 又因为BC ∥AD ,所以PD ⊥BC .又PD ⊥PB ,PB ∩BC =B ,所以PD ⊥平面PBC .(3)解 如图,过点D 作DF ∥AB ,交BC 于点F ,连接PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,所以PF 为DF 在平面PBC 上的射影,所以∠DFP 为直线DF 和平面PBC 所成的角.由于AD ∥BC ,DF ∥AB ,故BF =AD =1. 由已知,得CF =BC -BF =2. 又AD ⊥DC ,所以BC ⊥DC .在Rt △DCF 中,可得DF =CD 2+CF 2=25, 在Rt △DPF 中,可得sin ∠DFP =PD DF =55.所以直线AB 与平面PBC 所成角的正弦值为55. 6.(2017·山东文,18)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1-B 1CD 1后得到的几何体如图所示.四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:A 1O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1. 6.证明 (1)取B 1D 1的中点O 1,连接CO 1,A 1O 1, 由于ABCD -A 1B 1C 1D 1是四棱柱, 所以A 1O 1∥OC ,A 1O 1=OC ,因此四边形A 1OCO 1为平行四边形,所以A 1O ∥O 1C . 又O 1C ⊂平面B 1CD 1,A 1O ⊄平面B 1CD 1, 所以A 1O ∥平面B 1CD 1.(2)因为AC ⊥BD ,E ,M 分别为AD 和OD 的中点, 所以EM ⊥BD .又A 1E ⊥平面ABCD ,BD ⊂平面ABCD , 所以A 1E ⊥BD .因为B 1D 1∥BD ,所以EM ⊥B 1D 1,A 1E ⊥B 1D 1. 又A 1E ,EM ⊂平面A 1EM ,A 1E ∩EM =E ,所以B 1D 1⊥平面A 1EM . 又B 1D 1⊂平面B 1CD 1, 所以平面A 1EM ⊥平面B 1CD 1.7.(2017·浙江,19)如图,已知四棱锥P ABCD ,△P AD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE ∥平面P AB ;(2)求直线CE 与平面PBC 所成角的正弦值. 7.(1)证明 如图,设P A 中点为F ,连接EF ,FB .因为E ,F 分别为PD ,P A 中点, 所以EF ∥AD 且EF =12AD ,又因为BC ∥AD ,BC =12AD ,所以EF ∥BC 且EF =BC ,所以四边形BCEF 为平行四边形,所以CE ∥BF . 因为BF ⊂平面P AB ,CE ⊄平面P AB , 因此CE ∥平面P AB .(2)解 分别取BC ,AD 的中点为M ,N , 连接PN 交EF 于点Q ,连接MQ .因为E ,F ,N 分别是PD ,P A ,AD 的中点, 所以Q 为EF 中点,在平行四边形BCEF 中,MQ ∥CE . 由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,BC ∥AD ,BC =12AD ,N 是AD 的中点得BN ⊥AD .所以AD ⊥平面PBN .由BC ∥AD 得BC ⊥平面PBN , 那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在△PCD 中,由PC =2,CD =1,PD =2得CE =2, 在△PBN 中,由PN =BN =1,PB =3得QH =14,在Rt △MQH 中,QH =14,MQ =2,所以sin ∠QMH =28, 所以直线CE 与平面PBC 所成角的正弦值是28. 8.(2017·江苏,15)如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .8.证明 (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 则AB ∥EF .又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC .9.(2017·江苏,18)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm ,容器Ⅰ的底面对角线AC 的长为107 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14 cm 和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l ,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计).(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度. 9.解 (1)由正棱柱的定义,CC 1⊥平面ABCD ,所以平面A 1ACC 1⊥平面ABCD ,CC 1⊥AC ,如图①,记玻璃棒的另一端落在CC 1上点M 处.①因为AC =107,AM =40,所以MC =402-1072=30,从而sin ∠MAC =34. 记AM 与水面的交点为P 1,过P 1作P 1Q 1⊥AC ,Q 1为垂足,则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=P 1Q 1sin ∠MAC=16. 答 玻璃棒l 没入水中的部分的长度为16 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24 cm)(2)如图②,O ,O 1是正棱台的两底面中心.②由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG .同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1.记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32.因为EG =14,E 1G 1=62,所以KG 1=62-142=24, 从而GG 1=KG 21+GK 2=242+322=40. 设∠EGG 1=α,∠ENG =β,则sin α=sin ⎝⎛⎭⎫π2+∠KGG 1=cos ∠KGG 1=45. 因为π2<α<π,所以cos α=-35. 在△ENG 中,由正弦定理可得40sin α=14sin β, 解得sin β=725. 因为0<β<π2,所以cos β=2425. 于是sin ∠NEG =sin(π-α-β)=sin(α+β)=sin αcos β+cos αsin β=45×2425+⎝⎛⎭⎫-35×725=35. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH ,故P 2Q 2=12,从而EP 2=P 2Q 2sin ∠NEG=20. 答 玻璃棒l 没入水中部分的长度为20 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20 cm)10.(2017·江苏,22)如图,在平行六面体ABCDA 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值;(2)求二面角BA 1DA 的正弦值.10.解 在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E .因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE →,AD →,AA 1→}为正交基底,建立空间直角坐标系Axyz .