和、差、积、商的变化规律表

合集下载

四年级数学下册积、商的变化规律

四年级数学下册积、商的变化规律

四年级数学下册积、商的变化规律一、积的变化规律:一个因数不变;另一个因数乘或除以几(0除外)积也要乘或除以相同的数。

(一个因数不变;另一个因数扩大到原来的几倍或者缩小到原来的几分之一;积也要扩大到原来的几倍或者缩小到原来的几分之一。

)二、商的变化规律:除数不变;被除数乘或除以一个数(0除外);商也要乘或除以相同的数;被除数不变;除数乘或除以一个数(0除外);商就要除以或乘相同的数。

(除数不变;被除数扩大到原来的几倍或缩小到原来的几分之一;商也要扩大到原来的几倍或缩小到原来的几分之一;被除数不变;除数扩大到原来的几倍或缩小到原来的几分之一;商就要缩小到原来的几分之一或扩大到原来的几倍。

)在有余数的除法里;如果被除数和除数同时扩大和缩小相同的倍数(0除外);商不变;余数也随着扩大和缩小相同的倍数。

入门题:1、两个数相乘(积不为0);一个因数不变;另一个因数扩大到原来的3倍;积应该怎样变化?2、两个数相乘(积不为0);一个因数除以3;另一个因数不变;积应该怎样变化?3、两个数相乘(积不为0);一个因数扩大到原来的6倍;另一个因数扩大到原来的3倍;积应该怎样变化?4、两个数相乘(积不为0);一个因数乘6;另一个因数除以3;积应该怎样变化?5、两个数相除(商不为0);如果被除数扩大到原来的6倍;除数不变;商应该怎样变化?6、两个数相除(商不为0);如果被除数不变;除数扩大到原来的2倍;商应该怎样变化?7、两个数相除(商不为0);如果被除数除以6;除数不变;商应该怎样变化?8、两个数相除(商不为0);如果被除数扩大到原来的6倍;除数扩大到原来的2倍;商应该怎样变化?9、两个数相除(商不为0);如果被除数扩大到原来的3倍;除数缩小到原来的十分之一;商应该怎样变化?10、两个数相除(商不为0);如果除数扩大到原来的9倍;要使商缩小到原来的三分之一;被除数应该怎样变化?练习题:1、两个数相乘;积是96;如果一个因数缩小到原来的四分之一;另一个因数扩大到原来的3倍。

(完整版)和差积商的变化规律

(完整版)和差积商的变化规律

和、差、积、商的变化规律(一)知识点拨和、差的规律见下表(m≠0)精讲精练【例题1】两个数相加,一个加数增加9,另一个加数减少9,和是否发生变化?【思路】一个加数增加9,假如另一个加数不变,和就增加9;假如一个加数不变,另一个加数减少9,和就减少9;和先增加9,接着又减少9,所以不发生变化。

【练习1】1.两个数相加,一个数减8,另一个数加8,和是否变化?2.两个数相加,一个数加3.另一个数也加3.和起什么变化?3.两个数相加,一个数减6,另一个数减2. 和起什么变化?【例题2】两个数相加,如果一个加数增加10,要使和增加6,那么另一个加数应有什么变化?【思路】一个加数增加10,假如另一个加数不变,和就增加10。

现在要使和增加6,那么另一个加数应减少10-6=4。

【练习2】1.两个数相加,如果一个加数增加8,要使和增加15,另一个加数应有什么变化?2.两个数相加,如果一个加数增加8,要使和减少15,另一个加数应有什么变化?3.两个数相加,如果一个加数减少8,要使和减少8,另一个加数应有什么变化?【例题3】两数相减,如果被减数增加8,减数也增加8,差是否起变化?【思路】被减数增加8,假如减数不变,差就增加8;假如被减数不变,减数增加8,差就减少8。

两个数的差先增加8,接着又减少8,所以不起什么变化。

【练习3】1.两数相减,被减数减少6,减数也减少6,差是否起变化?2.两数相减,被减数增加12.减数减少12.差起什么变化?3.两数相减,被减数减少10,减数增加10,差起什么变化?【例题4】两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积将有什么变化?【思路】如果一个因数扩大8倍,另一个因数不变,积将扩大8倍;如果一个因数不变,另一个因数缩小2倍,积将缩小2倍。

积先扩大8倍又缩小2倍,因此,积扩大了8÷2=4倍。

【练习4】1.两数相乘,如果一个因数缩小4倍,另一个因数扩大4倍,和是否起变化?2.两数相乘,如果一个因数扩大3倍,另一个因数缩小12倍,积将有什么变化?3.两数相乘,如果一个因数扩大3倍,另一个因数扩大6倍,积将有什么变化?【例题5】两数相除,如果被除数扩大4倍,除数缩小2倍,商将怎样变化?【思路】如果被除数扩大4倍,除数不变,商就扩大4倍;如果被除数不变,除数缩小2倍,商就扩大2倍。

