四年级数学下册积商的变化规律

合集下载

四年级下册商的变化规律

四年级下册商的变化规律

四年级下册商的变化规律
商的变化规律是四年级下册数学学习的内容,具体包括以下两个规律:
1. 商不变的规律:在除法中,被除数和除数同时乘或除以一个相同的数(0 除外),商不变。

2. 商随除数或被除数变化的规律:在除法中,除数不变,被除数乘或除以一个数(0 除外),商也乘或除以同一个数;被除数不变,除数乘或除以一个数(0 除外),商反而除以或乘同一个数。

通过学习商的变化规律,学生可以更好地理解除法的本质,提高计算能力和解决实际问题的能力。

四年级期末必背重点 《商的变化规律》

四年级期末必背重点 《商的变化规律》

《商的变化规律》
请背诵下面商的变化规律:(根据后面的例子背更容易)
(1)在除法算式里,被除数、除数同时扩大(或缩小)相同的倍数(0除外),商不变。

(例:48÷12=4,48和12同时乘10,商还是4,不变,48和12同时除以2,商还是4,也不变。


(2)在除法算式里,被除数不变时,除数乘几。

(0除外),商要除以几。

(例如,48÷12=4,被除数48不变,除数12乘2,商4要除以2等于2。

48÷(12×2)=4÷29
(3)在除法算式里,被除数不变时,除数除以几(0除外),商要乘几。

(例如,48÷12=4,被除数48不变,除数12除以2,商4要乘2等于8。

48÷(12÷2)=4×2)
(4)在除法算式里,除数不变时,被除数扩大(或缩小)相同的倍数,商也要扩大(或缩小)相同的倍数。

(0除外)
(例如48÷12=4,被除数48乘10,除数12不变,商也要乘10,等于40;被除数48除以2,除数12不变,商也要除以2,等于2。

)。

四年级 积和商的变化规律

四年级   积和商的变化规律

第1讲计算与规律1. 掌握乘法中积的位数快速确定方法和积的变化规律;2. 掌握除法中商的位数快速确定方法和商的变化规律。

一. 积的变化规律1. 积的变化规律:两个数相乘,一个因数不变,另一个因数扩大或缩小若干倍(0除外),积也扩大或缩小相同的倍数。

2. 积不变的规律:两个数相乘,一个因数乘(或除以)一个数(0除外),另一个因数同时乘(或除以)相同的数,它们的积不变。

判断对错两个因数(均不为0)相乘,一个因数乘2,另一个因数除以2,积不变。

()1.如果让“48052⨯”的第一因数除以5,第二个因数不变,则积()A.不变B.乘以5 C.除以52.两个数相乘(非零数),把这两个数同时扩大到它们原来的10倍,积()A.不变B.扩大到原来的100倍C.不确定D.扩大到原来的10倍3.在一个乘法算式中,要使积不变,一个乘数扩大10倍,另一个乘数()A.扩大10倍B.缩小10倍C.扩大100倍D.不变4.在1508012000⨯=中,其中一个因数扩大到原来的10倍,另一个因数缩小10倍,积不变。

(判断对错)5.几个数相乘,改变它们原来的运算顺序,它们的积不变。

(判断对错)6. 两个数相乘(非零数),一个乘数扩大10倍,另一个乘数缩小5倍,积()7. 两个数相乘(非零数),一个乘数扩大3倍,另一个乘数缩小12倍,积()二.商的变化规律1. 没有余数(1)在除法算式中,被除数不变,除数乘以(或除以)几(0除外),商反而要除以(或乘以)相同的数。