因为AB =AD =2,AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3). (1)A 1B →=(3,-1,-3),AC 1→=(3,1,3),则cos 〈A 1B →,AC 1→〉=A 1B →·AC 1→|A 1B →||AC 1→|=(3,-1,-3)·(3,1,3)7=-17, 因此异面直线A 1B 与AC 1所成角的余弦值为17. (2)平面A 1DA 的一个法向量为AE →=(3,0,0).设m =(x ,y ,z )为平面BA 1D 的一个法向量,又A 1B →=(3,-1,-3),BD →=(-3,3,0),则⎩⎪⎨⎪⎧ m ·A 1B →=0,m ·BD →=0,即⎩⎨⎧3x -y -3z =0,-3x +3y =0. 不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量,从而cos 〈AE →,m 〉=AE →·m |AE →||m |=(3,0,0)·(3,3,2)3×4=34. 设二面角BA 1DA 的大小为θ,则|cos θ|=34. 因为θ∈[0,π],所以sin θ=1-cos 2θ=74. 因此二面角BA 1DA 的正弦值为74. 11.(2017·全国Ⅰ理,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角APBC 的余弦值.11.(1)证明 由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD ,因为AB ∥CD ,所以AB ⊥PD .又AP ∩DP =P ,所以AB ⊥平面P AD .因为AB ⊂平面P AB ,所以平面P AB ⊥平面P AD .(2)解 在平面P AD 内作PF ⊥AD ,垂足为点F .由(1)可知,AB ⊥平面P AD ,故AB ⊥PF ,可得PF ⊥平面ABCD .以点F 为坐标原点,的方向为x 轴正方向,||为单位长度建立如图所示的空间直角坐标系F -xyz .由(1)及已知可得A ⎝⎛⎭⎫22,0,0,P ⎝⎛⎭⎫0,0,22,B ⎝⎛⎭⎫22,1,0,C ⎝⎛⎭⎫-22,1,0, 所以=⎝⎛⎭⎫-22,1,-22,=(2,0,0),=⎝⎛⎭⎫22,0,-22,=(0,1,0). 设n =(x 1,y 1,z 1)是平面PCB 的一个法向量,则即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.所以可取n =(0,-1,-2). 设m =(x 2,y 2,z 2)是平面P AB 的一个法向量,则 即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.所以可取m =(1,0,1),则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-33. 所以二面角A -PB -C 的余弦值为-33. 12.(2017·全国Ⅱ理,19)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角MABD 的余弦值.12.(1)证明 取P A 的中点F ,连接EF ,BF .因为E 是PD 的中点,所以EF ∥AD ,EF =12AD . 由∠BAD =∠ABC =90°,得BC ∥AD ,又BC =12AD , 所以EF BC ,四边形BCEF 是平行四边形,CE ∥BF ,又BF ⊂平面P AB ,CE ⊄平面P AB ,故CE ∥平面P AB .(2)解 由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3).因为BM 与底面ABCD 所成的角为45°,而n =(0,0,1)是底面ABCD 的法向量,所以|cos 〈BM →,n 〉|=sin 45°, |z |(x -1)2+y 2+z 2=22, 即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①②解得⎩⎨⎧x =1+22,y =1,z =-62(舍去)或⎩⎨⎧ x =1-22,y =1,z =62, 所以M ⎝⎛⎭⎫1-22,1,62,从而AM →=⎝⎛⎭⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则⎩⎪⎨⎪⎧ m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0, 所以可取m =(0,-6,2).于是cos 〈m ,n 〉=m ·n |m ||n|=105. 所以二面角MABD 的余弦值为105.13.(2017·全国Ⅲ理,19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角DAEC 的余弦值.13.(1)证明 由题设可得△ABD ≌△CBD .从而AD =CD ,又△ACD 为直角三角形,所以∠ADC =90°,取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,故BO ⊥AC ,所以∠DOB 为二面角DACB 的平面角,在Rt △AOB 中,BO 2+OA 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°,所以平面ACD ⊥平面ABC .(2)解 由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →为x 轴正方向,OB →为y 轴正方向,OD →为z 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则O (0,0,0),A ()1,0,0,D ()0,0,1,B ()0,3,0,C (-1,0,0),由题设知,四面体ABCE的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12,故AE →=⎝⎛⎭⎫-1,32,12,AD →=()-1,0,1,OA →=()1,0,0. 设平面AED 的法向量为n 1=(x 1,y 1,z 1),平面AEC 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ AE →·n 1=0,AD →·n 1=0,即⎩⎪⎨⎪⎧-x 1+32y 1+12z 1=0,-x 1+z =0,令x 1=1,则n 1=(1,33,1). ⎩⎪⎨⎪⎧ AE →·n 2=0,OA →·n 2=0,即⎩⎪⎨⎪⎧-x 2+32y 2+12z 1=0,x 2=0,令y 2=-1,则n 2=(0,-1,3),设二面角DAEC 的平面角为θ,易知θ为锐角,则cos θ=|n 1·n 2||n 1||n 2|=77. 14.(2017·北京理,16)如图,在四棱锥P ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4.(1)求证:M 为PB 的中点;(2)求二面角BPDA 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.14.(1)证明:设AC ,BD 交于点E ,连接ME ,如图.因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME ,所以PD ∥ME .因为四边形ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.(2)解:取AD 的中点O ,连接OP ,OE .因为P A =PD ,所以OP ⊥AD ,又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD ,所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE .因为四边形ABCD 是正方形,所以OE ⊥AD ,如图,建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).设平面BDP 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BD →=0,n ·PD →=0,即⎩⎨⎧4x -4y =0,2x -2z =0. 令x =1,则y =1,z = 2.于是n =(1,1,2).平面P AD 的法向量为p =(0,1,0),所以cos 〈n ,p 〉=n ·p |n ||p |=12. 由题意知二面角B -PD -A 为锐角,所以它的大小为π3. (3)解:由题意知M ⎝⎛⎭⎫-1,2,22,C (2,4,0),MC →=⎝⎛⎭⎫3,2,-22. 设直线MC 与平面BDP 所成的角为α,则sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269. 所以直线MC 与平面BDP 所成角的正弦值为269. 15.(2017·天津理,17)如图,在三棱锥P ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)求二面角CEMN 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 15.解 如图,以A 为原点,分别以AB →,AC →,AP →方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意,可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明 DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的一个法向量,则⎩⎪⎨⎪⎧ n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1, 可得n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ⊄平面BDE ,所以MN ∥平面BDE .(2)易知n 1=(1,0,0)为平面CEM 的一个法向量.设n 2=(x 1,y 1,z 1)为平面EMN 的一个法向量,则⎩⎪⎨⎪⎧ n 2·EM →=0,n 2·MN →=0, 因为EM →=(0,-2,-1),MN →=(1,2,-1),所以⎩⎪⎨⎪⎧-2y 1-z 1=0,x 1+2y 1-z 1=0. 不妨设y 1=1,可得n 2=(-4,1,-2).因此cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-421, 于是sin 〈n 1,n 2〉=10521.所以,二面角CEMN 的正弦值为10521. (3)解 依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ), BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12. 所以,线段AH 的长为85或12. 16.(2017·山东理,17)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF 的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求∠CBP 的大小;(2)当AB =3,AD =2时,求二面角E —AG —C 的大小.16.解 (1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP .又BP ⊂平面ABP ,所以BE ⊥BP ,又∠EBC =120°,所以∠CBP =30°.(2)方法一 取EC 的中点H ,连接EH ,GH ,CH .因为∠EBC =120°,所以四边形BEHC 为菱形,所以AE =GE =AC =GC =32+22=13.取AG 的中点M ,连接EM ,CM ,EC ,则EM ⊥AG ,CM ⊥AG ,所以∠EMC 为所求二面角的平面角.又AM =1,所以EM =CM =13-1=2 3.在△BEC 中,由于∠EBC =120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12,所以EC =23,因此△EMC 为等边三角形,故所求的角为60°.方法二 在平面EBC 内,作EB ⊥BP 交CE 于点P .以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由⎩⎪⎨⎪⎧ m · AE →=0,m ·AG →=0,可得⎩⎨⎧2x 1-3z 1=0,x 1+3y 1=0. 取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =(x 2,y 2,z 2)是平面ACG 的一个法向量.由⎩⎪⎨⎪⎧ n ·AG →=0,n ·CG →=0,可得⎩⎨⎧x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos 〈m ,n 〉=m ·n |m ||n |=12.因此所求的角为60°.。
2017-2019年高考真题数学(文)分项汇编_专题06 立体几何(解答题)
专题06立体几何(解答题)1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)17. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以1C E =,故17CH =.从而点C 到平面1C DE 的距离为17.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部ABCD为菱形,E 4.【2019年高考北京卷文数】如图,在四棱锥P ABCD为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD . 所以AB ⊥AE . 所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG . 则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形. 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【答案】(1)见解析;(2)见解析;(3)3. 【解析】(1)连接BD ,易知AC BD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD , 所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =,所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点,所以DN =又DN AN ⊥,在Rt AND △中,sin DN DAN AD ∠==所以,直线AD 与平面P AC【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG由于O 为A 1G 的中点,故12A G EO OG ===所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,22F ,C (0,2,0).因此,33(,22EF =,(BC =. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC AC --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩nn ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析;(2)1.