2018年3月23日初中数学作业-cb486532799a4b88bf7fab5df6e59d02

合集下载

中考数学 2018年山西省中考数学试卷含答案解析(Word版)

中考数学 2018年山西省中考数学试卷含答案解析(Word版)

中考数学,中考数学,中考数学2018 年山西省中考数学试卷(解析版)第I卷选择题(共30分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A. 0<-2B. -5<3C. -2<-3D. 1<-4【答案】B【考点】有理数比较大小2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B. 《几何原本》C. 《海岛算经》D. 《周髀算经》【答案】B【考点】数学文化【解析】《几何原本》的作者是欧几里得3. 下列运算正确的是()A. (-a3 )2 =-a6B. 2a2 + 3a2 =6a2C. 2a2 ⋅a3 =2a6D.2633()2b ba a-=-【答案】D【考点】整式运算【解析】A. (-a3 )2 =a6 B2a2 + 3a2 = 5a2 C. 2a2 ⋅a3 =2a54. 下列一元二次方程中,没有实数根的是()A. x2 - 2x =0B. x2 + 4x -1 =0C. 2x2 - 4x + 3 =0D. 3x2 = 5x -2【答案】C【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△=4B.△=20C. △=-8D. △=15. 近年来快递业发展迅速,下表是2018 年1-3 月份我省部分地市邮政快递业务量的统计结果(单位:万件)太原市大同市长治市晋中市运城市临汾市吕梁市3303.78332.68302.34319.79725.86416.01338.871-3 月份我省这七个地市邮政快递业务量的中位数是()A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件【答案】C【考点】数据的分析【解析】将表格中七个数据从小到大排列,第四个数据为中位数,即 338.87 万件.6. 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45 千米处,是黄河上最具气势的自然景观,其落差约 30 米,年平均流量 1010 立方米/秒.若以小时作时间单位,则其年平均流量可用科学计数法表示为A. 6.06 ⨯104 立方米/时B. 3.136 ⨯106 立方米/时C. 3.636 ⨯106 立方米/时D. 36.36 ⨯105 立方米/时【答案】C【考点】科学计数法【解析】一秒为 1010 立方米,则一小时为 1010×60×60=3636000 立方米,3636000 用科学计数法表示为 3.636×106 .7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是()A.49B.13C.29D.19【答案】A【考点】树状图或列表法求概率【解析】由表格可知,共有 9 种等可能结果,其中两次都摸到黄球的结果有 4 种,∴P(两次都摸到黄球)=498. 如图,在 Rt△ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点 C 按逆时针方向旋转得到△A’B’C,此时点 A’恰好在 AB 边上,则点 B’与点 B 之间的距离是()A. 12B. 6C.62D. 63【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 63 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:(32+1)(32-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴(32+1)(32-1) =(32)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 的长为______.【答案】23【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯32=3∴AF = 2FG = 2315.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF = 12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)210(22)4362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .项目 内容课题测 量 斜 拉 索 顶 端 到 桥 面 的 距 离测 量 示 意 图说 明 : 两 侧 最 长 斜 拉 索 AC , B C 相 交 于 点 C , 分 别与 桥 面 交 于 A , B 两 点 , 且 点 A , B , C 在 同 一 竖 直 平 面 内 .测量数据∠ A 的 度 数∠ B 的 度 数AB 的长度 38°28° 234 米......(1) 请帮助该小组根据上表中的测量数据,求斜拉索顶端点 C 到 A B 的距离(参考数据sin 38︒≈ 0.6 ,cos 38︒≈ 0.8 ,tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD ⊥AB 于点 D. 设 CD= x 米,在 Rt ∆ADC 中,∠ADC=90°,∠A=38°.AD +BD =AB = 234 . ∴54x + 2x = 234.解得x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.20.(本题 7 分)2018 年 1 月 20 日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南-北京西” 全程大约 500 千米,“复兴号”G92 次列车平均每小时比某列“和谐号”列车多行驶40 千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G92 次列车从太原南到北京西,中途只有石家庄一站,停留 10 分钟.求乘坐“复兴号”G92 次列车从太原南到北京西需要多长时间.【考点】分式方程应用【解析】解:设乘坐“复兴号”G92 次列车从太原南到北京西需要x 小时,由题意,得500500=+40151()646x x--解得x =83经检验,x =83是原方程的根.答:乘坐“复兴号”G92 次列车从太原南到北京西需要83小时.21. (本题 8 分)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:试问如何在一个三角形 ABC 的 AC 和 BC 两边上分别取一点 X 和 Y,使得 AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在 CA 上作出一点 D,使得 CD=CB,连接 BD.第二步,在 CB 上取一点 Y’,作 Y’Z’//CA, 交 BD 于点 Z’,并在 AB 上取一点 A’,使 Z’A’=Y’Z’.第三步,过点 A 作 AZ//A’Z’,交BD 于点 Z.第四步,过点 Z 作 ZY//AC,交 BC 于点 Y,再过 Y 作 YX//ZA,交 AC 于点 X.则有 AX=BY=XY.下面是该结论的部分证明:证明: A Z/ / A'Z∴∠BA' Z ' =∠BAZ又∠A'BZ'=∠ABZ. ∴△BA' Z △BAZ∴Z ' A '=BZ '. ZA BZ同理可得Y ' Z '=BZ '. ∴Z ' A '=Y ' Z '. YZ BZ ZA YZZ'A' =Y 'Z ' , ∴ZA =YZ....任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形 AXYZ 的形状,并加以证明;(2)请再仔细阅读上面的操.作.步.骤.,在(1)的基础上完成 AX=BY=XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似【考点】菱形的性质与判定,图形的位似【解析】(1)答:四边形 AXYZ 是菱形.证明:Z Y/ / A C, Y X/ / Z∴A, 四边形 AXYZ 是平行四边形.ZA =YZ , ∴AXYZ是菱形(2)答:证明: C D= C B,∴∠1 =∠2ZY / /AC , ∴∠1 =∠3.∴∠2=∠3 . ∴YB =YZ .四边形 AXYZ 是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)上述解决问题的过程中,通过作平行线把四边形 BA’Z’Y’放大得到四边形 BAZY,从而确定了点 Z,Y的位置,这里运用了下面一种图形的变化是 D (或位似).A.平移B.旋转C.轴对称D.位似中考数学,中考数学,中考数学22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 A B AD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴ 1EMDM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ H C = BE . 四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上中考数学,中考数学,中考数学(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.中考数学,中考数学,中考数学1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形 .若 存 在 , 请 直.接.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; ( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .【考点】 几 何 与 二 次 函 数 综 合【解析】( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 .∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2( 3) 过点 F 作 FG ⊥ PQ 于点 G .则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG =22FQ . PE ∥ AC , ∴ ∠1 = ∠2 .FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 . ∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。

2018学年第二学期七年级3月独立作业数学试题(正稿)

2018学年第二学期七年级3月独立作业数学试题(正稿)

3x 5y 8 22.(6 分)解方程组(1) 2x y 1
(2)x 4 x 3 Nhomakorabeay 3 y 2
5 6 1 6
x 1
原方程组的解为
y
1
x 2
3分
∴原方程组的解为
y
1
3分
23.(本题 6 分)如图,∠AED=∠C,∠1=∠B,说明:EF∥AB
解:∵∠AED=∠C(已知)
∴DE∥BC(同位角相等,两直线平行)
(5)图⑤的关系是∠APC+∠PAB-∠PCD=1800 。
A
A
B
P
B
A
A
B
A
B P
B
P
P
C
DC
D
图①
图②
C
图③
D
P
D C 图④
D 图⑤
C
(每空 1 分,证明 3 分)
9
28. (8 分) 某铁件加工厂用如图所示的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工
成如图所示的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计) (1)如果加工竖式铁容器与横式铁容器各 1 个,则共需要长方形铁片__7__张,正方形铁片__3__张; (2)现有长方形铁片 2017 张,正方形铁片 1178 张,如果加工成这两种铁容器,刚好铁片全部用完, 那加工的竖式铁容器、横式铁容器各有多少个? (3)把长方体铁容器加盖可以加工成为铁盒.现用 35 张铁板做成长方形铁片和正方形铁片,已知每 张铁板可做成 3 个长方形铁片或 4 个正方形铁片,也可以将一张铁板裁出 1 个长方形铁片和 2 个正 方形铁片.若充分利用这些铁板加工成铁盒,则最多可以加工成多少个铁盒?