(2)在除法算式中,除数不变,被除数乘以(或除以)几(0除外),商也要乘以(或除以)相同的数。

简便记法:商与除数的变化方向相反,商与被除数的变化相同。

2. 有余数有余数的除法里,被除数和除数都缩小(或都扩大)相同的倍数(0除外),商不变,但余数也随着缩小(或扩大)相同的倍数。

已知30÷=,如果A除以6,B不变,则商是;如果A不变,B乘6,则A B商是。

1. 32040÷的结果与算式()的结果相等。

四年级商的变化规律

四年级商的变化规律

四年级商的变化规律
商是一个除法运算的结果,表示被除数除以除数的值。

以下是一些关于商变化规律的例子:
一、增加除数,商变小:如果被除数不变,而除数增加,商会变小。

例如,8 ÷4 = 2,但是8 ÷8 = 1。

二、减少除数,商变大:如果被除数不变,而除数减少,商会变大。

例如,12 ÷3 = 4,但是12 ÷6 = 2。

三、增加被除数,商变大:如果除数不变,而被除数增加,商会变大。

例如,16 ÷4 = 4,但是24 ÷ 4 = 6。

四、减少被除数,商变小:如果除数不变,而被除数减少,商会变小。

例如,20 ÷5 = 4,但是15 ÷ 5 = 3。

这些规律可以通过实际的物理模型、图表或数学表达式来进行呈现和理解。

学生可以通过实际问题和练习来加深对商变化规律的认识。

例如,给定一定数量的物品,如果将它们平均分成更多的组,每组的物品数量就会减少,从而反映商的变化规律。

小学数学《积和商的变化规律(二)》ppt

小学数学《积和商的变化规律(二)》ppt

大胆的猜测一下:除法中有 没有类似的规律?如果有会是什 么规律呢?
验证第一个猜测:除数不变,被除 数和商的变化规律。
除数不变,被除数扩大(或缩 小)若干倍,商也相应的扩大 (或缩小)相同的倍数。
验证第二个猜测:被除数不变, 除数扩大或缩小,商会随之缩小 或扩大吗?
被除数不变,除数扩大(或 缩小)若干倍,商会相应的缩 小(或扩大)相同的倍数。
我们一起学习过积的变化规律,谁 还记得?
两数相乘(积不为0),一个因数不变, 另一个因数扩大(或缩小)若干倍,积也 相应的扩大(或缩小)相同的倍数;
两数相乘(积不为0),一个因数扩大若 干倍,另一个因数缩小相同的倍数,积不变。
我们都知道乘法和除法有着密切的 关系,现在我们发现了乘法中有这样 的规律,大家有什么想法?
三条变化规律:
除数不变,被除数扩大(或缩小) 若干倍,商也相应的扩大(或缩小) 相同的倍数;
被除数不变,除数扩大(或缩小) 若干倍,商会相应的缩小(或扩大) 相同的倍数;
被除数和除数同时扩大或缩小相 同的倍数时商不变。
有余数除法的变化规律
在有余数的除法里,如果 被除数和除数同时乘以(或除 以)相同的数(0除外),商不 变,余数也要乘以(或除以) 相同的数。
76800÷24= 34Βιβλιοθήκη ÷57=76800÷2400=
例2 小明在计算除法时,把除 数末尾的“0”漏写了,结果得到 的商是500,正确的商应该是多 少?
解: 50010=50 答:正确的商是50。
例3 除法算式1550200=7…150, 如果被除数和除数同时除以5,商是 多少,余数多少?
解:1505=30 答:商是7,余数是30。
3、验证第三个猜测:被除数扩大 (或缩小)若干倍,除数缩小( 或 扩大)相同的倍数,商不变吗?

