预应力砼连续梁桥
预应力混凝土连续梁桥
第三章 预应力混凝土连续梁
主要介绍预应力混凝土连续梁桥的构造及施工方 法。支架法、悬臂施工法、预制梁逐孔施工法是连续梁 桥最常用的施工方法。悬臂施工法、顶推施工法是本章 学习的难点。
第一节 预应力混凝土连续梁的构造
连续梁优点: 连续梁的承重结构(板、T梁、箱梁)不间断的连续跨越几个桥孔
常用的箱形截面形式有单箱单室、双箱单室、单箱双室及单箱 多室等(见图3-3)。
二、预应力混凝土连续梁桥的横截面型式和尺寸
图3-3 板式、肋式截面 a)、b)实体截面 c)、d)空心截面 e)肋式截面
三、横隔梁设置
采用T形和I形截面的连续梁桥,因其抗扭刚度较小,为增加桥 梁的整体性和使荷载有良好的横向分布,宜设置中横隔梁和端横隔 梁。中横隔梁的数目及位置由主梁的构造和桥梁的跨径确定。常用 的横隔梁梁肋宽度为12~20cm。
二、预应力混凝土连续梁桥的横截面型式和尺寸
(一)板式截面 • 1.实体截面:分矩形实体截面、曲线形板式截面。
实体板式截面多用于中小跨径,且多采用有支架整体浇筑施工。 • 2.空心截面:空心截面常用于跨径为15~30m的连续梁桥,多采用有
支架整体浇筑施工。 (二)肋梁式截面
肋梁式截面预制方便,常采用预制架设施工,并在梁段安装后 经体系转换为连续梁桥。常用跨径为25~50m,梁高取1.5~2.5m。
(一)移动悬吊模架
•
移动悬吊模架的基本结构包括三部分:承重梁、从承重梁伸出
的肋骨状的横梁以及支承主梁的移动支承。
•
承重梁也称支承梁,通常采用钢梁,采用单梁或双梁依桥宽而
定。承重梁是承受施工设备自重、模板和悬吊脚手架系统的重力和
现浇混凝土重力的主要构件。承重梁的前段作为前移的导梁,总长
三跨变截面-预应力混凝土连续梁桥
炭厂沟预应力混凝土连续梁桥的设计设计说明一、设计依据1、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62- 2004)2、《公路桥涵设计通用规范》(JTG D60- 2004)3、《公路工程技术标准》(JTG B01-2003)二、技术标准和技术规范2.1技术标准1、荷载等级:公路—Ⅰ级;2、桥面宽度:0.25m(栏杆)+0.5m(防撞栏)+1.5m(人行道)+9m(行车道)+1.5m (人行道)+0.5m(防撞栏)+0.25m(栏杆)=13.5m。
3、桥面设有双向2%的横坡,通过桥面铺装完成;2.2采用规范1、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62- 2004)2、《公路桥涵设计通用规范》(JTG D60- 2004)3、《公路工程技术标准》(JTG B01-2003)4、《公路桥涵地基和基础设计规范》(JTJ024-85)5、《公路桥涵施工技术规范》(JTJ041-2000)三、基础资料该桥地质情况从上到下为黄土、古土壤、亚粘土和石灰岩。
前三种土质的侧阻力分别为65KPa、70 KPa、85 KPa。
由于本桩基础是支撑在基岩上的端承式。
基岩为石灰岩,其地基承载力特征值4000akf KPa。
四、结构设计4.1 孔跨布置根据路线设计线位,结合桥跨范围地形地质情况,对变截面连续梁桥孔跨布置设计,全桥孔跨组合为80m+125m+80m 。
图4-1 桥梁纵断面布置图4.2 箱梁结构箱梁采用的是单箱单室箱型截面。
桥面行车道的净宽为9m ,人行道净宽为2×1.5m ,因此在设计时设置2×0.5m 的防撞栏及2×0.25m 的人行栏杆。
故箱顶宽为13.5m ,底宽为7.5m ,箱梁顶为平行面。
箱梁跨中及边跨现浇段梁高为2.8m ,箱梁根部断面和墩顶0号梁段高为7.0m 。
从中跨跨中至箱梁根部,箱高、箱梁底板、箱梁腹板均是按照二次抛物线变化的。
预应力混凝土简支梁桥、连续梁桥和刚架桥对比分析
预应⼒混凝⼟简⽀梁桥、连续梁桥和刚架桥对⽐分析预应⼒混凝⼟简⽀梁桥、连续梁桥和刚架桥的设计构造特点和对⽐分析⼀、预应⼒混凝⼟简⽀梁桥1、构造布置:常⽤跨径:20~50m之间,我国编制了后张法装配式预应⼒混凝⼟简⽀梁桥的标准设计,标准跨径为25m、30m、35m、40m。
主梁梁距:1.5~2.2m之间横梁布置:端横梁、中横梁(布置在跨中及四分点处)2、主要尺⼨:主梁:⾼跨⽐1/15~1/25;肋厚14~16cm;横梁:中横梁3/4h,端横梁与主梁同⾼,宽12~20cm,可挖空;翼板:不⼩于1/12h,⼀般为变厚度。
马蹄:为了满⾜布置预应⼒束筋的要求,应T 梁的下缘做成马蹄形。
(⼀)主梁1、梁⾼:我国后张法装配式预应⼒混凝⼟简⽀梁的标准设计有25,30,35,40m 四种,其梁⾼分别为1.25~1.45,1.65~1.75,2.00,2.30m。
标准设计中⾼跨⽐值约为1/17~1/20,其主梁⾼度主要取决于活载标准,主梁间距可在较⼤范围内变化,通常其⾼跨⽐在1/15~1/25 左右。
主梁⾼度如不受建筑⾼度限制,⾼跨⽐宜取偏⼤值。
增⼤梁⾼,只增加腹板⾼度,混凝⼟数量增加不多,但可以节省钢筋⽤量,往往⽐较经济。
2、肋厚:预应⼒混凝⼟,由于预应⼒和弯起束筋的作⽤,肋中的主拉应⼒较⼩,肋板厚度⼀般都由构造决定。
原则上应满⾜束筋保护层的要求,并⼒求模板简单便于浇筑。