2018年第二学期七年级第三次月考数学试题(人教版)原创可编辑含答案

2018年第二学期七年级第三次月考数学试题(人教版)原创可编辑含答案

2018年第三次月考数学试题(人教版)(90分钟,120分)一、选择题:本大题共16个小题,1-10题每小题3分,11-16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(﹣6)2的平方根是()A.﹣6 B.36 C.±6 D.±2.已知是方程2x﹣ay=3的一个解,那么a的值是()A.1 B.3 C.﹣3 D.﹣13.若a>b,则下列不等式变形正确的是()B.A.a+5<b+5 B.C.﹣4a>﹣4b D.3a﹣2<3b﹣24.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°5.不等式2x+5≤1的解集在数轴上表示正确的是()A.B.C.D.6.如图,已知a∥b,小华把三角板的直角顶点放在直线a上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°7. 不等式组的非负整数解的个数是()A.4 B.5 C.6 D.78.如图,已知AB,CD相交于O,OE⊥CD于O,∠AOC=25°,则∠BOE的度数是( ) A.25°B.65°C.115°D.130°9.已知是方程组的解,则a,b间的关系是()A.a+b=3 B.a﹣b=﹣1 C.a+b=0 D.a﹣b=﹣310.某校组织学生进行了禁毒知识竞赛,竞赛结束后,菁菁和彬彬两个人的对话如下:根据以上信息,设单选题有x道,多选题有y道,则可列方程组为()A.B.C. D.11.一件商品成本价是30元,如果按原价的八五折销售,至少可获得15%的利润.如果设该商品的原价是x元,则列式()A.30+30×15%≤85%x B.30+30×15%≥85%xC.30﹣30×15%≤85%x D.30﹣30×15%≥85%x12.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(4,2),点B的坐标为(﹣2,﹣2),则点C的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)13.若关于x、y的方程组的解满足x+y>0,则m m的最大整数值是()A.-1 B.0 C.1 D.214.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A.5本B.6本C.7本D.8本15.如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,则每块墙砖的截面面积是()A.425cm2B.525cm2C.600cm2D.800cm216.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2018的坐标为( ) A.(0,4)B.(﹣3,1)C.(0,﹣2)D.(3,1)二、填空题(本题共有3个小题,17-18每小题3分,19小题4分,满分10分)17.当x<a<0时,x2ax(填>,<,=)18.如图,∠1=∠2,∠3=80°,则∠4=______.19. 以方程组的解为坐标的点(y,x)在第象限.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.(本小题9分)解方程组:.21.(本小题9分)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.22.(本小题9分)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.23.(本小题9分).如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=75°,求∠AGC的度数.24.(本小题9分)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为;B′的坐标为;C′的坐标为;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.25.(本小题11分)已知关于x的不等式>x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.26.(本小题12分)我市会展中心举行消夏灯会节,计划在现场安装小彩灯和大彩灯,已知安装5个小彩灯和4个大彩灯共需150元;安装7个小彩灯和6个大彩灯共需220元.(1)会展中心计划在当天共安装200个小彩灯和50个大彩灯,共需多少元?(2)若承办方安装小彩灯和大彩灯的数量共300个,费用不超过4350元,则最多安装大彩灯多少个?2018年第三次月考数学试题(人教版)参考答案一、选择题:二、填空题17. >18. 80°19. 四三、解答题20.解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.21.解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.22.解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..23.解:(1)∵AB∥DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠BHD,∴DE∥BC;(2)∵DE∥BC,∴∠AGB=∠AMD,即∠AMD=75°,∴∠AGB=75°,∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.24.解:(1)图略;(2)由图可知,A′(0,4);B′(﹣1,1);C′(3,1);故答案为:(0,4);(﹣1,1);(3,1);(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=﹣3,解得y1=1,y2=﹣5,∴P(0,1)或(0,﹣5).25.解:(1)当m=1时,不等式为>﹣1,去分母得:2﹣x>x﹣2,解得:x<2;(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当m<﹣1时,不等式的解集为x>2.26.解:(1)设安装1个小彩灯需要x元,安装1个大彩灯需要y元,根据题意得:,解得:,∴200x+50y=200×10+50×25=3250.答:安装200个小彩灯和50个大彩灯,共需3250元.(2)设安装大彩灯z个,则安装小彩灯(300﹣z)个,根据题意得:25z+10(300﹣z)≤4350,解得:z≤90.答:最多安装大彩灯90个.。

2018年中考数学真题(附答案解析)

2018年中考数学真题(附答案解析)

2018年初中毕业生升学考试数学真题一、选择题 (本大题12个小题,每小题4分,共48分。

)1.2的相反数是( ) A .2-B .12-C .12D .22.下列图形中一定是轴对称图形的是A.B.C.D.3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .185.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( ) A. 3cm B. 4cm C. 4.5cmD. 5cm6.下列命题正确的是A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.估计()1230246-⋅的值应在( ) A. 1和2之间 B.2和3之间 C.3和4之间 D.4和5之间8.按如图所示的运算程序,能使输出的结果为12的是( )40°直角三角形四边形平行四边形矩形A.3,3==y xB.2,4-=-=y xC.4,2==y xD.2,4==y x9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( ) A .4B .23C .3D .2.510.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角58AED ∠=︒,升旗台底部到教学楼底部的距离7DE =米,升旗台坡面CD 的坡度1:0.75i =,坡长2CD =米,若旗杆底部到坡面CD 的水平距离1BC =米,则旗杆AB 的高度约为( )(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.6︒≈) A .12.6米 B .13.1米 C .14.7米 D .16.3米11.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .512.若数a 使关于x 的不等式组112352x xx x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a ay y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .3- B .2- C .1 D .2二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:02(3)π-+-=______________.14.如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是___________(结果保留π).15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 。

2018年中考数学样卷 答案

2018年中考数学样卷 答案

2018年普通初中毕业学业考试样卷参考答案及评分标准数学一、选择题(本题共10小题,每小题4分,共40分)二、填空题(本题共8小题,每小题4分,共32分)11.四12. 2313.124 14.0.7515.答案不唯一,如:(-3,1) 16.24π17.115°18.13.三、解答题(本题共8小题,共78分)19.(本小题满分8分)解:原式=1211()23-+-⨯-=1223-+=16.…………………………………8分20.(本小题满分8分)解:原式2221(1)11x x xx x--+-=⨯-2x=-.…………………………………6分当12x=-时,原式=4.………………………………………………8分21.(本小题满分8分)证明:如图,∵四边形ABCD是平行四边形,∴AD=BC,∠ADB=∠CBD.…………………………………2分又∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB,AE∥CF.…………4分∴AED∆≌CFB∆.………………………6分∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.………………………………………………………8分22.(本小题满分10分)解:(1)a=0.3,b=4 ………………………………………………………2分…………………………………4分(2)180(0.350.20)99⨯+=(人) …………………………………7分 (3) 甲 乙1乙2甲1 甲2 甲3 乙 甲1 甲2 甲3 乙 甲1 甲2 甲3 乙31124p == ……………………………………………………………10分 23.(本小题满分10分)解:(1)设该班男生有x 人,女生有y 人,依题意得:4223x y x y +=⎧⎨=-⎩, 解得2715x y =⎧⎨=⎩.∴该班男生有27人,女生有15人.…………………………………5分(2)设招录的男生为m 名,则招录的女生为(30)m -名,依题意得:5045(30)1460x x +-≥ ,解之得,22x ≥,答:工厂在该班至少要招录22名男生.…………………………10分24.(本小题满分10分)解:如图,在△ABC 中,AB =15,BC =14,AC =13,设BD x =,∴14CD x =-. ……………………………………………2分由勾股定理得:2222215AD AB BD x =-=-,2222213(14)AD AC CD x =-=--, ∴2215x -=2213(14)x --,解之得:9x =.……………………………… 7分 ∴12AD =. ………………………………………8分∴12ABC S BC AD ∆=11412842=⨯⨯=.…………10分25.(本小题满分12分)解:(1)∵抛物线顶点为A ,设抛物线对应的二次函数的表达式为2(1y a x =-+,将原点坐标(0,0)代入表达式,得13a =-.∴抛物线对应的二次函数的表达式为:213y x x =-. …………3分(2)将0y = 代入213y x x =-中,得B 点坐标为:,设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx =中,得k =, ∴直线OA 对应的一次函数的表达式为y x =.∵BD ∥AO ,设直线BD对应的一次函数的表达式为y b =+, 将B代入y b =+中,得2b =- , ∴直线BD对应的一次函数的表达式为2y -.由2213y y x ⎧=-⎪⎪⎨⎪=-⎪⎩得交点D的坐标为(3)-, 将0x =代入2y x -中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD ,OB OD ==.在△OAB 与△OCD 中,OA OC AB CD OB OD =⎧⎪=⎨⎪=⎩, ∴△OAB ≌△OCD .……………………8分(3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小.过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '∆∽C DQ '∆.∴PO C O DQ C Q '=',25=,∴PO =, ∴ 点P的坐标为(.………………………………………………………12分 26.(本小题满分12分) 解:(1)如26题解图1,在ABC ∆中, ∠ACB =90°,∠B =30°,AC =1,∴AB =2,又∵D 是AB 的中点,∴AD =1,112CD AB ==.又∵EF 是ACD ∆的中位线,∴12EF DF ==,在ACD ∆中,AD=CD, ∠A =60°, ∴∠ADC =60°. 在FGD ∆中,sin GF DF =⋅60°=, ∴矩形EFGH的面积12S EF GF =⋅==. ……………………………3分 (2)如26题解图2,设矩形移动的距离为,x 则102x <≤, 当矩形与△CBD 重叠部分为三角形时, 26题解图1CADB26题解图2则104x <≤,12S x ==,∴144x =>.(舍去). 当矩形与△CBD 重叠部分为直角梯形时,则1142x <≤,重叠部分的面积1124x -⨯=, ∴38x =. 即矩形移动的距离为38时,矩形与△CBD.…………7分(3)如26题解图3,作2H Q AB ⊥于Q .设DQ m =,则2H Q =,又114DG =,2112H G =. 在R t △H 2QG 1中,22211)()()42m ++= ,解之得m .∴1211164cos 12QG H G α+==12分26题解图31H 1E 1F 1G CA 2H 2E 2F D BQ。

2018年中考数学试题分项版解析汇编:专题02+代数式和因式分解(第01期)(东三省专版)

2018年中考数学试题分项版解析汇编:专题02+代数式和因式分解(第01期)(东三省专版)

