最新如东中学高三数学中档题冲刺训练七 0805 20说课讲解
2025届江苏省南通市如东中学高三压轴卷数学试卷含解析
2025届江苏省南通市如东中学高三压轴卷数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,点()11,P x y ,()11,Q x y --在椭圆C 上,其中1>0x ,10y >,若22PQ OF =,11QF PF ≥,则椭圆C 的离心率的取值范围为( ) A.⎡⎢⎣⎭B.(2⎤⎦C.1⎤⎥⎝⎦D.(1⎤⎦2.已知随机变量X 的分布列是则()2E X a +=( ) A .53B .73C .72D .2363.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )A .2B .3C .3.5D .44.在311(21)x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为( ) A .1B .2C .3D .75.已知i 是虚数单位,则(2)i i +=( ) A .12i +B .12i -+C .12i --D .12i -6.新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给,实现了行业的良性发展.下面是2012年至2016年我国新闻出版业和数字出版业营收增长情况,则下列说法错误的是( )A .2012年至2016年我国新闻出版业和数字出版业营收均逐年增加B .2016年我国数字出版业营收超过2012年我国数字出版业营收的2倍C .2016年我国新闻出版业营收超过2012年我国新闻出版业营收的1.5倍D .2016年我国数字出版营收占新闻出版营收的比例未超过三分之一7.若函数()()2(2 2.71828 (x)f x x mx e e =-+=为自然对数的底数)在区间[]1,2上不是单调函数,则实数m 的取值范围是( ) A .510,23⎡⎤⎢⎥⎣⎦B .510,23⎛⎫⎪⎝⎭C .102,3⎡⎤⎢⎥⎣⎦D .102,3⎛⎫⎪⎝⎭8.若函数()ln f x x =满足()()f a f b =,且0a b <<,则224442a b a b+-+的最小值是( )A .0B .1C .32D .229.等差数列{}n a 中,已知51037a a =,且10a <,则数列{}n a 的前n 项和n S *()n N ∈中最小的是( )A .7S 或8SB .12SC .13SD .14S10.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多11.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右两个焦点分别为1F ,2F ,若存在点P 满足1212::4:6:5PF PF F F =,则该双曲线的离心率为( )A .2B .52C .53D .512.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为 7816 6572 0802 6314 0702 4369 9728 0198 3204 923449358200 3623486969387481A .08B .07C .02D .01二、填空题:本题共4小题,每小题5分,共20分。
江苏省如东高级中学第一学期高三数学第二次阶段测试卷
江苏省如东高级中学2007-2008学年第一学期第二次阶段测试高三数学试题2007.10.7第I 卷 (选择题,共50分)一.选择题:本大题共有6小题,每小题5分,共30分,在每小题给出的四个选项中,有且只有一项是符合题目要求的。
1.若22(1)(32)x x x i-+++是纯虚数,则实数x的值是( )A . 1B . 1-C . 1±D . -2 2.下列函数中,在)4,0(π内递减,且关于直线4π=x 对称的函数是( )A.x y 2tan =B.)2cos(x y +=πC. )22cos(x y +=πD.|2sin |x y =3.2|log |y x =的定义域为[, ]a b , 值域为[0, 2]则区间[, ]a b 的长度b a -的最小值为 ( )A .3B .43C .2D .23 4.若()sin()sin()(0)44f x a x b x ab ππ=++-≠是偶函数,则点(,a b )的轨迹方程 ( ) . 0(0)A x y x -=≠ . 0(0)B x y x +=≠. 20(0)C x y x -=≠ . 20(0)D x y x +=≠5.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足[)(),0,s i n s i n AB AC OP OA AB B AC Cl l =++??uu u r uuu ruu u r uu r uu u r uuu r.则P 点的轨迹一定通过ABC ∆的( ) (A)重心 (B )垂心 (C )内心 (D )外心 6.已知两个函数()f x 和()g x 的定义域和值域都是集合{1,2,3},其定义如下表:则方程[()]g f x x =的解集为 ( )A .{1}B .{2}C .{3}D .∅二、填空题:本大题共10小题,第7~11题每小题5分,第12~16题每小题6分,共55分.答案填在题中横线上7.向量=(n,1)与=(4,n)共线且方向相同,则n = __▲ . 8.在△ABC 中,已知15,3,5,4AB CA AB AC BAC ⋅===∠则= _▲ .9.已知ABCDEF 是正六边形,且,AB a AE b ==,则CD = _▲ (用,a b 表示).10.求值0cos10(tan10sin 50-∙= _▲ 11.已知向量25(cos sin )(cos sin )||5a ααb ββa b =-=,,=,,,则cos ()αβ-= _▲ .12.函数12121x x y +-=+的值域是 _▲ .13.曲线)4cos()4sin(2ππ-+=x x y 和直线21=y 在y 轴右侧的交点横坐标从小到大依次记为,,,,321⋅⋅⋅P P P 则||42P P等于 _ ▲ . 14.已知2()lg(87)f x x x =-+-在(, 1)m m +上是增函数, 则m 的取值范围是 _▲ .15.定义在] ,[22-上的偶函数()g x ,当0x ≥时()g x 单调递减, 若 (1) ()g m g m -<, 则m 的取值范围是 _▲ .16.若钝角三角形三个内角的度数成等差数列,且最大边与最小边长度的比为m ,则m 的取值范围是 ▲ .三、解答题:本大题共5小题,每题15分,共75分.解答应写出文字说明,证明过程或演算17.设,)2cos ,sin 2(x x =,x ,)1cos (-=其中x ∈[0,2π].(1)求f (x )=OB OA ·的最大值和最小值;(2)当 OA ⊥OB ,求|AB |.18.在△ABC 中,A ,B ,C 是三角形的三内角,a ,b ,c 是三内角对应的三边长,已知222.b c a bc +-=(Ⅰ)求角A 的大小;(Ⅱ)若222sin sin sin A B C +=,求角B 的大小19.某公司有价值a 万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值.假设附加值y 万元与技术改造投入x 万元之间的关系满足:①y 与x a -和x 的乘积成正比;②当时2a x =,2a y =;③.)(20t x a x≤-≤其中t 为常数,且]1,0[∈t .(1)设)(x f y =,求出)(x f 的表达式,并求出)(x f y =的定义域;(2)求出附加值y 的最大值,并求出此时的技术改造投入的x 的值 20.已知函数f (x )=(x -a )(x -b )(x -c ).(1)求证:()f x '=(x -a )(x -b )+(x -a ) (x -c )+(x -b ) (x -c );(2)若f(x)是R上的增函数,是否存在点P,使f(x)的图像关于点P中心对称?如果存在,请求出点P坐标,并给出证明;如果不存在,请说明理由..21.对于函数y=f(x)( x∈D,D为函数定义域),若同时满足下列条件:①f(x)在定义域内单调递增或单调递减;②存在区间[a,b]D⊆,使f(x)在[a,b]上的值域是[a,b],那么把y= f(x)(x)D∈称为闭函数.(1) 求闭函数y= –x3符合条件②的区间[a,b];(2)判定函数f(x)= 31((0,))4x xx+∈+∞是否为闭函数?并说明理由;(3) 若()f x=k k的取值范围..江苏省如东高级中学2007-2008学年第一学期第二次阶段测试高三数学试题(加试)2007.10.7一、填空题:本大题共5小题,每小题4分,共20分 1. 已知矩阵121A c ⎡⎤=⎢⎥⎣⎦的一个特征值为λ,10⎡⎤⎢⎥⎣⎦是A 的属于λ的特征值向量,则=-1A2. 若cos sin sin cos x θθθθ=(R θ∈),则函数2()23f x x x =+-的最大值为3. 设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2008(x )=4. 给出下列命题:①若函数3()f x x =,则(0)0f '=;②若函数2()21f x x =+,图像上(1,3)P 及 邻近点(1,3)Q x y +∆+∆, 则42yx x∆=+∆∆;③加速度是动点位移函数()S t 对时间t 的导数;④2lg 2x x y x =+,则2222212x x xx x y x ⋅-⋅'=-.其中正确的命题为 .(写上序号)二、解答题:本大题共2小题,共20分.解答应写出文字说明,证明过程或演算5. (本题8分) 已知函数()ln f x x x =+. (Ⅰ)求函数()f x 在区间21,e ⎡⎤⎣⎦上的最值;(Ⅱ)对x D ∈,如果函数()F x 的图像在函数()G x 的图像的下方,则称函数()F x 在D 上被函数()G x 覆盖.求证:函数()f x 在区间()1,+∞上被函数2()g x x =覆盖6.(本题12分) 已知二次函数2()f x ax bx c =++, 满足(0)(1)0f f ==且()f x 的最小值是14-.(Ⅰ)求()f x 的解析式;(Ⅱ)设直线21:(0,)2l y t t t t =-<<其中为常数,若直线l 与()f x 的图象以及y 轴这二条直线和一条曲线所围成封闭图形的面积是1()S t , 直线l 与()f x 的图象以及直线12x =这二条直线和一条曲线所围成封闭图形的面积是2()S t ,已知121()()()2g t S t S t =+,当()g t 取最小值时,求t 的值.江苏省如东高级中学2007-2008学年第一学期第二次阶段测试高三数学试题参考答案一、 选择题 ACBBAC二、 填空题7,28,23π9,)(21a b - 10,-2 11,35 12,1(,1)2- 13,π 14,[1,3] 15,1[1,)2-16,),2(+∞三、 解答题17解:⑴f (x )=·= -2sin x cos x +cos2x =)42cos(2π+x .∵0≤x ≤2π , ∴4π≤2x +4π≤45π.∴当2x +4π=4π,即x =0时,f (x )max =1;当2x +4π=π,即x=83π时,f (x )min = -2.⑵⊥即f (x )=0,2x +4π=2π,∴x =8π.此时||22)12(cos )cos sin 2(-++=x x x=222)12(cos cos sin 4cos sin 4-+++x x x x x=x x x 2cos 2sin 22cos 27272++- =4cos 4sin 24cos 27272πππ++- =231621-. 18,解:(Ⅰ)在△ABC 中,bc a c b A bc a c b +=+=-+222222cos 2又3,21cos π==∴A A ……………………………… 6分(Ⅱ)由正弦定理,又222sin sin sin A B C +=,故222222444a b c R R R += 即: 222a b c += 故△ABC 是以角C 为直角的直角三角形又,36A B ππ=∴=………………………………………………12分19,解:(1)设()y k a x x =-.由2ax =,2a y =,得:k =4. 于是,4()y a x x =-.解关于x 的不等式:02()x t a x ≤≤-,得0≤x ≤212att+.∴函数的定义域为2[0,]12att+,t 为常数,]1,0[∈t . (2)22)2(4)(4a a x x x a y +--=-= . 当2max ,2,121,2212a y ax t a t at ==≤≤≥+时即时; 当]212,0[)(4,210,2212tatx x a y t a t at +-=≤≤<+在时即时上为增函数,故当212atx t=+时,2max 28(12)at y t =+. 故112t ≤≤当时,投入2a x =时,附加值y 最大为2a 万元;当210<≤t 时,投入t at x 212+=时,附加值y 最大为22)21(8t at +万元 20,解:(1)∵ f (x )=(x -a )(x -b)(x -c )=x3-(a+b +c)x 2+(ab+bc+ac )x -abcf ′(x )=3 x 2-2(a+b +c)x +(ab+bc+ac )=[ x 2- (a+b )x +ab ]+[ x 2- (a+c )x +ac ]+[ x 2- (b+c )x +bc ] =(x -a )(x -b )+(x -a )(x -c ) +(x -b )(x -c ).(2)∵f (x )是R 上的单调函数,∴f ′(x )≥0,对x ∈R 恒成立,即 3x 2-2(a+b+c )x+(ab+bc+ca )≥0 对x ∈R 恒成立. ∴△≤0, 4(a+b+c )2-12(ab+bc+ca ) ≤0, ∴ (a -b )2+(a -c )2+ (b -c )2≤0,∴ a=b=c . ∴f (x )=(x -a )3 , ∴f (x )关于点(a ,0)对称.证明如下:设点P (x ,y )是 f (x )=(x -a )3图像上的任意一点,y=(x -a )3,点P 关于点(a ,0)对称的点P ′(2a -x ,-y ), ∵(2a -x -a )3=(2a -x )3= -(x -2a )3=-y ,∴点P ′在函数f (x )=(x -a )3的图像上,即函数f (x )=(x -a )3关于点(a ,0)对称21,解 (1)由y =x -3在[a ,b ]上为减函数,得 33,,.b a a b a b ⎧=-⎪=-⎨⎪<⎩可得a = –1 , b = 1 ,∴ 所求区间是[–1,1].(2)取x 1 = 1 , x 2 = 10,可得f (x )不是减函数;取x 1 =21,10x =1100,可得f (x )在(0 ,+∞)不是增函数,所以f (x )不是闭函数.(3)设函数符合条件②的区间为[a ,b ],则a k b k =+=+⎧⎪⎨⎪⎩故a , b 是方程x=k22(21)20,2,x k x k x x k ⎧-++-=⎪≥-⎨⎪≥⎩有两个不等实根. 当k 2≤-时,2222212,2(21)4(2)0,22(21)20.k k k k k +⎧>-⎪⎪⎪+-->⎨⎪+++-≥⎪⎪⎩解得:94k >-,∴ 9(,2]4k ∈--;当2k >-时,222221,2(21)4(2)0,(21)20.k k k k k k k k +⎧>⎪⎪⎪+-->⎨⎪-++-≥⎪⎪⎩这时k 无解.所以 k 的取值范围是9(,2]4--.参考答案一、1. ⎥⎦⎤-⎢⎣⎡1201 2. 0 3. sinx 4 ①②二、5.(12分)解:(1)1()10f x x'=+>在2[1,]e 恒成立. ∴()f x 在2[1,]e 为增函数. ………………………3分 ∴min ()(1)2f x f ==, 22max ()()2f x f e e ==+ ……………………………6分(2)2()()ln g x f x x x x -=--1(()())210g x f x x x'-=-->在(1,)+∞恒成立. ()()g x f x -在(1,)+∞为增函数. ……………………………9分∴()()(1)(1)0g x f x g f ->-= 得证6. 解: (1)由二次函数图象的对称性, 可设211()()24f x a x =--,又(0)01f a =∴= 故2()f x x x =-…………………5分(2) 据题意, 直线l 与()f x 的图象的交点坐标为2(,)t t t -,由定积分的几何意义知1222221201()()()[()()][()()]2t t g t S t S t t t x x dx x x t t dx =+=--------⎰⎰=1222220[()()][()()]ttx x t t dx t t x x dx ---+---⎰⎰132322220[()()]|[()()]|3232t t x x x x t t x t t x =---+---=32431132212t t t -+-+而22111'()43(861)(41)(21)222g t t t t t t t =-+-=--+=---令1'()0,4g t t =⇒=或12t =(不合题意,舍去)当111(0,),'()0,()[,),'()0,(),442t g t g t t g t g t ∈<∈≥递减,递增故当14t =时,()g t 有最小值。