国外对现浇梁的腹板没有预应⼒管道时最⼩厚度为200mm,仅有纵向或竖向管道的腹板需要300mm,既有纵向⼜有竖向管道的腹板需要380mm。
对于⾼度超过2400mm 的梁,这些尺⼨尚应增加,以减少混凝⼟浇筑困难,装配式梁的腹板厚度可适当减少,但不能⼩于165mm。
如为先张法结构,最低值可达125mm。
我国⽬前所采⽤的值偏低,⼀般采⽤160mm,标准设计中为140~160mm,在接近梁的两端的区段内,为满⾜抗剪强度和预应⼒束筋布置锚具的需要,将肋厚逐渐扩展加厚。
预应力混凝土等截面连续梁桥毕业设计
方法:优化桥梁的截面形状 和尺寸,提高桥梁的承载能
力和稳定性
方法:采用高性能混凝土和 钢筋,提高桥梁的耐久性和
安全性
方法:优化桥梁的施工工艺 和施工方案,提高桥梁的施
工质量和效率
结构尺寸优化
确定桥梁跨度和跨径比 确定桥梁高度和宽度 确定桥梁截面形状和尺寸 确定桥梁支座类型和位置 确定桥梁预应力筋布置和锚固方式 确定桥梁施工工艺和材料选择
P预A应R力T混6凝土等截面连续梁桥
的工程实例
工程概况
工程名称:预应力 混凝土等截面连续 梁桥
工程地点:某城市
工程规模:全长 xx米,跨径xx米
工程特点:采用预 应力混凝土等截面 连续梁桥结构,具 有承载能力强、抗 震性能好等特点。
设计方案及要点
预应力混凝土等截面连续梁桥的设计方案应考虑桥梁的跨度、高度、荷载等因素。 设计方案应包括桥梁的平面布置、横断面设计、纵断面设计等。 设计方案应考虑桥梁的抗震性能,采用合理的抗震措施。 设计方案应考虑桥梁的耐久性,采用耐久性好的材料和施工工艺。
YOUR LOGO
预应力混凝土等截面 连续梁桥毕业设计
,a click to unlimited possibilities
汇报人:
时间:20XX-XX-XX
目录
01
添加标题
02
03
04
05
06
预应力混凝土 等截面连续梁 桥概述
预应力混凝土 等截面连续梁 桥的设计原理
预应力混凝土 等截面连续梁 桥的施工方法
结构材料优化
钢筋配置:优化钢筋布置, 提高抗弯、抗剪能力
混凝土强度:选择高强度混 凝土,提高承载能力
预应力混凝土连续梁桥纵向预应力设计
预应力混凝土连续梁桥纵向预应力设计一、引言预应力混凝土连续梁桥由于其跨越能力大、结构刚度好、行车舒适性高等优点,在现代桥梁工程中得到了广泛的应用。
而纵向预应力设计是预应力混凝土连续梁桥设计中的关键环节,它直接关系到桥梁的结构性能、安全性和经济性。
二、纵向预应力设计的目的和作用纵向预应力设计的主要目的是通过在混凝土梁中预先施加压应力,来抵消在使用阶段可能出现的拉应力,从而提高梁的承载能力、抗裂性能和耐久性。
其作用主要体现在以下几个方面:1、提高梁的抗弯承载能力:预应力的施加可以使梁在承受荷载时,混凝土处于受压状态,充分发挥混凝土抗压强度高的特点,从而提高梁的抗弯能力。
2、增强梁的抗裂性能:预先施加的压应力可以有效地抑制混凝土裂缝的产生和扩展,提高梁的耐久性。
3、减小梁的挠度:预应力可以减小梁在荷载作用下的变形,提高桥梁的刚度和行车舒适性。
三、纵向预应力筋的布置形式1、直线布置:预应力筋沿梁的轴线直线布置,这种布置形式施工简单,但对梁的抗剪和抗扭性能提升有限。
2、曲线布置:预应力筋沿梁的纵向呈曲线布置,常见的有抛物线形和圆弧形。
曲线布置可以更好地适应梁的弯矩分布,提高预应力的效率,但施工难度相对较大。
四、纵向预应力筋的材料选择常用的纵向预应力筋材料有高强度钢丝、钢绞线和精轧螺纹钢筋。
高强度钢丝具有强度高、柔韧性好的特点,但锚固较复杂。
钢绞线则是目前应用最广泛的预应力筋材料,其强度高、柔韧性好、施工方便。
精轧螺纹钢筋适用于对锚固要求较高的部位,但成本相对较高。
在选择预应力筋材料时,需要综合考虑桥梁的跨度、荷载、施工条件和经济性等因素。
五、纵向预应力筋的数量确定纵向预应力筋的数量应根据桥梁的结构受力要求、使用性能要求和规范规定来确定。
首先,需要根据梁的弯矩和剪力分布,计算出所需的预应力大小。
然后,根据所选预应力筋材料的强度和特性,确定预应力筋的数量。
在计算过程中,还需要考虑预应力损失的影响。
预应力损失包括锚具变形损失、摩擦损失、混凝土收缩徐变损失等。
预应力混凝土连续梁桥、拱桥、斜拉桥、悬索桥等详解
3)肋拱桥
1988广东广州流溪桥 (L=90m)
钢筋混凝土箱肋中承式拱,拱矢度1/4.5,全桥采用喷塑装修工艺,建筑宏 伟壮丽,已成为公园的重要景观。
4)箱拱桥
1979四川省宜宾市金沙江大桥 (L=150m)
中国采用缆索吊装施工、跨径最大的钢筋混凝土箱形拱。主拱圈箱高 2.0m,箱宽7.60m,矢跨比1/7,全拱圈横向分5个箱室;纵向分5段预制,缆 索吊装就位后再组合成整体箱。
四川万州长江大桥: 四川万州长江大桥:拱
交界墩翻模施工
圈劲性骨架分段吊装
四川万州长江大 桥:骨架吊装
四川万州长江大桥:骨架合龙
四川万州长江大桥:浇筑箱形拱圈混凝土
四川万州长江大桥:浇筑次序
四川万州长江大桥: 浇注拱上立柱
四川万州长江大桥: 吊装桥面T梁
四川万州长江大桥:竣工后全景
第四节 拱桥实例介绍
7)桁式组合拱桥中国首创的一种桥型,它除保持桁式拱结构用料省、竖向刚度大等特点外,