商和积的变化规律

商和积的变化规律
一、商的规律
1、商不变的性质:
被除数和除数同时扩大或缩小(乘以或除以)相同的数 (0除外),商不变。
2、商的变化规律: 被除数÷除数=商
a、除数(老二)不变,被除数(老大)扩大或缩小几倍, 商也跟着扩大或者缩小几倍。
b、被除数(老大)不变,除数(老二)扩大或缩小几倍, 商反而缩小或扩大几倍。
C、如果被除数和除数都变化,则根据具体情况判断商的 变化情况。
5.22÷1.8=
52.2÷0.18=
52.2÷18=
522÷0.18=
0.522÷0.18=
大家好
5
大家好
6
大家好
7
大家好
8
结束
大家好
9
大家好
1
二、积的规律
1、积不变的规律:
一个因数扩大或缩小几倍,另一个因数缩小或者 扩大相同的倍数,积不变。
2、积的变化规律:(因数×因数=积)
a、一个因数不变,另一个因数扩大或者缩小几倍, 积也跟着扩大或者缩小相同的倍数。
b、一个因数扩大m倍,另一个因数扩大n倍,则 积扩大m×n倍。
大家好
2
大家好
3
根据125×48=6000,直接写出下面各式的积。
1、1.25×4.8=
2、1.25×0.048=
3、0.125×4.8=
4、0.125×0.48=
大家好
4
根据47×14=658,直接写出下面各式的积。
0.47×14=
4.7×14=
47×0.14=
பைடு நூலகம்
0.47×0.14=
根据522÷18=29
52.2÷1.8=

小学数学四则运算的变化规则(和差积商变化规律)

小学数学四则运算的变化规则(和差积商变化规律)

四则运算的变化规则一、加法的变化规则(1)加法公式:加数+ 加数= 和加数= 和—另一个加数(2)加法的变化规则有:(一)如果一个加数增加几,另一个加数不变,那么和也增加几。

例如:13+5=18(13+2)+5=18+2题型1小丽在做一道加法题,一个加数十位上的4看作了7,个位上的5看作了2,算得的和是87。

正确的和是多少?一个加数十位4——7,个位5——2 增加 72-45=27另一个加数不变正确的和增加27即正确的和+27=87 => 正确的和=87-27=60(二)如果一个加数减少几,另一个加数不变,那么和也减少几。

例如:28+16=44(28-12)+16=44-12题型1小强在计算加法时,把一个加数十位上的7错写成1,把个位上的8错写成0,所得的和是285。

正确的和是多少?一个加数十位7——1,个位8——0 减少 78-10=68另一个加数不变正确的和减少68即正确的和-68=285 => 正确的和=285+68=353题型2两个数相加,一个加数减少29,另一个加数不变,和将有什么变化?一个加数减少29另一个加数不变和减少29题型3两个数相加,和是100,一个加数减少48,另一个加数不变,现在和是多少?一个加数减少48另一个加数不变和减少48即现在的和=100-48=52(三)如果一个加数增加几,另一个加数减少同样的几,那么和不变。

例如:112+23=135(112+3)+(23-3)=135题型1:两个加数的和是378,其中一个加数增加245,另一个加数减少245,现在这两个加数的和是(378 )。

题型2:一个加数增加6,要使和保持不变,另一个加数应(减少6 )。

(四)如果一个加数增加几,另一个加数增加另一个几,那么和增加了(几+另一个几)。

例如:35+48=83(35+12)+(48+5)=83+(12+5)题型1:小明在计算加法时,把一个加数十位上的0错写成8,把另一个加数个位上的6错写成9,所得的和是532。

四年级上册数学思维拓展题:和差积商变化规律

四年级上册数学思维拓展题:和差积商变化规律

四年级上册数学思维拓展题:和差积商变化规律和的变化规律:如果一个加数增加(或减少)一个数(不为0),另一个加数不变,则它们的和也增加(或减少)同一个数。

如果一个加数增加一个数(不为0),另一个加数减少同一个数,和不变。

差的变化规律:如果一个被减数增加(或减少)一个数(不为0),减数不变,则差增加(或减少)同一个数。

如果一个被减数和减数同时增加(或减少)一个数(不为0),差不变。

如果被减数不变,一个减数增加(或减少)一个数(不为0),差也减少(或增加)同一个数。

积的变化规律:1.一个因数扩大(或缩小)若干倍,另一个因数不变,积也扩大(或缩小)相同的倍数。

2.一个因数扩大(或缩小)若干倍,而另一个因数缩小(或扩大)相同的倍数,它们的积不变。

3.一个因数乘以(或除以)a,另一个因数乘以(或除以)b,积就乘以(或除以)ab的积。

商的变化规律:1.被除数扩大(或缩小)若干倍,除数不变,商也扩大(或缩小)同样的倍数。

2.被除数不变,除数扩大(或缩小)若干倍,商反而缩小(或扩大)相同的倍数。

3.被除数乘以a,除数除以b,商就乘以ab的积。

4.被除数除以a,除数乘以b,商就除以ab的积。

参考答案:1、两个数相加,如果一个加数减少9,要使和增加9,另一个加数应该有什么变化?解题思路:一个加数减少9,假设另一个加数不变,和就减少了9;题目要求和增加9,所以另一个加数应该增加9+9=18。