江苏省如东中学高三等比数列复习专题 百度文库
一、等比数列选择题1.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列(){}111n n n a a -+-的前n 项的和为( )A .()2382133n n +--B .()23182155n n +---C .()2382133n n ++-D .()23182155n n +-+-2.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .13.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4B .5C .4或5D .5或64.已知正项等比数列{}n a 满足112a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )A .312或112B .312 C .15D .65.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .503B .507C .1007D .20076.已知等比数列{}n a 中,1354a a a ⋅⋅=,公比q =,则456a a a ⋅⋅=( ) A .32B .16C .16-D .32-7.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭8.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n9.已知等比数列{}n a 的前n 项和为,n S 且639S S =,则42aa 的值为( )AB .2C.D .410.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n nb b +,则b 2020=( )A .22017B .22018C .22019D .2202011.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .8B .7C .6D .412.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C. D. 13.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9B .10C .11D .1214.在各项均为正数的等比数列{}n a 中,226598225a a a a ++=,则113a a 的最大值是( ) A .25B .254C .5D .2515.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31B .32C .63D .6416.已知等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则该数列的公比是( )A .19B .9C .13D .317.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( ) A .4B .-4C .±4D .不确定18.在等比数列{}n a 中,12345634159,88a a a a a a a a +++++==-,则123456111111a a a a a a +++++=( ) A .35B .35C .53D .53-19.已知{}n a 为等比数列.下面结论中正确的是( )A .1322a a a +≥B .若13a a =,则12a a =C .2221322a a a +≥D .若31a a >,则42a a >20.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第六个单音的频率为f ,则( ) A .第四个单音的频率为1122f - B .第三个单音的频率为142f - C .第五个单音的频率为162fD .第八个单音的频率为1122f二、多选题21.题目文件丢失! 22.题目文件丢失!23.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤C .n S 的最小值为7003D .n S 的最大值为40024.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为非零常数),则下列结论正确的是( ) A .{}n a 是等比数列 B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+25.已知数列{}n a 是公比为q 的等比数列,4n n b a =+,若数列{}n b 有连续4项在集合{-50,-20,22,40,85}中,则公比q 的值可以是( ) A .34-B .23-C .43-D .32-26.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-127.数列{}n a 对任意的正整数n 均有212n n n a a a ++=,若22a =,48a =,则10S 的可能值为( )A .1023B .341C .1024D .34228.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S =D .()222lg lg lg 3n n n a a a n -+=+≥29.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍30.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-31.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N ++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列 B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=32.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 33.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++=34.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>,则称{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是( )A .公比大于1的等比数列一定是间隔递增数列B .已知4n a n n=+,则{}n a 是间隔递增数列 C .已知()21nn a n =+-,则{}n a 是间隔递增数列且最小间隔数是2D .已知22020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<35.对于数列{}n a ,若存在数列{}n b 满足1n n nb a a =-(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;B .若31n a n =-,则其“倒差数列”有最大值;C .若31n a n =-,则其“倒差数列”有最小值;D .若112nn a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.D 【分析】根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入()111n n n a a -+-可知数列为等比数列,求和即可.【详解】因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,所以31121208a q a q a q ⎧+=⎨=⎩,解得2q,12a =,所以1222n nn a -=⨯=,()()()111111222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,(){}111n n n a a -+∴-是以8为首项,4-为公比的等比数列,()23357921118[1(4)]8222222(1)1(4)155n n n n n n S -++---∴=-+--++⋅==+---, 故选:D 【点睛】关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 2.A 【分析】分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】设等比数列{}n a 的公比为q ,则2750a a q =>,由等比中项的性质可得275964a a a ==,因此,78a =.故选:A. 3.C 【分析】由等比数列的性质及等差数列的通项公式可得公差12d =-,再由等差数列的前n 项和公式即可得解. 【详解】设等差数列{}n a 的公差为,0d d ≠,134,,a a a 成等比数列,2314a a a ∴=即2(22)2(23)d d +=+,则12d =-,()()211119812244216n n n n n S a n d n n --⎛⎫∴=+=-=--+ ⎪⎝⎭,所以当4n =或5时,n S 取得最大值. 故选:C. 4.B 【分析】由等比中项的性质可求出3a ,即可求出公比,代入等比数列求和公式即可求解. 【详解】正项等比数列{}n a 中,2432a a a =+,2332a a ∴=+,解得32a =或31a =-(舍去) 又112a =,2314a q a ∴==, 解得2q,5151(132)(1)312112a q S q --∴===--,故选:B 5.D 【分析】设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,利用等比数列的前n 项和公式即可求解. 【详解】5斗50=升,设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则()311212a --=50,解得a 1=507,所以牛主人应偿还粟的量为23120027a a ==故选:D 6.A 【分析】由等比数列的通项公式可计算得出()6456135a a a q a a a ⋅⋅=⋅⋅,代入数据可计算得出结果.【详解】由6326456135135432a a a a q a q a q a a a q ⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅=⨯=.故选:A. 7.D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnnT ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得214141(1)10234n nn λ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n n λ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121n nn n nλ-+--<==-+++,所以163321 21λb-<=-=-=+,所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫-⎪⎝⎭.故选:D.【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.8.D【分析】利用已知条件列出方程组求解即可得1,a q,求出数列{a n}的通项公式,再利用错位相减法求和即可.【详解】设等比数列{a n}的公比为q,易知q≠1,所以由题设得()()3136161711631a qSqa qSq⎧-⎪==-⎪⎨-⎪==⎪-⎩,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以a n=a1q n-1=2n-1,所以na n=n×2n-1.设数列{na n}的前n项和为T n,则T n=1×20+2×21+3×22+…+n×2n-1,2T n=1×21+2×22+3×23+…+n×2n,两式作差得-T n=1+2+22+…+2n-1-n×2n=1212n---n×2n=-1+(1-n)×2n,故T n=1+(n-1)×2n.故选:D.【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 9.D【分析】设等比数列{}n a 的公比为q ,由题得()4561238a a a a a a ++=++,进而得2q,故2424a q a ==. 【详解】解:设等比数列{}n a 的公比为q ,因为639S S =,所以639S S =, 所以6338S S S -=,即()4561238a a a a a a ++=++, 由于()3456123a a a q a a a ++=++,所以38q =,故2q,所以2424a q a ==. 故选:D. 10.A 【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.11.A 【分析】利用已知条件化简,转化求解即可. 【详解】已知{}n a 为等比数列,1322a a a ∴=,且22a =,满足13123321231322111124a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:(1)先利用等比数列的性质,得1322a a a ∴=,(2)通分化简312311124S a a a ++==. 12.C 【分析】根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以q =所以111111k k n n k a a a a a ---⎛⎫ ⎪⎛== ⎭⎝⎝1111n k k n n na a----==⋅ 故选:C. 13.C 【分析】根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项公式可得121n n a -=+,即求.【详解】因为121n n a a +=-,所以()1121n n a a +-=-,即1121n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.则112n n a --=,即121n n a -=+.因为513n a >,所以121513n -+>,所以12512n ->,所以10n >. 故选:C 14.B 【分析】由等比数列的性质,求得685a a +=,再结合基本不等式,即可求得113a a 的最大值,得到答案. 【详解】由等比数列的性质,可得()2222265986688682225a a a a a a a a a a ++=++=+=,又因为0n a >,所以685a a +=,所以268113682524a a a a a a +⎛⎫=≤=⎪⎝⎭, 当且仅当6852a a ==时取等号. 故选:B . 15.C 【分析】根据等比数列前n 项和的性质列方程,解方程求得6S . 【详解】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =. 故选:C 16.D 【分析】利用等比数列的通项公式求出1a 和2a ,利用21a a 求出公比即可【详解】设公比为q ,等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则31327a ==,42381a ==,213a q a ∴==, 故选:D 17.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 18.D 【分析】利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为162534162534a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】162534123456162534111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中3498a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +++++=12345685()93a a a a a a -+++++=-, 故选:D 19.C 【分析】取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】解:设等比数列的公比为q ,对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;对于B 选项,若13a a =,则211a a q =,则1q =±,所以12a a =或12a a =-,故错误; 对于C 选项,由均值不等式可得2221313222a a a a a +≥⋅=,故正确;对于D 选项,若31a a >,则()2110a q ->,所以()14221a a a q q -=-,其正负由q 的符号确定,故D 不确定. 