更具有桁梁的特性和可以采用悬臂法施工、施工阶段和运营阶段的受力趋于一致等优点。
1990四川自贡160米牛佛沱桥
桁式组合拱为三室箱形截面,桁架片按节段分件预制,采用人字扒杆悬拼安装。
8)钢管混凝土拱桥
1990四川旺苍115米东河桥
公路双曲拱桥多是多肋波 截面;对于跨径和荷载较小的 单车道桥可采用单波的形式。
双曲拱桥施工工序多,组合截面的整体性差,易开裂,因此,只 宜在中小跨径桥梁中采用。
Байду номын сангаас
4、箱形拱桥: 箱形拱桥拱圈横截面由几个箱室组成。截面挖空率大,
可达全截面的50%-70%,较实体板拱桥可减少圬工用料与自 重,适用于大跨度拱桥。截面抗扭刚度大,横向整体性和稳 定性好,特别适用于无支架施工。
预应力混凝土连续梁桥悬臂浇筑施工知识讲座(作者东南大学交通学院桥梁与隧道工程研究所吴文清)课件
跨越障碍物
当桥梁跨越深谷、河流、 道路等障碍物时,悬臂浇 筑施工方法能够避免对障 碍物的干扰和破坏。
高墩桥梁
对于高墩桥梁,悬臂浇筑 施工方法能够减小施工难 度和风险,提高施工效率 。
02
预应力混凝土连续梁 桥悬臂浇筑施工流程
施工前的准备工作
施工组织设计
根据工程规模、地质勘察报告和 设计文件,编制施工组织设计, 明确施工方案、工期、资源配置
施工监控与调整
位移监测
01
采用适当的位移监测方法,对施工过程中的位移进行实时监测
。
应变监测
02
采用适当的应变监测方法,对施工过程中的应变进行实时监测
。
数据处理与分析
03
对监测数据进行处理和分析,及时发现施工中的问题并采取相
应措施进行调整。
03
预应力混凝土连续梁 桥悬臂浇筑施工质量 控制
混凝土质量控制
等。
施工现场布置
根据施工组织设计,合理布置施工 现场,包括材料堆放、设备安装、 临时设施等。
施工队伍组建
组建专业施工队伍,并进行技术培 训和安全教育,确保施工质量和安 全。
挂篮的设计与制作
挂篮设计
根据桥梁跨度、梁高等参数,设 计合理的挂篮结构,确保施工安
全和稳定性。
挂篮制作
按照设计图纸和相关规范,制作 挂篮,确保制作精度和质量。
混凝土浇筑
按照施工顺序,采用适当的浇筑方法进行混凝土浇筑。
混凝土养护
在混凝土浇筑完成后,进行适当的养护,确保混凝土质量。
预应力筋的张拉与锚固
1 2
预应力筋选择
根据设计要求选择合适的预应力筋材料和规格。
预应力筋张拉
在混凝土达到一定强度后,进行预应力筋的张拉 操作。
预应力混凝土连续梁(刚构)桥
2.立面布置
等高连续梁
梁高选择:与跨度有关。 • 公路桥的高跨比h/L在1/25~1/15之间。当采用顶推法施
工时,考虑顶推法施工时对结构的附加受力要求,高跨 比选1/15~1/12为宜
• 干线铁路桥, 高跨比为1/8~1/16
Kochertal Bridge
德国 | 科查塔桥
Kochertal Bridge
连续钢构体系
2.立面布置
带V形墩或V形支撑的连续梁体系
优点: • 适当增加连续梁的跨越能力、节省材料 • 削减墩顶的负弯矩 • 外观上显得轻巧别致
桥无止,路无尽
2.立面布置
连续钢构体系
特点: ③在构造方面,主梁常采用变截面箱形梁,桥墩多采用矩形和 箱形截面的柱式墩或双薄壁墩;在连续刚构两端设置的伸缩装 置应能适应结构纵向位移的需要,同时,端部需设置控制水平 位移的挡块,以保证结构的水平稳定性。
2.立面布置
连续钢构体系
受力特点: ①随着墩高的增加,连续刚构的墩顶以及跨中梁部弯矩趋近连 续梁者 ②墩的轴向力和墩底弯矩随墩高的增加急剧减少 ③两墩之间的梁部所受到的轴向力随墩高的增加而急剧减少。 因此,连续刚构梁的高跨比等设计参数可参照连续梁桥取值 (适当偏小),对带双薄壁墩的连续刚构体系,其梁部弯矩与 双薄壁的截面尺寸和间距有较大关系
可取1/25~1/16,支点截面与跨中截面高度之比在2.0 ~ 3.0; • 铁路:支点截面可取1/16 ~ 1/12,支点截面与跨中截面 高度之比在1.5 ~ 2.0.边跨与中跨的跨度比在0.5 ~ 0.8 内变化,采用悬臂法施工时宜取较小值。比值过大,会导 致边跨正弯矩分布不合理;而比值过小,梁端支点可能发 生负反力,需要设置构造复杂的拉力支座。
我国预应力混凝土连续梁桥的发展与工程实践
我国预应力混凝土连续梁桥的发展与工程实践预应力混凝土连续梁桥是由预应力混凝土和常规混凝土组成的桥梁,是当代桥梁加固和改造的主要方式。
随着改造技术的不断进步,我国的预应力混凝土连续梁桥的发展也越来越快,一些令人印象深刻的工程实践也在这一领域逐渐展示出来。
本文将介绍预应力混凝土连续梁桥发展的历史背景、发展趋势和现阶段的工程实践,以期为今后的应用研究和技术改进提供参考。
一、预应力混凝土连续梁桥发展历史预应力混凝土连续梁桥起源于20世纪50年代,最早用于跨越铁路、公路、河流和湖泊的大型桥梁。
后来,随着连续梁桥的发展,人们逐渐开发出能够克服桥梁结构的弯曲、拉应力和剪应力的结构材料,预应力混凝土连续梁桥成为当今现代桥梁的常用结构类型之一。
二、预应力混凝土连续梁桥发展趋势预应力混凝土连续梁桥越来越受到大家的青睐,因为它具有优良的抗震性能、质量轻、维护成本低、施工效率高等优点。
此外,预应力混凝土连续梁桥有利于环境保护,因为它使用的特殊型钢具有低能耗、高强度的特点,大大减少了桥梁施工时对环境的影响。