【东三省部分】一、选择题1.(2015·黑龙江哈尔滨)下列运算正确的是( )(A )257()a a = (B )246a a a = (C )22330a b ab -= (D )2222a a ⎛⎫= ⎪⎝⎭2.(2015·辽宁营口)下列计算正确的是( ).A .22--=B .236a a a ⋅=C .()2139--=D= 3.(2015·辽宁大连)计算()2x 3-的结果是( ) A. 2x 6 B.2x 6- C.2x 9 D.2x 9-4.(2015·辽宁丹东)下列计算正确的是( ). A. 232a a a =+ B. C. 39±= D. ()623a a =5.(2015·辽宁沈阳)下列计算结果正确的是( )A.428a a a ⋅= B.527()a a = C.222()a b a b -=- D.222()ab a b =二、填空题有意义,则实数x 的取值范围是 . 2.(2015·辽宁葫芦岛)(3分)分解因式:2249m n -= .3.(2015·黑龙江哈尔滨)把多项式329a ab -分解因式的结果是4.(2015·辽宁营口)分解因式:22a c b c -+= .5.(2015·黑龙江绥化)若代数式6265x 2-+-x x 的值等于0 ,则x=_________. 6.(2015·辽宁大连)若a=49,b=109,则ab-9a 的值为:__________.7.(2015·辽宁丹东)分解因式:=+-121232x x .8.(2015·辽宁沈阳)分解因式:22ma mb -= .16142-=-三、解答题 1.(2015·辽宁葫芦岛)(10分)先化简,再求值:2121()1x x x x x x x ---÷-+,其中3x =.2.(2015·黑龙江哈尔滨)(本题 7分) 先化简,再求代数式2122()3x x y x xy x--?--的值,其中x=2+tan60°,y=4sin30°.3.(2015·黑龙江省黑河市、齐齐哈尔市、大兴安岭)(5分)先化简,再求值:221(1)11x x x ÷+--,其中x 是4.(2015·辽宁营口)先化简,再求值:2222111121m m m m m -⎛⎫-÷- ⎪+--+⎝⎭.其中m 满足一元二次方程2o o )12cos600m m +-=.5.(2015·黑龙江绥化)先化简 ,再求值.x x x x x x x 444122x 22-÷⎪⎭⎫ ⎝⎛+----+ , 其中 x=tan600+2 .(6分)6.(2015·辽宁丹东)先化简,再求值:212112+-÷⎪⎭⎫ ⎝⎛+-a a a ,其中,=a 3.。

2018年辽宁大连中考数学试卷及答案解析版

2018年辽宁大连中考数学试卷及答案解析版

大连市2018年初中毕业升学考试数 学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间120分钟.一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确) 1.(2018辽宁大连,1,3分)-2的相反数是 A .-2B .-21C .21 D .2【答案】 D . 2.(2018辽宁大连,2,3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是【答案】 A . 3.(2018辽宁大连,3,3分)计算(x 2)3的结果是 A .x B .3 x 2 C .x 5 D .x 6 【答案】D . 4.(2018辽宁大连,4,3分)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为 A .31 B .52 C .21 D .53 【答案】B . 5.(2018辽宁大连,5,3分)如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于A .35°B .70°C .110°D .145°ABCD正面【答案】C . 6.(2018辽宁大连,6,3分)若关于x 的方程x 2-4x +m =0没有实数根,则实数m 的取值范围是A .m <-4B .m >-4C .m <4D .m >4 【答案】D . 7.(2018辽宁大连,7,3分)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金这8名同学捐款的平均金额为 A .3.5元 B .6元 C .6.5元 D .7元 【答案】C . 8.(2018辽宁大连,8,3分)P 是∠AOB 内一点,分别作点P 关于直线OA 、OB 的对称点P 1、P 2,连接OP 1、OP 2,则下列结论正确的是 A .OP 1⊥OP 2 B .OP 1=OP 2 C .OP 1⊥OP 2且OP 1=OP 2 D .OP 1≠OP 2 【答案】B .二、填空题(本题共8小题,每小题3分,共24分) 9.(2018辽宁大连,9,3分)分解因式:x 2+x =_________. 【答案】x (x +1). 10.(2018辽宁大连,10,3分)在平面直角坐标系中,点(2,-4)在第________象限. 【答案】 四. 11.(2018辽宁大连,11,3分)将16 000 000用科学记数法表示为_______________. 【答案】 1.6×107. 12.(2018辽宁大连,12,3分)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示O ABCD第5题图【答案】0.9.13.(2018辽宁大连,13,3分)化简:x +1-122++x xx =___________.【答案】11+x . 14.(2018辽宁大连,14,3分)用一个圆心角为90°,半径为32 cm 的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为_______cm . 【答案】8. 15.(2018辽宁大连,15,3分)如图,为了测量河的宽度AB ,测量人员在高21m 的建筑物CD 的顶端D 处测得河岸B 处的俯角为45°,测得河对岸A 处的俯角为30°(A 、B 、C 在同一条直线上),则河的宽度AB 约为________m (精确到0.1m ).(参考数据:2≈ 1.41,3≈1.73)【答案】15.3.16.(2018辽宁大连,16,3分)如图,抛物线y =x 2+bx +29与y 轴相交于点A ,与过点A 平行于x 轴的直线相交于点B (点B 在第一象限).抛物线的顶点C 在直线OB 上,对称轴与x 轴相交于点D .平移抛物线,使其经过点A 、D ,则平移后的抛物线的解析式为_________.DCBA45°30°第15题图【答案】y =x 2-29x +29.三、解答题(本题共4小题,第17、18、19题各9分,第20题12分,共39分)17.(2018辽宁大连,17,9分)计算:()()123131511--++⎪⎭⎫⎝⎛-.解:()()123131511--++⎪⎭⎫⎝⎛-=5+(1-3)-23=5-2-23=3-23.18. (2018辽宁大连,18,9分)解不等式组:⎩⎨⎧-<++>-)1(48112x x x x解:解不等式①得x >2;解不等式②得x >4.所以不等式组的解集为x >4.19. (2018辽宁大连,19,9分)如图,ABCD 中,点E 、F 分别在AD 、BC 上,且AE =CF .求证:BE =DF .证明:∵四边形ABCD 中是平行四边形 ∴AB =CD . ∠A =∠C .又∵AE =CF .第16题图FB A E第19题图∴△ABE ≌△CDF ∴BE =DF .20.(2018辽宁大连,20,12分)以下是根据《2012年大连市环境状况公报》中有关海水浴场环境质量和市区空气质量级别的数据制作的统计图表的一部分(2012年其366天) .大连市2012年海水浴场环境质量监测结果统计表 监测时段:2012年7月至9月根据以上信息,解答下列问题:(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是_____(填浴场名称),海水浴场环境质量为优的数据的众数为______%,海水浴场环境质量为良的数据的中位数为____%; (2)2012年大连市区空气质量达到优的天数为_____天,占全年(366天)的百分比约为_____(精确到0.1%);(3)求2012年大连市区空气质量为良的天数(按四舍五入,精确到个位).【解】(1)浴场5;30;70;(2)129;35.2;(3)1-35.2%-3.8%=61%,366×61%≈223(天).答:50 优良污染大连市2012年市区空气质量级别统计图污染的天数 级别2012年大连市区空气质量为良的天数为223天.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分) 21.(2018辽宁大连,21,9分)某超市购进A 、B 两种糖果,A 种糖果用了480元,B 种糖果用了1260元,A 、B 两种糖果的重量比是1:3,A 种糖果每千克的进价比B 种糖果每千克的进价多2元.A 、B 两种糖果各购进多少千克?解:设A 种糖果购进x 千克,则B 种糖果购进3x 千克,根据题意列方程,得xx 312602480=- 解得x =30经检验,x =30是原方程的解,且符合题意. 3x =90答:A 种糖果购进30千克,B 种糖果购进90千克.22.(2018辽宁大连,22,9分)如图,在平面直角坐标系xOy 中,一次函数y =ax +b 的图象与反比例函数y =xk的图象相交于点A (m ,1)、B (-1,n ),与x 轴相交于点C (2,0),且AC =22OC . (1)求该反比例函数和一次函数的解析式; (2)直接写出不等式ax +b ≥xk的解集.(1)解:过点A 作AD ⊥x 轴,垂足为D ,则AD =1. 在Rt △ACD 中,CD =112221222222=-⎪⎪⎭⎫⎝⎛⨯=-⎪⎪⎭⎫⎝⎛=-OC AD AC . ∴点A 的坐标为(3,1). ∴1=3k,k =3.第22题图∴反比例函数的解析式为y =x3. 由题意得⎩⎨⎧-=+-=+313b a b a 解得⎩⎨⎧-==21b a∴一次函数的解析式为y =x -2 (2)不等式ax +b ≥xk的解集为-1≤x <0或x ≥3.23.(2018辽宁大连,23,10分)如图,AB 是⊙O 的直径,CD 与⊙O 相切于点C ,DA ⊥AB ,DO 及DO 的延长线与⊙O 分别相交于点E 、F ,EB 与CF 相交于点G . (1)求证:DA =DC ;(2) ⊙O 的半径为3,DC =4,求CG 的长.(1)证明: AB 是⊙O 的直径,DA ⊥AB ∴DA 是⊙O 的切线. ∵DC 是⊙O 的切线, ∴DA =DC .(2)解:连接AC 、OC ,AC 与DO 相交于点H . ∵DA =DC , AO =CO ,DO =DO , ∴△AOD ≌△COD . ∴∠AOD =∠COD .ODABCFGE第23题图第22题图∴OD 是AC 的垂直平分线.∵∠AHO =∠DAO ,∠AOH =∠DOA . ∴△AOH ∽△DOA .∴DA AH OD OA OA OH ==,即4533AHOH ==. ∴OH =59,AH =512=CH .在Rt △CHF 中,CF =2222593512⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛=+HF CH =5512.∵O 、H 分别是A B 、A C 的中点, ∴BC =2OH =518. 又∵∠CFE =∠CBE =21∠COE =21∠AOE =21∠BOF =∠BEF =∠BCF , ∴△EFG ∽△BCG . ∴3556===BC EF CG FG ,即5CG =3FG =3(5512-CG ).∴CG =1059.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分) 24.(2018辽宁大连,24,11分)如图,一次函数y =-34x +4的图象与x 轴、y 轴分别相交于点A 、B ,P 是射线BO 上的一个动点(点P 不与点B 重合),过点P 作PC ⊥AB ,垂足为C ,在射线CA 上截取CD =CP .连接PD ,设BP =t . (1)t 为何值时,点D 恰好与点A 重合?(2)设△PCD 与△AOB 重叠部分的面积为s ,求s 与t 的函数关系式,并直接写出t 的取值范围.ODABCFGE H解:(1)如图1,由y =-34x +4知:当x =0时,y =4;当y =0时,x =3. ∴O A =3,OB =4,A B =5. ∵∠PCB =∠A OB =90°,∠PBO =∠A BO , ∴△PCB ∽△A OB .∴BO BC AO PC AB PB ==,即435BCPC t ==. ∴PC =53t ,BC =54t.当点D 与点A 重合时,BC +CD =B A ,即53t +54t=5. ∴t =725.(2)当0<t ≤725时(如图1),S =21PC ·CD =21×(53t )2=509t 2. 当725<t ≤4时,(如图2),设PD 与x 轴相交于点E ,作EF ⊥CD ,垂足为F. 第24题图1第24题图由(1)知AD =BC +CD -BA =54t +53t -5=57t-5. ∵∠EF A =∠BOA ,∠EAF =∠BAO ,∴△AFE ∽△AOB . ∴BO EF AO AF ,即EF =34AF =34(FD -AD ). ∵CD =CP ,∠PCD =90°, ∴∠PDC =∠DPC =45°=90°-∠DEF . ∴∠DEF =45°=∠FDE .∴FD =EF =34(FD -AD )=34[EF -(57t-5)]. ∴EF =4(57t-5).∴S =21PC ·CD -21AD ·EF =509t 2-21(57t -5)×4(57t -5)=-50187t 2+28t -50.当4<t <425时(如图3),设PC 与x 轴相交于点E .则AC =AB -BC =5-54t . 同理EC =34AC =34(5-54t ).∴S =21AC ·EC =21(5-54t )×34(5-54t )=27532t -316t +350.第24题图2综上,S =⎪⎪⎪⎩⎪⎪⎪⎨⎧+-≤-+-≤)4254(3503167532)4725(502850187)7250(509222 t t t t t t t t .25. (2018辽宁大连,25,12分)将△ABC 绕点B逆时针旋转α得到△DBE ,DE 的延长线与AC 相交于点F,连接DA 、BF .(1)如图1,若∠ABC =α=60°,BF =AF .①求证:DA ∥BC ;②猜想线段DF 、AF 的数量关系,并证明你的猜想;(2)如图2,若∠ABC <α,BF =mAF (m 为常数),求AFDF 的值(用含m 、α的式子表示)。