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥. 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =又23BP DQ DA ==,所以BP = 作QE ⊥AC ,垂足为E ,则QE =∥13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为11113451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.解答本题时,(1)首先根据题的条件,可以得到BAC ∠=90°,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.9.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P A B C -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)见解析;(2)5.【解析】(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =连结OB .因为AB =BC =2AC,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC ,∠ACB =45°.所以OM =3,CH =sin OC MC ACB OM ⋅⋅∠=5.所以点C 到平面POM 的距离为5. 【名师点睛】立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明,解答本题时,连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;本题第二问可以通过作出点到平面的距离线段求解,即过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可,本题也可利用等体积法解决.10.【2018年高考全国Ⅲ卷文数】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)见解析;(2)存在,理由见解析.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.11.【2018年高考北京卷文数】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面P AB ⊥平面PCD ; (3)求证:EF ∥平面PCD .【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥. ∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(2)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥,∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .【名师点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.12.【2018年高考天津卷文数】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=BAD =90°. (1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值; (3)求直线CD 与平面ABD 所成角的正弦值.【答案】(1)见解析;(2;(3. 【解析】(1)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角. 在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==.所以,异面直线BC 与MD 所成角的余弦值为26.(3)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD .在Rt △CMD 中,sin 4CM CDM CD ∠==.所以,直线CD 与平面ABD 所成角的正弦值为4.【名师点睛】本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.13.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.【名师点睛】本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.解答本题时,(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得四边形ABB1A1为菱形,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.14.【2018年高考浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.【答案】(1)见解析;(2)13. 【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==, 所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C =, 由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD.由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ==111111cos C A B C A B ∠=∠=,所以1C D ,故111sin C D C AD AC ∠==.因此,直线1AC 与平面1ABB所成的角的正弦值是13. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C因此11111(1(12),3),AB A B AC ==-=-uuu r uuu u r uuu u r由1110AB A B ⋅=uuu r uuu u r得111AB A B ⊥. 由1110AB AC ⋅=uuu r uuu u r 得111AB AC ⊥. 所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(1(0,0,2),AC AB BB ===uuu r uu u r uuu r设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu r n n即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,|13|||AC AC AC θ⋅===⋅uuu ruuu r uuu rn |n n |. 因此,直线1AC 与平面1ABB所成的角的正弦值是13. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.15.【2017年高考全国Ⅰ文数】如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P −ABCD 的体积为83,求该四棱锥的侧面积. 【答案】(1)见解析;(2)326+.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥. 由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得AD =,PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =.从而2PA PD ==,AD BC ==PB PC ==.可得四棱锥P ABCD -的侧面积为21111sin 6062222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+ 【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.解答本题时,(1)由A B A P ⊥,AB PD ⊥,得AB ⊥平面PAD 即可证得结果;(2)设AB x =,则四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=,解得2x =,可得所求侧面积.16.【2017年高考全国Ⅱ卷文数】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,2AB BC AD BAD ==∠90.ABC =∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为,求四棱锥P ABCD -的体积.【答案】(1)见解析;(2)【解析】(1)在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC PAD ⊄平面,AD PAD ⊂平面, 故BC ∥平面P AD .(2)取AD 的中点M ,连结PM ,CM , 由12AB BC AD ==及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ABCD ⊂底面,所以PM ⊥CM .设BC =x ,则CM =x ,CD ,PM ,PC =PD =2x .取CD 的中点N ,连结PN ,则PN ⊥CD ,所以PN x =.因为△PCD 的面积为,所以12x =解得x =−2(舍去),x =2,于是AB =BC =2,AD =4,PM =所以四棱锥P −ABCD 的体积()224132V ⨯+=⨯⨯=【名师点睛】解答本题时,(1)先由平面几何知识得BC ∥AD ,再利用线面平行的判定定理证得结论;(2)取AD 的中点M ,利用线面垂直的判定定理证明PM ⊥底面ABCD ,从而得四棱锥的高,再通过平面几何计算得底面直角梯形的面积,最后代入锥体体积公式即可.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.17.【2017年高考全国Ⅲ卷文数】如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 【答案】(1)见解析;(2)1:1【解析】(1)取AC 的中点O ,连结DO ,BO . 因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形,所以AC ⊥BO . 从而AC ⊥平面DOB , 故AC ⊥BD . (2)连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,222BO AO AB +=.又AB =BD ,所以222222BO DO BO AO AB BD +=+==, 故∠DOB =90°. 由题设知△AEC 为直角三角形,所以12EO AC =. 又△ABC 是正三角形,且AB =BD ,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.【名师点睛】解答本题时,(1)取AC 的中点O ,由等腰三角形及等边三角形的性质得OD AC ⊥,OB AC ⊥,再根据线面垂直的判定定理得⊥AC 平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平面几何知识确定12EO AC =,再根据锥体的体积公式得所求体积之比为1:1.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考北京卷文数】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E –BCD 的体积. 【答案】(1)见解析;(2)见解析;(3)13. 【解析】(1)因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(2)因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(1)知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,BD DC ==由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC . 所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.解答本题时,(1)要证明线线垂直,一般转化为证明线面垂直;(2)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(3)由13BCD V S DE =⨯⨯△即可求解.19.【2017年高考天津卷文数】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(12)见解析;(3 【解析】(1)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得AP ==故cos AD DAP AP ∠==所以,异面直线AP 与BC(2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 又因为BC //AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PB C .(3)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得DF ==在Rt △DPF 中,可得sin 5PD DFP DF ∠==.所以,直线AB 与平面PBC 【名师点睛】线线、线面的位置关系以及证明是高考的重点考查内容,而证明线面垂直又是重点和热点,要证明线面垂直,根据判断定理转化为证明直线与平面内的两条相交直线垂直即可,而线线垂直又可通过线面垂直得到,用几何法求线面角,关键是找到斜线的射影,斜线与其射影所成的角就是线面角.解答本题时,(1)异面直线所成的角一般都转化为相交线所成的角,因为AD BC ∥,所以DAP ∠或其补角即为异面直线AP 与BC 所成的角,本题中AD ⊥PD ,进而可得AP 的长,所以cos ADDAP AP∠=;(2)要证明线面垂直,根据判断定理,证明直线与平面内的两条相交直线垂直即可;(3)根据(2)中的结论,作DF AB ∥,连结PF ,则DFP ∠为直线DF 和平面PBC 所成的角.20.【2017年高考山东卷文数】由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (1)证明:1A O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(1)见解析;(2)见解析.【解析】(1)取11B D 的中点1O ,连接111,CO AO ,由于1111ABCD A B C D -是四棱柱, 所以1111,AO OC AO OC =∥, 因此四边形11AOCO 为平行四边形, 所以11A O O C ∥,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1A O ∥平面11B CD .(2)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1,A E BD ⊥ 因为11,B D BD ∥所以11111,,EM B D A E B D ⊥⊥ 又1,A E EM ⊂平面1A EM ,1A E EM E =,所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD , 所以平面1A EM ⊥平面11B CD .