三、预应力混凝土连续梁桥的工程实践在我国,预应力混凝土连续梁桥得到了广泛应用,许多令人印象深刻的桥梁工程实践也随之展现出来。
其中最著名的工程实践之一就是2010年完工的北京机场快速路双向六车道连续梁桥,该桥全长1191米,分为三个跨径,它是目前我国最大的预应力混凝土连续梁桥。
此外,还有一些较小的预应力混凝土连续梁桥工程,例如重庆长江大桥、浙江马友波大桥以及珠江大桥等等,这些桥梁也有着相当惊人的结构表现。
四、结论从本文介绍的情况来看,预应力混凝土连续梁桥在我国得到了广泛的应用和发展,它具有重量轻、维护成本低、施工速度快等优点,是当今桥梁结构的基本要素之一,也被认为是现代桥梁加固和改造的主要方式之一。
未来,预应力混凝土连续梁桥的发展仍会受到技术改进的推动,有望取得更大的进步和突破,以满足桥梁发展中更高维度的要求。
预应力混凝土连续梁桥施工—预应力混凝土连续梁桥顶推施工
顶推动力设备及限位装置
顶推动力装置由千斤顶、高压油泵、拉杆(束)、顶 推锚具(自动工具锚、拉锚器)组成, 千斤顶的工作状 态和电动油泵的操作分别如图所示:
拉锚器和牵引装置
滑道和滑块的布置如图所示:
限位纠偏装置
正在顶推施工的钢梁
顶推施工全过程对钢梁的顶板和底板进行了静应变测试,对临 时墩、永久墩等设施进行了动应变的测试。静动应变测试如下图示:
连续梁顶推法施工示意图 (a) 单向单点顶推;(b)单向多点顶推;(c)双向顶推
顶推装置(一)
推头式顶推装置 图 (a)用于桥台处
的顶推。 图 (b)可用于梁中
各点的顶推。
顶推装置(二)
拉 杆 式 顶 推 装 置
顶推装置(三)
滑 道 构 造
顶推施工的原理
• 顶推法施工原理是: 沿桥轴纵轴方向的台后设置预制场,分阶
4)在桥端路基上或引桥上设置预制台座时,其地基或引桥的强度、 刚度和稳定性应符合设计要求,并应做好台座地基的防水、排水设施, 以防沉陷。在荷载作用下,台座顶面变形不应大于2mm。 • 台座的轴线应与桥梁轴线的延长线重合,台座的纵坡应与桥梁的纵坡一 致。台座施工的允许偏差如下:
1) 轴线偏差:5mm; 2)相邻两支承点上台座中滑移装置的纵向顶面标高差:2mm; 3)同一个支承点上滑移装置的横向顶面标高差:1mm; 4)台座(包括滑移装置)和梁段底模板顶面标高差:2mm。
• 水平——竖直千斤顶法:由水平千斤顶和竖向千 斤顶交互使用而产生顶推力。
• 拉杆千斤顶法——由固定在墩台上的水平张拉千 斤顶,通过张拉锚碇在主梁上的拉杆而使梁体前 移。
顶推的施工方法
拉杆千斤顶法
施工工序:拉杆穿入千斤顶柱塞和锚碇架内,并用夹片夹 住—启动千斤顶移梁—顶梁—推移—落竖顶—收水平顶。
我国预应力混凝土连续梁桥的发展与工程实践
我国预应力混凝土连续梁桥的发展与工程实践前言连续梁桥是目前道路桥梁中常见的桥型之一,其具有良好的连续性和较大的通行能力,在城市快速路和高速公路中得到了广泛的应用。
而预应力混凝土连续梁桥则是连续梁桥中的主流类型,由于其优越的性能和经济性,已成为我国大型桥梁建设的重要选择。
本文将从我国预应力混凝土连续梁桥的发展历程、工程实践和现状三个方面进行介绍。
发展历程预应力混凝土连续梁桥的历史可以追溯到20世纪50年代初期,最早的预应力混凝土连续梁桥是在欧洲建造的。
到了20世纪60年代,预应力混凝土连续梁桥开始在我国的重要行车道和骨干线上得到推广和应用。
1974年,我国第一座预应力混凝土连续梁桥——合肥黄山路桥正式建成通车,标志着我国预应力混凝土连续梁桥的诞生和发展。
随着我国经济快速发展,交通建设蓬勃发展,预应力混凝土连续梁桥在我国得到了广泛的应用。
目前,我国已经建成的桥梁中,预应力混凝土连续梁桥占比达到了50%以上。
工程实践技术特点预应力混凝土连续梁桥具有许多优点,例如:1.梁体自重轻、板厚小、截面形式多样。
2.连续性好、刚度大、自振周期长,具有良好的抗震能力。
3.施工方便、工期短、施工造价低。
工程案例武汉长江三桥武汉长江三桥是我国第一座跨越长江的连续梁桥,也是目前世界上跨径最长(1280m)的预应力混凝土连续梁桥。
该桥主桥全长1683m,最高塔楼高298.5m,共有6跨连续梁,每一跨长178m。
南京长江二桥南京长江二桥是我国第一座跨越长江的公铁两用桥,也是我国最早采用钢梁混凝土桥面板技术的大型桥梁。
该桥跨度达到了648m,是当时全球跨度最大的混合结构钢梁混凝土梁桥。
现状当前,我国预应力混凝土连续梁桥在技术方面已经相对成熟,大量的实际工程证明了其良好的性能和经济性。
同时,随着我国交通建设不断推进和高速公路网络不断完善,预应力混凝土连续梁桥的建设和使用也越来越广泛。
但是,目前我国预应力混凝土连续梁桥的一些问题也引起了人们的关注。
预应力混凝土连续箱梁桥设计
预应力混凝土连续箱梁桥设计一、预应力混凝土连续箱梁的特点1.结构简单,施工方便:预应力混凝土连续箱梁是由多节箱体组成的连续结构,箱体之间通过预应力钢筋连接,构造简单明了。
2.承载能力大:预应力混凝土连续箱梁采用预应力钢筋,使梁的承载能力得到有效提高,可以满足大跨度、大荷载的要求。
3.抗震性能好:预应力混凝土连续箱梁由于预应力钢筋的作用,具有良好的抗震性能,能够有效地减小地震力对桥梁的影响。
4.经济性好:预应力混凝土连续箱梁由于结构简洁,施工方便,能够降低工程成本。
