一次函数k与b 和坐标轴的练习
人教版数学2022-2023学年八年级下册第十九章一次函数同步练习题含答案
(3)当y=19.5时,求x的值.
参考答案:
1.D
【分析】先根据 ,且 判断出k的正负,然后根据一次函数的性质判断即可.
【详解】解:∵ ,且 ,
∴k<0,
∴一次函数图象经过一二四象限.
故先D.
【点睛】本题考查了一次函数的图象与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图象与y轴的正半轴相交,当b<0,图象与y轴的负半轴相交,当b=0,图象经过原点.
(3)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.
(1)
解:设y=ax.
∵图象过(4,20),
∴4a=20,
∴a=5.
∴y随x变化的函数关系式为y=5x(0≤x≤4);
(2)
解:设y=kx+b.
∵图象过(4,20)、(12,30),
∴ ,解得: ,
∴y与x的函数解析式为y= x+15(4≤x≤12);
12.一次函数y=1-5x经过点(0,______)与点( ),0),y随x的增大而______.
三、解答题
13.有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y.单位:L.与时间x.单位:分.之间的关系如图所示:
试题解析:∵函数 的图象过一、二、四象限,
解得-1<m<1.
15.(1)y=14+x(4<x<14)
(2)y=20
(3)x=5.5
【分析】(1)根据三角形的周长公式,可得函数关系式,根据三角形三边的关系,可得自变量的取值范围;
【八年级上册数学培优竞赛-素养提升】专题09 一次函数中k、b的意义
专题09 一次函数中k 、b 的意义[专题解读]一次函数y=kx+b 中的系数k 、b 的正负性,决定图像的大致位置、y 随x 的变化情况、与坐标轴的交点坐标以及直线的倾斜程度,是研究函数图像及性质的重要依据.熟悉并掌握k 、b 的意义,可以帮助我们更深刻地理解一次函数.思维索引例1.已知关于 x 的一次函数y =(6+3m )x +(n -4). (1)当m 、n 满足什么条件时,函数图象经过原点;(2)当m 、n 满足什么条件时,函数图象与y 轴的交点在x 轴下方;(3)当m 、n 满足什么条件时,y 随着x 的增大而减小,且不经过第三象限; (4)当m 、n 满足什么条件时,函数的图象平行于直线y =3x -3;(5)若n =2m ,则不论m 取何实数这个函数的图象都过定点,试求这个定点的坐标.答案:(1) m≠-2, n=4; (2) m≠-2, n<4; (3) m<-2,n≥4; (4) m=-1, n≠1; (5)( 32,-8)例2.如图,直线y =(m +1)x +2(m -1) (m 为常数)与x 轴交于点A ,与y 轴交于点B,△ABC 是等边三角形(其中A ,B ,C 为逆时针标注的三个点). (1)当x =-2时,求y 的值;(2)△ABC 中的AB 边不可能在第几象限?并说明理由.答案:(1) y=-4; (2) AB 不可能在第一象限素养提升1.两条直线y=ax+b 与y= bx+a 在同一直角坐标系中的图象位置可能是()A B C D2.在平面直角坐标系xOy 中,A (1, 1),B (2,2),一次函数y = -2x +b 与线段AB 有公共点,则b 的取值范围是( )A.3≤b ≤6B. 3≤b ≤4C. 1≤b ≤2D. -2≤b ≤-1答案:A3.已知一次函数y=ax-x-a +1 (a 为常数),则其函数图象一定过象限( ) A.一、二 B.二、三 C.三、四 D.一、四 答案:D4.已知直线y =(m -3)x -3m +1不经过第一象限,则m 的取值范围是( ) A. m ≥31B. m ≤31 C. 31<m <3 D. 31≤m ≤3 答案:D5.一次函数y=kx +4的图象与x 轴正半轴、y 轴分别相交于点A ,B ,将△AOB 沿直线AB 翻折,得△ACB ,若BC 所在直线解析式y 随x 的增大而减小,则k 的取值范围是( ) A. k <0 B. k <-1 C. -1<k <0 D. -1≤k <0 答案:B6.一次函数y =(m 2-3)x +(1-m )和y =(m +2)x +(m 2+m -5)的图象分别与y 轴交于点P 和Q ,这两点关于x 轴对称,则m 的值 是 答案:27.已知关于x 的一次函数y=mx +2m -7 (m≠0)在-1≤x ≤5上的函数值总是为正数,则m 的取值范围是 答案: m>78.已知一次函数y=kx+b ,当-3≤x ≤1 时,对应y 的值为1≤y ≤9,则k+b 的值为 答案: 9或19.已知一次函数y 1=kx +2 (k ≠0)和y 2=x -3. 当x <1时,y 1>y 2, 则常数k 的取值范围为 答案: -4≤k <0或0<k≤110. A (0, 1),M (3,2),动点P 从点A 出发,沿y 轴以每秒1个单位长度的速度向上移动,且过点P 的直线l : y=-x+b 也随之移动,设移动时间为t 秒,当t =______时,点M 关于l 的对称点落在坐标轴上.答案: t=1或211.已知一次函数y=(4m+1)x-(m+1).(1)m为何值时,y随x的增大而增大?(2)m为何值时,图象经过第二、三、四象限?(3)m为何值时,与直线y=-3x+2平行?答案:(1)m>-14;(2)-1<m<-14;(3)m=-1.12.若两个一次函数y=k1x+b1(k1≠0),y=k2x+b2(k2≠0),则称函数y=(k1+k2)x+b1b2为这两个函数的组合函数.(1)一次函数y=3x+2与y=-4x+3的组合函数为 .(2)若一次函数y=ax-2,y=-x+b的组合函数为y=3x+2,求a,b的值;(3)若一次函数y=-x+b与y=kx-3的组合函数的图象不经过第三象限,求k、b的取值范围.答案:(1)y=-x+6;(2)a=4,b=-1;(3)k<1,b≤0.13.已知关于x的一次函数为y=(m-2)x+6.(1)若函数y随x增大而增大,求m的取值范围;(2)当一2≤x≤4时,y≤10,求m的取值范围.答案:(1)m>2;(2)2<m≤3或0≤m<2.14.已知关于x的一次函数y=mx+4m-2.(1)不论m取何实数这个函数的图象都过定点,试求这个定点的坐标;(2)求原点到一次函数图象的最大值.答案:(1)(-4,-2);(2).15.在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD(A,B,C,D按照逆时针顺序排列),直线l:y=kx+3.(1)当直线l经过D点时,求k的值;(2)当直线l与正方形有两个交点时,直接写出k的取值范围.答案:(1)k=1;(2)k>-1;16.如图,已知一次函数y=kx+3(k<0)的图象与x轴、y轴分别相交于点A、B,且0B=20A,点P(a,b)是在该函数的图象上的一点.(1)求k的值;(2)若点P到x轴、y轴的距离之和等于2,求点P的坐标;(3)设a=1-m,如果在两个实数a与b之间(不包括a和b)有且只有一个整数,求实数m的取值范围.答案:(1)k=-2;(2)P(1,1)或(53,-13):(3)-12≤m≤12,且m≠0.。
(完整word版)初中一次函数习题及例题
例1:已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式。
说明:满足函数关系式的有序数对,在坐标平面内对应的点一定在函数图象上;反之,函数图象上的点,其坐标一定满足函数关系式。
例2:.已知2y-3与3x+1成正比例,且x=2时,y=5,(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a 。
例3:.已知一次函数的图象经过点A(—3,2)、B(1,6).①求此函数的解析式,并画出图象.②求函数图象与坐标轴所围成的三角形面积.例4:某一次函数的图象与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,•求此函数的关系式.例5:某移动通讯公司开设两种业务:若设某人一个月内市内通话x跳次,两种方式的费用分别为z元和y元.①写出z、y与x之间的函数关系式;②一个月内市内通话多少跳次时,两种方式的费用相同?③某人估计一个月内通话300跳次,应选择哪种方式合算?例6:如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)•之间的函数关系图象.①根据图象,写出该图象的函数关系式; ②某人乘坐2。
5km ,应付多少钱? ③某人乘坐13km ,应付多少钱?④若某人付车费30。
8元,出租车行驶了多少千米?1.A 市和B 市分别库存某种机器12台和6台,现决定支援给C 市10台和D 市8台.•已知从A 市调运一台机器到C 市和D 市的运费分别为400元和800元;从B 市调运一台机器到C 市和D 市的运费分别为300元和500元.(1)设B 市运往C 市机器x 台,•求总运费W (元)关于x 的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?一. 填空题1. (-3,4)关于x 轴对称的点的坐标为_________,关于y 轴对称的点的坐标为__________,关于原点对称的坐标为__________。