【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.-中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,21.【2017年高考江苏卷】如图,在三棱锥A BCDF(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析;(2)见解析.⊥,【解析】(1)在平面ABD内,因为AB⊥AD,EF AD∥.所以EF AB又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.⊥,(2)因为平面ABD⊥平面BCD,平面ABD平面BCD=BD,BC⊂平面BCD,BC BD所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.=,AB⊂平面ABC,BC⊂平面ABC,又AB⊥AD,BC AB B所以AD⊥平面ABC,又因为AC⊂平面ABC,所以AD⊥AC.【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.22.【2017年高考浙江卷】如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC AD∥,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.(1)如图,设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点,所以EF AD ∥且12EF AD =, 又因为BC AD ∥,12BC AD =,所以 EF BC ∥且EF BC =,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面P AB .(2)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ//CE .由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .PABCDE所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在△PCD 中,由PC =2,CD =1,得CE在△PBN 中,由PN =BN =1,PB QH =14,在Rt △MQH 中,QH=14,MQ , 所以sin ∠QMH =8,所以直线CE 与平面PBC 所成角的正弦值是8.【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.。
专题10 立体几何(第01期)-决胜年高考全国试题数学分项汇编(江苏特刊)
一、填空1. 【苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研考试】如图,在正三棱柱中,已知,点在棱上,则三棱锥的体积为__________.【答案】2.【2016-2017学年度苏锡常镇四市高三教学情况调研(二)】已知直四棱柱底面是边长为2的菱形,侧面对角线的长为23,则该直四棱柱的侧面积为.【答案】【解析】侧棱长为,因为侧面为矩形,所以侧面积为3. 【南京市、盐城市2017届高三年级第一次模拟】将矩形ABCD绕边AB旋转一周得到AB=,一个圆柱,3∆为下底面圆的一个内接直角三角形,则三棱锥BC=,圆柱上底面圆心为O,EFG2-体积的最O EFG大值是 ▲ . 【答案】4 【解析】1124432O EFG EFG EFG V AB S S -∆∆=⨯⨯=≤⨯⨯= 4. 【镇江市2017届高三年级第一次模拟】若圆锥底面半径为2,高为5,则其侧面积为 . 【答案】6π【解析】圆锥母线为354=+,侧面积为πππ623=⨯=rl5. 【2017年第二次全国大联考江苏卷】已知正四棱锥P ABCD -的所有棱长都为2,则此四棱锥体积为_______. 【答案】42 【解析】由题意得四棱锥的斜高为3, 四棱锥的高为312-=,因此四棱锥体积为214222.3⨯⨯= 6. 【2017年第一次全国大联考江苏卷】已知四棱锥P ABCD -的底面四边形ABCD 的外接圆半径为4,且此外接圆圆心到P 点距离为,则此四棱锥体积的最大值为____________. 【答案】327. 【2016—2017学年度苏锡常镇四市高三教学情况调研(一)】已知正四棱锥的底面边长3,则该正四棱锥的体积为 .【答案】438. 【2017年高考原创押题预测卷02(江苏卷)】如图,在直三棱柱111C B A ABC -中,若四边形C C AA 11是边长为的正方形,且M BC AB ,5,3==是1AA 的中点,则三棱锥11MBC A -的体积为 .CA 1C【答案】【解析】由题意知1111A MBC B A MC V V --=,又222AB AC BC AB AC +=⇒⊥,1AC AA ⊥,所以AB ⊥平面C C AA 11,故4342213131111111=⨯⨯⨯⨯=⋅==∆--AB S V V MC A MC A B MBC A . 9. 【南京市、盐城市2017届高三年级第二次模拟】α,β为两个不同的平面,m ,n 为两条不同的直线,下列命题中正确的是 ▲ (填上所有正确命题的序号).①若α∥β,m ⊂α,则m ∥β; ②若m ∥α,n ⊂α,则m ∥n ;③若α⊥β,α∩β=n ,m ⊥n ,则m ⊥β; ④若n ⊥α,n ⊥β,m ⊥α,则m ⊥β. 【答案】①④10. 【2017南通扬州泰州苏北四市高三二模】现有一个底面半径为 3 cm ,母线长为5 cm 的圆锥状实心铁器,将其高温融化后铸成一个实心铁球(不计损耗),则该铁球的半径是▲ cm .11. 【苏北四市2016-2017学年度高三年级第一学期期末调研】已知圆锥的底面直径与高都是,则该圆锥的侧面积为 .12. 【苏州市2017届高三第一学期期末调研】一个长方体的三条棱长分别为983,,,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为 . 【答案】313. 【南通市、泰州市2017届高三第一次调研测试】如图,在正四棱柱ABCD – A 1B 1C 1D 1中,AB=3cm ,AA 1=1cm ,则三棱锥D 1 – A 1BD 的体积为 cm 3。
2017高考试题分类汇编立体几何文数
立体几何(三视图)【2017年北京卷第6题】某三棱锥的三视图如下图,那么该三棱锥的体积为(A)60 (B)30 (C)20 (D)10【2017年山东卷第13题】由一个长方体和两个14圆柱组成的几何体的三视图如右图,那么该几何体的体积为 .【2017年浙江卷第3题】某几何体的三视图如下图(单位:cm),那么该几何体的体积(单位:3cm)是A. π+12B.π+32C.π3+12D.π3+32【2017年新课标II 第6题】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部份后所得,那么该几何体的体积为A.90πB.63πC.42πD.36π立体几何(点线面关系、大题)【2017年浙江卷第11题】我国古代数学家刘徽创建的“割圆术”能够估算圆周率π,理论上能把π的值计算到任意精度。
祖冲之继承并进展了“割圆术”,将π的值精准到小数点后七位,其结果领先世界一千连年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6= 。