故选:C. 20.B 【分析】根据题意得该单音构成公比为四、五、八项即可得答案. 【详解】解:根据题意得该单音构成公比为 因为第六个单音的频率为f ,141422f f -==.661122f f -==.所以第五个单音的频率为1122f =.所以第八个单音的频率为1262f f =故选:B.二、多选题 21.无 22.无23.AC 【分析】由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】由题可知,第一次着地时,1100S =;第二次着地时,221002003S =+⨯;第三次着地时,232210020020033S ⎛⎫=+⨯+⨯ ⎪⎝⎭;……第n 次着地后,21222100200200200333n n S -⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭则211222210020010040013333n n n S --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为40070010033+=; 综上所述,AC 正确 故选:AC 24.ABC 【分析】由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 正确;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22pa =. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 正确; 由A 可得m n m n a a a +⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,则3856a a a a +>+,即D 不正确; 故选:ABC. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 25.BD 【分析】先分析得到数列{}n a 有连续四项在集合{54-,24-,18,36,81}中,再求等比数列的公比. 【详解】 4n n b a =+4n n a b ∴=-数列{}n b 有连续四项在集合{-50,-20,22,40,85}中∴数列{}n a 有连续四项在集合{54-,24-,18,36,81}中又数列{}n a 是公比为q 的等比数列,∴在集合{54-,24-,18,36,81}中,数列{}n a 的连续四项只能是:24-,36,54-,81或81,54-,36,24-.∴363242q ==--或243236q -==-. 故选:BD 26.AC 【分析】根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】设等比数列{}n a 公比为,(0)q q ≠则222112()n n n na a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;若123,a a a <<则1211101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩,即数列{}n a 是递增数列,C 正确;若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-=所以32211323(1),3a a q r r a a ===∴=+=-,即D 错误 故选:AC 【点睛】等比数列的判定方法(1)定义法:若1(n na q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且212n n a a a a ++=,则数列{}n a 是等比数列;(3)通项公式法:若数列通项公式可写成(,nn a cq c q =均是不为0的常数),则{}n a 是等比数列;(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,nn S kq k q q k =-≠≠为非零常数),则{}n a 是等比数列.27.AB 【分析】首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】解:因为数列{}n a 对任意的正整数n 均有212n n n a a a ++=,所以数列{}n a 为等比数列,因为22a =,48a =,所以2424a q a ==,所以2q =±, 当2q时11a =,所以101012102312S -==-当2q =-时11a =-,所以()()()101011234112S -⨯--==--故选:AB 【点睛】本题考查等比数列的通项公式及求和公式的应用,属于基础题. 28.ACD 【分析】根据等比数列的通项公式,结合等比数列的定义和对数的运算性质进行逐一判断即可. 【详解】因为521127,==a a a ,所以有431127273q a q q q a ⋅=⋅⇒=⇒=,因此选项A 正确;因为131(31)132nn n S -==--,所以131+2+2(3+3)132nn n S -==-,因为+1+111(3+3)+222=1+1+21+3(3+3)2n nn n n S S -=≠常数, 所以数列{}2n S +不是等比数列,故选项B 不正确; 因为551(31)=1212S =-,所以选项C 正确; 11130n n n a a q --=⋅=>,因为当3n ≥时,22222lg lg =lg()=lg 2lg n n n n n n a a a a a a -+-++⋅=,所以选项D 正确. 故选:ACD 【点睛】本题考查了等比数列的通项公式的应用,考查了等比数列前n 项和公式的应用,考查了等比数列定义的应用,考查了等比数列的性质应用,考查了对数的运算性质,考查了数学运算能力. 29.BD 【分析】根据题意,得到此人每天所走路程构成以12为公比的等比数列,记该等比数列为{}n a ,公比为12q =,前n 项和为n S ,根据题意求出首项,再由等比数列的求和公式和通项公式,逐项判断,即可得出结果. 【详解】由题意,此人每天所走路程构成以12为公比的等比数列, 记该等比数列为{}n a ,公比为12q =,前n 项和为n S , 则16611163237813212a S a ⎛⎫- ⎪⎝⎭===-,解得1192a =,所以此人第三天走的路程为23148a a q =⋅=,故A 错;此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;此人第二天走的路程为213789694.54a a q =⋅=≠=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正确; 故选:BD.本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型. 30.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.31.BD 【分析】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于111222n n n n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和. 【详解】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的等比数列,故A 错误;因为11422n n na n-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确;因为23112222n n S n +=⨯+⨯++⋅,342212222n n S n +=⨯+⨯++⋅,所以 231212222n n n S n ++-=⨯+++-⋅()22212212nn n +-=-⋅-,故2(1)24n n S n +=-⨯+,故C 错误;因为111222n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2(1)22nn n n n T ++==, 故D 正确. 故选:BD本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题. 32.BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 33.ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案.对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题. 34.BCD 【分析】根据间隔递增数列的定义求解. 【详解】 A. ()1111111n k n n n k k n a a a a qq q a q +---+=-=--,因为1q >,所以当10a <时,n k n a a +<,故错误;B. ()()244441++n kn n kn a a n k n k k n k n n k n n k n +⎛⎫⎛⎫+-⎛⎫-=++-+=-= ⎪⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,令24t n kn =+-,t 在n *∈N 单调递增,则()1140t k =+->,解得3k >,故正确;C. ()()()()()()21212111n kn n kn k n a a n k n k ++⎡⎤-=++--+-=+---⎣⎦,当n 为奇数时,()2110kk --+>,存在1k 成立,当n 为偶数时,()2110kk +-->,存在2k ≥成立,综上:{}n a 是间隔递增数列且最小间隔数是2,故正确; D. 若{}n a 是间隔递增数列且最小间隔数是3,则()()()2222020202020n k n a a n k t n k n tn kn k tk +-=+-++--+=+->,n *∈N 成立,则()220k t k +->,对于3k ≥成立,且()220k t k +-≤,对于k 2≤成立即()20k t +->,对于3k ≥成立,且()20k t +-≤,对于k 2≤成立所以23t -<,且22t -≥解得45t ≤<,故正确.故选:BCD【点睛】本题主要考查数列的新定义,还考查了运算求解的能力,属于中档题.35.ACD【分析】根据新定义进行判断.【详解】A .若数列{}n a 是单增数列,则11111111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1110n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确; B .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确;D .若112n n a ⎛⎫=-- ⎪⎝⎭,则111()121()2n n n b =-----, 首先函数1y x x=-在(0,)+∞上是增函数, 当n 为偶数时,11()(0,1)2n n a =-∈,∴10n n n b a a =-<, 当n 为奇数时,11()2n n a =+1>,显然n a 是递减的,因此1n n n b a a =-也是递减的, 即135b b b >>>,∴{}n b 的奇数项中有最大值为13250236b =-=>, ∴156b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .【点睛】本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。
江苏省如东中学高考数学冲刺猜题卷
2008年江苏省如东中学高考猜题卷第Ⅰ卷(必做题)(考试时间:120分钟,满分160分)一:填空题(本大题共14小题,每小题5分,共70分,请把答案直接写在横线上) 1.已知集合{}2,1,0=M ,{}M a a x x N ∈==,2,则集合=N M .2.一个容量为20的样本数据,分组后,组距与频数如下:[)[)[)[)10,20,2;20,30,3;30,40,4;40,50,5;[)[)50,60,4;60,70,2。
则样本在(0,50)上的频数为.3.设有一条回归直线方程为2 1.5y x =-,则当变量x 增加一个单位时,y 平均减少 个单位. 4.奇函数32()1f x ax bx cx x =++=在处有极值,则3a b c ++的值为 . 5. 命题2",10"x R x ∃∈+<的否定是 .6已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则)34()34(-+f f 的值为 .7定义运算c a bc ad d b -=,若复数i ix +-=324,i i y 212--= 1x i x+-,则=y . 8.已知x R ∈,[x ]表示不大于x 的最大整数,如[]π=3,[]-=-121,[]120=, 则使[]x -=13成立的x 的取值范围是____ ___.9.已知圆222(0)x y a a +=>与直线y bx =的交点是(,4)M c ,过此交点的圆的切线是325x dy +=,则b 的值分别是 .10.化简tan70cos103sin10tan702cos40+-= . 11.设56)(2+-=x xx f ,若实数y x ,满足条件()()015f x f y y -≤⎧⎨<≤⎩,则xy的最大值是 . 12.一个圆锥有三条母线两两垂直,则它的侧面展开图的圆心角为 . 13.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 .14.设集合{,1},{,1,2},,,{1,2,3,,9}P x Q y P Q x y ==⊆∈,且在直角坐标平面内,从所有满足这些条件的有序实数对(,)x y 所表示的点中任取一个,其落在圆222x y r +=内的概率恰为27,则2r 的一个可能的正整数值是 (只需写出一个即可).二、解答题(本大题共6小题,共90分,解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分14分)△ABC 的三边为a ,b ,c ,已知22()CA CB c a b ⋅=--,且2=+b a ,(1)求C cos 的值(2)求△ABC 面积S 的最大值.16.(本小题满分14分)已知数列{}n a 的前n 项和是n S ,且满足2n n S a =-(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足21()n n a b n n N +⋅=-∈,求数列{}n b 的前n 项和T (3) 出?并说明理由。
2025届江苏省南通市如东高级中学数学高三上期末复习检测试题含解析