中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案
中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.一次函数y=x﹣3的图象与y轴的交点坐标是()A.(0,﹣3)B.(0,3)C.(3,0)D.(﹣3,0)2.如图,直线y=−x+4与坐标轴交于A、B两点,点C为坐标平面内一点BC=1,点M为线段AC的中点,连接OM,则线段OM的最小值是()A.2√2+12B.2√2−12C.1D.2√23.如图在平面直角坐标系中,直线l1对应的函数表达式为y=2x,直线l2与x,y轴分别交于A、B,且l1∥ l2,OA=2,则线段OB的长为()A.3B.4C.2√2D.2√34.背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y=2x−4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是()A.14B.12C.34D.15.已知一次函数的图象与y=2x+3平行,且过点(4,2),则该一次函数与坐标轴围成图形的面积为()A.6B.9C.12D.186.如图,已知直线y=−13x+√10与与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为()A.B.C.D.7.对于一次函数y=−x−2,下列说法错误的是()A.图象不经过第一象限B.图象与y轴的交点坐标为(0,−2)C.图象可由直线y=−x向下平移2个单位长度得到D.若点(−1,y1),(4,y2)在一次函数y=−x−2的图象上,则y1<y28.若一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为()A.x=3B.x=0C.x=﹣2D.x=﹣39.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 √3与x轴、y轴分别交于A,B,∥OAB=30°,点P在x轴上,∥P与l相切,当P在线段OA上运动时,使得∥P成为整圆的点P个数是()A.6B.8C.10D.1210.一次函数y=ax+b交x轴于点(-5,0),则关于x的方程ax+b=0的解是() A.x=5B.x=-5C.x=0D.无法求解11.下列四个选项中,不符合直线y=x﹣2的性质特征的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,-2)12.下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个二、填空题(共6题;共7分)13.在直角坐标系xOy中,若直线y=x+4a-12与y轴的交点在x轴上方,则a的取值范围.14.函数y=m2x2+(2m+1)x+1与x轴有交点,则m的取值范围.15.如图,一次函数y=x+2的图像与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB 上的点,且∥OPC=45°,PC=PO,则点P的坐标为.16.如果一次函数y=kx+4与两坐标轴围成的三角形面积为4,则k=.17.如图,在平面直角坐标系xOy中,直线y=−34x+3与x轴交于点A,与y轴交于点B,将∥AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.18.如图示直线y=√3x+√3与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动到点B1,线段BB1长度为.三、综合题(共6题;共54分)19.如图,直线y=2x+1与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求直线BP的函数关系式.20.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B′折痕为CE.直线CE的关系式是y=−12x+8,与x轴相交于点F,且AE=3.(1)OC=,OF=;(2)求点B′的坐标;(3)求矩形ABCO的面积.21.已知一次函数y=kx+b的图象经过点(0,1)和(1,-2)。
初二数学一次函数正比例与一次函数基础常考题
初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题含解析一.选择题共12小题1.已知y=m﹣3x|m|﹣2+1是一次函数,则m的值是A.﹣3 B.3 C.±3 D.±22.一次函数y=mx+n与y=mnxmn≠0,在同一平面直角坐标系的图象是A.B.C.D.3.关于一次函数y=﹣2x+3,下列结论正确的是A.图象过点1,﹣1 B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<04.已知正比例函数y=kxk≠0的函数值y随x的增大而减小,则一次函数y=x+k 的图象大致是A.B.C.D.5.已知直线y=kx﹣4k<0与两坐标轴所围成的三角形面积等于4,则直线的解析式为A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣46.在下列各图象中,表示函数y=﹣kxk<0的图象的是A.B.C.D.7.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是A.B.C.D.8.下列函数1y=3πx;2y=8x﹣6;3y=;4y=﹣8x;5y=5x2﹣4x+1中,是一次函数的有A.4个B.3个C.2个D.1个9.直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的A.B.C.D.10.下列函数中,是一次函数但不是正比例函数的是A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣111.函数y=2﹣ax+b﹣1是正比例函数的条件是A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数12.当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为A.B.C.D.二.填空题共11小题13.已知函数y=m﹣1x+m2﹣1是正比例函数,则m= .14.若函数y=a﹣3x|a|﹣2+2a+1是一次函数,则a= .15.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是.16.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有.17.如图,在直角坐标系中,已知矩形ABCD的两个顶点A3,0、B3,2,对角线AC所在的直线L,那么直线L对应的解析式是.18.一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是.19.已知,一次函数y=x+5的图象经过点Pa,b和Qc,d,则ac﹣d﹣bc﹣d的值为.20.如图,该直线是某个一次函数的图象,则此函数的解析式为.21.若一次函数y=kx+bk≠0与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:.22.已知点A3,y1、B2,y2在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y 1y2.填>、=或<23.一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b= .三.解答题共17小题24.已知直线y=kx+b经过点A5,0,B1,4.1求直线AB的解析式;2若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;3根据图象,写出关于x的不等式2x﹣4>kx+b的解集.25.已知函数y=2m+1x+m﹣3;1若函数图象经过原点,求m的值;2若函数图象在y轴的截距为﹣2,求m的值;3若函数的图象平行直线y=3x﹣3,求m的值;4若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为8,0,Px,y 是直线y=﹣x+10在第一象限内一个动点.1求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;2当△OPA的面积为10时,求点P的坐标.27.已知正比例函数y=m﹣1的图象在第二、四象限,求m的值.28.如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P2,p在第一象限,直线PA交y轴于点C0,2,直线PB交y轴于点D,此时,S△AOP=6.1求P的值;2若S△BOP =S△DOP,求直线BD的函数解析式.29.