2、两个数相减,如果被减数减少10,减数也减少10,差是否有变化?解题思路:被减数减少10,假设减数不变,差就减少10;假设被减数不变,减数减少10,和就增加10;差先减少10,再增加10,所以无变化。

3、被减数、减数、差相加得2076,差是减数的一半。

如果被减数不变,差增加42,减数应该变成多少?解题思路:减数与差的和即是被减数,2076里有2个被减数,被减数等于2076÷2=1038。

差是减数的一半,也就是说减数是差的2倍,差应该为1038÷(2+1)=346,减数为346×2=692。

小学数学四则运算的变化规则(和差积商变化规律)

小学数学四则运算的变化规则(和差积商变化规律)

四则运算的变化规则一、加法的变化规则(1)加法公式:加数+ 加数= 和加数= 和—另一个加数(2)加法的变化规则有:(一)如果一个加数增加几,另一个加数不变,那么和也增加几。

例如:13+5=18(13+2)+5=18+2题型1小丽在做一道加法题,一个加数十位上的4看作了7,个位上的5看作了2,算得的和是87。

正确的和是多少?一个加数十位4——7,个位5——2 增加 72-45=27另一个加数不变正确的和增加27即正确的和+27=87 => 正确的和=87-27=60(二)如果一个加数减少几,另一个加数不变,那么和也减少几。

例如:28+16=44(28-12)+16=44-12题型1小强在计算加法时,把一个加数十位上的7错写成1,把个位上的8错写成0,所得的和是285。

正确的和是多少?一个加数十位7——1,个位8——0 减少 78-10=68另一个加数不变正确的和减少68即正确的和-68=285 => 正确的和=285+68=353题型2两个数相加,一个加数减少29,另一个加数不变,和将有什么变化?一个加数减少29另一个加数不变和减少29题型3两个数相加,和是100,一个加数减少48,另一个加数不变,现在和是多少?一个加数减少48另一个加数不变和减少48即现在的和=100-48=52(三)如果一个加数增加几,另一个加数减少同样的几,那么和不变。

例如:112+23=135(112+3)+(23-3)=135题型1:两个加数的和是378,其中一个加数增加245,另一个加数减少245,现在这两个加数的和是(378 )。

题型2:一个加数增加6,要使和保持不变,另一个加数应(减少6 )。

(四)如果一个加数增加几,另一个加数增加另一个几,那么和增加了(几+另一个几)。

例如:35+48=83(35+12)+(48+5)=83+(12+5)题型1:小明在计算加法时,把一个加数十位上的0错写成8,把另一个加数个位上的6错写成9,所得的和是532。

积和商的“变与不变”规律与练习

积和商的“变与不变”规律与练习

积和商的“变与不变”规律㈠、积的变化规律:⑴、一个因数不变,另一个因数乘(或除以)几,积就相应的乘(或除以)几。

字母表示:如果a×b=c ,则(a×3)×b=c×3举例:a×b=12 如果(a×3)则积就是12×3=36.⑵、一个数乘一个比1大的数,积比原数大;⑶、一个数乘一个比1小的数,积比原数小。

㈡、积不变规律:一个因数乘(或除以)几,另一个因数相应的除以(或乘)几,积不变。

字母表示:如果a×b=c 则(a×5)×(b÷5)=c㈢、商的变化规律:⑴被除数不变,除数乘或除以几,商就相应的除以或乘几。

字母表示:如果a÷b=c ,则a÷(b×3)=c÷3举例:a÷b=12 如果(b×3)则商就是12÷3=4⑵除数不变,被除数乘或除以几,商就相应的乘或除以几。

字母表示:如果a÷b=c ,则(a×3)÷b=c×3举例:a÷b=12 如果(a×3)则商就是12×3=36.被除数大于除数,商就大于1;被除数小于除数,商就小于1.一个数除以一个比1大的数,商比被除数要小;一个数除以一个比1小的数,商比被除数要大。

㈣、商不变规律:被除数和除数同时乘或除以几,商不变。

[问题一]两数相乘,如果一个因数乘3,另一个因数除以12,积将有什么变化?想:如果一个因数扩大3倍,另一个因数不变,积将扩大3倍;如果一个因数不变,另一个因数缩小12倍,积将缩小12倍。