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)

2018年山西省中考数学试卷(答案+解析)好在BC上,且AB'=2AC,则AB的长度为()A.3B.6C.9D.129.(3分)___在一张长方形的纸片上剪去一个正方形,然后将剩下的部分固定在桌子上,如图所示.如果剪掉的正方形面积是整个纸片面积的1/5,那么剩下部分的周长是纸片周长的()A.1/5B.2/5C.3/5D.4/510.(3分)已知函数f(x)=x2+bx+c,其中b,c为常数,当x∈[0,2]时,f(x)的最大值为4,最小值为2.则b+c的值为() A.1B.2C.3D.42018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑。

)1.(3分) 下面有理数比较大小,正确的是()A。

<﹣2B。

﹣5<3C。

﹣2<﹣3D。

1<﹣42.(3分) “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果。

下列四部著作中,不属于我国古代数学著作的是()A。

《九章算术》B。

《几何原本》C。

《海岛算经》D。

《周髀算经》3.(3分) 下列运算正确的是()A。

(﹣a3)2=﹣a6B。

2a2+3a2=6a2C。

2a2•a3=2a6D。

(−)3=−bb/32b8b4.(3分) 近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):城市。

| 邮政快递业务量太原市 | 3303.78大同市 | 332.68长治市 | 302.34运城市 | 725.86临汾市 | 416.01吕梁市 | 338.87晋中市 | 319.791~3月份我省这七个地市邮政快递业务量的中位数是()A。

319.79万件B。

332.68万件C。

338.87万件D。

416.01万件6.(3分) 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观。

2018年中考数学真题知识分类练习试卷:不等式(含答案)

2018年中考数学真题知识分类练习试卷:不等式(含答案)

不等式一、单选题1.若a<b,则下列结论不一定成立的是()A. a-1<b-1B. 2a<2bC.D.【来源】江苏省宿迁市2018年中考数学试卷【答案】D2.不等式的解在数轴上表示正确的是()A. (A)B. (B)C. (C)D. (D)【来源】浙江省嘉兴市2018年中考数学试题【答案】A【解析】分析:求出已知不等式的解集,表示在数轴上即可.详解:不等式1﹣x≥2,解得:x≤-1.表示在数轴上,如图所示:故选A.点睛:本题考查了在数轴上表示不等式的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.不等式的解在数轴上表示正确的是()A. B.C. D.【来源】2018年浙江省舟山市中考数学试题【答案】A【解析】【分析】根据解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】在数轴上表示为:故选A.【点评】考查在数轴上表示不等式的解集,解一元一次不等式,解题的关键是解不等式. 4.不等式3x+2≥5的解集是()A. x≥1B. x≥C. x≤1D. x≤﹣1【来源】浙江省衢州市2018年中考数学试卷【答案】A5.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【来源】湖北省孝感市2018年中考数学试题【答案】B6.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【来源】山东省滨州市2018年中考数学试题【答案】B【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.7.不等式组的最小整数解是()A. -1B. 0C. 1D. 2【来源】湖南省娄底市2018年中考数学试题【答案】B【解析】【分析】分别求出不等式组中每一个不等式的解集,然后确定出不等式组的解集,即可求出最小的整数解.【详解】,解不等式①得,x≤2,解不等式②得,x>-1,所以不等式组的解集是:-1<x≤2,所以最小整数解为0,故选B.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,熟练掌握一元一次不等式组的解法是关键.8.不等式组有3个整数解,则的取值范围是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】B9.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题10.不等式的解集是___________.【来源】安徽省2018年中考数学试题【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.11.不等式组的解是________.【来源】浙江省温州市2018年中考数学试卷【答案】x>412.若不等式组的解集为,则________.【来源】四川省凉山州2018年中考数学试题【答案】-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.13.不等式组1<x﹣2≤2的所有整数解的和为_____.【来源】四川省宜宾市2018年中考数学试题【答案】1514.不等式组的解集为__________.【来源】江苏省扬州市2018年中考数学试题【答案】【解析】分析:先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.详解:解不等式3x+1≥5x,得:x≤,解不等式,得:x>-3,则不等式组的解集为-3<x≤,故答案为:-3<x≤.点睛:此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题15.解不等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.【来源】江苏省盐城市2018年中考数学试题【答案】x≥-1,在数轴上表示见解析.16.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【来源】天津市2018年中考数学试题【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.17.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【来源】湖北省孝感市2018年中考数学试题【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+180(50-x)≤98000,解得:x≤40.W=(2500-2000)x+(2180-1800)(50-x)-ax=(120-a)x+19000,∵当70<a<80时,120-a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120-a)×40+19000=23800-40a,∴W的最大值是(23800-40a)元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.18.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【来源】山东省泰安市2018年中考数学试题【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.19.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)20.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【来源】四川省凉山州2018年中考数学试题【答案】至少涨到每股6.06元时才能卖出.21.“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买两种设备的方案;(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【来源】湖南省娄底市2018年中考数学试题【答案】(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.22.先化简,再求值:,其中是不等式组的整数解.【来源】山东省德州市2018年中考数学试题【答案】.【解析】分析:原式利用除法法则变形,约分后计算得到最简结果,求出x的值,代入计算即可求出值.详解:原式=•﹣=﹣=,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式=.点睛:本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.23.解不等式组:【来源】浙江省金华市2018年中考数学试题【答案】不等式组的解集为3<x≤5.【解析】分析:首先分别解出两个不等式的解集,再求其公共解集即可.详解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x-1),得:x≤5,∴不等式组的解集为3<x≤5.点睛:此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.学科&网24.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化和里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1 : 2,且里程数之比为2 : 1,为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)40千米;(2)10.25.某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元.(1)从年到年,该地投入异地安置资金的年平均增长率为多少?(2)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.【来源】贵州省安顺市2018年中考数学试题【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.26.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【来源】广东省深圳市2018年中考数学试题【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.27.解不等式组:【来源】江苏省连云港市2018年中考数学试题【答案】﹣3≤x<228.如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【来源】江苏省南京市2018年中考数学试卷【答案】(1).(2)B.。

2018年全国中考数学真题分类 数的开方和二次根式解析版2(精品文档)

2018年全国中考数学真题分类  数的开方和二次根式解析版2(精品文档)