在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.1将直线y=2x向下平移2个单位后对应的解析式为;2求点A的坐标;3若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.30.已知y与x+2成正比例,且当x=1时,y=﹣6.1求y与x的函数关系式.2若点a,2在此函数图象上,求a的值.31.已知把直线y=kx+bk≠0沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.1求直线y=kx+bk≠0的解析式;2求直线y=kx+bk≠0与坐标轴围成的三角形的周长.32.如图,已知一条直线经过点A5,0、B1,4.1求直线AB的解析式;2若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C 33.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.1分别求点A、C的坐标;2在x轴上求一点P,使它到B、C两点的距离之和最小.34.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的坐标8,0,点A的坐标为6,0.点Px,y是第一象限内的直线上的一个动点点P不与点E,F重合.1求k的值;2在点P运动的过程中,求出△OPA的面积S与x的函数关系式.3若△OPA的面积为,求此时点P的坐标.35.课本P152有段文字:把函数y=2x的图象分别沿y轴向上或向下平移3个单位长度,就得到函数y=2x+3或y=2x﹣3的图象.阅读理解小尧阅读这段文字后有个疑问:把函数y=﹣2x的图象沿x轴向右平移3个单位长度,如何求平移后的函数表达式老师给了以下提示:如图1,在函数y=﹣2x的图象上任意取两个点A、B,分别向右平移3个单位长度,得到A′、B′,直线A′B′就是函数y=﹣2x的图象沿x 轴向右平移3个单位长度后得到的图象.请你帮助小尧解决他的困难.1将函数y=﹣2x的图象沿x轴向右平移3个单位长度,平移后的函数表达式为.A.y=﹣2x+3;B.y=﹣2x﹣3;C.y=﹣2x+6;D.y=﹣2x﹣6解决问题2已知一次函数的图象与直线y=﹣2x关于x轴对称,求此一次函数的表达式.拓展探究3一次函数y=﹣2x的图象绕点2,3逆时针方向旋转90°后得到的图象对应的函数表达式为.直接写结果36.已知正比例函数y=kx的图象经过点P1,2,如图所示.1求这个正比例函数的解析式;2将这个正比例函数的图象向右平移4个单位,求出平移后的直线的解析式.37.如图,直线y=x+2分别与x轴、y轴交于点A、B,将直线AB沿y轴向下平移至点C0,﹣1,与x轴交于点D,过点B作BE⊥CD,垂足为E.1求直线CD的解析式;2求S.△BEC38.1点0,7向下平移2个单位后的坐标是,直线y=2x+7向下平移2个单位后的解析式是.2直线y=2x+7向右平移2个单位后的解析式是.3如图,已知点Ca,3为直线y=x上在第一象限内一点,直线y=2x+7交y轴于点A,交x轴于点B,将直线AB沿射线OC方向平移|OC|个单位,求平移后的直线解析式.39.某人从离家18千米的地方返回,他离家的距离s千米与时间t分钟的函数图象如图所示:1求线段AB的解析式;2求此人回家用了多长时间40.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为3,0、0,5.1直接写出B点坐标;2若过点C的一条直线把矩形OABC的周长分为3:5两部分,求这条直线的解析式.初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题含解析参考答案与试题解析一.选择题共12小题1.2015春•昌平区期末已知y=m﹣3x|m|﹣2+1是一次函数,则m的值是A.﹣3 B.3 C.±3 D.±2分析根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.解答解;由y=m﹣3x|m|﹣2+1是一次函数,得,解得m=﹣3,m=3不符合题意的要舍去.故选A.点评本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为12.2016春•昌江县校级期末一次函数y=mx+n与y=mnxmn≠0,在同一平面直角坐标系的图象是A.B.C.D.分析由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.解答解:1当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;2当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;3当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;4当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选C.点评一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.3.2016春•河东区期末关于一次函数y=﹣2x+3,下列结论正确的是A.图象过点1,﹣1 B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<0分析A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.解答解:A、当x=1时,y=1.所以图象不过1,﹣1,故错误;B、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C、∵﹣2<0,∴y随x的增大而减小,故错误;D、画出草图.∵当x>时,图象在x轴下方,∴y<0,故正确.故选D.点评本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.4.2016春•十堰期末已知正比例函数y=kxk≠0的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是A.B.C.D.分析根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.解答解:∵正比例函数y=kxk≠0的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.点评本题考查了一次函数图象:一次函数y=kx+bk、b为常数,k≠0是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为0,b.5.2015秋•柘城县期末已知直线y=kx﹣4k<0与两坐标轴所围成的三角形面积等于4,则直线的解析式为A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4分析首先求出直线y=kx﹣4k<0与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.解答解:直线y=kx﹣4k<0与两坐标轴的交点坐标为0,﹣4,0,∵直线y=kx﹣4k<0与两坐标轴所围成的三角形面积等于4,∴4×﹣×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选B.点评主要考查了用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.6.2015春•澧县期末在下列各图象中,表示函数y=﹣kxk<0的图象的是A.B.C.D.分析由于正比例函数的图象是一条经过原点的直线,由此即可确定选择项.解答解:∵k<0,∴﹣k>0,∴函数y=﹣kxk<0的值随自变量x的增大而增大,且函数为正比例函数,故选:C.点评此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.7.2014秋•深圳期末两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是A.B.C.D.分析由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.解答解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b >0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.点评一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.2014春•临沂期末下列函数1y=3πx;2y=8x﹣6;3y=;4y=﹣8x;5y=5x2﹣4x+1中,是一次函数的有A.4个B.3个C.2个D.1个分析根据一次函数的定义求解.