积扩大3倍又缩小12倍,因此,积缩小了12÷3=4倍。

解:12÷3=4答:积缩小了4倍。

[试一试]1、两数相乘,如果一个因数缩小5倍,另一个因数扩大5倍,积是否起变化?2、两数相乘,积是36,如果一个因数扩大2倍,另一个因数缩小3倍,那么积是多少?3、两数相乘,积是72如果一个因数扩大4倍,另一个因数缩小3倍,那么积是多少?[问题二]两个数相除,被除数扩大30倍,除数缩小6倍,商将怎样变化?想:如果被除数扩大30倍,除数不变,商将扩大30倍;如果被除数不变,除数缩小6倍,商将扩大6倍;商先扩大30倍,又扩大6倍,商将扩大30×6=180倍。

和、差、积、商变化规律

和、差、积、商变化规律
(a-m)-(b-m)=c
(a≥b且a≥m,b>m)。
例如:
500-200=300→(500+100)-(200+100)=300,
500-200=300→(500-100)-(200-100)=300
积的变化规律:
积的变化规律
字母表示及举例
如果一个因数扩大到原来的几倍或缩小到原来的几分之一,另一个因数不变,那么它们的积也相应地扩大到
或(a÷n)÷b=c÷n
(a、c都是n的倍数)。
例如:
40÷5=8→ (40×5)÷5=8×5
或(40÷4)÷5=8÷4
如果被除数不变,除数扩大到原来的几倍或缩小到原来的几分之一,那么它们的商反而缩小到原来的几分之一或扩大到原来的几倍
用字母表示:
a÷b=c→ a÷(b×n)=c÷n
(a是b×n的倍数)
或a÷(b÷n)=c×n
(b是n的倍数)
例如:
120÷20=6→120÷(20×3)=6÷3
或120÷(20÷2)=6×2
商不变的性质:
在除法里,被除数和除数同时乘或除以相同的数(0除外),商不变。这个性质
通常被称为“商不变的性质”。
用字母表示:如果a÷b=c→ (a×n)÷(b×n)=c(n≠0),
减少)同一个数
字母表示:
a-b=c →(a+m)-b=c+m,
(a-m)-b=c-m(a≥m)。
例如:
100-60=40→(100+50) -60=40+50,
100-60=40→(100-10)-60=40-10
如果被减数不变,减数增加(或减
少)一个数,那么它们的差反而减
少(或增加)同一个数