四年级积商的变化规律5条

四年级积商的变化规律5条

四年级积商的变化规律5条一、积的变化规律。

1. 一个因数不变,另一个因数乘几,积也乘几。

- 例如:在算式3×5 = 15中,如果3不变,5变为5×2 = 10,那么积就变为3×10=30,15×2 = 30,积也乘了2。

- 在实际解决问题时,比如一个长方形的长不变,宽扩大到原来的3倍,根据长方形面积公式S =长×宽,面积也会扩大到原来的3倍。

2. 一个因数不变,另一个因数除以几(0除外),积也除以几。

- 例如:4×6 = 24,如果4不变,6变为6÷2 = 3,那么积就变为4×3 = 12,24÷2=12,积也除以了2。

- 假设每箱苹果的个数不变,箱数减少为原来的一半,那么苹果的总个数也会减少为原来的一半。

3. 两个因数同时乘一个数(0除外),积乘这个数的平方。

- 例如:2×3 = 6,如果2变为2×2 = 4,3变为3×2 = 6,那么新的积为4×6 = 24,而6×2^2=6×4 = 24。

- 在计算长方形面积时,如果长和宽都扩大到原来的2倍,那么面积就会扩大到原来的2×2 = 4倍。

4. 两个因数同时除以一个数(0除外),积除以这个数的平方。

- 例如:12×8 = 96,如果12变为12÷2 = 6,8变为8÷2 = 4,新的积为6×4 = 24,而96÷2^2 = 96÷4 = 24。

- 像把一个长方形的长和宽都缩小为原来的一半,面积就会缩小为原来的(1)/(4)。

二、商的变化规律。

1. 被除数不变,除数乘几(0除外),商就除以几。

- 例如:12÷3 = 4,如果被除数12不变,除数3变为3×2 = 6,那么商变为12÷6 = 2,4÷2 = 2,商除以了2。

积、商的变化规律

积、商的变化规律

积、商的变化规律◎吴俤仙积、商的变化规律是“三位数乘两位数”“除数是两位数的除法”中的重要知识点。

这两个规律貌似实异,变化规律也有着本质上的区别。

一、积、商不变规律1.两个数相乘,一个因数乘一个数(0除外),另一个因数除以相同的数,积的大小不变。

这叫作积不变规律。

a×b=c,(a×n)×(b÷n)=c(n≠0)。

如:75×25=1875,(75×5)×(25÷5)=1875。

2.两个数相除,被除数和除数同时乘或者除以相同的数(0除外),商的大小不变。

这叫作商不变规律。

a÷b=c,(a×n)÷(b×n)=c或(a÷n)÷(b÷n)=c(n≠0)。

如:725÷25=29,(725×2)÷(25×2)=29或(725÷5)÷(25÷5)=29。

二、积、商变化规律1.两个数相乘,一个因数乘或除以一个数(0除外),另一个因数不变,积乘或除以相同的数。

a×b=c,(a×n)×b=c×n或(a÷n)×b=c÷n(n≠0)。

如:32×16=512,(32×2)×16=512×2=1024或(32÷2)×16=512÷2=256。

2.两个数相除,被除数乘或除以一个数(0除外),除数不变,商乘或除以相同的数。

a÷b=c,(a×n)÷b=c×n或(a÷n)÷b=c÷n(n≠0)。

如:672÷12=56,(672×4)÷12=56×4=224或(672÷4)÷12=56÷4 =14。

小四数学(积和商的变化规律)

小四数学(积和商的变化规律)
(三)在数量关系中的应用
在学习“积的变化规律”时,已学过“常见的数量关系”:单价×数量=总价、速度×时间=路程、工作效率×工作时间=工作总量。在常见的数量关系式中,单价和数量、速度和时间、工作效率和工作时间是因数,总价、路程、工作总量都是积。因此,可能会遇到下面的题目。
例6填空:如果一件物品的单价扩大2倍,买的数量扩大3倍,用去的总价。
(另一种说法:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。)
A×B=C
一个因数A
另一个因数B
积C
不变
×n
×n
不变
÷n
÷n
×m
不变
×m
÷m
不变
÷m
×m
×n
×mn
÷m
÷n
÷m÷n或者÷(mn)
×m
÷m
不变
×m
÷n
×m÷n
例1:两数相乘,如果一个因数乘3,另一个因数除以12,积将有什么变化?
2.正方形的边长,它的周长扩大13倍。
3.正方形的边长,它的周长缩小15倍。
例2选择:长方形的长与宽同时( ),周长扩大4倍。
A. 缩小2倍 B. 扩大2倍 C. 缩小2倍 D. 扩大4倍
[分析]因为“长方形周长=(长+宽)×2”,长与宽的和与2都是因数,长方形的周长是积,所以,根据“积的变化规律”,一个因数(2)不变,另一个因数(长+宽)扩大4倍,积(周长)就扩大4倍。答案是:D.扩大4倍。想一想:长与宽同时扩大4倍,为什么就是长与宽的和扩大4倍?
想:根据商不变的规律,被除数和除数同时扩大10倍,商不变,余数也扩大10倍,所以商是6,余数是30×10=300。
解:略。