解答解:1y=3πx 2y=8x﹣6 4y=﹣8x是一次函数,因为它们符合一次函数的定义;3y=,自变量次数不为1,而为﹣1,不是一次函数,5y=5x2﹣4x+1,自变量的最高次数不为1,而为2,不是一次函数.故选B.点评解题关键是掌握一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1.注意正比例函数是特殊的一次函数,不要漏掉1y=3πx,它也是一次函数.9.2015秋•西安校级期末直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的A.B.C.D.分析根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求b的符号,由b,k的符号来求直线y=bx﹣k所经过的象限.解答解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴﹣k<0,∴直线y=bx﹣k经过第二、三、四象限.故选C.点评本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.2015春•高密市期末下列函数中,是一次函数但不是正比例函数的是A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣1分析根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.解答解:A、y=2x是正比例函数,故A错误;B、y=+2是反比例函数的变换,故B错误;C、y=﹣x是一次函数,故C正确;D、y=2x2﹣1是二次函数,故D错误;故选:C.点评本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.11.2015秋•招远市期末函数y=2﹣ax+b﹣1是正比例函数的条件是A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数分析根据正比例函数的意义得出2﹣a≠0,b﹣1=0,求出即可.解答解:根据正比例函数的意义得出:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.点评本题主要考查对正比例函数的定义的理解和掌握,能根据正比例函数的意义得出2﹣a≠0和b﹣1=0是解此题的关键.12.2015春•柘城县期末当x>0时,y与x的函数解析式为y=2x,当x≤0时,y 与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为A.B.C.D.分析利用正比例函数图象的性质结合自变量的取值范围得出符合题意的图象.解答解:∵当x>0时,y与x的函数解析式为y=2x,∴此时图象则第一象限,∵当x≤0时,y与x的函数解析式为y=﹣2x,∴此时图象则第二象限,故选:C.点评此题主要考查了正比例函数的图象,正确根据自变量取值范围得出图象是解题关键.二.填空题共11小题13.2016秋•兴化市期末已知函数y=m﹣1x+m2﹣1是正比例函数,则m= ﹣1 .分析由正比例函数的定义可得m2﹣1=0,且m﹣1≠0.解答解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.点评本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.14.2016春•罗平县期末若函数y=a﹣3x|a|﹣2+2a+1是一次函数,则a= ﹣3 .分析根据一次函数的定义得到a=±3,且a≠3即可得到答案.解答解:∵函数y=a﹣3x|a|﹣2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=﹣3.故答案为:﹣3.点评本题考查了一次函数的定义:对于y=kx+bk、b为常数,k≠0,y称为x的一次函数.15.2011秋•青田县期末如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是k>m>n .分析根据函数图象所在象限可判断出k>0,m>0,n<0,再根据直线上升的快慢可得k>m,进而得到答案.解答解:∵正比例函数y=kx,y=mx的图象在一、三象限,∴k>0,m>0,∵y=kx的图象比y=mx的图象上升得快,∴k>m>0,∵y=nx的图象在二、四象限,∴n<0,∴k>m>n,故答案为:k>m>n.点评此题主要考查了正比例函数图象,关键是掌握正比例函数图象的性质:它是经过原点的一条直线,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.16.2013秋•姜堰市校级期末一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有①③.分析根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.解答解:根据图示及数据可知:①k<0正确;②a>0错误;③方程kx+b=x+a的解是x=3,正确;④当x<3时,y1<y2错误.故正确的判断是①③.点评本题考查一次函数的图象,考查学生的分析能力和读图能力,次函数y=kx+b 的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.17.2015春•上海校级期末如图,在直角坐标系中,已知矩形ABCD的两个顶点A3,0、B3,2,对角线AC所在的直线L,那么直线L对应的解析式是y=﹣x+2 .分析根据矩形的性质及B点坐标可求C点坐标,设直线L的解析式为y=kx+b,根据“两点法”列方程组,可确定直线L的解析式.解答解:∵矩形ABCD中,B3,2,∴C0,2,设直线L的解析式为y=kx+b,则,解得∴直线L的解析式为:y=﹣x+2.故答案为:y=﹣x+2.点评本题考查用待定系数法确定函数的解析式,是常用的一种解题方法.18.2013秋•长丰县校级期末一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是x>0 .分析直接根据一次函数的图象即可得出结论.解答解:由函数图象可知,当y<5时,x>0.故答案为:x>0.点评本题考查的是一次函数的图象,能利用数形结合求出不等式的解集是解答此题的关键.19.2016春•简阳市校级期中已知,一次函数y=x+5的图象经过点Pa,b和Qc,d,则ac﹣d﹣bc﹣d的值为25 .分析根据一次函数图象上点的坐标特征,将点Pa,b和Qc,d分别代入函数解析式,求得a﹣b、c﹣d的值;然后将其代入所求的代数式求值即可.解答解:∵一次函数y=x+5的图象经过点Pa,b和Qc,d,∴点Pa,b和Qc,d满足一次函数解析式y=x+5,∴b=a+5,d=c+5,∴a﹣b=﹣5,c﹣d=﹣5,∴ac﹣d﹣bc﹣d=a﹣bc﹣d=﹣5×﹣5=25.故答案是:25.点评本题考查了一次函数图象上点的坐标特征.求代数式的值时,要先将其变形为含有a﹣b、c﹣d的因式的形式,然后求值.20.2014秋•源城区校级期末如图,该直线是某个一次函数的图象,则此函数的解析式为y=2x+2 .分析根据图象写出该直线所经过的点的坐标,然后将其代入函数的解析式y=kx+b,列出关于k、b的一元二次方程,然后解方程求得k、b的值;最后将它们代入函数解析式即为所求.解答解:设该直线方程是:y=kx+bk>0.根据图象知,该直线经过点﹣1,0、0,2,则,解得,,∴此函数的解析式为y=2x+2.故答案是:y=2x+2.点评本题考查了待定系数法求一次函数的解析式.一次函数图象上的点的坐标都满足该函数的解析式.21.2015秋•郓城县期末若一次函数y=kx+bk≠0与函数y=x+1的图象关于x 轴对称,且交点在x轴上,则这个函数的表达式为:y=﹣x﹣1 .分析先求出这两个函数的交点,然后根据一次函数y=kx+bk≠0与函数y=x+1的图象关于x轴对称,解答即可.解答解:∵两函数图象交于x轴,∴0=x+1,解得:x=﹣2,∴0=﹣2k+b,∵y=kx+b与y=x+1关于x轴对称,∴b=﹣1,∴k=﹣∴y=﹣x﹣1.故答案为:y=﹣x﹣1.点评本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.22.2015秋•滨海县期末已知点A3,y1、B2,y2在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1<y2.填>、=或<分析首先判断一次函数一次项系数为负,然后根据一次函数的性质当k<0,y随x 的增大而减小即可作出判断.解答解:∵一次函数y=﹣x+3中k=﹣<0,∴y随x增大而减小,∵3>2,∴y1<y2.故答案为<.点评本题主要考查了一次函数图象上点的坐标特征的知识,解答本题要掌握一次函数的性质当k<0,y随x的增大而减小,此题难度不大.23.2015春•淮南期末一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b= 1或9 .分析因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知,若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;然后结合题意利用方程组解决问题.