四年级积商的变化规律5条

四年级积商的变化规律5条

四年级积商的变化规律5条一、积的变化规律。

1. 一个因数不变,另一个因数乘几,积也乘几。

- 例如:在算式3×5 = 15中,如果3不变,5变为5×2 = 10,那么积就变为3×10=30,15×2 = 30,积也乘了2。

- 在实际解决问题时,比如一个长方形的长不变,宽扩大到原来的3倍,根据长方形面积公式S =长×宽,面积也会扩大到原来的3倍。

2. 一个因数不变,另一个因数除以几(0除外),积也除以几。

- 例如:4×6 = 24,如果4不变,6变为6÷2 = 3,那么积就变为4×3 = 12,24÷2=12,积也除以了2。

- 假设每箱苹果的个数不变,箱数减少为原来的一半,那么苹果的总个数也会减少为原来的一半。

3. 两个因数同时乘一个数(0除外),积乘这个数的平方。

- 例如:2×3 = 6,如果2变为2×2 = 4,3变为3×2 = 6,那么新的积为4×6 = 24,而6×2^2=6×4 = 24。

- 在计算长方形面积时,如果长和宽都扩大到原来的2倍,那么面积就会扩大到原来的2×2 = 4倍。

4. 两个因数同时除以一个数(0除外),积除以这个数的平方。

- 例如:12×8 = 96,如果12变为12÷2 = 6,8变为8÷2 = 4,新的积为6×4 = 24,而96÷2^2 = 96÷4 = 24。

- 像把一个长方形的长和宽都缩小为原来的一半,面积就会缩小为原来的(1)/(4)。

二、商的变化规律。

1. 被除数不变,除数乘几(0除外),商就除以几。

- 例如:12÷3 = 4,如果被除数12不变,除数3变为3×2 = 6,那么商变为12÷6 = 2,4÷2 = 2,商除以了2。

和差积商的变化规律

和差积商的变化规律

和差积商的变化规律和差积商是数学中常见的运算方式,它们描述了数值之间的关系和变化规律。

在数学中,和表示两个数值的总和,差表示两个数值之间的差异,积表示两个数值的乘积,商表示两个数值的比率。

首先,我们来讨论和的变化规律。

当我们将两个数相加时,和的值会随着加数的增加而增大。

例如,1 + 2 = 3,2 + 3 = 5,3 + 4 = 7,可以看出和的值是逐渐增大的。

这是因为加法是一种累积运算,每次加上一个数,和的值就会增加相应的数量。

接下来,我们来探讨差的变化规律。

差表示两个数之间的差异,当我们计算两个数的差时,差的值会随着被减数的增加而减小。

例如,3 - 2 = 1,4 - 3 = 1,5 - 4 = 1,可以看出差的值是不断减小的。

这是因为减法是一种递减运算,每次减去一个数,差的值就会减少相应的数量。

然后,我们来研究积的变化规律。

积表示两个数相乘的结果,当我们计算两个数的积时,积的值会随着乘数的增加而增大。

例如,2 × 3 = 6,3 × 4 = 12,4 × 5 = 20,可以看出积的值是逐渐增大的。

这是因为乘法是一种倍增运算,每次乘上一个数,积的值就会增加相应的倍数。

最后,我们来讨论商的变化规律。

商表示两个数之间的比率,当我们计算两个数的商时,商的值会随着被除数的增加而减小。

例如,6 ÷ 2 = 3,12 ÷ 3 = 4,20 ÷ 4 = 5,可以看出商的值是不断减小的。

这是因为除法是一种递减运算,每次除以一个数,商的值就会减少相应的倍数。

综上所述,和差积商描述了数值之间的关系和变化规律。

和的值随着加数的增加而增大,差的值随着被减数的增加而减小,积的值随着乘数的增加而增大,商的值随着被除数的增加而减小。

这些变化规律在实际生活中有着广泛的应用,在解决问题和进行计算时都起到了重要作用。

积的变化规律和商的变化规律

积的变化规律和商的变化规律

一、积的变化规律1、一个因数不变,另一个因数乘几或除以几(0除外),积也乘几或除以几。

2、两个数相乘,一个因数乘或除以几(0除外),另一个因数除以或乘相同的数,则它们的乘积不变。

(1)42×5= (2)48×16=76842×15= (48×4)×(16÷4)=420×15= (48÷8)×(16×8)=840×15= (48×5)×(16○□)=768(3)7本作业本摞起来高25毫米,全班56本作业本摞起来有多高?(4)一个宽为9米的长方形菜地,面积是252平方米,如果把这块长方形菜地的宽增加到36米,长不变,扩建后的面积是多少?二、商的变化规律1、除数不变,被除数乘几或除以几(0除外),商也乘几或除以几。

2、被除数不变,除数乘几或除以几(0除外),商反而除以几或乘几。

3、被除数和除数都乘或除以一个相同的数(0除外),商不变。

(1)80÷16=(80○□)÷(16÷4)200÷40=(200÷20)÷(40○□)180÷15=(180×3)÷(15○□)(2)1400÷70,如果除数不变,被除数除以10,那么商应当()。

被除数不变,除数乘3,商应当()。

两个数的商是8,如果被除数不变,除数乘4,商就变成()。

一个除法算式,被除数乘15,要使商不变,除数也要()。

两个数相除的商是6,如果被除数和除数都除以12,商是()。

一个除法算式的被除数、除数都除以3后,商是20,那么原来的商是()。

.《除数是两位数的除法》1、商店里卖衣服,29元/件,49元/2件,王阿姨有185元,最多可以买多少件?还剩多少元?2、小李家距离学校520米,小李每分钟走65米,小红每分钟走60米,从家到学校小红比小李多走5分钟,小红家离学校多少米?3、每条裤子75元,商店推出优惠活动,买4条送一条,900元钱最多可以买几条这样的裤子?4、12箱蜜蜂一年可以酿900千克蜂蜜,林叔叔家养了8箱这样蜜蜂,一年可以酿多少千克蜂蜜?5、学校组织四年级的540名学生去植树,要分成9个植树点,每个植树点分成4个小组,平均每个小组有多少人?6、从山顶到山脚共998米,王林爬了14分钟,距山顶还有260米,他平均每分钟爬多少米?【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既. 往为您服务】。

积和商“变与不变”规律及练习

积和商“变与不变”规律及练习

积和商“变与不变”规律及练习积和商的“变与不变”规律积的变化规律:1.一个因数不变,另一个因数乘(或除以)几,积就相应的乘(或除以)几。

例如:如果a×b=c,则(a×3)×b=c×3,举例:a×b=12,如果(a×3),则积就是12×3=36.2.一个数乘一个比1大的数,积比原数大;一个数乘一个比1小的数,积比原数小。

积不变规律:1.一个因数乘(或除以)几,另一个因数相应的除以(或乘)几,积不变。

例如:如果a×b=c,则(a×5)×(b÷5)=c。

商的变化规律:1.被除数不变,除数乘或除以几,商就相应的除以或乘几。

例如:如果a÷b=c,则a÷(b×3)=c÷3,举例:a÷b=12,如果(b×3),则商就是12÷3=4.2.除数不变,被除数乘或除以几,商就相应的乘或除以几。

例如:如果a÷b=c,则(a×3)÷b=c×3,举例:a÷b=12,如果(a×3),则商就是12×3=36.被除数大于除数,商就大于1;被除数小于除数,商就小于1.一个数除以一个比1大的数,商比被除数要小;一个数除以一个比1小的数,商比被除数要大。