积的变化规律与商的变化规律课件

积的变化规律与商的变化规律课件

积与商的拓展知识比较
乘法和除法都是基本的四则运 算之一,它们之间存在密切的 联系。乘法可以看作是重复相 加的过程,而除法可以看作是 重复相减的过程。
在乘法中,交换律和结合律非 常重要,它们允许我们在不改 变结果的前提下改变乘法的顺 序。而在除法中,基本的运算 性质允许我们简化除法表达式 。
在数学中,乘法和除法都有逆 元和零元的概念。对于乘法, 逆元是它的倒数,而零元是0 。对于除法,逆元是它的倒数 ,而零元是1。这些概念在解 决数学问题时非常有用。
面积和体积计算
在建筑、装修等领域,需要使用乘法来计算面积和 体积。
除法在日常生活中的应用
80%
分配
在分配物品或资源时,除法用于 计算每个人或每个部分应得的数 量。
100%
速度和效率
在计算速度、效率等指标时,除 法也是必不可少的。
80%
成本计算
在商业和财务领域,除法用于计 算成本、利润等。
积与商在数学建模中的应用
积的变化规律与商的变化规律 课件

CONTENCT

• 积的变化规律 • 商的变化规律 • 积与商的应用 • 积与商的证明方法 • 积与商的拓展知识
01
积的变化规律
乘法交换律
乘法交换律是指两个数相乘,交换因 数的位置,积不变。
乘法交换律是基本的数学运算规则之 一,它表明无论因数的顺序如何,它 们的积都是相同的。例如,2乘以3等 于3乘以2。
除法的性质
除法具有交换律、结合律和分配律等基本性质,这些性质在数学 中有着广泛的应用。
商的运算性质
商的加法性质
如果a除以b得到商c,那么(a+d) 除以b也等于c+d/b,其中d是任 意实数。

和差积商的变化规律

和差积商的变化规律

和.差,积、商的变化规律(一)知识点拨和、差的规律见下表(于0精讲精练【例题1】两个数相加,一个加数增加9,另一个加数减少9,和是否发生变化?【思路】一个加数增加9,假如另一个加数不变,和就增加9;假如一个加数不变,另一个加数减少9,和就减少9;和先增加9,接着又减少9,所以不发生变化。

【练习1】1.两个数相加,一个数减8,另一个数加8,和是否变化?2.两个数相加,一个数加3.另一个数也加3.和起什么变化?3.两个数相加,一个数减6,另一个数减2.和起什么变化?【例题2】两个数相加,如果一个加数增加10,要使和增加6,那么另一个加数应有什么变化?【思路】一个加数增加10,假如另一个加数不变,和就增加10。

现在要使和增加6,那么另一个加数应减少10 — 6=4。

【练习2】1.两个数相加,如果一个加数增加8,要使和增加15,另一个加数应有什么变化?2.两个数相加,如果一个加数增加8,要使和减少15,另一个加数应有什么变化?3.两个数相加,如果一个加数减少8,要使和减少8,另一个加数应有什么变化?【例题3】两数相减,如果被减数增加8,减数也增加8,差是否起变化?【思路】被减数增加8,假如减数不变,差就增加8;假如被减数不变,减数增加8, 差就减少8。

两个数的差先增加8,接着又减少8,所以不起什么变化。

【练习3】1.两数相减,被减数减少6,减数也减少6,差是否起变化?2.两数相减,被减数增加12.减数减少12.差起什么变化?3.两数相减,被减数减少10,减数增加10,差起什么变化?【例题4】两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积将有什么变化?【思路】如果一个因数扩大8倍,另一个因数不变,积将扩大8倍;如果一个因数不变,另一个因数缩小2倍,积将缩小2倍。