解答解:∵因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;则有,解之得,∴k+b=9.若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;则有,解之得,∴k+b=1,综上:k+b=9或1.故答案为1或9.点评本题考查了一次函数与一次不等式的关系,此类题目需利用y随x的变化规律,确定自变量与函数的对应关系,然后结合题意,利用方程组解决问题.三.解答题共17小题24.2016春•新疆期末已知直线y=kx+b经过点A5,0,B1,4.1求直线AB的解析式;2若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;3根据图象,写出关于x的不等式2x﹣4>kx+b的解集.分析1利用待定系数法把点A5,0,B1,4代入y=kx+b可得关于k、b得方程组,再解方程组即可;2联立两个函数解析式,再解方程组即可;3根据C点坐标可直接得到答案.解答解:1∵直线y=kx+b经过点A5,0,B1,4,∴,解得,∴直线AB的解析式为:y=﹣x+5;2∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C3,2;3根据图象可得x>3.点评此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.25.2015春•大石桥市校级期末已知函数y=2m+1x+m﹣3;1若函数图象经过原点,求m的值;2若函数图象在y轴的截距为﹣2,求m的值;3若函数的图象平行直线y=3x﹣3,求m的值;4若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.分析1根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;2根据题意可得m﹣3=﹣2,解方程即可;3根据两函数图象平行,k值相等可得2m+1=3;4根据一次函数的性质可得2m+1<0,再解不等式即可.解答解:1∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;2∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;3∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;4∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.点评此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b 的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.26.2016春•潮南区期末如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A 的坐标为8,0,Px,y是直线y=﹣x+10在第一象限内一个动点.1求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;2当△OPA的面积为10时,求点P的坐标.=OA•y,然后把y转换成x,即可求得△OPA的分析1根据三角形的面积公式S△OPA面积S与x的函数关系式;2把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P的坐标.解答解1∵A8,0,∴OA=8,|=×8×﹣x+10=﹣4x+40,0<x<10.S=OA•|yP2当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为,.点评本题考查了一次函数图象上点的坐标特征和一次函数的性质,把求三角形的面积和一次函数的图象结合起来,综合性比较强.27.2014春•高安市期末已知正比例函数y=m﹣1的图象在第二、四象限,求m的值.分析当一次函数的图象经过二、四象限可得其比例系数为负数,据此求解.解答解:∵正比例函数y=m﹣1,函数图象经过第二、四象限,∴m﹣1<0,5﹣m2=1,解得:m=﹣2.点评此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.28.2015春•荔城区期末如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P2,p在第一象限,直线PA交y轴于点C0,2,直线PB交y轴于点D,此时,S △AOP=6.1求P的值;2若S△BOP =S△DOP,求直线BD的函数解析式.分析1过点P作PF⊥y轴于点F,则PF=2.求出S△COP 和S△COA,即OA×2=4,则A﹣4,0,则|p|=3,由点P在第一象限,得p=3;2根据S△BOP =S△DOP,得DP=BP,即P为BD的中点,作PE⊥x轴,设直线BD的解析式为y=kx+bk≠0,求得k,b.得出直线BD的函数解析式.解答解:1过点P作PF⊥y轴于点F,则PF=2.∵C0,2,∴CO=2.∴S△COP=×2×2=2.∵S△AOP =6,S△COP=2,∴S△COA=4,∴OA×2=4∴OA=4,∴A﹣4,0,∴S△AOP=×4|p|=6,∴|p|=3∵点P在第一象限,∴p=3;2过点O作OH⊥BD,则OH为△BOP△DOP的高,∵S△BOP =S△DOP,且这两个三角形同高,∴DP=BP,即P为BD的中点,作PE⊥x轴于点E2,0,F0,3.∴OB=2PF=4,OD=2PE=6,∴B4,0,D0,6.设直线BD的解析式为y=kx+bk≠0,则,解得k=﹣,b=6.∴直线BD的函数解析式为y=﹣x+6.点评本题考查了用待定系数法求一次函数的解析式,三角形面积的求法以及相交线、平行线的性质.29.2016春•费县期末在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.1将直线y=2x向下平移2个单位后对应的解析式为y=2x﹣2 ;2求点A的坐标;3若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.分析1根据将直线y=2x向下平移2个单位后,所以所对应的解析式为y=2x﹣2;2根据题意,得到方程组,求方程组的解,即可解答;3利用等腰直角三角形的性质得出图象,进而得出答案.解答解:1根据题意,得,y=2x﹣2;故答案为:y=2x﹣2.2由题意得:解得:∴点A的坐标为2,2;3如图所示,∵P是x轴上一点,且满足△OAP是等腰直角三角形,P点的坐标为:2,0或4,0.点评此题主要考查了一次函数平移变换以及等腰直角三角形的性质等知识,得出A点坐标是解题关键.30.2015春•监利县期末已知y与x+2成正比例,且当x=1时,y=﹣6.1求y与x的函数关系式.2若点a,2在此函数图象上,求a的值.分析用待定系数法求出函数的关系式,再把点a,2代入即可求得a的值.解答解:1∵y与x+2成正比例∴可设y=kx+2,把当x=1时,y=﹣6.代入得﹣6=k1+2.解得:k=﹣2.故y与x的函数关系式为y=﹣2x﹣4.2把点a,2代入得:2=﹣2a﹣4,解得:a=﹣3点评本题要注意利用一次函数的特点,列出方程,求出未知数从而求得其解析式.把所求点代入即可求出a的值.31.2015春•闵行区期末已知把直线y=kx+bk≠0沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.1求直线y=kx+bk≠0的解析式;2求直线y=kx+bk≠0与坐标轴围成的三角形的周长.分析1根据题意求出平移后解析式;。
一次函数与几何综合(一)(K,b的几何意义)(北师版)(含答案)