2018年全国中考数学真题分类数的开方和二次根式(二)一、选择题1. (2018广西省桂林市,10,3分)321x y --+0,则x ,y 的值为( )A .14x y ==⎧⎨⎩B .20x y ==⎧⎨⎩C .02x y ==⎧⎨⎩D .11x y ==⎧⎨⎩【答案】D【解析】∵321x y --≥00,∴要使321x y --0,则需321020x y x y --=+-=⎧⎨⎩,解得11x y ==⎧⎨⎩故选D . 【知识点】绝对值;二次根式2. (2018甘肃省兰州市,4,4分) 下列二次根式中,是最简二次根式的是( )18 B .13 C .27 D .12【答案】B【解析】因为18=32,27=33,12=23由最简二次根式需要同时满足两个条件:(1)被开方数中各因数或因式的指数都为1;(2)被开方数不含分母知,13为最简二次根式.【知识点】最简二次根式3. (2018湖南省怀化市,6,4分)使3-x 有意义的x 的取值范围是( )A .x ≤3B .x <3C .x ≥3D .x >3【答案】C【解析】被开方数大于或等于0,即03≥-x ,所以得出3≥x .【知识点】二次根式有意义的条件4. (2018年江苏省南京市,1,2分) 的值等于( ) A .32 B .32- C .32± D .8116【答案】A【解析】∵23924⎛⎫= ⎪⎝⎭,∴94的算术平方根是32=32,故选A. 【知识点】算术平方根5. 2018年黔三州,9,4)下列等式正确的是( )A. √22=2B. √33=3C. √44=4D. √55=5【答案】A【解析】∵√33=3√3 ,√44=16 ,√55=5√5,∴√22=2正确.【知识点】二次根式性质6.(2018江苏扬州,2,3) 有意义的的取值范围是( )A .3x >B .3x <C .3x ≥D .3x ≠【答案】C【解析】二次根式有意义的条件是:被开方数必须是非负数,所以x ﹣3≥0,所以3x ≥,故选C .【知识点】二次根式的性质7. (2018贵州铜仁,1,4)9的平方根是( )A. 3B.-3C.3和-3D. 81【答案】C ,【解析】∵只有符号不同的两个数互为相反数, “3”与“-3”只有符号不同,∴3的相反数是-3.故选C .8. (2018江苏苏州,4,3x 的取值范围在数轴上表示正确的是A.B.C.D.【答案】D【解析】本题解答时要利用二次根式有意义的概念进行解答.由二次根式的意义可知:20x+≥,解得2x≥-,故选D.9.(2018内蒙古包头,1,3分)计算3-的结果是( )-4-A.-1B.-5C.1D.5【答案】B【解析】原式=-2-3=-5,故选择B.【知识点】实数的运算-的结果是()10.(2018上海,1,4分)下计算182A.4 B.3 C.22D.2【答案】C,【解析】化简18为32,然后合并同类二次根式,故选C.11.(2018四川巴中,9,4分)下列等式正确的是A.=2B. =3C. =4D.=5【答案】A.【解析】根据算术平方根的意义,a(a≥0)得:A、=2,此选项正确;B、=3,此选项错误;C、=42=16,此选项错误;D、=25,此选项错误;故选A.12.(2018湖北恩施州,7,3分)64的立方根为()A.8 B.-8 C.4 D.-4【答案】C,【解析】43=64,所以64的立方根为413.(2018湖北十堰,8,3分)如图,是按一定规律排成的三角形数阵,按图中的数阵排列规律,第9行从左至右第5个数是()12 32 5 67 2 2 3 10………………………………A.210 B.41 C.5 2 D.51【答案】B【解析】由图形可知,第n行最后一个数为1+2+3+……+n=n(n+1)2,∴第8行最后一个数为8×92=36=6,则第9行从左至右第5个数是36+5=41,故选B.14.(2018湖南省株洲市,1,3) 9的算术平方根是()A.3 B.9 C.±3 D.±9【答案】A【思路分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.∴9的算术平方根是3.故选A.【知识点】算术平方根15.(2018辽宁省抚顺市,题号4,分值3围是A. x≥1B. x≤1C. X>1D. x<1【答案】B【解析】由二次根式的定义可知,1-x≥0,解得x≤1.故选B.【知识点】二次根式的意义,解一元一次不等式.16.(2018·宁夏,1,3)计算:12-( ) A .1 B .12C .0D .-1 【答案】C .【解析】∵原式=12-12=0,∴选C . 【知识点】实数的运算;绝对值;二次根式17. (2018云南曲靖,6,4分)下列二次根式中能与A B . C D 【答案】B,因此可以与. 二、填空题1. (2018广东省,13,3)一个正数的平方根分别是x +1和x -5,则x = .【答案】2【解析】一个正数的平方根互为相反数,故x +1和x -5互为相反数,可以列方程求解.【知识点】平方根2. (2018广东省,14,3)已知01=-+-b b a ,则=+1a .【答案】2【解析】0≥,10b -≥,01=-+-b b a0=,10b -=∴a =1,b=1∴a +1=2【知识点】二次根式的性质;绝对值3. 计算的结果等于__________. 【答案】 3 【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.4. (2018年江苏省南京市,9,2分) 2x -x 的取值范围是 .【答案】2x ≥【解析】根据被开方数大于等于0,得x-2≥0即2x ≥,故填2x ≥。

(完整版)2018年广东省中考数学试题含答案解析,推荐文档

(完整版)2018年广东省中考数学试题含答案解析,推荐文档

2018年广东省中考数学试卷、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选 项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.2. (3分)据有关部门统计,2018年五一小长假”期间,广东各大景点共接待游 客约14420000人次,将数14420000用科学记数法表示为( )A. 1.442X 107B. 0.1442X 107 C . 1.442X 108 D . 0.1442X 1083. (3分)如图,由5个相同正方体组合而成的几何体,它的主视图是(A . 4 B. 5 C. 6 D . 75. (3分)下列所述图形中,是轴对称图形但不是中心对称图形的是( A .圆 B •菱形 C •平行四边形D .等腰三角形6. (3分)不等式3x - 1>x+3的解集是( )A . x < 4B . x >4C. x < 2D . x >27. (3分)在厶ABC 中,点D 、E 分别为边AB 、AC 的中点,则△ ADE 与厶ABC 的面积之比为()A•寺B •寺C t D .寺8.(3 分)如图,AB // CD,则/ DEC=100, / C=40°,则/ B 的大小是()1. A .(3分)四个实数0、0 B. — C. - 3.14-3.14、2中,最小的数A BA . 30° B. 40° C. 50° D . 609. (3分)关于x 的一元二次方程x 2-3x+m=0有两个不相等的实数根,则实数 m 的取值范围是()A .贰了B . 2了C m 订10. (3分)如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A -B -C -D路径匀速运动到点。

,设厶PAD 的面积为y , P 点的运动时间为x ,则y 关于x 的二、填空题(共6小题,每小题3分,满分18分)11. (3分)同圆中,已知弧 AB 所对的圆心角是100°,则弧AB 所对的圆周角 是.12 . (3分)分解因式:x 2- 2x+仁 _____ .13 . (3分)一个正数的平方根分别是 x+1和x - 5,则x= ______ . 14 . (3 分)已知t|+| b - 1| =0,则 a+1= ______ .15 . (3分)如图,矩形 ABCD 中, BC=4 CD=2,以AD 为直径的半圆 O 与BC 相切于点E,连接BD ,贝U 阴影部分的面积为 ______ .(结果保留n )16. (3分)如图,已知等边△ OA1B 1,顶点A 1在双曲线的坐标为(2,0).过B 1作B 1A 2 // OA 交双曲线于点A 2,D . OX函数图象大致为( ) (x >0) 上,点 B 1过A2作A2B2 // A1B1交x轴于点B2,得到第二个等边厶B1A2B2;过B2作B2A3 / B1A2交双曲线于点A3,过A作A3B3// A2B2交x轴于点B3,得到第三个等边厶B2A3B3 ;以此类推,…,贝U点三、解答题(一)17. (6 分)计算:| - 2| - 2018°+ (丄)18. (6分)先化简,再求值::?〔厂',其中a二丄.出a2-4a 219. (6分)如图,BD是菱形ABCD的对角线,/ CBD=75,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求/ DBF的度数.20. (7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?21. (7分)某企业工会开展一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为_____ 人:(2)把条形统计图补充完整;(3) 若该企业有员工10000人,请估计该企业某周的工作量完成情况为 剩少量22. (7分)如图,矩形 ABCD 中, 使点B 落在点E 处,AE 交CD 于点F ,连接DE. 23. (9分)如图,已知顶点为 C (0,- 3)的抛物线y=af+b (a ^0)与x 轴交 于A , B 两点,直线y=x+m 过顶点C 和点B . (1) 求m 的值;(2) 求函数y=aW+b (a ^0)的解析式;(3) 抛物线上是否存在点 M ,使得/ MCB=1° ?若存在,求出点M 的坐标;若AB > AD ,把矩形沿对角线AC 所在直线折叠,的员工有多少人? (1)求证:△ ADE ^A CED24. (9分)如图,四边形ABCD中,AB=AD=CD以AB为直径的。

2018年天津市中考数学真题试题(答案版)

2018年天津市中考数学真题试题(答案版)

2018年天津市初中毕业生学业考试试卷数学(含答案解析)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ). 【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。