二、预应力混凝土连续箱梁的设计要点1.跨度选择:预应力混凝土连续箱梁的跨度要根据桥梁的实际情况进行合理选择,考虑到交通流量、路线的复杂程度、设计速度等因素。
一般情况下,跨度较小的桥梁可以选择简支梁或连续梁结构,跨度较大的桥梁则需要选用连续箱梁结构。
2.箱梁几何尺寸设计:箱梁几何尺寸的设计包括箱梁的高度、宽度和翼缘板的厚度等。
根据桥梁的跨度和超载情况,结合梁段的布置要求,确定合理的几何尺寸。
3.梁段划分:预应力混凝土连续箱梁由于有多个梁段组成,因此需要对梁段进行合理划分。
划分梁段的原则是各个梁段中应力相对均匀,使得整个桥梁结构具有良好的力学性能。
4.预应力计算:预应力混凝土连续箱梁的预应力计算是桥梁设计过程中的关键环节。
需要根据桥梁的跨度、超载情况和设计要求,确定预应力的大小和布置方式。
5.砼块计算:预应力混凝土连续箱梁的砼块计算是为了确定梁的自重和大车荷载作用下的受力状态。
需要考虑到砼块在施工过程中的配重状态和工作状态。
三、预应力混凝土连续箱梁的施工过程1.模板安装:首先需要安装好箱梁的模板,确保模板的精度和稳定性。
2.钢筋预埋:在模板安装完成后,根据预应力设计要求,在箱梁的相应位置预埋好预应力钢筋。
3.砂浆浇注:钢筋预埋完成后,将砂浆浇注到模板内,形成箱梁的外形。
需要确保砂浆的流动性和充实性,以避免空洞和缺陷。
4.预应力成型:砂浆浇注完成后,根据预应力设计要求,通过拉力机对预应力钢筋进行拉拔,形成预应力。
预应力混凝土连续梁桥的施工
预应力混凝土连续梁桥的施工20 世纪初,小跨度的钢筋混凝土连续梁桥开始被建造;30—40 年代,预应力混凝土的材料及工艺得到发展,逐步应用于桥梁工程;至50 年代,预应力混凝土连续梁桥出现;到70年代,预应力混凝土连续刚构桥出现。
近几十年来,伴随着施工技术的进步,预应力混凝土连续梁桥表现出强大的生命力,发展迅猛。
由于连续梁桥的主梁长度和重量大,一般很难像简支梁那样能将整根梁一次架设。
连续梁桥的施工可采用分段预制,再浇筑接头的方法,但受力截面的主钢筋都被截断,接头工作复杂,强度也不易保证。
目前,连续梁桥的施工主要还是采用悬臂浇筑法、悬臂拼装法、顶推法、移动模架法及支架法施工方法,每一种施工方法都各具特点,需要结合具体情况做出适当选择。
预应力混凝土悬臂体系梁桥的施工通常采用悬臂施工法。
采用该法施工时,不需要在河中搭设支架,而直接从已建墩台顶部逐段向跨径方向延伸施工,每延伸一段就施加预应力使其与已成部分联结成整体。
悬臂施工法不受桥高、河深等影响,适应性强,目前不仅用于悬臂体系桥梁的施工,而且还广泛应用于大跨径预应力混凝土连续梁桥、混凝土斜拉桥以及钢筋混凝土拱桥的施工。
一、支架法现浇预应力混凝土连续梁桥预应力混凝土连续梁桥同样可以采用支架法现浇施工。
我国第一座预应力混凝土(双线)铁路连续梁桥——通惠河桥,主梁为箱形截面,变高度,跨径为(26.7+40.7+26.7)m,于1975 年建成,该桥就采用了支架法现浇箱梁。
预应力混凝土连续梁采用支架施工,和用支架法施工混凝土简支梁的主要工序相似,只是前者还需要在连续梁桥的一联各跨中设支架,按照一定的施工程序完成各联桥的施工,包括混凝土的浇筑、养护、拆模等工序。
在一联桥施工完成后,卸落支架,将其拆除进行周转使用。
落架的时机与施工程序和预应力钢筋的张拉工序有关,应综合考虑。
原则上,在张拉后恒载能由梁体本身承受时,可以落架。
支架法施工工序如图5.2.1。
图5.2.1 支架法施工工序小跨径预应力混凝土连续梁桥,一般采用从一端向另一端分层、分段的施工程序,先梁身后支点依次进行。
预应力溷凝土连续梁桥施工
简支转连续施工方法亦存在体系转换。体系转换方法一般有以下三种:
从一端起依次逐孔连续,即先将第一孔与第二孔形成两跨连续梁,然后再与第三孔形成三跨连续梁,依此类推,形成一联连续。 从两端起向中间依次逐孔连续 从中间孔起向两端依次逐孔连续
施工特点
适合于矮箱梁及T型截面梁集零为整,形成连续梁。 适宜跨径为 25~50m,且宜等跨径布置桥孔,施工工艺成熟简单,不需大型起吊设备。 下部结构和预制梁可安排平行作业施工,桥梁总体施工期短。
应当指出的是,不同的悬灌和合龙程序,引起的结构恒载内力不同,体系转换时有徐变引起的内力重分布也不相同,故采用不同的悬灌和合龙程序将在结构中产生不同的最终恒载内力,对此应在设计和施工中予以充分考虑。
(二) 合龙技术措施
一般讲,在两侧边跨合龙后,应立即解除墩梁临时固结措施,使梁成简支悬臂体系。 也有另一种情况,可以在中跨合龙后在解除墩梁临时固结措施。 采取上述哪一种解除方式,要与设计院沟通后才能确定,切勿自行确定。
悬浇挂篮
(2)弓弦式挂篮
弓弦式挂篮桁架为拱形架,具有桁高随弯矩大小变化、受力合理、节省材料的特点。在安装时结构内部预施应力来消除非弹性变形,一般质量小。
悬浇挂篮
菱形桁架式挂篮 菱形桁架式挂篮是一种简单的桁架,结构形状为菱形,横梁放置在主桁架上,其菱形桁架后端锚固于箱梁顶板上,无需平衡重,挂篮结构简单、质量小。
四、主要工艺程序及其特点
用挂篮主段悬浇施工的主要工艺程序为: 灌注0号段及墩梁临时锚固; 拼装挂篮; 灌注1号段; 张拉预应力钢索; 挂篮前移、调整、锚固; 灌注下一梁段; 依次类推完成悬臂灌注; 挂篮拆除; 边跨合龙; 中跨合龙。