积先扩大8倍又缩小2倍,因此,积扩大了 8 ・ 2=4 倍。

【练习4】1.两数相乘,如果一个因数缩小4倍,另一个因数扩大4倍,和是否起变化?2.两数相乘,如果一个因数扩大3倍,另一个因数缩小12倍,积将有什么变化?3.两数相乘,如果一个因数扩大3倍,另一个因数扩大6倍,积将有什么变化?【例题5】两数相除,如果被除数扩大4倍,除数缩小2倍,商将怎样变化?【思路】如果被除数扩大4倍,除数不变,商就扩大4倍;如果被除数不变,除数缩小2倍,商就扩大2倍。

四年级寒假班教案第3次课------积、商的变化规律

四年级寒假班教案第3次课------积、商的变化规律

积、商的变化规律知识要点1、积的变化规律(1)一个因数不变,另一个因数扩大(缩小)到原数的a倍,积就扩大(缩小)到原数的a 倍。

(2)一个因数扩大(缩小)到原数的a倍,另一个因数缩小(扩大)到原数的a倍,积不变。

(3)一个因数扩大(缩小)到原数的a倍,另一个因数扩大(缩小)到原数的b倍,积就扩大到原数的a×b倍。

扩展:一个因数扩大到原数的a倍,另一个因数缩小到原数的b倍,当a>b时,积就扩大a ÷b倍;当a<b时,积就缩小到原数的b÷a倍。

2、商的变化规律:(1)被除数和除数同时扩大(缩小)到原数的a倍,商不变。

(2)被除数和商同时扩大(缩小)到原数的a倍,除数不变。

(3)除数扩大(缩小)到原数的a倍,商缩小(扩大)到原数的a倍,被除数不变。

扩展:被除数扩大到原数的a倍,除数缩小到原数的b倍,商就扩大到原数的a×b倍。

被除数缩小到原数的a倍,除数扩大到原数的b倍,商就缩小到原数的a×b倍。

3、周长与面积公式(1)长方形:周长=(长+宽)×2 面积=长×宽(2)正方形:周长=边长×4 面积=边长×边长经典例题【例1】根据已知算式,直接写出下面各题的得数。

105×45=4725 18×24=432(105÷5)×(45×5)= (18×3)×(24×2)=(105×2)×(45÷6)= (18×6)×(24÷2)=【练习1】24×75=1800 36×104=3744(24○6)×(75×6)=1800 (36×4)×(104○4)=3744 (24○3)×(75○□)=1800 (36○□)×(104○□)=374415×24=36015×72=()60×12=()5×72=()30×6=()15×(24×)=3600 15×(24÷10)=()【例2】(1)18 ÷6=3 (2)4800÷10=480 (18×2)÷(6×2)= (4800 ÷2)÷(10 ÷2)= (18×3)÷(6÷3)= (4800÷10)÷(10×2)=(1)24÷8=(24×2)÷(8×)(2)360÷60=(360÷10)÷(10)(3)96÷6=()÷()【例3】1、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数不变,积是()2、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是()3、两数相除,被除数扩大3倍,除数缩小6倍,商( )4、小明在计算除法时,把除数末尾的0漏写了,结果得到的商是500,正确的商是()5、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也缩小到原来的3倍,积是()6、一个因数不变,把其中另一个因数扩大到原来的3倍,积是90,原来两个因数的积是()【练习3】1、一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是90,原来两个因数的积是()2、610×5=3050,把610缩小3倍,把5扩大倍15倍,那么积是()。