学生做题前请先回答以下问题问题1:若一次函数表达式为y=kx+b(k,b为常数,k≠0),k是______,表示___________,可以用几何中的坡度来解释.坡面的____________与____________的比叫坡度或坡比.问题2:b表示____________________________.问题3:一次函数与几何综合解题思路中,求直线表达式的思路有哪些?一次函数与几何综合(一)(K,b的几何意义)(北师版)一、单选题(共8道,每道12分)1.如图,点B,C分别在直线y=3x和直线y=kx上,A,D是x轴上两点,若四边形ABCD是长方形,且,则k的值是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:k的几何意义2.如图,已知点A的坐标为(5,0),直线y=x+b(b>0)与x轴、y轴分别交于点B,C,连接AC,,则点B的坐标为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:k的几何意义3.如图,直线AP的解析式为,且点P的坐标为(4,2),PA=PB,则点B的坐标是( )A.(5,0)B.(6,0)C.(7,0)D.(8,0)答案:C解题思路:试题难度:三颗星知识点:k的几何意义4.如图,已知一条直线经过A(0,2),B(1,0)两点,将这条直线向左平移,与x轴、y 轴分别交于点C,点D.若DB=DC,则直线CD的函数解析式为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:一次函数、坐标、几何三角通道互转5.已知点,B(0,0),,AE平分∠BAC,交BC于点E,则直线AE的函数表达式是( )A. B.y=x-2C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数、坐标、几何三角通道互转6.如图,在平面直角坐标系中,直线交x轴于点A,交y轴于点B,点C 是线段AB的中点,连接OC,然后将直线OC绕点C逆时针旋转30°交x轴于点D,则直线CD的表达式为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数、坐标、几何三角通道互转7.如图,已知长方形纸片OABC,D是OA上的一点,且OD:AD=5:3,CD=,把△OCD 沿折痕CD向上翻折,若点O恰好与AB边上的点E重合,则CD所在直线的表达式为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数、坐标、几何三角通道互转8.如图,在平面直角坐标系中放入一张长方形纸片ABCO,OC=9,将纸片翻折后,点B恰好落在x轴上,记为B′,折痕为CE,已知,则折痕B′E所在直线的解析式为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:一次函数与几何综合学生做题后建议通过以下问题总结反思问题1:做完本套试题,在求解一次函数表达式的时候你有什么感触?简单列举一下!。
一次函数与坐标轴交点坐标公式
一次函数与坐标轴交点坐标公式摘要:一、一次函数与坐标轴的交点1.一次函数的定义2.一次函数与x轴的交点3.一次函数与y轴的交点二、坐标轴交点坐标公式1.与x轴交点的坐标公式2.与y轴交点的坐标公式三、实际应用与例题解析1.应用场景2.例题解析正文:一次函数与坐标轴交点坐标公式是数学中的一个基本概念。
一次函数是形如y = kx + b的函数,其中k和b是常数。
当一次函数与x轴或y轴相交时,我们可以通过特定的公式计算出交点的坐标。
一、一次函数与坐标轴的交点1.一次函数的定义一次函数是形如y = kx + b的函数,其中k和b是常数。
k是斜率,表示函数图像在直角坐标系中的倾斜程度;b是截距,表示函数图像与y轴的交点。
2.一次函数与x轴的交点当一次函数与x轴相交时,y = 0。
我们可以通过解方程kx + b = 0来计算与x轴交点的x坐标。
即,x = -b/k。
3.一次函数与y轴的交点当一次函数与y轴相交时,x = 0。
我们可以直接得出与y轴交点的坐标为(0, b)。
二、坐标轴交点坐标公式1.与x轴交点的坐标公式与x轴交点的坐标为(x, 0),其中x = -b/k。
2.与y轴交点的坐标公式与y轴交点的坐标为(0, b)。
三、实际应用与例题解析1.应用场景了解一次函数与坐标轴交点坐标公式对于解决实际问题具有重要意义,例如在平面直角坐标系中计算函数图像与坐标轴的交点,或者分析线性系统的动态行为等。
2.例题解析例题1:已知一次函数y = 2x + 3,求与x轴和y轴的交点坐标。
解答:与x轴交点的y坐标为0,代入原方程得x = -3/2;与y轴交点的x坐标为0,故与y轴交点为(0, 3)。
通过以上解析,我们可以看出一次函数与坐标轴交点坐标公式的重要性。
一次函数基本题型讲解( 附答案版)
一次函数基本题型过关卷题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;2、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y1、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 2、 已知点P (3,0),Q(-2,0),则PQ=__________,两点(3,-4)、(5,a )间的距离是2,则a的值为__________; 3、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
一次函数基础试卷及答案
《第12章一次函数》一.填空题1.(-3,4)关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为.2.点B(﹣5,﹣2)到x轴的距离是,到y轴的距离是,到原点的距离是.3.以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为.4.点P(a﹣3,5﹣a)在第一象限内,则a的取值范围是.5.小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值范围是.%6.已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:.7.一次函数y=(k﹣1)x+k+1经过一、二、四象限,则k的取值范围是.函数y=﹣2x+4的图象经过象限,它与两坐标轴围成的三角形面积为.8.一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k= ,b= .9.若点(m,m+3)在函数y=﹣x+2的图象上,则m= .10.y与3x成正比例,当x=8时,y=﹣12,则y与x的函数解析式为.11.函数y=﹣x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y随之y=kx﹣1.12.函数y=2x﹣4,当x ,y<0.13.若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b= ..14.已知函数y=(m﹣1)+1是一次函数,则m= .15.如图,某公用电话亭打电话时,需付电话费y(元)与通话时间x(min)之间的函数关系式用图象表示为折线,小文打了2分钟,需付费元,小文打了8分钟付费元.16.已知一次函数y=kx﹣1,请你补充一个条件,使函数图象经过第二、三、四象限.二.选择题:17.下列说法正确的是()A.正比例函数是一次函数^B.一次函数是正比例函数C.正比例函数不是一次函数D.不是正比例函数就不是一次函数18.下面两个变量是成正比例变化的是()A.正方形的面积和它的边长B.变量x增加,变量y也随之增加C.矩形的一组对边的边长固定,它的周长和另一组对边的边长D.圆的周长与它的半径:19.直线y=kx+b经过一、二、四象限,则k、b应满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b<0 D.k<0,b>020.已知一次函数y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),则m的值是()A.2 B.﹣2 C.﹣2或3 D.321.若点A(2﹣a,1﹣2a)关于y轴的对称点在第三象限,则a的取值范围是()A.a<B.a>2 C.<a<2 D.a<或a>222.下列关系式中,表示y是x的正比例函数的是()A.y= B.y=1 C.y=x+1 D.y=2x~23.函数y=4x﹣2与y=﹣4x﹣2的交点坐标为()A.(﹣2,0)B.(0,﹣2)C.(0,2) D.(2,0)24.在平面直角坐标系中,直线y=kx+b(k<0,b>0)不经过哪一象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限25.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.三、解答题.$26.已知一次函数的图象经过点A(﹣1,3)和点(2,﹣3),(1)求一次函数的解析式;(2)判断点C(﹣2,5)是否在该函数图象上.27.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.28.已知y﹣3与3x+1成正比例,且x=2时,y=.》(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a.29.如图,lA ,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B出发后小时与A相遇.(3)B走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.(写出过程)《30.有一个带有进出水管的容器,每单位时间内进出的水量是一定的.设从某时刻开始的4分钟内只进水,不出水,在随后的8分钟内既进水又出水,得到x(分)与水量y(升)之间的关系如图:(1)每分钟进水多少(2)0<x≤4时,y与x的函数关系式是什么(3)4<x≤12时,函数关系式是什么(4)你能求每分钟放水多少升吗31.某单位急需用车,但又不想买车,他们准备和一个私营车主或一个国营出租车公司签订月租车合同.