【中考样卷】2018年初中学业水平考试数学样题含答案

【中考样卷】2018年初中学业水平考试数学样题含答案

2018 初中学生学业水平考试数 学 样 题第Ⅰ卷一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的 项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分. 1.12,0,2-这四个数中,是无理数的为 A.0B.12D.2-2.如果□×(-3)=1,则“□”内应填的实数是 A .13 B .3 C. -3 D. 13- 3.如图,小手盖住的点的坐标可能为A .(-4,-5)B .(-4,5)C .(4,5)D .(4,-5) 4.已知实数a ,b ,若a >b ,则下列结论错误的是A.a-7>b-7B. 6+a >b+6C.55a b > D. -3a >-3b5.如图,直线l 1∥l 2,且分别与△ABC 的两边AB 、AC 相交,若∠A=45°, ∠1=65°,则∠2的度数为A .45°B .65°C .70°D .110° 6.如图,在点,,,M N P Q 中,一次函数2(0)y kx k =+<的图象不可能经过的点是A .NB .MC .QD .P7.关于x 的分式方程2322x m mx x++=--的解为正实数,则实数m 的取值范围是 A .m<-6且m ≠2 B .m >6且m ≠2 C .m<6且m ≠-2D .m<6且m ≠28.将△ABC 绕点A 逆时针旋转100°,得到△ADE .若点D 在线段BC 的 延长线上,如图,则EDP ∠的大小为Oxy第3题图第5题图PEB C DA第8题图A .80°B .100°C .120°D .不能确定9.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上,反比例函数y =kx(x >0)的图象经过顶点B ,则k 的值为 A .12B .20C .24D .3210.如图,有以下3个条件:①AC =AB ;②AB ∥CD ;③∠1=∠2.从这3个条件中选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是 A .0 B.13 C.23D .111.如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片 ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、 AC 于点E 、G .连接GF.则下列结论错误的是 A .∠AGD =112.5° B .四边形AEFG 是菱形 C .tan ∠AED =2 D .BE =2OG12.如图,点E 为菱形ABCD 边上的一个动点,并沿的路径移动,设点E 经过的路径长为x ,△ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是第Ⅱ卷(非选择题,共114分)二、填空题:本大题共8个小题,每小题5分,满分40分.13.计算:8)7-5(-2-02+= .14.不等式组32521x x -<⎧⎨-<⎩的解集为 .15.有一组数据:3,a ,4,6,7,它们的平均数是5,10题图第17题图则a =______,这组数据的方差是________.16.经过两次连续降价,某药品销售单价由原来的49元降到30元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .17.如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是_________,面积是_________.18.如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行20分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是___________海里. 19.如图,在平面直角坐标系中,点A 的坐标为(﹣2,O 为中心,将点A 顺时针旋转165°得到点A ′,则点A ′的坐标为___________. 20.规定:[x ]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x ≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简 [x ]+(x )+[x )的结果是__________________. 三、解答题:本大题共6个小题,满分74分.解答时请写出必要的演推过程. 21.(本小题满分10分)先化简后求值:222211111x x x x x x x -+-÷--++,其中x=11()2-.22.(本小题满分12分)已知:如图,在△ABC 的中,AD 是角平分线,E 是AD 上一点,且AB :AC =AE :AD . 求证:(1)BE =BD;(2)ABD ACD S BES CDΔΔ=.23.(本小题满分12分)如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F .ED ACB第22题图BAC北东第18题图(1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.24.(本小题满分13分)已知:关于x 的一元二次方程x 2﹣(2m +3)x +m 2+3m +2=0. (1)已知x =2是方程的一个根,求m 的值;(2)以这个方程的两个实数根作为△ABC 中AB 、AC (AB <AC )的边长,当ABC 是等腰三角形,求此时m 的值. 25.(本小题满分13分)如图,⊙O 为等腰△ABC 的外接圆,直径AB =12,P 为弧上任意一点(不与B ,C 重合),直线CP 交AB 延长线于点Q ,⊙O 在点P 处切线PD 交BQ 于点D ,(1)若PD ∥BC ,求证:AP 平分∠CAB ; (2)若PB =BD ,求PD 的长度; (3)证明:无论点P 在弧上的位置如何变化,CP •CQ 为定值.26.(本小题满分14分)在平面直角坐标系中,已知点B 的坐标是(-1,0),点A 的坐标是(4,0),点C 的坐标是(0,4),抛物线过A ,B ,C 三点. (1)求抛物线的解析式;(2)点N 是抛物线上的一点(点N 在直线AC 上方),过点N 作x NG 轴,垂足为G ,交AC 于点H ,当线段ON 与CH 互相平分时,求出点N 的坐标;(3)抛物线的对称轴为l ,顶点为K ,点C 关于l 对称点为J .是否存在 x 轴上的点Q 、y 轴上的点R ,使四边形KJQR 的周长最小?若存在,写出探寻满足条件的点的过程并画图;若不存在,请说明理由.第26题图第26题备用2018年初中学生学业水平考试数学样题参考答案一、选择题:本大题共12个小题,每小题3分,满分36分.二、填空题:本大题共8个小题,每小题5分,满分40分.13.225-+; 14.13x -<<; 15.5,2; 16.49(1﹣x )2=30;17.13,4321; 18.3; 19.(); 20.-2或﹣1或0或1或2. 三、解答题:本大题共6个小题,满分74分.解答时请写出必要的演推过程. 21.(本小题满分10分)解:222211111x x x x x x x -+-÷--++ =()21(1)1(1)(1)11x x x x x x x --÷-+-++……………………………………3分 =()2111(1)(1)(1)1x x x x x x x -+⨯-+--+……………………………………4分=111x x -+……………………………………………………………5分 =1(1)(1)x x x x x x +-++=11x +………………………………………7分∵11()2-=2,即x=2, ……………………………………9分∴把x=2代入原式,原式=11x +=121+=13. ……………………10分 22.(本小题满分12分)证明:(1)∵AD 是角平分线,∴∠BAD =∠CAD ,………………………………………………………2分又∵AB :AC =AE :AD ,∴△ABE ∽△ACD , ……………………………………………………5分 ∴∠AEB=∠ADC ,………………………………………………………6分 ∴∠BED =∠BDE , ………………………………………………………7分 ∴BE =BD .…………………………………………………………………8分(2)如图,过点A 作AH ⊥BC ,垂足为H ,则ABD S Δ=12BD AH , ADc S Δ=12CD AH .……………………………………………10分∴ABD ACD S S ΔΔ=1212BD AH BD CDCD AH =, 又BE =BD,∴ABD ACD S BES CDΔΔ=.……………………………………12分 23.(本小题满分12分)证明:(1)∵MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F.∴∠ECO = ∠BCE ,∠DCF = ∠OCF, …………………………………………2分 又∵直线MN ‖BC ,∴∠BCE = ∠CEO ,∠DCF = ∠CFO ,∴∠ECO = ∠CEO ,∠CFO = ∠OCF,∴EO = CO ,CO = FO, ……………………5分 ∴ EO = FO . ………………………………………6分(2)当点O 运动到AC 中点时,四边形AECF 是矩形, …………………………………7分 证明:当EO = FO 时,O 为EF 的中点,而当O 为AC 的中点时,四边形AECF 是平行四边形. …………………………………9分 由(1)可知CO =12EF ,而CO =12AC,∴EF = AC ,……………………………………10分 所以四边形AECF 是矩形. ……………………………………………………………12分 24.(本小题满分13分)EDACBH解:(1)∵x =2是方程的一个根,∴22﹣2(2m +3)+m 2+3m +2=0. …………………………………1分∴m 2-m =0,∴m =0,m =1. …………………………………………3分(2) ∵[]22(23)4(32)1m m m ∆=-+-++=……………………………………………5分∴(23)12m x +±=,∴x =m +2,x =m +1.…………………………………………………………………………7分 ∵AB 、AC (AB <AC )的长是这个方程的两个实数根,∴AC =m +2,AB =m +1. ………………………………………………………………8分∵BC =,△ABC 是等腰三角形,∴当AB =BC 时,有1m +=∴ 1m = ……………………………………………………………………………10分当AC=BC 时,有+2m = 2.m ∴=……………………………………………12分综上所述,当2m m =或时,△ABC 是等腰三角形. ………………………13分25.(本小题满分13分)证明:(1)如图,连接OP ,………………………………………1分∵PD 是⊙O 的切线,∴OP ⊥PD ,……………………2分 ∵PD ∥BC ,∴OP ⊥BC ,………………………………3分 ∴=,…………………………………………4分∴∠PAC=∠PAB ,……………………………………5分 ∴AP 平分∠CAB. ……………………………………6分(2)若PB=BD ,则∠BPD=∠BDP ,…………………………………………7分 ∵OP ⊥PD ,∴∠BPD+∠BPO=∠BDP+∠BOP , ∴∠BOP=∠BPO ,∴BP=BO=PO=6,即△BOP 是等边三角形,…………………………………………8分 ∴PD=OP=6. …………………………………………9分(3)∵AC=BC ,∴∠BAC=∠ABC , …………………………………………10分 又∵∠ABC=∠APC ,∴∠APC=BAC , …………………………………………11分 又∵∠ACP=∠QCA ,∴△ACP ∽△QCA , …………………………………………12分∴=,即CP•CQ=CA2(定值). …………………………………………13分26.(本小题满分14分)(2)设直线AC的解析式为y=kx+b,将A(4,0),C(0,4)代入,得k=-1,b=4.则直线AC的解析式为y=-x+4.……………………………………6分设点N(x,-x2+3x+4),点H(x,- x+4),………………8分∵线段ON与CH互相平分,∴四边形COHN为平行四边形,∴CO=HN=4.则HN=-x2+3x+4-(- x+4)=4.解得x=2,点N的坐标为(2,6). ………………………………10分(3)如图所示,作点K关于y轴的对称点K',………………………12分作点J关于x轴的对称点J',连接K' J',交y轴于点R,交x轴于点Q.连接KR,QJ,JK,则四边形KJQR的周长最小. ……………………………14分。