(一) 0号段的浇筑
0号段位于桥墩上方,灌注0号段相当于给挂篮提供一个安装场地。 0号段一般需在桥墩两侧设托架或支架现浇。
预应力混凝土连续梁桥
34
预应力混凝土连续梁桥的构造
竖向预应力筋
Ø 当腹板混凝土、普通钢筋、纵向下弯预应力筋等不足 以抵抗荷载剪力时,就需要在腹板内布置竖向预应力 筋。
Ø 竖向预应力筋一方面可以提高截面的抗剪能力,另一 方面也可以与挂篮施工配合,作为后锚钢筋。
Ø 竖向预应力筋比较短,直筋采用钢绞线、钢丝束,也 可以选用精轧螺纹钢筋。
Ø 为简化多肋T形梁的施工,也有宽矮肋的单 T断面,肋宽可达3~4m,外悬长翼板,称 为脊形梁(脊骨梁)或异形结构。
15
预应力混凝土连续梁桥的构造
箱形截面
Ø 当跨径超过40~60m或更大时,主梁多采用箱形截面, 适用于有支架现浇施工,逐孔施工、悬臂施工等多种 施工方法。
Ø 常用的截面形式:单箱单室、单箱双室、双箱单室
1 50
)l
11
预应力混凝土连续梁桥的构造
变截面连续梁适用范围
Ø 连续梁的主跨跨径大于70m 。 Ø 适合悬臂浇筑和悬臂拼装两种施工 。 Ø 大跨径预应力混凝土连续梁桥采用悬臂法施工
时,存在墩梁临时固结和体系转换的工序,结 构稳定性应予以重视,施工较为复杂;此外, 主墩需要布置大型橡胶支座,存在养护上甚至 更换上的麻烦。
悬臂(浇注/拼装)施工
Ø 梁部施工从桥中间墩处开始、按对称方式逐步接长并 悬出梁段至合龙的施工方法。
Ø 施工支架和临时设备少。 Ø 施工时不影响桥下通航、通车,也不受季节、河道水
位的影响。 Ø 能在大跨度桥上采用。
39
预应力混凝土连续梁桥的施工方法
简支变连续施工
40
预应力混凝土连续梁桥的施工方法
逐跨(浇注/拼装)施工
因素,一般采用2~5m,超过3m应布置横向预 应力筋。
预应力混凝土连续梁桥实例
预应力混凝土连续梁桥实例近些年来,我国已用各种典型的施工方法修建了不少大中型跨径预应力混凝土连续梁桥。
下面介绍其中的沙洋汉江桥和奉浦大桥。
1. 沙洋汉江桥沙洋汉江桥沙洋汉江桥位于我国湖北省荆门县的沙洋镇,是跨越汉江,联系汉口到宜昌的公路桥。
桥梁全长1818.5m,主桥采用八跨一联的变截面预应力混凝土连续梁桥,中跨111m,桥面行车道宽9m,两侧人行道各宽1.5m,全宽12.5m(图6.14)。
桥址位于汉江下游,属平原稳定性河道,河床滩、槽分明,枯水时主槽河面宽600—700m,两岸河滩约1100m,但主河槽冲淤变化剧烈,一次洪水的主槽标高冲淤变化幅度达8.7m,平均变化幅度4.5m,主槽并有横向摆动的历史,根据汉江水情变化,为了桥梁的安全和两岸人民的安全,在桥梁全长设计中按两岸沿江大堤堤距考虑。
桥位处地质情况复杂。
根据地质条件和冲刷情况,主桥墩基础选用钢筋混凝土空心井,平均高度31m,置于泥灰岩层上。
主墩采用钢筋混凝土空心墩,墩高13.6~14.8m,每个主墩上设置两个承载力为19600kN的盆式橡胶支座。
主桥与引桥的过渡墩基础选用4根直径1.25m钢筋混凝土钻孔桩。
钢筋混凝土实体墩、引桥均采用直筋1.4m钢筋混凝土双圆柱墩,直径1.5m及1.25m钻孔灌注桩,桩长约30m。
河道按四级航道标准设计。
通航净宽55m,净高8m,主航道在主桥的两个边部。
沙洋汉江桥主桥为62.4+6×111+62.4m的预应力混凝土连续梁桥,边跨与中跨之比为0.56:1。
横截面为单箱单室。
连续梁的墩顶高为6m。
跨中梁高3m,底缘按二次抛物线变化。
横截面的尺寸按常规选定,其中腹板与底板采用变厚度。
主桥的横隔梁设置3~5道,主桥中跨设置在支点、四分点、跨中截面;边跨仅设置在支点、跨中和端部截面。
在主桥与引桥相接的过度墩上设置铸钢制梳齿板伸缩缝。
主桥采用挂篮悬臂浇筑法施工。
墩顶的箱梁及横隔板是在墩旁托架上立模现场浇筑,待桥墩与墩顶的箱梁临时固结后进行悬臂浇筑施工。
关于预应力混凝土连续梁桥中的若干问题
其基本概念为后张法张拉时的杆件属“自平衡”体系,而与杆件作用一个轴压力的平衡条件有着本质上的差异,前者不会横向失稳,而后者有可能产生横向屈曲失稳。因而,一根曲杆进行后张法预应力张拉时不必担心其横向失稳问题。
十二、先张法预应力混凝土构件的放张
先张法的放张工艺即是一个施加预加力的工艺过程。原则上要求均匀、一致,不要突然切割,骤然放张,其冲击力将会破坏钢束自锚区的“传递长度”范围内的“握裹”。
一般情况下,可采用2次抛物线的梁底变高曲线,但往往会在1/4·L2和1/8·L2处的底板砼应力紧张,且在该截面附近的主拉应力也较紧张,因而,可将2次抛物线变更为1.5~1.8次方的抛物线更合理。
在江苏平原通航河道上,为了满足通航净空的要求,在设计时甚至采用大于2次抛物线的幂级数设置底板曲线,这是值得十分注意的问题,事实证明,跨中挠度一般较大,极易发生正弯矩裂缝和斜裂缝。
十、锚头或齿板的压陷、压崩破坏
在工程中锚头或齿板压陷、压崩破坏,时有所见。值得注意者,局部受力的锚头或齿板的砼强度和配筋一般地安全储备较小,且由于该局部区内的配筋又较密,砼操作空间又较小,振捣工作又较困难,稍有疏忽,很易出现质量事故,所以在施工中应备加小心。