设汽车每月行驶x千米,应付给私营车主的月费用是y1元,应付给国营出租车公司的月费用是y2元.y1,y2分别与x之间的函数关系如图所示,观察图象回答下列问题:、(1)每月行驶的路程在什么范围内时,租国营公司的车合算(2)每月行驶的路程等于多少时,租两家车的费用相同(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算《第12章一次函数》参考答案与试题解析*一.填空题1.(-3,4)关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为.【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题.【解答】解:∵在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,∴点A关于x轴对称的点的坐标是(﹣3,﹣4),∵关于y轴对称时,横坐标为相反数,纵坐标不变,,∴点A关于y轴对称的点的坐标是(3,4),∵关于原点对称时,横纵坐标都为相反数,∴点A关于原点对称的点的坐标是(3,﹣4).故答案为:(﹣3,﹣4),(3,4),(3,﹣4).【点评】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号,难度适中.2.点B(﹣5,﹣2)到x轴的距离是,到y轴的距离是,到原点的距离是.【考点】勾股定理;点的坐标.'【分析】根据坐标的表示方法可得到点A到x轴的距离为2,到y轴的距离为5,然后根据勾股定理计算点A到原点的距离.【解答】解:∵点A坐标为(﹣5,﹣2),∴点A到x轴的距离为2,到y轴的距离为5,到原点的距离==.故答案为2,5,.【点评】本题考查了点的坐标:过一个点分别作x轴和y轴的垂线,垂足在x轴的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标.也考查了勾股定理.3.以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为.【考点】直线与圆的位置关系;坐标与图形性质.~【分析】根据A的坐标和半径即可求出圆和x轴的交点坐标,根据勾股定理求出OD、OE,即可求出圆和y 轴的交点坐标.【解答】解:∵⊙A的半径为5,A(3,0),∴5﹣3=2,5+3=8,即⊙A和x轴的交点坐标为(﹣2,0)和(8,0);连接AD、AE,由勾股定理得:OD==4,同理OE=4,即⊙A和y轴的交点坐标为(0,4)和(0,﹣4);/故答案为:(﹣2,0)或(8,0);(0,4)或(0,﹣4).【点评】本题考查了直线与圆的位置关系,坐标与图形性质,勾股定理的应用,题目比较好,难度不大.4.点P(a﹣3,5﹣a)在第一象限内,则a的取值范围是.【考点】点的坐标;解一元一次不等式组.【分析】根据第一象限内点的横坐标与纵坐标都是正数列出不等式组,然后求解即可.【解答】解:∵点P(a﹣3,5﹣a)在第一象限内,∴,|解不等式①得,a>3,解不等式②得,a<5,所以,a的取值范围是3<a<5.故答案为:3<a<5.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值范围是.【考点】根据实际问题列一次函数关系式.%【专题】经济问题.【分析】剩余的钱数=总钱数500﹣x件这种商品的总价格,根据x应是正整数,且商品的总价不能超过500可得x的取值范围.【解答】解:x件这种商品的总价格为3x,∴y=500﹣3x,∵500﹣3x≥0,解得x≤166,∴0≤x≤166,且x为整数.故答案为:y=500﹣3x;0≤x≤166,且x为整数.》【点评】本题考查了列一次函数关系式,得到剩余的钱数的等量关系是解决本题的关键;注意商品的件数应为正整数;所买商品的总价钱不能超过所带的总钱数.6.已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:.【考点】一次函数的性质.【专题】开放型.【分析】根据题意可知k<0,这时可任设一个满足条件的k,则得到含x、y、b三求知数的函数式,将(0,2)代入函数式,求得b,那么符合条件的函数式也就求出.【解答】解:∵y随x的增大而减小∴k<0;∴可选取﹣1,那么一次函数的解析式可表示为:y=﹣x+b把点(0,2)代入得:b=2∴要求的函数解析式为:y=﹣x+2.【点评】本题需注意应先确定x的系数,然后把适合的点代入求得常数项.7.一次函数y=(k﹣1)x+k+1经过一、二、四象限,则k的取值范围是.函数y=﹣2x+4的图象经过象限,它与两坐标轴围成的三角形面积为.【考点】一次函数图象与系数的关系.【分析】根据一次函数y=(k﹣1)x+k+1的图象经过第一、二、四象限判断出k的取值范围即可;求得直线y=﹣2x+4与坐标轴的交点坐标即可求得围成的三角形的面积.¥【解答】解:∵一次函数y=(k﹣1)x+k+1经过一、二、四象限,∴k﹣1<0,k+1>0,解得:﹣1<k<1;∵函数y=﹣2x+4中﹣2<0,4>0,∴函数y=﹣2x+4的图象经过一、二、四象限,∵令y=﹣2x+4=0,解得:x=2,∴与x轴交于(2,0),令x=0,解得:y=4,;故与y轴交于(0,4),∴与两坐标轴围成的面积为×2×4=4,故答案为:﹣1<k<1,一、二、四,4.【点评】考查了一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8.一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k= ,b= .【考点】待定系数法求一次函数解析式.【分析】将(1,5),(0,3)代入一次函数的解析式,利用待定系数法求该函数的解析式的系数.—【解答】解:∵一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),∴,解得.故答案为:2,3.【点评】本题考查了待定系数法求一次函数的解析式.9.若点(m,m+3)在函数y=﹣x+2的图象上,则m= .【考点】一次函数图象上点的坐标特征.-【分析】直接把点(m,m+3)代入直线y=﹣x+2进行计算即可.【解答】解:∵点(m,m+3)在函数y=﹣x+2的图象上,∴m+3=﹣m+2,解得m=﹣.故答案为:﹣.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.10.y与3x成正比例,当x=8时,y=﹣12,则y与x的函数解析式为.【考点】待定系数法求一次函数解析式.!【专题】待定系数法.【分析】因为y与3x成正比例,所以可设y=k•3x即y=3kx,又因为当x=8时,y=﹣12,则有﹣12=3×8×k.从而可求出k的值,进而解决问题.【解答】解:∵y与3x成正比例∴设y=k•3x即y=3kx又∵当x=8时,y=﹣12∴﹣12=3×8×k∴k=﹣∴y与x的函数解析式为y=﹣x.?【点评】此类题目可根据题意,利用待定系数法建立函数关系式,然后利用方程解决问题.11.函数y=﹣x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y随之y=kx﹣1.【考点】一次函数的性质.【分析】把x=2代入y=﹣x得到y=﹣2,然后根据一次函数性质确定直线y=﹣x所经过的象限和增减性.【解答】解:函数y=﹣x的图象是一条过原点及(2,﹣2)的直线,这条直线经过第二、四象限,当x增大时,y随之减小.故答案为﹣2;二、四;减小.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.|12.函数y=2x﹣4,当x ,y<0.【考点】一次函数与一元一次不等式.【分析】求出一次函数与x轴的交点,然后根据k>0,y随x的增大而增大解答即可.【解答】解:当y=0时,2x﹣4=0,解得x=2,∵k=2>0,∴y随x的增大而增大,:∴当x<2时,y<0.故答案为:<2.【点评】本题考查了一次函数的增减性,熟记一次函数y=kx+b,当k>0时,y随x的增大而增大;当k <0时,y随x的增大而减小是解题的关键.13.若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b= .【考点】一次函数图象上点的坐标特征.【分析】先令x=0,求出y的值,再令y=0求出x的值即可得出直线与坐标轴的交点,再利用三角形的面积公式求解即可.【解答】解:∵令x=0,则y=b;令y=0,则x=﹣,@∴函数y=4x+b与xy轴的交点分别为(﹣,0)(0,b).∵函数y=4x+b的图象与两坐标轴围成的三角形面积为6,∴|b|•|﹣|=6,解得b=±4.故答案为:±4.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.已知函数y=(m﹣1)+1是一次函数,则m= .【考点】一次函数的定义..【专题】计算题.【分析】根据一次函数的定义,令m2=1,m﹣1≠0即可解答.【解答】若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).因而有m2=1,解得:m=±1,又m﹣1≠0,∴m=﹣1.