商不变规律:被除数和除数同时乘或除以几,商不变。

练题:1.根据78×12=936,填写下面各题的结果。

7.8×12=(93.6),0.78×12=(9.36),7.8×(93.6)=(734.88)2.根据414÷18=23,填写下面各题的结果。

4.14÷1.8=(2.3),4140÷1.8=(2300),0.414÷0.18=(2.3),41.4÷18=(2.3)3.根据45×63=2835,填写下面各题的结果。

积商的变化规律

积商的变化规律

五年级上积商的变化规律一、积的变化规律1、两个因数,一个因数不变,另一个因数扩大或缩小几倍,积就扩大或缩小相同的倍数;0除外;2、两个因数同时扩大或缩小几倍0除外积就扩大或缩小它们的乘积倍;3、两个因数,一个扩大几倍,另一个缩小相同的倍数,0除外积不变;4、两个因数,一个扩大,另一个缩小,倍数不相同,0除外,积扩大或缩小它们的商倍例1:给出乘法算式:×= 根据算式写出得数方法:1× =缩小10倍不变缩小10倍方法:2根据预算定律×=可知13×48=624;所以×的积里面应有3位小数,因此是二、商的变化规律1、被除数不变,除数扩大或缩小几倍,商就缩小或扩大几倍;注意商和除数的变化是相反的;0除外2、除数不变,被除数扩大或缩小几倍,商就扩大或缩小相同的倍数注意商和被除数的变化是相同的;0除外3、被除数和除数同时扩大扩缩小相同的倍数0除外商不变;4、被除数扩大,除数缩小,商就扩大乘积倍;5、被除数缩小,除数扩大,商就缩小乘积倍;6、被除数、除数同时扩大或缩小不相同的倍数0除外,商就变化它们的商倍注意:4---6的规律不用硬背,只是前两个规律的分步应用;例2:给出除法算式:÷= 根据算式写出得数方法:1624 ÷ = 1300扩大100倍缩小10倍商扩大100倍商扩大10倍×10倍方法2:可利用除法算式,130048 624 4862400变成将商的最高位写上,其余数字同上面的商相同,数位不足的用0占位;相应的练习1、根据35×49=1715,在下面的填上合适的数;= × = ×= × = ×2、两数相乘,如果一个因数缩小5倍,另一个因数扩大5倍,积是否起变化3、两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积会有什么变化4、两数相除,如果被除数扩大4倍,除数缩小2倍,商怎样变化5、两数相除,被除数缩小12倍,除数缩小2倍,商会怎样变化6、小科在计算除法时,把除数末尾的0漏写了,结果得到的商是70,正确的商应该是多少7、芳芳在计算乘法时,把一个因数末尾多写了1个0,结果得到800,正确的积是应该是多少8、两数相除,商是8,余数是10,如果被除数和除数同时扩大10倍,商是多少余数是多少9、10、两数相除,商是19,如果被除数扩大20倍,除数缩小4倍,那么商是多少1、160×40=64002、 160÷32=53、如果A ÷B=500 ×40=640 ÷8=5 A ×2÷B= 160× =64000 80÷ =5 A ÷B ×5= 80× =1600 ÷96=5 A ÷10÷B= ×80=6400 320÷ =5 A ÷B ÷2= ×200=64000 ÷3200=53、如果甲数乘以乙数是240,4、如果A ×B=800, 1甲数不变,乙数乘以4,积是 ; 那么A ×6×B ÷6= 2甲数除以2,乙数不变,积是 ; 那么A ÷ ×B × =800 3甲数乘以3,乙数乘以2,积是 ; 如果A ÷B=8004甲数乘以3,乙数除以3,积是 ; 那么A ÷6÷B ÷6= 5甲数除以4,乙数除以2,积是 ; 那么A × ÷B × =800 4、两数相除的商是80,1如果被除数不变,除数乘以2,商是 ; 2如果被除数不变,除数除以3,商是 ; 3如果除数不变,被除数乘以5,商是 ; 4如果除数不变,被除数除以10,商是 ; 三、判断1、被除数和除数同时乘或除以一个相同的数0除外,商不变;……2、除数除以3,商也要除以3;……………………………………………3、因为33÷2=16……1,所以3300÷200=16……1;……………………4、一个长方形的宽不变,长扩大3倍,它的面积和周长都扩大3倍;…5、一个正方形的边长扩大5倍,它的面积和周长都扩大5倍;…………四、选择1、两数相乘,一个因数扩大5倍,另一个因数缩小5倍,积 ;A 缩小25倍B 扩大25倍C 不变2、两数相加,一个加数不变,另一个加数增加7,和 ;A 也增加7B 减少7C 不变3、两数相除,如果被除数乘5,除数除以5,商 ;A 不变B 乘以10C 除以10D 乘以254、两数相减,如果被减数不变,减数增加5,那么差 ;A 增加5B 减少5C 不变5、被除数和除数同时乘以10,商 ;A 乘以10B 乘以100C 不变。