2025届江苏省南通市如东高级中学数学高三上期末复习检测试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()()()cos 0,0f x A x A ωϕω=+>>的图象如图所示,()()sin g x A x ωϕ=--,若将()y f x =的图象向左平移()0a a >个单位长度后所得图象与()y g x =的图象重合,则a 可取的值的是( )A .112π B .512π C .712π D .11π122.若关于x 的不等式1127k xx ⎛⎫≤ ⎪⎝⎭有正整数解,则实数k 的最小值为( )A .9B .8C .7D .63.费马素数是法国大数学家费马命名的,形如()221nn N +∈的素数(如:02213+=)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是( ) A .215B .15C .415D .134.已知函数()cos 23sin 21f x x x =++,则下列判断错误的是( ) A .()f x 的最小正周期为π B .()f x 的值域为[1,3]-C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,04π⎛⎫-⎪⎝⎭对称 5.在棱长为a 的正方体1111ABCD A B C D -中,E 、F 、M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 、11A D 上,且11(0)A P AQ m m a ==<<,设平面MEF 平面MPQ l =,则下列结论中不成立的是( )A .//l 平面11BDDB B .l MC ⊥C .当2am =时,平面MPQ MEF ⊥ D .当m 变化时,直线l 的位置不变6.已知斜率为2的直线l 过抛物线C :22(0)y px p =>的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点M 的纵坐标为1,则p =( ) A .1B .2C .2D .47.已知函数()5sin 12f x x π⎛⎫=+ ⎪⎝⎭,要得到函数()cos g x x =的图象,只需将()y f x =的图象( )A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 8.已知函数()1xf x xe-=,若对于任意的0(0,]x e ∈,函数()20()ln 1g x x x ax f x =-+-+在(0,]e 内都有两个不同的零点,则实数a 的取值范围为( ) A .(1,]eB .2(,]e e e-C .22(,]e e e e-+ D .2(1,]e e-9.已知正项等比数列{}n a 中,存在两项,m n a a ,使得13m n a a a ⋅=,65423a a a =+,则14m n+的最小值是( ) A .32B .2C .73D .9410.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为( )A .7πB .6πC .5πD .4π11.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有( ) A .8种B .12种C .16种D .20种12.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37D .928二、填空题:本题共4小题,每小题5分,共20分。
江苏省如东高中2007-2008学年第一学期高三第二次阶段测试(数学)
江苏省如东高级中学2007-2008学年第一学期第二次阶段测试高三数学试题2007.10.7第I 卷 (选择题,共50分)一.选择题:本大题共有6小题,每小题5分,共30分,在每小题给出的四个选项中,有且只有一项是符合题目要求的。
1.若22(1)(32)x x x i-+++是纯虚数,则实数x的值是( )A . 1B . 1-C . 1±D . -2 2.下列函数中,在)4,0(π内递减,且关于直线4π=x 对称的函数是( )A.x y 2tan =B.)2cos(x y +=πC. )22cos(x y +=πD.|2sin |x y =3.2|log |y x =的定义域为[, ]a b , 值域为[0, 2]则区间[, ]a b 的长度b a -的最小值为 ( )A .3B .43C .2D .234.若()sin()sin()(0)44f x a x b x ab ππ=++-≠是偶函数,则点(,a b )的轨迹方程 ( ) . 0(0)A x y x -=≠ . 0(0)B x y x +=≠. 20(0)C x y x -=≠ . 20(0)D x y x +=≠5.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足[)(),0,s i n s i n AB AC OP OA AB B AC Cl l =++??uu u r uuu ruu u r uu r uu u r uuu r.则P 点的轨迹一定通过ABC ∆的( ) (A)重心 (B )垂心 (C )内心 (D )外心 6.已知两个函数()f x 和()g x 的定义域和值域都是集合{1,2,3},其定义如下表:则方程[()]g f x x =的解集为 ( )A .{1}B .{2}C .{3}D .∅二、填空题:本大题共10小题,第7~11题每小题5分,第12~16题每小题6分,共55分.答案填在题中横线上7.向量=(n,1)与=(4,n)共线且方向相同,则n = __▲ . 8.在△ABC 中,已知15,3,5,4AB CA AB AC BAC ⋅===∠则= _▲ .9.已知ABCDEF 是正六边形,且,AB a AE b ==,则CD = _▲ (用,a b 表示).10.求值00cos10(tan10sin 50∙= _▲ 11.已知向量25(cos sin )(cos sin )||a ααb ββa b =-=,,=,,,则cos()αβ-= _▲ .12.函数12121x x y +-=+的值域是 _▲ .13.曲线)4cos()4sin(2ππ-+=x x y 和直线21=y 在y 轴右侧的交点横坐标从小到大依次记为,,,,321⋅⋅⋅P P P 则||42P P 等于 _ ▲ .14.已知2()lg(87)f x x x =-+-在(, 1)m m +上是增函数, 则m 的取值范围是 _▲ .15.定义在] ,[22-上的偶函数()g x ,当0x ≥时()g x 单调递减, 若 (1) ()g m g m -<,则m 的取值范围是 _▲ .16.若钝角三角形三个内角的度数成等差数列,且最大边与最小边长度的比为m ,则m 的取值范围是 ▲ .三、解答题:本大题共5小题,每题15分,共75分.解答应写出文字说明,证明过程或演算17.设,)2cos ,sin 2(x x =,x ,)1cos (-=其中x ∈[0,2π]. (1)求f (x )=·的最大值和最小值;(2)当 OA ⊥OB ,求|AB |.18.在△ABC 中,A ,B ,C 是三角形的三内角,a ,b ,c 是三内角对应的三边长,已知222.b c a bc +-=(Ⅰ)求角A 的大小;(Ⅱ)若222sin sin sin A B C +=,求角B 的大小19.某公司有价值a 万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值.假设附加值y 万元与技术改造投入x 万元之间的关系满足:①y 与x a -和x 的乘积成正比;②当时2ax =,2a y =;③.)(20t x a x≤-≤其中t 为常数,且]1,0[∈t .(1)设)(x f y =,求出)(x f 的表达式,并求出)(x f y =的定义域;(2)求出附加值y 的最大值,并求出此时的技术改造投入的x 的值 20.已知函数f (x )=(x -a )(x -b )(x -c ).(1)求证:()f x '=(x -a )(x -b )+(x -a ) (x -c )+(x -b ) (x -c );(2)若f (x )是R 上的增函数,是否存在点P ,使f (x )的图像关于点P 中心对称?如果存在,请求出点P 坐标,并给出证明;如果不存在,请说明理由. .21.对于函数y =f (x )( x ∈D ,D 为函数定义域),若同时满足下列条件:① f (x )在定义域内单调递增或单调递减;② 存在区间[a ,b ]D ⊆,使f (x )在[a ,b ]上的值域是[a ,b ],那么把y =f (x )(x )D ∈称为闭函数.(1) 求闭函数y = –x 3符合条件②的区间[a ,b ]; (2)判定函数f (x )= 31((0,))4x x x+∈+∞是否为闭函数?并说明理由;(3) 若()f x =k +k 的取值范围..江苏省如东高级中学2007-2008学年第一学期第二次阶段测试高三数学试题(加试)2007.10.7一、填空题:本大题共5小题,每小题4分,共20分1. 已知矩阵121A c ⎡⎤=⎢⎥⎣⎦的一个特征值为λ,10⎡⎤⎢⎥⎣⎦是A 的属于λ的特征值向量,则=-1A2. 若cos sin sin cos x θθθθ=(R θ∈),则函数2()23f x x x =+-的最大值为3. 设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2008(x )=4. 给出下列命题:①若函数3()f x x =,则(0)0f '=;②若函数2()21f x x =+,图像上(1,3)P 及 邻近点(1,3)Q x y +∆+∆, 则42yx x∆=+∆∆;③加速度是动点位移函数()S t 对时间t 的导数;④2lg 2x x y x =+,则2222212x x x x x y x ⋅-⋅'=-.其中正确的命题为 .(写上序号)二、解答题:本大题共2小题,共20分.解答应写出文字说明,证明过程或演算5. (本题8分) 已知函数()ln f x x x =+. (Ⅰ)求函数()f x 在区间21,e ⎡⎤⎣⎦上的最值;(Ⅱ)对x D ∈,如果函数()F x 的图像在函数()G x 的图像的下方,则称函数()F x 在D 上被函数()G x 覆盖.求证:函数()f x 在区间()1,+∞上被函数2()g x x =覆盖6.(本题12分) 已知二次函数2()f x ax bx c =++, 满足(0)(1)0f f ==且()f x 的最小值是14-.(Ⅰ)求()f x 的解析式;(Ⅱ)设直线21:(0,)2l y t t t t =-<<其中为常数,若直线l 与()f x 的图象以及y 轴这二条直线和一条曲线所围成封闭图形的面积是1()S t , 直线l 与()f x 的图象以及直线12x =这二条直线和一条曲线所围成封闭图形的面积是2()S t ,已知121()()()2g t S t S t =+,当()g t 取最小值时,求t 的值.江苏省如东高级中学2007-2008学年第一学期第二次阶段测试高三数学试题参考答案一、 选择题 ACBBAC二、 填空题7,28,23π9,)(21a b - 10,-2 11,35 12,1(,1)2- 13,π 14,[1,3] 15,1[1,)2-16,),2(+∞三、 解答题17解:⑴f (x )=·= -2sin x cos x +cos2x =)42cos(2π+x .∵0≤x ≤2π , ∴4π≤2x +4π≤45π.∴当2x +4π=4π,即x =0时,f (x )max =1;当2x +4π=π,即x=83π时,f (x )min = -2.⑵⊥即f (x )=0,2x +4π=2π,∴x =8π.此时||22)12(cos )cos sin 2(-++=x x x=222)12(cos cos sin 4cos sin 4-+++x x x x x=x x x 2cos 2sin 22cos 27272++- =4cos 4sin 24cos 27272πππ++- =231621-. 18,解:(Ⅰ)在△ABC 中,bc a c b Abc a c b +=+=-+222222cos 2又3,21cos π==∴A A ……………………………… 6分(Ⅱ)由正弦定理,又222sin sin sin A B C +=,故222222444a b c R R R +=即: 222a b c += 故△ABC 是以角C 为直角的直角三角形又,36A B ππ=∴=………………………………………………12分19,解:(1)设()y k a x x =-.由2a x =,2a y =,得:k =4. 于是,4()y a x x =-.解关于x 的不等式:02()x t a x ≤≤-,得0≤x ≤212att+. ∴函数的定义域为2[0,]12att+,t 为常数,]1,0[∈t . (2)22)2(4)(4a a x x x a y +--=-= . 当2max ,2,121,2212a y a x t a t at ==≤≤≥+时即时; 当]212,0[)(4,210,2212tat x x a y t a t at +-=≤≤<+在时即时上为增函数,故当212atx t=+时,2max 28(12)at y t =+. 故112t ≤≤当时,投入2a x =时,附加值y 最大为2a 万元;当210<≤t 时,投入t atx 212+=时,附加值y 最大为22)21(8t at +万元 20,解:(1)∵ f (x )=(x -a )(x -b)(x -c )=x3-(a+b +c)x 2+(ab+bc+ac )x -abcf ′(x )=3 x 2-2(a+b +c)x +(ab+bc+ac )=[ x 2- (a+b )x +ab ]+[ x 2- (a+c )x +ac ]+[ x 2- (b+c )x +bc ] =(x -a )(x -b )+(x -a )(x -c ) +(x -b )(x -c ).(2)∵f (x )是R 上的单调函数,∴f ′(x )≥0,对x ∈R 恒成立,即 3x 2-2(a+b+c )x+(ab+bc+ca )≥0 对x ∈R 恒成立. ∴△≤0, 4(a+b+c )2-12(ab+bc+ca ) ≤0, ∴ (a -b )2+(a -c )2+ (b -c )2≤0,∴ a=b=c . ∴f (x )=(x -a )3 , ∴f (x )关于点(a ,0)对称.证明如下:设点P (x ,y )是 f (x )=(x -a )3图像上的任意一点,y=(x -a )3,点P 关于点(a ,0)对称的点P ′(2a -x ,-y ), ∵(2a -x -a )3=(2a -x )3= -(x -2a )3=-y ,∴点P ′在函数f (x )=(x -a )3的图像上,即函数f (x )=(x -a )3关于点(a ,0)对称21,解 (1)由y =x -3在[a ,b ]上为减函数,得 33,,.b a a b a b ⎧=-⎪=-⎨⎪<⎩可得a = –1 , b = 1 ,∴ 所求区间是[–1,1].(2)取x 1 = 1 , x 2 = 10,可得f (x )不是减函数;取x 1 =21,10x =1100,可得f (x )在(0 , +∞)不是增函数,所以f (x )不是闭函数. (3)设函数符合条件②的区间为[a ,b ],则a k b k =+=+⎧⎪⎨⎪⎩故a , b 是方程x=k +的两个实根,命题等价于22(21)20,2,x k x k x x k ⎧-++-=⎪≥-⎨⎪≥⎩有两个不等实根.当k 2≤-时,2222212,2(21)4(2)0,22(21)20.k k k k k +⎧>-⎪⎪⎪+-->⎨⎪+++-≥⎪⎪⎩解得:94k >-,∴ 9(,2]4k ∈--;当2k >-时,222221,2(21)4(2)0,(21)20.k k k k k k k k +⎧>⎪⎪⎪+-->⎨⎪-++-≥⎪⎪⎩这时k 无解.所以 k 的取值范围是9(,2]4--.参考答案一、1. ⎥⎦⎤-⎢⎣⎡1201 2. 0 3. sinx 4 ①② 二、5.(12分) 解:(1)1()10f x x'=+>在2[1,]e 恒成立. ∴()f x 在2[1,]e 为增函数. ………………………3分 ∴min ()(1)2f x f ==, 22max ()()2f x f e e ==+ ……………………………6分(2)2()()ln g x f x x x x -=--1(()())210g x f x x x'-=-->在(1,)+∞恒成立. ()()g x f x -在(1,)+∞为增函数. ……………………………9分 ∴()()(1)(1)0g x f x g f ->-= 得证6. 解: (1)由二次函数图象的对称性, 可设211()()24f x a x =--,又(0)01f a =∴= 故2()f x x x =-…………………5分(2) 据题意, 直线l 与()f x 的图象的交点坐标为2(,)t t t -,由定积分的几何意义知1222221201()()()[()()][()()]2t t g t S t S t t t x x dx x x t t dx =+=--------⎰⎰=1222220[()()][()()]ttx x t t dx t t x x dx ---+---⎰⎰132322220[()()]|[()()]|3232t t x x x x t t x t t x =---+---=32431132212t t t -+-+而22111'()43(861)(41)(21)222g t t t t t t t =-+-=--+=---令1'()0,4g t t =⇒=或12t =(不合题意,舍去)当111(0,),'()0,()[,),'()0,(),442t g t g t t g t g t ∈<∈≥递减,递增故当14t =时,()g t 有最小值。
江苏省南通市如东高级中学2022-2023学年高三上学期12月阶段测试数学试题(含答案解析)
A. 1
B. 0
C.1
D. 2
二、多选题 9.2021 年 7 月 1 日是中国共产党建党 100 周年,某单位为了庆祝中国共产党建党 100 周年,组织了学党史、强信念、跟党走系列活动,对本单位 200 名党员同志进行党史测
试并进行评分,将得到的分数分成 6 组:70,75 ,75,80 ,80,85 ,85,90 ,90,95 , 95,100 ,得到如图所示的频率分布直方图.下列说法正确的是( )
江苏省南通市如东高级中学 2022-2023 学年高三上学期 12 月 阶段测试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若集合 M x∣y 4x x2 , N ∣x 22x 2 ,则 M N ( )
右两边均按相同的比例逐步递减,且明间与相邻的次间的宽度比为 8 : 7 .若设明间的宽度
为 a ,则该大殿 9 间的总宽度为( )
A.