十一、平面曲线束张拉时,构件会否失稳?I字形组合T梁张拉时构件在横向会否失稳正确的回答为不会失稳?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于预应力混凝土连续梁桥中的若干问题一、跨径比一般情况下,为使边跨正弯矩和中支点负弯矩大致接近的原则,以使布束更趋合理,构造简单,故L1/L2=0.539~0.692是常见的边、主跨的跨径比范围,当L1/L2≤0.419时,边跨则需压重,应属于非常规的特殊处理;大都L1/L2=0.54~0.58则较合理,这将有可能在边跨悬臂端用导梁支承于端墩上合拢边跨,取消落地支架。
二、梁高主跨箱梁跨中截面的高跨比h0≈(1/46.2~1/86)L2,通常为(1/54~1/60)L2,在箱梁根部的高跨比h1≈(1/15~1/20.6)L2,大部分为(1/18)L2左右。
目前在国际上有减少主梁高跨比的趋势,已建成的挪威stolma桥和Raftsundet桥,在跨中区段采用了轻质砼,减轻了自重,减小了主梁高跨比,其跨中h0≈1/86·L2和1/85.1·L2,根部高度分别为h1=1/20.1·L2和1/20.6·L2。
一般情况下,可采用2次抛物线的梁底变高曲线,但往往会在1/4·L2和1/8·L2处的底板砼应力紧张,且在该截面附近的主拉应力也较紧张,因而,可将2次抛物线变更为1.5~1.8次方的抛物线更合理。
在江苏平原通航河道上,为了满足通航净空的要求,在设计时甚至采用大于2次抛物线的幂级数设置底板曲线,这是值得十分注意的问题,事实证明,跨中挠度一般较大,极易发生正弯矩裂缝和斜裂缝。
三、顶板厚度以往通常采用28cm,近年来已趋向于减小为25cm,这显然与箱宽和施工技术有关。
四、底板厚度以往通常采用32cm(跨中),逐渐向根部变厚,少数桥梁已开始采用28-25cm者,其厚跨比通常为(1/140~1/160)L2,也有用到1/200·L2者。
挪威stolma桥和Raftsundet桥最大底板厚度为105cm和120cm,合跨径的1/286.7和1/248.3,这将取得了明显的经济效益。
五、腹板一般为40~50cm,但应特别注意主拉应力的控制,近年来在腹板上出现较多斜裂缝的病害甚多,应予谨慎。
增加箱梁的挖空率,减轻截面的结构自重,采用高标号砼,采用较大吨位的预应力钢束,采用三向预应力体系等,无疑都是提高设计水平,获得良好经济效益的重要措施,但同时又必须合理地掌握好“度”,必须确保结构的安全度和耐久性。
六、连续通长束不宜过长根据连续结构的受力特点,截面上既有正弯矩也有负弯矩,个别设计中将连续通长束顺应弯矩包络图仅作简单布置是欠合理的,尤其对于较小跨径的矮箱梁,其摩擦损失单项即可达40~60%σk之多。
建议此时可采用两根交叉束布置,也可改用接长器接长,分成多次张拉等。
但在具体设计时接长器也不宜集中在某一个断面上,以使截面的削弱过于集中,同时也会造成施工上困难。
七、普通钢筋是预应力砼结构中必须配置的材料当混凝土立方体试块受压破坏时,可以清楚地看到混凝土立方体试块侧向受拉破坏的形态。
也即预应力仅在某一个方向上施加了预压应力,而在其正交方向却会产生相应的侧向拉应力,这是预加应力的最基本概念,必须牢固掌握,灵活应用。
因而,在预应力混凝土结构中必须配置一定数量的非预应力钢筋,以保证预压应力的可靠建立。
为此,在一般情况下,非预应力钢筋约为80-100kg/m3(一立方米砼中的含筋量)。
偏少、偏多的构造钢筋均需作适当优化和调控。
例如××桥为多跨L=42m的预应力混凝土等高度连续箱梁,设计中采用了185kg/m3的普通钢筋,明显偏多,但在某些局部的普通钢筋却又偏少。
又如某桥的非预应钢筋仅为36.6kg/m3,实属太少。
八、关于扁波纹管、扁锚的采用扁波纹管的采用,日益广泛,有利于减少构件的截面尺寸,但必须注意如下几点:1、扁波纹管的尺寸高度不宜太小,不利于饱满灌浆。
例如目前采用的M15-4,其相应的扁波纹管内径为70×19mm,一般常采用的钢绞线直径为φ15.24mm,则可灌浆的间隙仅有3.76mm<<10.0mm(公路桥规JTJ023-85,第6.2.26条、四中要求:“管道的内径应比预应力钢筋外径至少大1.0cm”)。
在宽度方向:70-4×15.24=9.04mm<10mm,其平均间隙为(70-4×15.24)/(4+1)=1.8mm。
因此很难保证灌浆的饱满度和可靠握裹。
在施工过程中扁波纹管的变形的可能性远大于圆波纹管。
2.扁波纹管的根数。
在实际工程中常用的钢束根数为每管内4束或5束。
其锚圈口的损失,5束应大于4束,远较圆锚时要大,其锚固效率系数也较难保证达到95%,同时在穿束过程中也极易绞缠在一起,因而建议,每管内3.0束合适,4.0束尚可,5.0束不妥。
3.扁锚用作横向预应力束合适;用作纵向受力主束欠妥,不应采用“扁锚竖置”作为纵向受力主束(弯起),这将会使实际有效预应力严重不足,各股钢束在竖置弯起的扁波纹管内互相嵌挤,摩阻损失很大,对扁波纹管的横向扩张力也很大,各束受力很不均匀,延伸率无法控制,这种‘“扁锚竖置”方案已有多座实桥失败,应该禁止采用。
九、关于钢铰线的弹性模量Ey的的理论值为Ey=(1.9~1.95)×105Mpa,而在试验报告中常会出现Ey’=(2.04~2.06)×105Mpa的结果,如按Ey’=2.04×105Mpa计算张拉伸长量,则理论值与实际值的误差将达:,这里已超过施工规范6%的误差范围了。