积商的变化规律

积商的变化规律

积商的变化规律嘿,朋友们,今儿咱们来聊聊一个既好玩又实用的数学小秘密——积商的变化规律。

别一听数学就头疼,咱用大白话,轻松愉快地把它捋顺了。

首先,咱们得明白啥是积,啥是商。

积啊,就像是你把一堆苹果分给小伙伴,每个人拿走的数量一乘,得到的就是总共分出去的苹果数,那就是积。

而商呢,就像是你有一堆苹果,要均匀地分给每个人,看每个人能分到多少,这就是商。

一、积的变化,就像变魔术1.1 乘法小伙伴手拉手想象一下,你有两个小伙伴,小明和小华,他们各自有5块糖。

现在,如果小明又得到了5块,他的糖变成了10块,而小华没变。

那么,他们俩的糖加起来就是15块了,不再是原来的10块。

看,这就是积的变化——其中一个数变了,它们的乘积也就跟着变了。

1.2 翻倍的快乐再换个玩法,如果你俩小伙伴的糖都翻倍了,小明从5块变成10块,小华也从5块变成10块。

哇塞,现在你们俩的糖加起来就是20块了!这感觉就像是你突然得到了双倍的快乐,积的变化就是这么神奇。

二、商的变化,智慧的小游戏2.1 分蛋糕的艺术说到商,咱们来想象一下分蛋糕。

假设你有一个大蛋糕,要均匀地分给5个朋友。

每个人能分到1/5块蛋糕,对吧?这就是商。

但如果你突然多买了一个同样的蛋糕,还是分给这5个朋友,那他们现在每人能分到多少呢?对啦,是1/2块蛋糕!看,蛋糕多了,每个人分到的就多了,这就是商随着被除数(蛋糕总数)的增大而增大的规律。

2.2 减人不减蛋糕反过来,如果还是那个大蛋糕,但你的朋友走了一个,只剩下4个人分。

嘿,这下子每个人分到的可就不止1/5块了,而是1/4块!这就是除数(人数)变小,商变大的道理。

就像是你手上的资源没变,但分享的人少了,自然每个人得到的就多了。

2.3 精打细算的日子还有啊,如果你还是那个蛋糕,但这次你决定少切一点出来给大家尝鲜,比如说只切出原来的一半。

这时候,不管有多少人分,他们分到的都少了。

这就是被除数变小,商也跟着变小的道理。

就像是钱包瘪了,日子就得精打细算过。

积商的变化规律1.3

积商的变化规律1.3

积商的变化规律知识:熟悉积与商的变化规律。

能力:熟练使用积商的变化规律解决实际问题。

情感:初步建立代数概念。

重点:借助图示法、倒推法,解决实际策略问题。

难点:培养学生逻辑思维能力和构建模型的能力。

今天我们来学习积商的变化规律。

上课之前先复习一下上一讲内容和作业。

因数扩大积扩大,被除数大商也大;除数扩大商缩小,具体情况看变化。

校正闹钟星期天,起床后发现闹钟停了,我估计了一下时间,就将闹钟的时针拨到7点整。

然后,我离家步行到博物馆,这时看到博物馆楼顶上的电子钟在8点50分。

我又游玩了一个半小时后从博物馆以同样的速度返回家中。

到家后,看到闹钟指在11点50分。

请问,这时我应将闹钟拨到何时才是准确的?思维拓展:大角牛的难题周末,鸡老师教了同学们“积商的变化规律”后,大角牛逢人就炫耀自己有多厉害。

于是聪明猴拿来一道题考大角牛。

大角牛稍微皱皱眉头,就报出答案“商是12和积扩大到原来的4倍”。

小朋友,大角牛的答案对吗?如果不对,正确的答案又是多少?1、两数相乘,一个因数扩大到原来的10倍,要使乘积不变,另一个因数应该怎样变化?2、两数相乘,一个因数乘以16,要使积扩大到原来的2倍,另一个因数应该怎样变化?鸡老师 大角牛 聪明猴3、两数相乘,积是64。

如果一个因数乘以8,另一个因除以4,那么积是多少?4、两数相除,被除数除以8,要使商不变,除数应该怎样变化?5、两数相除,如果被除数乘以4,除数除以8,商将怎样变化?6、两数相除,被除数缩小了9倍,除数缩小了3倍,商将怎样变化?7、两数相除,商是27,余数是8,被除数和除数同时缩小4倍,那么商是多少?余数是多少?。