7 8
4
a
B.15a
14
a
7 8
5
C.
14a
1
7 8
4
D.15a
14a
7 8
4
4.已知函数 f x sinπ x 3cosπ x( 0) 在0,1 内恰有 3 个最值点和 4 个零点,则
边与单位圆的交点.若
OP
在
x
轴上的投影向量的坐标为
1 3
,
0
,则
cos
2
________.
14.已知数列an 满足 an
an1
an2
1,
a1
2,
江苏省南通市如东高级中学高三数学阶段性考试卷 人教版
江苏省南通市如东高级中学高三数学阶段性考试卷第 I 卷 ( 选择题 , 共 5 0 分 )一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的 .1. 己知集合M={(x ,y)|x+y=2}, N={(x,y)|x-y=4}, 则 M ∩N=A. {x=3,y= -1}B. (3, -1) c. { 3,-1} D. {(3,-1)}2. 不等式x x --213≥1 的解集是: A. {x |31≤x<2} B. {x 43≤x<2} C. {x |x>2或x ≤43} D. {x |x>2} 3. 函数 y=-x (2+x) (x ≥0) 的反函数的定义域为A. (-∞ ,1]B.(O,1]C. [0,+ ∞]D. (-∞ ,0]4. 己知 m,n ∈R ,则 "m ≠O" 是 " mn ≠O" 的A. 充分但不必要条件B. 必要但不充分条件C 充要条件 D. 既不充分也不必要条件5. 为确保信息安全 , 信息需加密传输 , 发送方由明文→密文 ( 加密 ), 接收方由密文→明 文 ( 解密 ), 己知加密规则为 : 明文 a,b,c,d 对应密文 a+2b ,2b + c, 2c + 3d,4d. 例如 , 明 文 1,2,3,4 对应密文 5,7,18,16. 当接收方收到密文 14,9,23,28 时 , 则解密得到的明文为A. 7,6,1,4B. 6,4,1,7C. 4,6, 1, 7D. 1,6,4,76.已知f(x)=a-(2/2x +1)是定义域在R 的奇函数,则f -1 (53)的值是A. 2 B.53 C.21 D.35 7.若函数f(x)=a X +log a (x+1)在[0,1] 上的最大值与最小值的和为a,则a 的值为:A.1/4B. 1/2C. 2D. 48. 函数f(x)的定义域为开区间(a,b),导函数 f'(x),在(a,b)内的图象如图所示 ,则函数f(x)在开区间(a,b)内有极小点A. 1个B.2个C. 3个D. 4个9. 若f(x)是R 上的减函数,并且f(x)的图象经过点 A(-1,5)和B(3-1) , 则不等式 |f(x+l)-2|<3 的解集是A. [-2,2]B. (-2,2)C.[-1,5]D.(-1,5)1 0 .函数f(x)=x ·lg(x+ 2)-1 的图象与 x 轴的交点个数有A. 0 个B. 1 个C. 2 个D. 3 个第 II 卷 ( 非选择题 , 共 100 分)二、填空题 :本大题共6小题,每小题5分,共30分 .把答案填在答卷纸相应位置上11 我们知道反比例函数y=x 1图象的对称中心为O(0,0),那么函数y=23--x x 图象的对称中心坐标为 ▲12. 对于函数f(x) 定义域中任意 X 1,X 2(X 1≠X 2) , 有如下结论(1) f(X l +X 2)=f(X l )f(X 2), (2) f(X 1*X 2)=f(X l )+f(X 2):(3)f(X l )-f(X 2)/X 1-X 2>0 (4) f[(X 1+X 2)/2] >[f(X 1)+f(X 2)]/2当 f(x)=lgx 时 , 以上结论正确的序号为 ▲13. 若对任意x ∈[-1,1],不等式2tx+t 2-3<0恒成立 , 则实数 t 的取值范围是 ▲14.函数f(X)对于任意实数X 满足条件f(X+2)=f(x )1,若f(1)=-5, 则f [f(5)]= ▲15. 设函数 f(x)=⎪⎩⎪⎨⎧<-=>0,10,00,1x x x 若g(X)=(X-1)2f(X-1),y=g(X)的反函数y=g -1(X),则g(-1)g -1(-4)的值为 ▲16. 定义在 [ -2,2]施工的偶函数f(x) , 它在 [O,2]上的图象是一条如同所示的线段 , 则不等式f(x)+f(-x)>x 的解集为 ▲三解答题:本大题共5小题,共70分.请把解答写在答题卷规定的答题框内.解答应 写出文字说明、证明过程或演算步骤17. ( 本小题满分 15 分 )已知函数 f(x) = x 3 -3x.(1)求函数f(x)在[-3,23]上的最大值和最小值 (2) 过点 P(2,-6)作曲线y=f(x)的切线 , 求此切线的方程 .18. (本题满分15分)己知函数f(x)=x-2+24x -(1) 求f(x)的定义域 ;(2) 判断f(x)的奇偶性,并说明由:(3) 求f(x) 的值域 .19. ( 本小题满分 14 分 )集合A 是由适合以下性质的函数f(x)组成的:对于任意的x ≥0,f(x)∈(1,4],且f(x)[0, + ∞ ) 上是减函数 .(1) 判断函数 f 1(x)=2-x 及f 2 (x) =1+3·(21)x (x ≥O) 是否在集合A 中?若不在集合A 中 , 试说明理由 ;(2)对于(1)中你认为是集合A 中的函数f(x),不等式f(x)+f(x+2)≤k 对于任意的x ≥O 总成立.求实数k 的取值范围 .20. ( 本小题满分 14 分 )已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入2.7万元 .设该公司年内共生产该品牌服装x 千件并全部销售完,每千件的销售收入为 R(x) 万元,且 R(X)=⎪⎩⎪⎨⎧>-≤<-)10(31000108)100(3018.1022x x xx x (1) 写出年利润 w ( 万元〉关于年产量 x ( 千件〉的函数解析式 :(2) 年产量为多少千件时 , 该公司在这一品牌服装的生产中所获年利润最大 ? ( 注 : 年利润 = 年销售收入一年总成本〉21. ( 本小题满分 12 分 )对于定义域为 D 的函数y=f(x),若同时满足下列条件 :①f(x)在D 内单调递增或单调递减 :②存在区间 [a,b] ∈D,使f(x) 在 [a,b]上的值范围为[a,b];那么把 y =f(x) (x ∈D) 叫闭函数。
如东实验中学数学高三上期末经典练习卷(含答案解析)
一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D<a b <2.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4SB .5SC .6SD .7S3.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆则a 的值为( ) A .2BCD .14.已知实数x 、y 满足约束条件00134x y x ya a ⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .15.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形6.已知数列{}n a的首项110,1n n a a a +==+,则20a =( ) A .99B .101C .399D .4017.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1168.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .99.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .50510.已知集合2A {t |t 40}=-≤,对于满足集合A 的所有实数t ,使不等式2x tx t 2x 1+->-恒成立的x 的取值范围为( )A .()(),13,∞∞-⋃+B .()(),13,∞∞--⋃+C .(),1∞--D .()3,∞+11.已知正项等比数列{}n a 的公比为3,若229m n a a a =,则212m n+的最小值等于( ) A .1B .12C .34 D .3212.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为( ) A .15B .25C .35D .4513.已知变量x , y 满足约束条件13230x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最小值为( )A .1B .2C .3D .614.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( ) A .63B .61C .62D .5715.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 二、填空题16.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.17.已知实数a >b >0,且a +b =2,则3a−b a 2+2ab−3b 2的最小值为____18.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.19.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________.20.已知数列{}n a 满足:11a =,{}112,,,n n n a a a a a +-∈⋅⋅⋅()*n ∈N ,记数列{}n a 的前n项和为n S ,若对所有满足条件的{}n a ,10S 的最大值为M 、最小值为m ,则M m +=______.21.已知数列{}n a 的前n 项和n s =23n -2n+1,则通项公式.n a =_________22.设a >1,b >0,若a +b =2,则2a−1+1b的最小值为_____________.23.在数列{}n a 中,“()n 12na n N*n 1n 1n 1=++⋯+∈+++,又n n n 11b a a +=,则数列{}n b 的前n 项和n S 为______.24.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c,且cos 3C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.25.若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______. 三、解答题26.ABC 的内角A 、B 、C 所对的边分别为a b c ,,,且sin sin sin sin a A b B c C B +=+()1求角C ;()2求cos 4A B π⎛⎫-+ ⎪⎝⎭的最大值. 27.在等差数列{}n a 中,36a =,且前7项和756T =. (1)求数列{}n a 的通项公式;(2)令3nn n b a =⋅,求数列{}n b 的前n 项和n S .28.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式.(2)若数列{}n n a b +的首项为1,公比为q 的等比数列,求{}n b 的前n 项和n S .29.已知等比数列{a n }的前n 项和为S n ,a 114=,公比q >0,S 1+a 1,S 3+a 3,S 2+a 2成等差数列.(1)求{a n }; (2)设b n ()()22212n n n n c n b b log a +==+,,求数列{c n }的前n 项和T n .30.已知函数()21f x x =-. (1)若不等式121(0)2f x m m ⎛⎫+≥+> ⎪⎝⎭的解集为][(),22,-∞-⋃+∞,求实数m 的值; (2)若不等式()2232y y af x x ≤+++对任意的实数,x y R ∈恒成立,求正实数a 的最小值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.D 2.C 3.B 4.D 5.C 6.C 7.A 8.D 9.D 10.B 11.C12.A13.A14.D15.B二、填空题16.4【解析】(前一个等号成立条件是后一个等号成立的条件是两个等号可以同时取得则当且仅当时取等号)【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式(1)当且仅当时取等号;(2)当且仅17.3+54【解析】【分析】由a+b=2得出b=2﹣a代入代数式中化简后换元t=2a﹣1得2a=t+1得出1<t<3再代入代数式化简后得出2t6t-(t2+5)然后在分式分子分母中同时除以t利用基本不等18.9【解析】【分析】将分式展开利用基本不等式求解即可【详解】又x+2y=4即当且仅当等号成立故原式故填9【点睛】本题考查基本不等式求最值考查等价变换思想与求解能力注意等号成立条件19.【解析】【分析】【详解】试题分析:由题意知满足条件的线性区域如图所示:点而目标函数仅在点处取得最大值所以考点:线性规划最值问题20.1078【解析】【分析】根据数列的递推关系求出数列的前四项的最大最小值得出何时和最大何时和最小进而求得结论【详解】解:因为数列{an}满足:即解得;或或;或所以最小为4最大为8;所以数列的最大值为时21.【解析】试题分析:n=1时a1=S1=2;当时-2n+1--2(n-1)+1=6n-5a1=2不满足所以数列的通项公式为考点:1数列的前n项和;2数列的通项公式22.3+22【解析】【分析】由已知可得a-1+b=1从而有2a-1+1b=(2a-1+1b)(a-1+b)展开后利用基本不等式即可求解【详解】由题意因为a>1b>2满足a+b=2所以a-1+b=1且a-23.【解析】【分析】运用等差数列的求和公式可得可得由数列的裂项相消求和化简可得所求和【详解】解:则可得数列的前n项和故答案为【点睛】本题考查数列的前项和首先运用数列的裂项法对项进行分解然后重新组合最终达24.【解析】【分析】根据正弦定理得到再根据计算得到答案【详解】由正弦定理知:即即故故答案为【点睛】本题考查了正弦定理外接圆面积意在考查学生的计算能力25.【解析】当且仅当时取等号点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才能应用否则会出现26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D 中,因为0≤<,由不等式的平方法则,22<,即a b <.选D.2.C解析:C 【解析】 【分析】先通过数列性质判断60a <,再通过数列的正负判断n S 的最小值. 【详解】∵等差数列{}n a 中,390a a +<,∴39620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S . 故答案选C本题考查了数列和的最小值,将n S 的最小值转化为{}n a 的正负关系是解题的关键.3.B解析:B 【解析】试题分析:由已知条件及三角形面积计算公式得131sin ,2,232c c π⨯⨯=∴=由余弦定理得考点:考查三角形面积计算公式及余弦定理.4.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+,得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.5.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.6.C解析:C 【解析】 【分析】 【详解】由11n n a a +=+,可得)21111n a ++==,是以1为公差,以1为首项的等差数列.2,1n n a n ==-,即220201399a =-=.