其原因在于Ey= ,由于试验值中并未用真实的钢绞线面积Ay’代进上式计算,而是采用了理论值Ay(偏小值)代进上式计算Ey,从而得到了偏大的Ey’值。
因而,在工程应用中的伸长值控制,必须按实测值Ey’控制,而不应是理论值Ey的计算伸长量。
十、锚头或齿板的压陷、压崩破坏在工程中锚头或齿板压陷、压崩破坏,时有所见。
值得注意者,局部受力的锚头或齿板的砼强度和配筋一般地安全储备较小,且由于该局部区内的配筋又较密,砼操作空间又较小,振捣工作又较困难,稍有疏忽,很易出现质量事故,所以在施工中应备加小心。
十一、平面曲线束张拉时,构件会否失稳?I字形组合T梁张拉时构件在横向会否失稳正确的回答为不会失稳?其基本概念为后张法张拉时的杆件属“自平衡”体系,而与杆件作用一个轴压力的平衡条件有着本质上的差异,前者不会横向失稳,而后者有可能产生横向屈曲失稳。
因而,一根曲杆进行后张法预应力张拉时不必担心其横向失稳问题。
十二、先张法预应力混凝土构件的放张先张法的放张工艺即是一个施加预加力的工艺过程。
原则上要求均匀、一致,不要突然切割,骤然放张,其冲击力将会破坏钢束自锚区的“传递长度”范围内的“握裹”。
十三、超张拉问题对于采用夹片锚时,不应再进行超张拉工艺的概念,已被广大设计、施工人员所掌握。
但有时在图纸上仍有超张拉(3%~5%)σk的提法。
其理由是补偿锚圈口损失(2.5~3%)σk所要求。
各个厂方所提供锚具的锚圈口损失是不相同的,应由承包商通过试验后确定,并在张拉时进行调整。
但在概念上决不能归属于“超张拉”的范畴中去,应属于一种损失补偿的性质。
十四、灌浆、封锚在张拉过程如果碰到一点问题,是不足为怪的,可以停下来进行专门研讨一番,把问题弄清楚后再继续张拉,切莫蛮干,更不能“作假”,进行灌浆、剪丝和封锚,搞成既成事实,其后果将是无法挽救的损失。
在张拉过程中出现滑丝、断丝、夹片碎裂、锚下砼开裂、反拱过大、反拱过小、构件侧弯、构件出现裂缝等等异常现象时,必须认真做好原始记录,应立即停工进行专题研讨后再妥善处理。
灌浆的时间越早越好,检查无误后,应争取及早灌浆,以免高应力下的钢丝锈蚀。
封锚也应及早进行,至少要先用环氧砂浆等涂抹锚头,以防生锈和积水。
十五、预应力混凝土梁的正弯矩裂缝其主要原因是属预应力不足性质,既可能是设计原因也可能是施工,或可能原因是营运多年后部分预应力已经失效。
在查清原因的基础上,可以采用增加预应力束的方法处理,但很可能要在体外施加预应力,此类性质的加固一般较麻烦,裂缝虽可部分地得以闭合和改善,上拱也可有微小的改善,但总会留有一定后遗症。
十六、预应力混凝土梁的斜裂缝此类裂缝也称主拉应力裂缝,也是P.C.梁桥中目前出现最多的一种裂缝。
一般发生在支点和四分点附近,在梁轴线附近呈25º~50º方向开裂,并逐渐地向受压区发展(宽度)和延伸(长度),甚至逐渐地向跨中范围内扩展。
斜裂缝的产生原因复杂,属剪切、扭转性质产生的主拉应力不足而引起。
从破坏性质而言则属脆性性质,因而必须十分重视,应采取果断措施,注意检测和及时处理。
在设计中,人们对正截面强度常较注意,而对斜截面强度有时却重视不够,由于变高,腹板变厚,底板变厚等原因,一目很难了然,也即一眼很难确切地看出在什么部位会出现斜截面强度不足的问题,计算机有时只会按既定的程序执行,不易发现或者会遗漏某些最不利截面的计算,甚至缺少了一些最不利组合的工况,例如某桥由于划分单元太粗,未能发现突变应力的出现而开裂。
又如某桥出现了45º斜裂缝达148条,其中49条斜裂缝在腹板的内外侧均已贯通。
目前设计中常采用“直束”布置的方案,以利构造和施工。
因而在边跨现浇段常不设弯起束,甚至不布置竖向预应力筋和弯起的普通钢筋。
导致了连续梁边跨出现斜裂缝的情况较为普遍。
通常情况下,边跨的梁高较小,如果配置竖向预应力筋,其实际效果也是很差的,主要是短束的锚头区损失份额太大,施工中也不易正确控制,故建议只按理论计算值的一半来考虑竖向预压应力(σy/2)较合理。
因而,近年来对连续梁边跨必须布置弯起束的观点已成共识。
关于竖向束的锚头空白区问题也应十分注意,其分布角约为26º,空白区直至会延伸至腹板,导致靠近翼板加腋处的腹板出现主拉应力裂缝。
在施工中如出现“跑模”,导致腹板尺寸减小者也时有所见,较设计厚度少2cm,直至4cm也曾出现,致使主拉应力增大而出现斜裂缝。
在竖向预应力筋的施工过程中,由于数量多,工作烦锁,重视不够而曾出现过各种质量问题,例如:漏张、漏灌浆、张拉吨位不足、未能及时灌浆而使预应力筋已经严重锈蚀等。
在悬臂浇筑时,由于没有预压重,或由于浇筑顺序不正确(必须由悬臂端向根部推进),导致了先浇砼的开裂,虽张拉了负弯矩束,但裂缝仍不能完全闭合,由于这类裂缝的存在导致了剪应力τ的增大(已非全截面工作状态),其主拉应力甚至会成倍地增加。
从主拉应力的的计算公式:可以看出τ和σy对产生σl主拉应力的关系,因而在施工中必须严格操作,精心施工,才能确保斜裂缝不会发生和发展。
关于P.C.连续梁和刚架斜裂缝加固处理的方案应根据具体情况而采取不同的对策。
常用的方法有压灌或封闭裂缝,粘贴碳纤维片,加厚腹板,增加预应力钢束等。