专题:积和商的变化规律

专题:积和商的变化规律

专题:积和商的变化规律一、积的变化规律:因数×因数=积因数与积之间存在什么样的变化规律呢?请看下表:积的变化规律:一个因数不变,另一个因数乘或除以几(0除外)积也要乘或除以相同的数。

(一个因数不变,另一个因数扩大到原来的几倍或者缩小到原来的几分之一,积也要扩大到原来的几倍或者缩小到原来的几分之一。

)入门题:1、两个数相乘(积不为0),一个因数不变,另一个因数扩大到原来的3倍,积应该怎样变化?2、两个数相乘(积不为0),一个因数除以3,另一个因数不变,积应该怎样变化?3、两个数相乘(积不为0),一个因数扩大到原来的6倍,另一个因数扩大到原来的3倍,积应该怎样变化?4、两个数相乘(积不为0),一个因数乘6,另一个因数除以3,积应该怎样变化?二、商的变化规律:被除数÷除数=商被除数、除数与商之间又存在什么样的变化规律呢?请看下表:商的变化规律:除数不变,被除数乘或除以一个数(0除外),商也要乘或除以相同的数;被除数不变,除数乘或除以一个数(0除外),商反而要除以或乘相同的数。

注意:在有余数的除法里,如果被除数和除数同时扩大和缩小相同的倍数(0除外),商不变,余数也随着扩大和缩小相同的倍数。

入门题:1、两个数相除(商不为0),如果被除数扩大到原来的6倍,除数不变,商应该怎样变化?2、两个数相除(商不为0),如果被除数不变,除数扩大到原来的2倍,商应该怎样变化?3、两个数相除(商不为0),如果被除数除以6,除数不变,商应该怎样变化?4、两个数相除(商不为0),如果被除数扩大到原来的6倍,除数扩大到原来的2倍,商应该怎样变化?5、两个数相除(商不为0),如果被除数扩大到原来的3倍,除数缩小到原来的十分之一,商应该怎样变化?6、两个数相除(商不为0),如果除数扩大到原来的9倍,要使商缩小到原来的三分之一,被除数应该怎样变化?随堂检测:1、发现规律直接写得数。

16×17=272 32×17= 32×34=16×34= 48×17= 8×34=16×51= 64×17= 4×68=2、发现规律直接写得数:2000÷25=80(2000×2)÷(25×2)= (2000×15)÷(25×15)=(2000÷5)÷(25÷5)= (2000÷18)÷(25÷18)=(2000÷5)÷25= (2000×20)÷25=2000÷(25÷5)= 2000÷(25×5)=(2000÷5)÷(25×2)= (2000×5)÷(25÷2)=(2000÷2)÷(25÷4)= (2000×2)÷(25×8)=3、两个因数的积是360,如果一个因数除以3,另一个因数不变,积变为()。

四年级寒假班教案第3次课------积、商的变化规律

四年级寒假班教案第3次课------积、商的变化规律

积、商的变化规律知识要点1、积的变化规律(1)一个因数不变,另一个因数扩大(缩小)到原数的a倍,积就扩大(缩小)到原数的a 倍。

(2)一个因数扩大(缩小)到原数的a倍,另一个因数缩小(扩大)到原数的a倍,积不变。

(3)一个因数扩大(缩小)到原数的a倍,另一个因数扩大(缩小)到原数的b倍,积就扩大到原数的a×b倍。

扩展:一个因数扩大到原数的a倍,另一个因数缩小到原数的b倍,当a>b时,积就扩大a ÷b倍;当a<b时,积就缩小到原数的b÷a倍。

2、商的变化规律:(1)被除数和除数同时扩大(缩小)到原数的a倍,商不变。

(2)被除数和商同时扩大(缩小)到原数的a倍,除数不变。

(3)除数扩大(缩小)到原数的a倍,商缩小(扩大)到原数的a倍,被除数不变。

扩展:被除数扩大到原数的a倍,除数缩小到原数的b倍,商就扩大到原数的a×b倍。

被除数缩小到原数的a倍,除数扩大到原数的b倍,商就缩小到原数的a×b倍。

3、周长与面积公式(1)长方形:周长=(长+宽)×2 面积=长×宽(2)正方形:周长=边长×4 面积=边长×边长经典例题【例1】根据已知算式,直接写出下面各题的得数。

105×45=4725 18×24=432(105÷5)×(45×5)= (18×3)×(24×2)=(105×2)×(45÷6)= (18×6)×(24÷2)=【练习1】24×75=1800 36×104=3744(24○6)×(75×6)=1800 (36×4)×(104○4)=3744 (24○3)×(75○□)=1800 (36○□)×(104○□)=374415×24=36015×72=()60×12=()5×72=()30×6=()15×(24×)=3600 15×(24÷10)=()【例2】(1)18 ÷6=3 (2)4800÷10=480 (18×2)÷(6×2)= (4800 ÷2)÷(10 ÷2)= (18×3)÷(6÷3)= (4800÷10)÷(10×2)=(1)24÷8=(24×2)÷(8×)(2)360÷60=(360÷10)÷(10)(3)96÷6=()÷()【例3】1、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数不变,积是()2、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是()3、两数相除,被除数扩大3倍,除数缩小6倍,商( )4、小明在计算除法时,把除数末尾的0漏写了,结果得到的商是500,正确的商是()5、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也缩小到原来的3倍,积是()6、一个因数不变,把其中另一个因数扩大到原来的3倍,积是90,原来两个因数的积是()【练习3】1、一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是90,原来两个因数的积是()2、610×5=3050,把610缩小3倍,把5扩大倍15倍,那么积是()。