【2017年新课标I 卷第16题】已知三棱锥S-ABC 的所有极点都在球O 的球面上,SC 是球O 的直径.假设平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,那么球O 的表面积为________.【2017年新课标I 卷第6题】如图,在以下四个正方体中,A ,B 为正方体的两个极点,M ,N ,Q 为所在棱的中点,那么在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2017年浙江卷第9题】如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 别离为AB ,BC ,CA 上的点,AP=PB ,2BQ CR QC RA==,别离记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,那么A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【2017年新课标III 卷第9题】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,那么该圆柱的体积为A .πB .3π4C .π2D .π4【2017年新课标II 第15题】长方体的长、宽、高别离为3,2,1,其极点都在球O 的球面上,那么球O 的表面积为【2017年新课标III 卷第10题】在正方体1111ABCD A B C D 中,E 为棱CD 的中点,那么A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【2017年天津卷第11题】已知一个正方体的所有极点在一个球面上,假设那个正方体的表面积为18,那么那个球的体积为 .【2017年江苏卷第6题】如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切。
立体几何(第02期)-备战2017高考高三数学(理)全国各地一模金卷分项解析版含解析
【备战2017高考高三数学全国各地一模试卷分项精品】专题立体几何一、选择题【2017安徽蚌埠3月质检】如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该几何体的体积为( )A。
15 B。
16 C. D.【答案】C【解析】由三视图可得,该几何体是一个以俯视图为底面,高为的四棱锥,其体积,故选C。
【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点。
观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等",还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响。
【2017广西南宁适应性测试】如图是某几何体的三视图,则该几何体的体积为()A. 12B. 15 C。
18 D。
21【答案】C【解析】该几何体的直观图如图所示,是一个长宽高分别为的长方体切去一半得到的,其体积为.故本题正确答案是【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整。
【2017安徽宿州一模】某几何体的三视图如图所示,则该几何体的表面积为()A。
B。
C。
D。
【答案】D【解析】从三视图所提供是图形信息与数据信息可知该几何体是一个底面是直角三角形高为5 的三棱柱去掉一个三棱锥剩余的几何体.如图,其表面由两个直角梯形、一个矩形与两个直角三角形构成。
其面积为,应选答案D.【2017甘肃兰州一诊】某几何体的三视图如图所示,则该几何体的表面积为()A。
立体几何-备战2017高考高三数学(理)全国各地三模金卷分项解析版含解析
一、选择题【2017黑龙江大庆三模】已知某几何体的三视图如图所示,则该几何体的表面积为( )A。
B. C. D.【答案】D【2017福建三明5月质检】“牟合方盖”是我国古代数学家刘微在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).如图,正边形ABCD是为体现其直观性所作的辅助线,若该几何体的正视图与侧视图都是半径为的圆,根据祖暅原理,可求得该几何体的体积为()A。
383r B. 383rπ C. 3163r D. 3163rπ【答案】C【2017广西5月考前联考】一个几何体的三视图如图所示,则该几何体的体积为( )A。
3 B. 4 C. 5 D. 6【答案】C【解析】从题设所提供的三视图中的图形信息与数据信息可知该几何体是底面分别是矩形与梯形且等高的两个棱柱的组合体, 12111252V +⎛⎫=⨯+⨯⨯= ⎪⎝⎭,应选答案C 。
【2017黑龙江哈师大附中三模】三棱锥P ABC -中,底面ABC ∆满足BA BC =, 2ABC π∠=, P 在面ABC 的射影为AC 的中点,且该三棱锥的体积为92,当其外接球的表面积最小时, P 到面ABC 的距离为( )A. 2B. 3 C 。
23 D. 33【答案】B 【2017黑龙江哈师大附中三模】某几何体的三视图如图所示,则该几何体的体积为( )A. 83 B 。
43 C 。
823 D. 423【答案】A【2017福建三明5月质检】在四面体ABCD 中,若3AB CD == 2AC BD ==, 5AD BC ==则直线AB 与CD 所成角的余弦值为( )A. 13-B. 14- C 。
14 D 。
13【答案】D【解析】如图所示,该四面体为长方体的 四个顶点,设 长方体的 长宽高分别为,,a b c ,则:2222223{45a b a c b c +=+=+=,解得: 1{23a b c ===,问题等价于求解线段AB 与线段''C D 夹角的余弦值,结合边长和余弦定理可得:直线AB 与CD 所成角的余弦值为 13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1. 【2016甘肃兰州模拟】一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为( )
A .
2 B .
2
C .3π
D .3
2. 【2016山东实验中学月考】某几何体的三视图如下图所示,则该几何体的体积为( ) A .12 B .18 C .24 D .30
3. 【2016山东滨州二模】一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1,圆心角为
2
π
的扇形,则该几何体的表面积是( )
A .
343+π B .32+π C .123π D .6
3π
4. 【2016辽宁抚顺鞍山一中月考】已知在三棱锥P ABC -
中,P ABC V -=
4
APC π
∠=
,3
BPC π
∠=
,,PA AC PB BC ⊥⊥,且平面PAC ⊥平面PBC ,那么三棱锥
P ABC -外接球的体积为( )
A .
43π B
C
D .323π C
B
A
P
5. 【2016辽宁抚顺鞍山一中月考】某几何体的三视图如图所示,则该几何体的表面积为( ) A
.7 B
.7+ C
.4+ D
.4+
6. 【2016重庆巴蜀中学月考】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的的体积为( ) A .
π238+ B .π+3
8
C .π24+
D .π+4
7. 【2016重庆巴蜀中学月考】已知四棱锥ABCD S -的所有顶点都在同一球面上,底面
ABCD 是正方形且和球心O 在同一平面内,若此四棱锥的最大体积为18,则球O 的表面积
等于( )
A .π18
B .π36
C .π54
D .π72
8. 【2016辽宁哈尔滨月考】已知某几何体的三视图如图所示,则该几何体的表面积为( )
A .
37 B .217 C .13 D .2
10317+ 9. 【2016大连双基测试】已知互不重合的直线,a b ,互不重合的平面,αβ,给出下列四个命题,错误..