积商的变化规律 《举一反三》四年级奥数教案

积商的变化规律  《举一反三》四年级奥数教案

《举一反三》四年级奥数教案一、教学内容:举一反三P48--P51二、教学目标:1 、两个因数同时变化时,积的变化规律。

2 、被除数和除数同时变化时,商的变化规律。

三、教学难点:理解两数同时变化时,积、商的变化过程。

四、教学设计:1、复习上周所学内容,讲解作业(疯狂操练5(2))。

【分析】:被减数+减数+差=90,被减数=减数+差所以被减数=90÷2=45。

被减数=减数+差=减数+2×减数=(1+2)×差=45减数=45÷(1+2)=15,差=2×减数=2×15=30。

当被减数不变,差增加7,则减数减少7,所以减数应变为30-7=23。

2、新课内容I、我们知道两数相乘,积的最基本的变化规律是:一个因数不变,积随另一个因数的扩大(缩小)而扩大(缩小);积与因数的扩大或缩小的数量都是相等的。

下面我们要讲的积的变化规律都是以此为基础演变的。

【例题1】:两个数相乘,一个因数扩大3倍,要是积扩大9倍,另因数应该怎么变化?【分析】:一个因数×另一个因数=积↑3倍-↑3倍积:↑3倍→↑9倍积先扩大3倍,要使积扩大9倍,只要积再扩大3倍。

积扩大3倍,所以另一个因数也扩大3倍。

练习:疯狂操练1(1)、(2)、(3)总结:【例题2】:两数相乘,积是96。

如果一个因数缩小4倍,另一个因数扩大3倍,那么积是多少?【分析】:一个因数×另一个因数=96↓4倍-↓4倍(96÷4=24)-↑3倍↑3倍(24×3=72)积先缩小4倍(96÷4=24),后扩大3倍(24×3=72),积是72。

方法二:见书P49 (例题2【思路导航】)练习:疯狂操练2(1)、(2)总结:II、学习了积的变化规律,下面我们来看看商的变化规律。

我们知道商最基本的变化规律是:如果被除数不变,商随除数的扩大(缩小)而缩小(扩大);如果除数不变,商随被除数的扩大(缩小)而扩大(缩小);差与除数、被倍数扩大或缩小的倍数相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积、商的变化规律
一、积的变化规律:
一个因数不变,另一个因数乘或除以几(0除外)积也要乘或除以相同的数。

二、商的变化规律:
1、除数不变,被除数乘几,商也乘几,被除数除以几,商也除以几。

2、被除数不变,除数乘几(0除外),商反而要除以几。

被除数不变,除数除以几(0除外),商反而要乘几。

3、被除数和除数都乘一个相同的数,商不变。

被除数和除数都除以一个相同的数,商也不变。

4、在有余数的除法里,如果被除数和除数同时扩大和缩小相同的倍数(0除外),商不变,余数也随着扩大和缩小相同的倍数。

入门题:
1、两个数相乘(积不为0),一个因数不变,另一个因数扩大到原来的3倍,积应该怎样变化?
2、两个数相乘(积不为0),一个因数除以3,另一个因数不变,积应该怎样变化?
3、两个数相乘(积不为0),一个因数扩大到原来的6倍,另一个因数扩大到原来的3倍,积应该怎样变化?
4、两个数相乘(积不为0),一个因数乘6,另一个因数除以3,积应该怎样变化?
5、两个数相除(商不为0),如果被除数扩大到原来的6倍,除数不变,商应该怎样变化?
6、两个数相除(商不为0),如果被除数不变,除数扩大到原来的2倍,商应该怎样变化?
7、两个数相除(商不为0),如果被除数除以6,除数不变,商应该怎样变化?
8、两个数相除(商不为0),如果被除数扩大到原来的6倍,除数扩大到原来的2倍,商应该怎样变化?
9、两个数相除(商不为0),如果被除数扩大到原来的3倍,除数缩小到原来的3倍,商应该怎样变化?
10、两个数相除(商不为0),如果除数扩大到原来的3倍,要使商缩小到原来的3倍。