加减乘除变化规律

加减乘除变化规律

【Q 】如果 a — b=20,那么 a — (b — 2)=20+ (【试一试】1、两个数相加,一个加数增加15,另一个加数减少15,和是否会起变化?第一讲 变化规律(一)【专题导引】和、差的变化规律见下表()【典型例题】【G 】两个数相加,一个加数增加3,另一个加数减少 3,和是否会起变化?【试一试】1、两个数相加,一个加数增加 5,另一个加数减少 5, 和是否会起变化?2、两个数相加,一个加数减少 6,另一个加数增加2, 和是否会起变化?化?【试一试】 1、如果 a — b=18,2、如果 a — b=18,【B 】两个数相加, 那么(a+2)— b=18+ (那么(a — 2)— b=18—()。

一个加数减少10,另一个加数增加 10,和是否会起变2、两个数相加,一个加数增加6,另一个加数也增加6,和是否会起变化?【B】两个数相加,如果一个加数减少8,要使和增加8,另一个加数应有什么变化?【试一试】1、两个数相加,如果一个加数增加9,要使和增加17,另一个加数应有什么变化?2、两个数相加,如果一个加数增加11,要使和减少11,另一个加数应有什么变化?[E3】两数相减,如果被减数减少2,减数也减少2,差是否会起变化?【试一试】(1) 两数相减,如果被减数增加30,减数也增加30,差是否会起变化?(2) 两数相减,如果被减数增加23,减数减少23,差是否会起变化?【A】两数相减,如果被减数增加20,要使差减少16,减数应有什么变化?【试一试】(1) 两数相减,被减数减少12,要使差增加8,减数应有什么变化?(2) 两数相减,被减数减少36,要使差减少40,减数应有什么变化?【A】被减数、减数、差相加得2076,差是减数的一半。

如果被减数不变, 差增加42,减数应变为多少?【试一试】(1)在一个减法算式里,被减数、减数与差的和是倍。

如果差不变,被减数减少5,减数应变为多少?(2)在一个减法算式里,被减数、减数与差的和是倍。

积、商的变化规律(含答案)-

积、商的变化规律(含答案)-

积、商的变化规律同学们好,在上一讲我们研究了和、差的变化规律,今天这一讲我们来研究,积、商的变化规律。

请同学们填出下表,说出什么发生了变化,积、商有没有发生变化,如果有变化是怎样变的,你能从中得出什么结论吗?规律:两个因数相乘,被乘数乘以(或除以)一个不为0的数,乘数不变,积也乘以(或除以)同一个数。

两个因数相乘,被乘数不变,乘数乘以(或除以)一个不为0的数,积也乘以(或除以)同一个数。

两个因数相乘,被乘数乘以(或除以)一个不为0的数,乘数同时除以(或乘以)同一个数,积不变。

规律:在除法里被除数乘以(或除以)一个不为0的数,除数不变,商也乘以(或除以)同一个数。

被除数不变,除数乘以(或除以)一个不为0的数,商反而除以(或乘以)同一个数。

被除数乘以(或除以)一个不为0的数,除数同时乘以(或除以)相同的一个数,商不变。

例1. 2584⨯=⨯⨯÷=⨯=()()254844100212100分析与解答:根据积的变化规律,一个因数扩大多少倍,另一个因数反而缩小相同的倍数,积不变的规律,使25×4,使84÷4,转化为100×21,这就很快计算出结果是2100。

例2. 12588⨯=⨯⨯÷=⨯=()()125888810001111000例3. 2250125÷=⨯÷⨯=÷=()()22508125818000100018分析与解答:根据商的变化规律,被除数和除数同时乘以或除以一个数(不为0)商不变的规律,可以使2250×8,使125×8,转化为18000÷1000,这样就能很快算出结果是18。

【模拟试题】(答题时间:45分钟)(一)尝试体验 1. 填一填1272244⨯⨯⨯⨯⨯⎫⎬⎪⎪⎪⎭⎪⎪⎪=÷÷÷÷÷⎫⎬⎪⎪⎪⎭⎪⎪⎪=()()()()()()()()()()()()()()()()()() 完成上面两组题后,每组后面的4个题与第一算式比较各部分是怎样变化的,才保证了使它们的和、差、积、商没发生变化? 2. 利用积、商变化规律,计算下面各题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档