的命题是( )
(A )若a //
α,a //β,b αβ= ,则a //b
(B)若βα⊥,a α⊥,β⊥b 则b a ⊥
(C)若βα⊥,γα⊥,a =γβ ,则a α⊥ (D)若α//β,a //
α,则a //β
10. 【2016吉林实验中学月考】某一简单几何体的三视图如图所示,该几何体的外接球的表面积是( )
A .π13
B .π16
C .π25
D .π27
11. 【2016吉林实验中学月考】已知直线m 和平面βα,,则下列四个命题正确的是( ) A .若βα⊥,β⊂m ,则α⊥m B .若βα∥, α∥m ,则β∥m C .若βα∥,α⊥m ,则β⊥m D .若α∥m ,β∥m ,则βα∥
12. 【2016甘肃张掖一模】一个几何体的三视图是一个正方形,一个矩形,一个半圈,尺寸大小如图所示,则该几何体的表面积是( )
A .π
B .3π+4
C .π+4
D .2π+4
13. 【2016甘肃张掖一模】设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( )
A .m ∥α,n ∥β且α∥β,则m ∥n
B .m ⊥α,n ⊥β且α⊥β,则m ⊥n
C .m ⊥α,n ⊂β,m ⊥n ,则α⊥β
D .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β
二、填空题
1. 【2016甘肃兰州模拟】 ,αβ是两平面,,AB CD 是两条线段,已知EF αβ= ,
AB α⊥于B ,CD α⊥于D ,若增加一个条件,就能得出BD EF ⊥,现有下列条件:①
AC β⊥;②AC 与,αβ所成的角相等;③AC 与CD 在β内的射影在同一条直线上;④//AC EF .其中能成为增加条件的序号是 .
2. 【2016东北师大附中月考】三棱锥P ABC -的直观图及三视图中的正视图和俯视图如图所示,则三棱锥P ABC -外接球的表面积为 .
3. 【2016辽宁哈尔滨月考】已知三棱锥ABC P -,若PA ,PB ,PC 两两垂直,且2=PA ,
1==PC PB ,则三棱锥ABC P -外接球的体积为 .
4. 【2016大连双基测试】如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为 .
三、解答题
1. 【2016甘肃兰州模拟】 (本小题满分12分)
如图,在四棱锥P ABCD -中,侧面PAB ⊥底面ABCD ,底面ABCD 为矩形,PA PB =,
O 为AB 的中点,OD PC ⊥.
(1)求证:OC PD ⊥;
(2)若PD 与平面PAB 所成的角为0
30,2AB =,求四棱锥的P ABCD -的体积.
2. 【2016辽宁哈尔滨月考】(本小题满分12分)
如图,在平行四边形ABCD 中,AD BD ⊥,2AD =,4BD =,点M ,N 分别为,BD BC 的中点,将其沿对角线BD 折起成四面体QBCD ,使平面QBD ⊥平面BCD ,P 为QC 的中点.
(Ⅰ)求证:PM BD ⊥; (Ⅱ)求点D 到平面QMN 的距离.
3. 【2016山东实验中学月考】(本小题满分12分)
如图,在直三棱柱111ABC A B C -中,ABC ∆是正三角形,点,,D E F 分别是棱BC ,
1BB ,11A B 的中点.
(1)求证:1AD BC ⊥;
(2)判断直线EF 与平面1ADC 的位置关系,并证明你的结论.
4. 【2016山东滨州二模】(本小题满分12分)
如图,四边形ABCD 为菱形,⊥EB 平面ABCD ,BD EF BD EF 2
1
=,∥. (Ⅰ)求证:∥DF 平面AEC ; (Ⅱ)求证:平面⊥AEF 平面AFC .
5. 【2016东北师大附中月考】(本小题满分12分)
四棱锥P ABCD -的底面是正方形,PA ABCD ^平面, 1,,PA AB M N ==分别是
,PB PD 的中点
(1)求证:MN PAC ^平面;
(2)设MN 与PAC 平面交于点E ,求点E 到平面PMC 的距离
6. 【2016辽宁抚顺鞍山一中月考】(本小题满分12分) 如图,已知四棱锥P ABCD -的底面为菱形,0
120BCD ∠=,
2,AB PC PA PB ===.
(1)求证:AB PC ⊥; (2)求点B 到平面PAC 的距离.
7. 【2016重庆巴蜀中学月考】如图,在边长为4的菱形ABCD 中,
60=∠DAB ,点F E ,分别是边CD ,CB 的中点,O EF AC = ,沿EF 将CEF ∆翻折到PEF ∆,连接
PD PB PA ,,,得到如图的五棱锥ABFED P -,且10=PB .
(1)求证:PA BD ⊥; (2)求四棱锥BFED P -的体积.
8. 【2016大连双基测试】(本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 是
边长为3的菱形,
60=∠ABC .⊥PA 面ABCD ,且3=PA .E 为PD 中点,F 在棱PA
上,且1=AF .
B
(Ⅰ)求证://CE 面BDF ; (Ⅱ)求三棱锥BDF P -的体积.
9 【2016吉林实验中学月考】(本小题满分12分) 如图,正三棱柱111C B A ABC -中,E 是AC 中点. (1)求证:平面111A ACC BEC ⊥;
(2)若
2,21==AB AA ,求点
A 到平面1BEC 的距离.
10. 【2016甘肃张掖一模】在长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=2,过A 1、C 1、B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD ﹣A 1C 1D 1,且这个几何体的体积为10. (Ⅰ)求棱AA 1的长;
(Ⅱ)若A 1
C 1的中点为O 1,求异面直线BO 1与A 1
D 1所成角的余弦值.。