被除数应该怎样变化?
练习题:
1、两个数相乘,积是96,如果一个因数要除以4,另一个因数要乘3。

那么积是多少?
2、两个数相乘(积不为0),一个因数要乘了6,另一个因数也乘了6,那么积应该怎样变化?
3、两个数相除(商不为0),如果被除数乘3,除数乘15,商应该怎样变化?
4、两个数相除,商是4,余数是10。

如果被除数和除数同时扩大50倍,商是多少?余数是几?
5、两个数相除,商是12,余数是120,除数应该大于多少?
如果被除数和除数同时缩小10倍,商是多少?余数是几?
6、根据26×37=962填空:
260×37=()26×370=()
962÷37=() 9620÷370=()
7、口答,想一想发现了什么?你能根据每组算式的特点接下
去再写两道算式吗?试试看。

6×2= 6×20=
6×200= 72×125=
8×125=24×125=
8、口答,想一想你又发现了什么?
80×4= 40×4= 20×4=
25×160=25×40=
25×10=
9、找规律,再填空。

16×17=272 16×68=
16×34= 16×85=
16×51= 16×102=
10、完成下列计算,说规律。

18×24=105×45=
(18÷2)×(24×2)= (105÷5)×(45×5)=(18×2)×(24÷2)= (105×3)×(45÷3)= 11、在○中填上运算符号,在□中填上数。

12、24×75=1800
(24○6)×(75×6)=1800
(24○3)×(75○□)=1800
13、36×104=3744
(36×4)×(104○4)=3744
(36○□)×(104○□)=3744
商的变化规律
一、读背以下几句话。

1、在除法里,除数不变,被除数乘几,商也乘几,被除数除以几,商也除以几(0除外)。

2、在除法里,被除数不变,除数乘几,商反而除以几,除数除以几,商反而乘几(0除外)。

3、在除法里,被除数和除数同时乘(或除以)相同的数(0除外)。

商不变。

二、利用规律,看谁算得又对又快。

81 ÷9= 320÷4= 56÷7= 360÷30=
810 ÷9= 320÷8= 560÷70= 3600÷30=
8100÷9= 320÷2= 5600÷700= 720÷6=
三、判断:
①210÷30=(210×15)÷(30×15)……………………()
②48÷12=(48×3)÷(12×4)…………………………()
③60÷12=(60 ÷3)÷(12×3)…………………………()
④63÷7=(63÷10)÷(7÷10)……………………()
⑤被除数不变,如果除数除以3,商也会除以3。

………()
⑥两数相除的商是20,被除数和除数同时乘2,商是40。

……()
四、填一填。

1、在除法里,除数不变,被除数乘8,商(),被除数除以70,商()。

2、在除法里,被除数不变,除数乘20,商(),除数除以12,商()。

3、在除法里,被除数和除数同时乘15,商()。

4、如果被除数和除数都扩大100倍,那么商就()。

5、如果除数缩小10倍,要使商不变,那么被除数要()。

6、如果被除数和除数都缩小20倍,那么商就()。

7、要使商不变,那除数和被除数要()。

8、两数相除的商是20,如果要使商变成40 ,怎么办?()9、250÷50=5
(250 ÷12)÷(50 ÷□)=5 (250×2)÷(50 ÷2)=□
(250×□)÷(50×4)=5 (250○□)÷(50○□)=5
五、根据上面的算式,在下面的括号里填上合适的数。

(1)150÷50=3 (2)180÷3=60 (3)240÷80=3 (4)96÷12=8
()÷50=6 540÷9=()240÷()=6 ()÷4=8
()÷()=3 1800÷()=60 ()÷80=6 1920÷24=8○□
(想一想每一题都是根据学的哪条规律?)
六:根据476÷17=28,你能写出多少个商是28的除法算式?(写出5个以上算式)
七、竖式计算(运用商不变性质)。

670÷20= 960÷80= 2600÷210=
890÷50= 7500÷620= 970÷70=。

相关文档
最新文档