山西省2018年初中毕业学业考试数学试题及答案

山西省2018年初中毕业学业考试数学试题及答案

山西省2018年初中毕业学业考试数学试题一、选择题(本大题共10小题,每小题4分,满分40分)1.下列等式成立的是·······················································································( )A .|-2|=2B .-(-1)=-1C .1÷(-3)=13D .-2×3=62.已知某种细胞的直径是1×10-3毫米,则这种细胞的半径是···················································( ) A .0.05毫米 B .0.005毫米 C .0.000 5毫米 D .0.000 05毫米 3.如图是由4个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形不可能是·······················( )A .B .C .D .4.估计8×12+3的运算结果在···········································································( ) A .1到2之间 B .2到3之间 C .3到4之间 D .4到5之间 5.已知圆锥的底面半径为1 cm ,母线长为3 cm ,则圆锥的侧面积是···············································( )A .6 cm 2B .3π cm 2C .6π cm 2D .3π2cm 26.如图,在△ABC 中,点E ,D ,F 分别在边AB ,BC ,CA 上,且DE ∥CA ,DF ∥BA ,则下列四个判断中不正确的是···( ) A .四边形AEDF 是平行四边形 B .如果∠BAC =90°,那么四边形AEDF 是矩形C .如果AD 平分∠BAC ,那么四边形AEDF 是菱形 D .如果AD ⊥BC 且AB =AC ,那么四边形AEDF 是正方形7.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”如“947”就是一个“V 数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V 数”的概率是···············································( )A .14B .310C .12D .348.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是·········································( ) A .a >0 B .当x >1时,y 随x 的增大而增大 C .c <0 D .3是方程ax 2+bx +c =0的一个根9.如图,△ABC 中,AB =AC ,点D ,E 分别是边AB ,AC 的中点,点G ,F 在BC 边上,四边形DEFG 是正方形.若DE =2 cm ,则AC 的长为·······························································································( ) A .33cm B .4 cm C .23cm D .25cm10.如图,△ABC 中,∠ACB =90°,AC >BC ,分别以△ABC 的边AB ,BC ,CA 为一边向△ABC 外作正方形ABDE ,BCMN ,CAFG ,连接EF ,GM ,ND ,设△AEF ,△CGM ,△BND 的面积分别为S 1,S 2,S 3,则下列结论正确的是·····················( ) A .S 1=S 2=S 3 B .S 1=S 2<S 3 C .S 1=S 3<S 2 D .S 2=S 3<S 1 二、填空题(本大题共4小题,每小题5分,满分20分)11.已知抛物线y =x 2-3x -2与x 轴的一个交点为(m ,0),则代数式-2m 2+6m +2 017=________. 12.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点 C 在AB 上,若PA 长为2,则△PEF 的周长是 .13.如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,∠AED =2∠CED , 点G 是DF 的中点,若BE =1,AG =4,则AB 的长为________.14.函数y 1=x (x ≥0),y 2=4x (x >0)的图象如图所示,则结论: ①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小.第12题图第3题图 第10题图第6题图 第9题图第8题图15.解不等式组⎩⎨⎧1-2(x -1)≤5,3x -22<x +12,并把解集在数轴上表示出来.16.先化简,再求值:(1-1a -1)÷a 2-4a +4a 2-a ,其中a 为-1,0,1,2中的一个合适的值.四、本大题共2小题,每小题8分,满分16分17.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题: (1)以点O 为对称中心,作△ABC 关于点O 的中心对称图形△A 1B 1C 1,画出△A 2B 2C 2并写出点A 1的坐标. (2)将△ABC 绕原点O 顺时针旋转90°后得到的△A 2B 2C 2, 画出△A 2B 2C 2并求出点A 的路径长.18.设中学生体质健康综合评定成绩为x 分,满分为100分.规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题: (1)在这次调查中,一共抽取了 名学生,a = %;(2)补全条形统计图;(3)扇形统计图中C 级对应的圆心角为 度;(4)若该校共有2000名学生,请你估计该校D 级学生有多少名?五、本大题共2小题,每小题10分,满分20分19.如图,某数学课外活动小组测量电视塔AB的高度,他们借助一个高度为30 m的建筑物CD进行测量,在点C处塔顶B的仰角为45°,在点E处测得B的仰角为37°(B,D,E三点在一条直线上).求电视塔的高度h.(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)20.如图,四边形ABCD是菱形,点D的坐标是(0,3),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.六、本大题满分12分21.在一条直线上依次有A,B,C三个港口,甲、乙两船同时分别从A,B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1,y2(km),y1,y2与x的函数关系如图所示.§科§网Z§X§X§K](1)填空:A,C两港口间的距离为__________ km,a=__________;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.七、本大题满分12分22.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4.(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接F A,试判断直线F A与⊙O的位置关系,并说明理由.八、本大题满分14分23.阅读材料,解答下列问题:几何模型:条件:如图1,A、B是直线l同旁的两个定点,在直线l上确定一点P,使P A+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则P A+PB=A′B的值最小(不用证明)模型应用:(1)如图2,正方形ABCD的边长为2,E是AB的中点,P是AC上一动点,连接BD,由正方形的对称性可知,B与D关于直线AC 对称,连接ED交AC于P,则PB+PE的最小值是________;(2)如图3,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求P A+PC的最小值;(3)如图4,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.图1 图2 图3 图4参考答案一、选择题答案二、填空题答案三、简答题答案15.答案:解集为-1≤x <3,图略;16.答案:原式=a a -2,当a =-1时,原式=13;17.答案:(1)A 1(2,-4),图略; (2)A 2(-1,-2),图略; (3)点A 的路径长为5π,图略;18.答案:(1)50 24 ;(2)图略; (3)72 ;(4) 160人;19.答案:h =120米;20.答案:(1)A (1,0),B (3,0),C (2,3); (2) y =-3x 2+43x -3 3 ;21.答案:(1)120 2 ;(2)P (1,30) 甲乙出发1小时后在距离B 港30千米处相遇;(3)23≤x ≤43或83≤x ≤3 ;22.答案:(1) 证明略; (2)AB =2 3 ; (3)相切,证明略;23.答案:(1) 5; (2)最小值2 3 ; (3)最小值102;。

湖北省武汉为明学校2018届九年级3月检测数学试题(无答案)

湖北省武汉为明学校2018届九年级3月检测数学试题(无答案)

武汉为明学校2017-2018学年度下学期九年级三月检测数学试卷时间:120分钟 满分:120分一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1介于( ) A .0与1之间B .1与2之间C .2与3之间D .3与4之间2.要使分式15x 有意义,则x 的取值范围是( ) A .x ≠1B .x >1C .x <1D .x ≠-13.计算(a -2)2的结果是( ) A .a 2-4B .a 2-2a +4C .a 2-4a +4D .a 2+44.有两个事件,事件A :掷一次骰子,向上的一面是3;事件B :篮球队员在罚球线上投篮一次,投中,则( ) A .只有事件A 是随机事件B .只有事件B 是随机事件C .事件A 和B 都是随机事件D .事件A 和B 都不是随机事件 5.下列运算正确的是( ) A .x 4·x 4=x 16B .(x 5)2=x 7C .(-2a )2=-4a 2D .3x 2-x 2=2x 26.如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b ),则点A ′的坐标为( ) A .(a ,b ) B .(-a ,b ) C .(b ,-a ) D .(-b ,a )第7题图 第8题7.如图所示的几何体是由一些小正方体组合而成的,则这个几何体的俯视图是()A.B.C.D.8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.89.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……根据这个规律,第2016个点的坐标为()A.(45,13) B.(45,9) C.(45,22) D.(45,0)10.如图,P为⊙O内一定点,A为⊙O上一个动点,射线AP、AO分别与⊙O交于B、C 两点。

2018年下半年教师资格证考试《初中数学》题(解析)

2018年下半年教师资格证考试《初中数学》题(解析)