故选C.7.A解析:A 【解析】依题意,113713113713132412226132a a a S b b b T +⋅===+⋅.8.D解析:D 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.9.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.10.B解析:B 【解析】 【分析】由条件求出t 的范围,不等式221x tx t x +->-变形为2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,再由不等式的左边两个因式同为正或同为负处理. 【详解】由240t -≤得,22t -≤≤,113t ∴-≤-≤不等式221x tx t x +->-恒成立,即不等式2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,∴只需{1010x t x +->->或{1010x t x +-<-<恒成立, ∴只需{11x tx >->或{11x tx <-<恒成立,113t -≤-≤只需3x >或1x <-即可. 故选:B . 【点睛】本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.11.C解析:C 【解析】∵正项等比数列{}n a 的公比为3,且229m n a a a =∴2224222223339m n m n a a a a --+-⋅⋅⋅=⋅=∴6m n +=∴121121153()()(2)(2)62622624m n m n m n n m ⨯++=⨯+++≥⨯+=,当且仅当24m n ==时取等号. 故选C.点睛:利用基本不等式解题的注意点:(1)首先要判断是否具备了应用基本不等式的条件,即“一正、二正、三相等”,且这三个条件必须同时成立.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等. (3)多次使用基本不等式求最值时,要注意只有同时满足等号成立的条件才能取得等号.12.A解析:A 【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案. 【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩, 211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.13.A解析:A 【解析】 【分析】画出可行域,平移基准直线20x y +=到可行域边界的点()1,1C -处,由此求得z 的最小值. 【详解】画出可行域如下图所示,平移基准直线20x y +=到可行域边界的点()1,1C -处,此时z 取得最小值为()2111⨯+-=. 故选:A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题.14.D解析:D 【解析】解:由数列的递推关系可得:()11121,12n n a a a ++=++= , 据此可得:数列{}1n a + 是首项为2 ,公比为2 的等比数列,则:1122,21n n n n a a -+=⨯⇒=- ,分组求和有:()5521255712S ⨯-=-=- .本题选择D 选项.15.B解析:B 【解析】【分析】利用公式1n n n a S S -=-计算得到11323,2n n n n S S S S ++==,得到答案. 【详解】由已知1112n n a S a +==,,1n n n a S S -=- 得()12n n n S S S -=-,即11323,2n n n n S S S S ++==, 而111S a ==,所以13()2n n S -=.故选B. 【点睛】本题考查了数列前N 项和公式的求法,利用公式1n n n a S S -=-是解题的关键.二、填空题16.4【解析】(前一个等号成立条件是后一个等号成立的条件是两个等号可以同时取得则当且仅当时取等号)【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式(1)当且仅当时取等号;(2)当且仅 解析:4 【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当2224a b ==时取等号). 【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈,a b +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.17.3+54【解析】【分析】由a+b =2得出b =2﹣a 代入代数式中化简后换元t =2a ﹣1得2a =t+1得出1<t <3再代入代数式化简后得出2t6t-(t2+5)然后在分式分子分母中同时除以t 利用基本不等 解析:3+√54【解析】 【分析】由a +b =2得出b =2﹣a ,代入代数式中,化简后换元t =2a ﹣1,得2a =t +1,得出1<t <3,再代入代数式化简后得出2t6t−(t 2+5),然后在分式分子分母中同时除以t ,利用基本不等式即可求出该代数式的最小值. 【详解】解:由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,3a−ba 2+2ab−3b 2=3a−b (a−b)(a+3b)=3a−(2−a)[a−(2−a)]⋅[a+3(2−a)]=4a−2(2a−2)(6−2a)=2(2a−1)(2a−2)(6−2a),令t =2a ﹣1∈(1,3),则2a =t +1, 所以,3a−b a 2+2ab−3b 2=2(2a−1)(2a−2)(6−2a)=2t(t−1)[6−(t+1)]=2t (t−1)(5−t)=2t 6t−(t 2+5)=26−(t+5t )≥6−2√t⋅5t=6−2√5=3−√5=√5(3−√5)(3+√5)=3+√54.当且仅当t =5t (1<t <3),即当t =√5时,等号成立. 因此,3a−b a 2+2ab−3b 2的最小值为3+√54.故答案为:3+√54.【点睛】本题考查利用基本不等式求最值,解本题的关键就是对代数式进行化简变形,考查计算能力,属于中等题.18.9【解析】【分析】将分式展开利用基本不等式求解即可【详解】又x +2y =4即当且仅当等号成立故原式故填9【点睛】本题考查基本不等式求最值考查等价变换思想与求解能力注意等号成立条件解析:9 【解析】 【分析】将分式展开,利用基本不等式求解即可 【详解】(4)(2)82416161x y xy x y xy xy xy xy xy++++++===+又x +2y =4≥即2xy ≤,当且仅当2,1x y ==等号成立,故原式9≥ 故填9 【点睛】本题考查基本不等式求最值,考查等价变换思想与求解能力,注意等号成立条件19.【解析】【分析】【详解】试题分析:由题意知满足条件的线性区域如图所示:点而目标函数仅在点处取得最大值所以考点:线性规划最值问题解析:1(,)3+∞【解析】 【分析】【详解】试题分析:由题意知满足条件的线性区域如图所示:,点(22)A ,,而目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,所以1133AB k a a ->=-∴> 考点:线性规划、最值问题.20.1078【解析】【分析】根据数列的递推关系求出数列的前四项的最大最小值得出何时和最大何时和最小进而求得结论【详解】解:因为数列{an}满足:即解得;或或;或所以最小为4最大为8;所以数列的最大值为时解析:1078 【解析】 【分析】根据数列的递推关系,求出数列的前四项的最大,最小值,得出何时和最大,何时和最小,进而求得结论. 【详解】解:因为数列{a n }满足:11a =,{}112,,,n n n a a a a a +-∈⋅⋅⋅()*n ∈N ,{}211a a a ∴-∈即211a a a -=解得22a =; {}3212,a a a a ∴-∈321a a ∴-=或322a a -= 33a ∴=或34a =;{}43123,,a a a a a ∴-∈431a a ∴-=或432a a -=,433a a -=,434a a -=所以4a 最小为4,4a 最大为8;所以,数列10S 的最大值为M 时,是首项为1,公比为2的等比数列的前10项和:()10112102312M ⨯-==-;10S 取最小值m 时,是首项为1,公差为1的等差数列的前10项和:()101011011552m ⨯-=⨯+⨯=; ∴1078M m +=.故答案为:1078. 【点睛】本题考查了数列的递推关系式,等比数列以及等差数列的通项公式与前n 项和公式,考查了推理能力与计算能力,属于中档题.本题的关键在于观察出数列的规律.21.【解析】试题分析:n=1时a1=S1=2;当时-2n+1--2(n-1)+1=6n-5a1=2不满足所以数列的通项公式为考点:1数列的前n 项和;2数列的通项公式解析:n a =2,1{65,2n n n =-≥ 【解析】试题分析:n=1时,a 1=S 1=2;当2n ≥时,1n n n a S S -=-=23n -2n+1-[23(1)n --2(n-1)+1]=6n-5, a 1=2不满足61n a n =-,所以数列{}n a 的通项公式为n a =2,1{65,2n n n =-≥.考点:1.数列的前n 项和;2.数列的通项公式.22.3+22【解析】【分析】由已知可得a-1+b=1从而有2a-1+1b=(2a-1+1b)(a-1+b)展开后利用基本不等式即可求解【详解】由题意因为a>1b>2满足a+b=2所以a-1+b=1且a- 解析:3+2√2【解析】 【分析】由已知可得a −1+b =1,从而有2a−1+1b=(2a−1+1b)(a −1+b),展开后利用基本不等式,即可求解. 【详解】由题意,因为a >1,b >2满足a +b =2, 所以a −1+b =1,且a −1>0,b >0, 则2a−1+1b =(2a−1+1b)[(a −1)+b]=3+2b a−1+a−1b≥3+2√2b a−1⋅a−1b=3+2√2,当且仅当2b a−1=a−1b且a +b =2,即a =3−√2,b =√2−1时取得最小值3+2√2.【点睛】本题主要考查了利用基本不等式求最值问题的应用,其中解答中根据题意配凑基本不等式的使用条件,合理利用基本不等式求得最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.23.【解析】【分析】运用等差数列的求和公式可得可得由数列的裂项相消求和化简可得所求和【详解】解:则可得数列的前n 项和故答案为【点睛】本题考查数列的前项和首先运用数列的裂项法对项进行分解然后重新组合最终达 解析:4nn 1+ 【解析】【分析】运用等差数列的求和公式可得()n 11na n n 1n 122=⋅+=+,可得()n n n 11411b 4a a n n 1n n 1+⎛⎫===- ⎪++⎝⎭,由数列的裂项相消求和,化简可得所求和. 【详解】 解:()n 12n 11na n n 1n 1n 1n 1n 122=++⋯+=⋅+=++++, 则()n n n 11411b 4a a n n 1n n 1+⎛⎫===- ⎪++⎝⎭, 可得数列{}n b 的前n 项和n 1111111S 4122334n n 1⎛⎫=-+-+-+⋯+- ⎪+⎝⎭14n 41n 1n 1⎛⎫=-=⎪++⎝⎭. 故答案为4nn 1+. 【点睛】本题考查数列的前n 项和,首先运用数列的裂项法对项进行分解,然后重新组合,最终达到求和目的,考查化简整理的运算能力,属于基础题.24.【解析】【分析】根据正弦定理得到再根据计算得到答案【详解】由正弦定理知:即即故故答案为【点睛】本题考查了正弦定理外接圆面积意在考查学生的计算能力 解析:9π【解析】 【分析】根据正弦定理得到()1sin sin A B C R +==,再根据cos 3C =计算1sin 3C =得到答案. 【详解】由正弦定理知:cos cos 2sin cos 2sin cos 2b A a B R B A R A B +=⋅⋅+⋅=, 即()1sin sin A B C R +==,cos C =,1sin 3C =, 即3R =.故29S R ππ==. 故答案为9π 【点睛】本题考查了正弦定理,外接圆面积,意在考查学生的计算能力.25.【解析】当且仅当时取等号点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才能应用否则会出现 解析:8【解析】1212412(2)()448b a a b a b a b a b a b +=∴+=++=++≥+= ,当且仅当2b a = 时取等号.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.三、解答题 26.()()124C π=2【解析】试题分析:(1)由正弦定理得到222a b c +=,再由余弦定理得到()222cos 024a b c C C C ab ππ+-==∈∴=,;(2)由第一问得到原式等价于3cos 44A A ππ⎛⎫--+ ⎪⎝⎭,化简后为2sin 6A π⎛⎫=+ ⎪⎝⎭,再根据角的范围得到三角函数的范围即可. 解析:()2221sin sin sin sin a A b B c C B a b c +=∴+=即222a b c +-=由余弦定理()222cos 0224a b c C C C ab ππ+-==∈∴=,(2cos 4A B π⎛⎫-+= ⎪⎝⎭31cos cos 2cos 442A A A A A A ππ⎫⎛⎫--+=-=+⎪ ⎪⎪⎝⎭⎝⎭2sin 6A π⎛⎫=+ ⎪⎝⎭()110,,6612A A ππππ⎛⎫∈+∈ ⎪⎝⎭,, 12sin 26A π⎛⎫-≤+≤ ⎪⎝⎭cos 4A B π⎛⎫-+ ⎪⎝⎭的最大值为227.(1)2n a n =;(2)S n =212n -•3n +1+32【解析】 【分析】(1)等差数列{a n }的公差设为d ,运用等差数列的通项公式和求和公式,计算可得所求通项公式;(2)求得b n =2n •3n ,由数列的错位相减法求和即可. 【详解】(1)等差数列{a n }的公差设为d ,a 3=6,且前7项和T 7=56. 可得a 1+2d =6,7a 1+21d =56,解得a 1=2,d =2,则a n =2n ; (2)b n =a n •3n =2n •3n ,前n 项和S n =2(1•3+2•32+3•33+…+n •3n ), 3S n =2(1•32+2•33+3•34+…+n •3n +1), 相减可得﹣2S n =2(3+32+33+ (3)﹣n •3n +1)=2•(()31313n --﹣n •3n +1),化简可得S n =212n -•3n +1+32.【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及化简运算能力,属于中档题.28.(1)32n a n =-+;(2)见解析 【解析】试题分析:(1)设等差数列{}n a 的公差为d .利用通项公式即可得出.(Ⅱ)由数列{}n n a b +是首项为1,公比为q 的等比数列,可得n b .再利用等差数列与等比数列的通项公式与求和公式即可得出. 试题解析:(1)设等差数列{}n a 的公差为d ,∵27382329a a a a +=-⎧⎨+=-⎩,∴1127232929a d a d +=-⎧⎨+=-⎩,解得113a d =-⎧⎨=-⎩,∴数列{}n a 的通项公式为32n a n =-+.