2018年下半年教师资格证考试《初中数学》解析1解析C项:本题主要考查空间解析几何中平面的法向量的相关知识。

平面的法向量是垂直于平面的非零向量。

在直角坐标系中,平面Ax+By+Cz+D=0(A,B,C不同时为零)的一个法向量为。

本题中,向量为平面2x+3y+z=3的法向量,故垂直于平面2x+3y+z=3。

C项正确。

A、B、D三项:均为干扰项,与题干不符,排除。

故正确答案为C。

2解析C项:本题主要考查极限的知识。

由常用等价无穷小可知,当时,tan3x~3x,即。

C项正确。

A、B、D三项:均为干扰项,与题干不符,排除。

故正确答案为C。

3解析D项:本题主要考查积分的知识。

若函数在区间[a,b]上(黎曼)可积,则在[a,b]上必有界(可积的必要条件)。

D项正确。

A项:因为在一元函数中,可微一定连续,且连续一定可积,但反之不成立。

与题干不符,排除。

B、C项:可积的充分条件有以下3个:①函数在闭区间上连续;②函数在闭区间上有界且只有有限个间断点;③函数在闭区间上单调。

与题干不符,排除。

故正确答案为D。

4解析B项:本题主要考查积分的知识。

解决这一问题有两种方法,方法一:利用定积分的几何意义,定积分表示被积分函数与x轴所围成的图形的面积,即椭圆在x轴上方部分的面积,而椭圆的面积为。

所以。

方法二:可以利用第二换元积分进行计算,令x=asint,由于-a≤x≤a,所以,且dx=acostdt,所以。

B项正确。

A、C、D三项:均为干扰项,与题干不符,排除。

故正确答案为B。

5解析A项:本题主要考查向量的知识。

向量组、、线性相关⇔矩阵的秩小于向量的个数⇔;向量组、、线性无关⇔矩阵满秩⇔。

结合选项可知,,,,,线性无关⇔进而可知,选项A中的向量与向量和向量线性相关,BCD三项中的向量均与向量和向量线性无关。

A项正确。

B、C、D三项:其中的向量均与向量α和向量β线性无关。

与题干不符,排除。

故正确答案为A。

6解析B项:本题主要考查线性代数的知识。

2018年3月九年级联考数学试题

2018年3月九年级联考数学试题

2018年三月张湾区九年级联考数 学 试 题注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.2.答题前,考生先将自己的姓名、考号、班级、学校填写在答题卡的指定的位置. 3.考生要保持答题卡的整洁,考试结束后,请将答题卡上交,试卷自己保存.一.选择题(本题有10个小题,每小题3分,共30分.)1.下列各数中,最小的数是( ).A .2B .-2C .2 D .-22.下面左图是一个几何体,右边四个选项中,其主视图是 ( ).3.如图,下列条件能判断AB ∥CD 的是( ).A .∠2=∠3B .∠3=∠4C .∠B =∠5D .∠1=∠3 (第3题图) 4.在2016年体育中考中,某班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数,中位数,方差依次为( )A .28,28,1B .28,27.5,1C .3,2.5,5D .3,2,55.下列运算正确的是( ).A .a 3+a 4=a 7B .2a 3·a 4=2a 7C .(2a 4)3=8a 7D .a 8÷a 2=a 46.下列命题错误的是( )A. 两条对角线互相垂直平分的四边形是菱形B. 两条对角线互相平分且相等的四边形是矩形C. 一条对角线平分一组对角的平行四边形是菱形D. 一条对角线平分一组对角的平行四边形是矩形7.某工厂现在平均每天比原计划多生产30台机器,现在生产500台机器所需时间与原计划生产350台机器所需时间相同.设原计划平均每天生产x 台机器,下面列方程正确的是( )A .xx 35030500=+ B .xx 35030500=- C .30350500-=x xD .30350500+=x x8.用一个直角的扇形围成一个无底圆锥(不计接缝),圆锥的母线长与底面半径之比是( ).A .1B .2C .3D .49.如图是用棋子摆成的图案,摆第1个图案要1枚棋子,摆第2个图案要3枚棋子,摆第3个图案要6枚棋子,...,则摆第10个图案要( )枚棋子 A .55 B .64 C .72 D .81(第9题图) (第10题图)10.如图,已知四边形OABC 是菱形,CD ⊥x 轴于D ,函数xy 4的图象经过C ,且与AB交于E .若OD =2,则△OCE 的面积为( ).A .2B .22C .4D .24二.填空题(本题有6个小题,每小题3分,共18分)11.光的速度大约是300000千米/秒,将300000用科学记数法表示为_____________. 12.若b -a =1,则代数式2a -2b -1的值为 .13.如图,平行四边形ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为 .14.一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100 m ,测得圆周角 ∠ACB =45°,则这个人工湖的直径AD 为 .(第13题图) (第14题图) (第15题图) (第16题图) 15.如图,y =kx +b 的图象如图所示,则k (x -m )+b >0恰好有3个正整数解,则整数m = .16.如图,矩形ABCD 中,F 、G 分别为BC 、AD 的中点,H 为FG 上一点,D 、H 关于直线AE 对称,AE 交FG 于点M ,连接AF 、EF 、HE ,且HE =HF .下列结论:①△MEH为等边三角形;②AE ⊥EF ;③△ADE ∽△AEF ;④ABAD =532.其中正确的结论序号是 .三、解答题:(本题有9个小题,共72分)17. (5分)计算:()011333p -+---18.(6分)化简:aaa aa 211122+-÷--19.(7分)如图,为了测量塔高CD ,小明在广场的A 处进行观测,测得塔顶D 处的仰角为30°,再向前走54米到B 处的仰角为45°,DC ⊥AB 于C ,求塔高CD .(结果保留根号)20.(9分)第四届国际道教论坛于2017年5月10日至5月12日在我市武当山举行,小敏同学就本班学生对道教知识的了解程度进行了一次调查统计,下图为其收集数据后绘制的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)该班共有学生______人,并补全条形统计图;(2)在扇形统计图中,“了解较多”部分所对应的圆心角的度数是________; (3)设甲、乙、丙、丁是D 中知识面最广的4名同学,现从中任选2人参加志愿者活动,求选中丁的概率.21.(7分)已知关于x 的一元二次方程x 2-2(k +1)x +k 2+1=0有两个实数根.(1)求实数k 的取值范围;(2)设方程两个实数根分别为x 1、x 2,且满足x 12+x 22=x 1x 2+10,求实数k 的值.22.(8分)某超市试销一种成本价为80元/瓶的白酒,规定试销期间单价不低于100元/瓶,且不高于160元/瓶.经试销发现,销售量y (瓶)与销售单价x (元/瓶)符合一次函数关系,且x =120时,y =100;x =130时,y =95.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)当销售单价x 定为每瓶多少元时,销售利润(w )最大?最大利润是多少?A :不了解B :一般了解C :了解较多D :熟悉24.(10分)将两块等腰直角三角板(Rt △ABC 和Rt △CDE ,∠ACB=∠CDE=90°,∠A=∠E=45°)如图1摆放.(1)若把图1中的△BCN 绕点C 逆时针旋转90°得到图2,则∠FAM=___________; (2) ①设CD 、CE 与AB 交于M 、N 两点,当M 、N 在AB 上(不与A 、B 重合)时,线段AM 、MN 、NB 之间有一个不变的关系式,请写出这个关系式:________________;(不需证明) ②当点M 在AB 上,点N 在AB 延长线上,如图3,①中的结论是否仍然成立?若成立,写出你的结论,并说明理由;若不成立,写出你认为成立的结论,并说明理由.25.(12分)如图,抛物线y =ax 2-2ax +3交x 轴于A (-1,0),B 两点,交y 轴于点C ,抛物线的对称轴交抛物线于点D ,交x 轴于点E . (1)求抛物线的解析式和D 点的坐标;(2)设M 是抛物线上的一点,当S △MAC =12S △ABC 时,求M 点的坐标;(3)P 是抛物线的对称轴的一点,PF ⊥BD 于F ,若PE =PF,求P点的坐标.(第24题图1) (第24题图3)(第24题图2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年3月23日初中数学作业
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.三种不同类型的长方形地砖长宽如图所示,现有A 类1块,B 类4块,C 类5块. 小明在用这些地砖拼成一个正方形时,多出其中1块地砖,那么小明拼成正方形的边长是( )
A. m+n
B. 2m+2n
C. 2m+n
D. m+2n
2.如图,从边长为 的正方形纸片中剪去一个边长为 的正方形( ),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),则该矩形的面积是( ).
A. B. C. D.
3.计算()()()()
241111a a a a +-++的结果是( ). A. 81a - B. 81a + C. 161a - D. 以上答案都不对
4.下列多项式的乘法中,可以用平方差公式计算的是( ).
A. ()()a b b a ++
B. ()()a b a b -+-
C. 1
133a b b a ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭
D. ()()22a b b a -+
二、解答题
5.先化简,再求值: ,其中 与 互为相反数.
6.(1)计算:x (4x ﹣1)﹣(2x ﹣3)(2x+3)+(x ﹣1)2;
(2)已知实数a ,b 满足(a+b )2=1,(a ﹣b )2=25,求a 2+b 2+ab 的值.
7.化简求值. (1)求()()()323251x x x x +---的值,其中2x =. (2)若220m m +-=,求()()2
131m m -++的值. 8.已知x 2-4=0,求代数式x (x +1)2- x (x 2+ x )- x -7的值.
9.我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.
例如:由图1可得到(a +b )²=a ²+2ab +b ².
图1 图2 图3
(1)写出由图2所表示的数学等式:_____________________;写出由图3所表示的数学等式:_____________________;
(2)利用上述结论,解决下面问题:已知a +b +c =11,bc +ac +ab =38,求a ²+b ²+c ²的值.
10.已知0a b c ++=, 2221a b c ++=.
(1)求ab bc ca ++的值;
(2)求444a b c ++的值.
11.已知a+b=1,ab=-1.设
(1)计算S 2;
(2)请阅读下面计算S 3的过程: ()()
33332222a b a b b a-b a a b-a b +=+++ =()()()323222a b a b a b b a a b +++-+
=()()()2222a b a a b b ab a b +++-+
=()()
()22a b a b ab a b ++-+ ∵a+b=1,ab=-1,
∴()()
()()33223221111S a b a b a b ab a b S S =+=++-+=⨯--⨯=+=_______. 你读懂了吗?请你先填空完成(2)中S 3的计算结果;再计算S 4;
(3)猜想并写出2n S -, 1n S -, n S 三者之间的数量关系(不要求证明,且n 是不小于2的自然数),根据得出的数量关系计算S 3.
12.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是 ;(请选择正确的一个)
A 、a 2﹣2ab+b 2=(a ﹣b )2
B 、a 2﹣b 2=(a+b )(a ﹣b )
C 、a 2+ab=a (a+b )
(2)应用你从(1)选出的等式,完成下列各题:
①已知x 2﹣4y 2x
②计算:(1(1(1…(1(1.。

相关文档
最新文档