(2)由数列{}n n a b +是首项为1,公比为q 的等比数列得1n n n a b q -+=,即132n n n b q --++=,∴132n n b n q -=-+,∴()()21147321n n S n q q q -⎡⎤=++++-+++++⎣⎦()()213112n n n q q q --=+++++. ∴当1q =时,()231322n n n n nS n -+=+=; 当1q ≠时,()31121nn n n q S q--=+-. 29.(1)a n 11()2n +=;(2)T n 2211311436(2)(3)n n ⎡⎤=--⎢⎥++⎣⎦. 【解析】 【分析】(1)根据等差中项的性质列方程,并转化为1,a q 的形式,由此求得q 的值,进而求得数列{}n a 的通项公式.(2)利用裂项求和法求得数列{}n c 的前n 项和n T . 【详解】(1)由S 1+a 1,S 3+a 3,S 2+a 2成等差数列, 可得2(S 3+a 3)=S 2+a 2+S 1+a 1, 即有2a 1(1+q +2q 2)=3a 1+2a 1q , 化为4q 2=1,公比q >0, 解得q 12=. 则a n 14=⋅(12)n ﹣111()2n +=; (2)b n 212222111()(2)(1)n n log a log n --===+,c n =(n +2)b n b n +2=(n +2)⋅22221111(1)(3)4(1)(3)n n n n ⎡⎤=-⎢⎥++++⎣⎦, 则前n 项和T n =c 1+c 2+c 3+…+c n ﹣1+c n14=[22222222221111111111243546(2)(1)(3)n n n n -+-+-++-+-+++]2211111449(2)(3)n n ⎡⎤=+--⎢⎥++⎣⎦ 2211311436(2)(3)n n ⎡⎤=--⎢⎥++⎣⎦.【点睛】本小题主要考查等差中项的性质,考查等比数列通项公式的基本量计算,考查裂项求和法,属于中档题.30.(1) 32m =;(2)4. 【解析】试题分析:(Ⅰ)先根据绝对值定义解不等式解集为][(),22,-∞-⋃+∞,再根据解集相等关系得122m +=,解得32m =.(Ⅱ)不等式恒成立问题,一般转化为对应函数最值问题,即()max 212322y ya x x --+≤+,根据绝对值三角不等式可得()max 21234x x --+=,再利用变量分离转化为对应函数最值问题: ()max 242y y a ⎡⎤≥-⎣⎦,根据基本不等式求最值: ()()224224242y y y y ⎡⎤+-⎢⎥-≤=⎢⎥⎣⎦,因此4a ≥,所以实数a 的最小值为4. 试题解析:(Ⅰ)由题意知不等式221(0)x m m ≤+>的解集为][(),22,-∞-⋃+∞. 由221x m ≤+,得1122m x m --≤≤+, 所以,由122m +=,解得32m =. (Ⅱ)不等式()2232y y a f x x ≤+++等价于212322y ya x x --+≤+, 由题意知()max 212322y ya x x --+≤+. 因为()()212321234x x x x --+≤--+=, 所以242y y a +≥,即()242y y a ⎡⎤≥-⎣⎦对任意y R ∈都成立,则()max 242y y a ⎡⎤≥-⎣⎦.而()()224224242y yy y ⎡⎤+-⎢⎥-≤=⎢⎥⎣⎦,当且仅当242y y =-,即1y =时等号成立, 故4a ≥,所以实数a 的最小值为4.。
江苏省如东中学高三等差数列复习专题 百度文库
一、等差数列选择题1.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511B .38C .1D .22.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7B .12C .14D .213.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a n b n =+,则2121S T 的值为( )A .1315B .2335C .1117 D .494.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个B .3个C .2个D .1个 5.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29B .38C .40D .586.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( ) A .21B .20C .19D .19或207.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7B .10C .13D .168.已知数列{}n a 的前n 项和为n S ,112a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列说法中错误的是( ) A .214a =-B .648211S S S =+ C .数列{}12n n n S S S +++-的最大项为712D .1121n n n n nT T T n n +-=++9.题目文件丢失!10.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .32011.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .412.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .10013.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .2214.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25B .11C .10D .915.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4216.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )A .24B .23C .17D .1617.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+ B .212n n -+C .221n n -+D .222n n -+18.若数列{}n a 满足121()2n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020D .202119.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15B .30C .3D .6420.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 22.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >23.已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .324.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .825.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列26.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <27.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( )A .244a a ⋅<B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅28.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >29.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 30.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得. 【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=,故631a b =. 【点睛】由n S 求n a 时,11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 2.C 【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()1422a a a a S ++===. 故选:C 3.C 【分析】利用等差数列的求和公式,化简求解即可 【详解】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C 4.B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D . 【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤,当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=, 当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10n n a a +≥⎧⎨≤⎩求得.5.A 【分析】根据等差中项的性质,求出414a =,再求10a ; 【详解】因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 6.B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 7.C 【分析】由题建立关系求出公差,即可求解. 【详解】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.故选:C 8.D 【分析】当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120nn n a S S -+=可推导出数列1n S ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫⎨⎬⎩⎭的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得111112020n n n n n nS S S S S S ----+=⇒-+=, 整理得1112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨⎬⎩⎭为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111424a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫⎨⎬⎩⎭为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()1212211221n n n n b S S n n n S ++=+-=+-++, ()()()1123111212223n n n n b S S S n n n ++++=+-=+-+++,()()()1111602223223n n n b b n n n n n n ++∴-=--=-<++++,故{}n b 为递减数列, ()1123max 111724612n b b S S S ∴==+-=+-=,C 选项正确;D 中,12n n S =,()()2212n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()11112112111n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.故选:D . 【点睛】关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩来求解,在变形过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解.9.无10.C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。
2022江苏如东高级中学高三数学第二轮复习教案(苏教版)第17—20课
2022江苏如东高级中学高三数学第二轮复习教案(苏教版)第17—20课一.复习目标:1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程动身推导出直线方程的其他形式,斜截式、两点式、截距式;能依照已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,明白线性规划的意义,明白线性约束条件、线性目标函数、可行解、可行域、最优解等差不多概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 明白得“曲线的方程”、“方程的曲线”的意义,了解解析几何的差不多思想,把握求曲线的方程的方法.4.把握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能依照圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,把握圆的一样方程:022=++++F Ey Dx y x ,明白该方程表示圆的充要条件并正确地进行一样方程和标准方程的互化,能依照条件,用待定系数法求出圆的方程,明白得圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,把握直线与圆的位置关系的判定方法.5.正确明白得椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能依照椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能依照条件,求出椭圆、双曲线和抛物线的标准方程;把握椭圆、双曲线和抛物线的几何性质:范畴、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;把握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;明白得椭圆、双曲线和抛物线的参数方程,并把握它的应用;把握直线与椭圆、双曲线和抛物线位置关系的判定方法. 二.考试要求:(一)直线和圆的方程1.明白得直线的斜率的概念,把握过两点的直线的斜率公式,把握直线方程的点斜式、两点式、一样式,并能依照条件熟练地求出直线方程。
江苏省如东高级中学高考数学等差数列专题复习(专题训练) 百度文库
一、等差数列选择题1.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-2.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a n b n =+,则2121S T 的值为( )A .1315B .2335C .1117 D .493.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n + 4.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1625.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( ) A .89B .910C .1011D .11126.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29B .38C .40D .587.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .248.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4S B .5S C . 6S D . 7S 9.在等差数列{a n }中,a 3+a 7=4,则必有( )A .a 5=4B .a 6=4C .a 5=2D .a 6=210.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .15111.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =12.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .12尺布 B .518尺布 C .1631尺布 D .1629尺布 13.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .32014.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21SB .20SC .19SD .18S15.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n16.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a=,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人A .225B .255C .365D .46517.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10018.若数列{}n a 满足121()2n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020D .202119.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .54钱 B .43钱 C .23钱 D .53钱 20.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .85二、多选题21.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( )A .31a =-B .201912a =C .332S =D . 2 01920192S =22.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 23.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.24.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 25.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <26.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >27.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2128.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+29.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列30.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C . 2.C 【分析】利用等差数列的求和公式,化简求解即可 【详解】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C 3.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C. 4.B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.5.C 【分析】首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】当1n =时,111a S ==, 当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =. 设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C 6.A 【分析】根据等差中项的性质,求出414a =,再求10a ; 【详解】因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 7.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 8.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 9.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 10.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 11.D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法. 12.D 【分析】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值. 【详解】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D. 13.C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。
高中数学冲刺卷讲解教案
高中数学冲刺卷讲解教案第一部分:选择题1. 题目:已知三角形ABC内切圆O半径为r,三角形ABC的周长为P,则r的大小与P 的关系是()。
A. r=PB. r<PC. r>PD. 无法确定答案:B。
由于内切圆的半径r与三角形的周长P之间存在关系r<P。
2. 题目:若集合A={1,3,5},则集合A的幂集合的元素个数为()。
A. 2B. 4C. 6D. 8答案:D。
集合A的元素个数为3个,那么幂集合的元素个数为2的3次方=8个。
第二部分:填空题3. 题目:已知直角三角形斜边长为5,一个锐角的正弦值为3/5,则与之对边相邻的直角边长为()。
答案:4。
直角三角形斜边长为5,正弦值为3/5,根据正弦值的定义sinA=对边/斜边=3/5,对边为3,那么余弦值为4。
第三部分:解答题4. 题目:已知直线y=kx+b与圆x^2+y^2=1相交于点A、B两点,且OA=OB,求k的取值范围。
解答:设直线y=kx+b与圆x^2+y^2=1的交点为(x,y),代入直线方程得kx+b=kx+b,解得x=0,y=b。
代入圆方程得b^2=1,即b=±1。
当b=1时,kx=1-kx,解得x=1/2,y=1/2。
当b=-1时,kx=-1-kx,解得x=-1/2,y=-1/2。
由于OA=OB,可以得到k的取值范围为-1<k<1。
通过以上讲解,学生可以对选择题、填空题和解答题的解题思路有一个清晰的了解。
希望学生在复习过程中能够多加练习,巩固知识点,取得更好的成绩。
江苏省如东高级中学高三三模考前数学中档题强化训练一
如东中学高三数学中档题强化训练一 08.04.271.ABC 中,角,,A B C 所对的边分别为,,a b c 且22sincos 212A BC ++= (1)求角的C 大小(2)若向量(3,)m a b =,向量(,),,()()163b n a m n m n m n =-⊥+-+=-,求,,a bc 的值2. 已知平面区域00240x y x y ≥⎧⎪≥⎨⎪+-≤⎩恰好被面积最小的圆222:()()C x a y b r -+-=及其内部所覆盖.(Ⅰ)试求圆C 的方程.(Ⅱ)若斜率为1的直线l 与圆C 交于不同两点,.A B 满足CA CB ⊥,求直线l 的方程.3. 如图所示,在直四棱柱1111D C B A ABCD -中,BC DB =, DB AC ⊥,点M 是棱1BB 上一点.(Ⅰ)求证://11D B 面BD A 1; (Ⅱ)求证:MD AC ⊥; (Ⅲ)试确定点M 的位置,使得平面1DMC ⊥平面D D CC 11.4. 甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。
(1)设(i,j )分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况; (2)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,否则,则乙胜。
你认为此游戏是否公平,说明你的理由MABCD A 1B 1C 1D 15. 已知函数)1ln(2)(2x ax x f -+=(a 为实数). (I )若)(x f 在1-=x 处有极值,求a 的值;(II )若)(x f 在[32]--,上是增函数,求a 的取值范围.6. 已知数列{}n a 的前n 项和n S 满足:(1)1n n aS a a =--(a 为常数,且0,1a a ≠≠). (Ⅰ)求{}n a 的通项公式; (Ⅱ)设21=+nn nS b a ,若数列{}n b 为等比数列,求a 的值 .7.已知数列{}n a 的前n 项和为n S ,点),2(1++n n S a 在直线54-=x y 上,其中*N n ∈.令n n n a a b 21-=+,且11=a ,(1)求数列{}n b 的通项公式;(2)若n n x b x b x b x b x f ++++= 33221)(,求)1(f '的表达式,并比较)1(f '与n n 482-的大小.答案1解:(1)∵22sincos 212A BC ++= ∴2cos 212sincos()cos 2A B C A B C +=-=+=-,…………………(2分) ∴22cos cos 10C C +-=,∴1cos 12C =-或(0,),C π∈∴3C π=…(4分)(2)∵m n ⊥ ∴22303b a -=,即229b a = 又()()16m n m n +-+=-,∴2288169a b --=-,即2229b a +=②………6分 由①②可得221,9a b ==,∴1,3a b == ……………………………(8分)又2222cos 7,c a b ab C =+-=∴c =1,3,a b c ===………(10分)2. (Ⅰ)证明:由直四棱柱,得1111//,BB DD BB DD =且,所以11BB D D 是平行四边形,所以11//B D BD……………………………(3分)而1BD A BD ⊂平面,111B D A BD ⊄平面,所以//11D B 面BD A1………(5分)(Ⅱ)证明:因为1BB ⊥⊂面ABCD,AC 面ABCD , 所以1BB ⊥AC ………(7分)又因为BD ⊥AC ,且1BD BB B ⋂=,所以AC ⊥1面BB D ………… ……(9分)而MD ⊂1面BB D ,所以MD AC ⊥………………………………(10分)(Ⅲ)当点M 为棱1BB 的中点时,平面1DMC ⊥平面D D CC 11…………………(11分)取DC 的中点N,11D C 1的中点N ,连结1NN 交1DC 于O ,连结OM .因为N 是DC 中点,BD=BC,所以BN DC ⊥;又因为DC 是面ABCD 与面11DCC D 的交线,而面ABCD ⊥面11DCC D ,所以11BN DCC D ⊥面……………(13分)MABCD A 1B1 C 1D 1 NN 1O又可证得,O 是1NN 的中点,所以BM ∥ON 且BM=ON,即BMON 是平行四边形,所以BN ∥OM,所以OM ⊥平面DD CC 11,因为OM DMC 1,所以平面1DMC ⊥平面D D CC 11………………………………………………………(15分)3. 解:(1)由题意知此平面区域表示的是以(0,0),(4,0),(0,2)O P Q 构成的三角形及其内部,且△OPQ 是直角三角形,所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是所以圆C 的方程是22(2)(1)5x y -+-=. 7分(2)设直线l 的方程是:y x b =+.因为CA CB ⊥,所以圆心C 到直线l 的距离是,即=解得:1b =-±所以直线l 的方程是:1y x =-4. 解:(1)甲乙二人抽到的牌的所有情况(方片4用4′表示)为(2,3)、(2,4)(2,4′)、(3,2)、(3,4)、(3,4′)、(4,2)、(4,3)、(4,4′)、(4,2′)、(4′,3)、(4′,4),共12种不同情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
O
A
P
Q y x
如东中学高三数学中档题冲刺训练七 08.05. 20
1.有3张奖券,其中2张可中奖,现有3个人按顺序依次从中抽一张,小明最后抽,则他抽到中奖券的概率是__ _____
2.如图,三棱柱111C B A ABC -中,E 为AC 的中点,则直线1AB 与平面1BEC 的位置关系为 (填“线面平行”、“线面相交”、“线在面内”之一)
3.已知函数y x x a =++的最小值是
3
,则实数a 值为 4.用一根长为12m 的铝合金条做成一个“目”字形强户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽分别为______ _
5.如图在四棱锥P-ABCD 中,底面为矩形ABCD ,EF 分别为AB ,PC 中点,且PD =PE ,PC =PB 。
求证:(1)EF ∥平面PAD ;(2)平面PDE ⊥平面ABCD
6.设椭圆C :)0(122
22>>=+b a b
y a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交
椭圆C 与x 轴正半轴于点P 、Q ,且8
AP=PQ 5
. ⑴求椭圆C 的离心率;⑵若过A 、Q 、F 三点的圆恰好与直线l :330x y ++=相切,求椭圆C 的方程.
F
B D
C A
P
7.数列{a n }的前n 项和为S n ,已知)1(,21
21--==n n a n S a n n (1)求证:在直角坐标系中,点P n )1
,(n S n
n n +(n=1,2,3……)共线,并求S n 的表达式;
(2)设)(,)(1
p f b x n
S x f n n n n n '==
+,求数列{b n }的前n 项和T n
8.某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形高科技工业园区。
已知AB BC OA BC ⊥,//,且AB BC AO km ===24,曲线段OC 是以点O 为顶点且开口向右的抛物线的一段。
如果要使矩形的相邻两边分别落在AB 、BC 上,且一个顶点落在曲线段OC
上,问应如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积(精确到0.1km 2
)
班前会及每日安全技术交底记录。