[【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.如图,某公用电话亭打电话时,需付电话费y(元)与通话时间x(min)之间的函数关系式用图象表示为折线,小文打了2分钟,需付费元,小文打了8分钟付费元.【考点】一次函数的应用.【分析】通话时间小于3分钟时,需付元,故小文打了2分钟,需付费;通过A点和B点坐标分别为(3,)和(4,1)用待定系数法列方程,求函数关系式.再将x=8代入得出y.【解答】解:根据图形可知,当通话时间小于3分钟时,需付电话费话元.故小文打了2分钟,需付费元.【设需付电话费y(元)与通话时间x(min)之间的函数关系式为:y=kx+b.因为点A(3,)和点B(4,1)都在y=kx+b上,代入得:=3k+b,1=4k+b.解得:k=,b=﹣.故需付电话费y(元)与通话时间x(min)之间的函数关系式为:y=﹣(x≥3).当x=8时,y=×8﹣=﹣=(元).【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.16.已知一次函数y=kx﹣1,请你补充一个条件,使函数图象经过第二、三、四象限.}【考点】一次函数的性质.【专题】开放型.【分析】要使一次函数的图象经过第二、三、四象限,又知b<0,故只需k<0即可.【解答】解:因为要使函数图象经过第二、三、四象限,必须k<0,b<0,而y=kx﹣1中,b=﹣1<0,所以只需添加条件k<0即可.故答案为:k<0【点评】能够根据k,b的符号正确判断直线所经过的象限.二.选择题:"17.下列说法正确的是()A.正比例函数是一次函数B.一次函数是正比例函数C.正比例函数不是一次函数D.不是正比例函数就不是一次函数【考点】一次函数的定义;正比例函数的定义.【专题】常规题型.【分析】根据一次函数和正比例函数的定义条件判断各选项即可.}【解答】解:A、正比例函数是一次函数,故本选项正确;B、一次函数不一定是正比例函数,故本选项错误;C、正比例函数是一次函数,故本选项错误;D、不是正比例函数有可能是一次函数,如y=x+1,故本选项错误.故选A.【点评】本题主要考查了一次函数和正比例函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k ≠0,自变量次数为1;正比例函数的定义是形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.18.下面两个变量是成正比例变化的是()\A.正方形的面积和它的边长B.变量x增加,变量y也随之增加C.矩形的一组对边的边长固定,它的周长和另一组对边的边长D.圆的周长与它的半径【考点】正比例函数的定义.【专题】常规题型.【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.【解答】解:A、正方形的面积=边长的平方,故本选项错误;$B、变量x增加,变量y也随之增加,如y=2x,但不是正比例函数,故本选项错误;C、矩形的一组对边的边长固定,则另一组对边的边长也固定,其周长也一定,故本选项错误;D、圆的周长=2π×半径,符合正比例函数的定义,故本选项正确.故选D.【点评】本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.19.直线y=kx+b经过一、二、四象限,则k、b应满足()A.k>0,b<0 B.k>0,b>0 C.k<0,b<0 D.k<0,b>0,【考点】一次函数图象与系数的关系.【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k<0时,直线必经过二、四象限,故知k<0.再由图象过一、二象限,即直线与y轴正半轴相交,所以b>0.故选:D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.*20.已知一次函数y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),则m的值是()A.2 B.﹣2 C.﹣2或3 D.3【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把x=0,y=2代入所给函数解析式,得到关于m的方程,求解即可,注意x的系数应不为0.【解答】解:∵y=(m+2)x+m2﹣m﹣4的图象经过点(0,2),∴m2﹣m﹣4=2,解得m=﹣2或3,|∵m+2≠0,解得m≠﹣2,∴m=3,故选D.【点评】考查一次函数图象上的点的坐标的特点;用到的知识点为:点在函数解析式上,点的横纵坐标适合该函数解析式.注意一次函数中的比例系数应不为0.21.若点A(2﹣a,1﹣2a)关于y轴的对称点在第三象限,则a的取值范围是()A.a<B.a>2 C.<a<2 D.a<或a>2@【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的性质横坐标互为相反数,纵坐标相等,进而求出点A(2﹣a,1﹣2a)关于y轴的对称点,再利用第三象限点的性质,即可得出答案.【解答】解:∵点A(2﹣a,1﹣2a)关于y轴的对称点为:(a﹣2,1﹣2a),且此点在第三象限,∴解得:.故选:C.【点评】此题主要考查了关于y轴对称点的性质以及一元一次不等式组的解法,得出关于a的不等式组是解题关键.—22.下列关系式中,表示y是x的正比例函数的是()A.y= B.y=1 C.y=x+1 D.y=2x【考点】正比例函数的定义.【分析】根据形如y=kx (k是常数,k≠0)是正比例函数,可得答案.【解答】解:A、是反比例函数,故A错误;B、是常函数,故B错误;C、是一次函数,故C错误;D、是正比例函数,故正确;…故选:D.【点评】本题考查了正比例函数,利用了正比例函数的定义.23.函数y=4x﹣2与y=﹣4x﹣2的交点坐标为()A.(﹣2,0)B.(0,﹣2)C.(0,2) D.(2,0)【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题,解方程组的解即为两直线的交点坐标."【解答】解:解方程组得,所以直线y=4x﹣2与y=﹣4x﹣2的交点坐标为(0,﹣2).故选B.【点评】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.24.在平面直角坐标系中,直线y=kx+b(k<0,b>0)不经过哪一象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.<【分析】根据一次函数的性质求解.【解答】解:∵k<0,b>0,∴直线经过第一、二、四象限.故选C.【点评】掌握根据k,b的符号正确判断一次函数图象经过的象限.25.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D."【考点】一次函数的图象.【分析】因为a的符号不确定,故应分两种情况讨论,再找出符合任一条件的函数图象即可.【解答】解:分两种情况:(1)当a>0时,一次函数y=ax﹣a经过第一、三、四象限,选项A符合;(2)当a<0时,一次函数y=ax﹣a图象经过第一、二、四象限,无选项符合.故选A.【点评】本题考查了一次函数的性质,根据图象能正确判断一次项系数以及常数项的符号;根据符号判断判断图经过的象限./三、解答题.26.已知一次函数的图象经过点A(﹣1,3)和点(2,﹣3),(1)求一次函数的解析式;(2)判断点C(﹣2,5)是否在该函数图象上.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据一次函数图象过A(﹣1,3)和点B(2,﹣3),然后将其代入一次函数的解析式,利用待定系数法求该函数的解析式;(2)把)把x=﹣2代入y=﹣2x+1,得出y的值,和C的纵坐标进行比较即可判断.【解答】解:(1)设直线AB的函数解析式为y=kx+b(k、b为常数且k≠0)"∵一次函数的图象经过点A(﹣1,3)和点(2,﹣3),∴解得.∴直线AB的函数解析式为y=﹣2x+1.(2)把x=﹣2代入y=﹣2x+1,得y=﹣2×(﹣2)+1=5,所以点C(﹣2,5)在该函数图象上.【点评】本题综合考查了待定系数法求一次函数的解析式、一次函数图象上的点的坐标特征.解答此题时,采用了“数形结合”的数学思想,使问题变得形象、直观,降低了题的难度.】27.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点坐标.(2)求△PAB的面积.【考点】两条直线相交或平行问题.【分析】(1)根据x轴上点的坐标特征把y=0分别代入y=x+1和y=﹣2x+2,求出对应的自变量的值即可得到A和B点坐标;通过解方程组可确定P点坐标;(2)利用三角形面积公式计算.【解答】解:(1)把y=0代入y=x+1得x+1=0,解得x=﹣1,则A点坐标为(﹣1,0);?把y=0代入y=﹣2x+2得﹣2x+2=0,解得x=1,则B点坐标为(1,0);解方程组得,所以P点坐标为(,);(2)S=×(1+1)×=.△PAB【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.28.已知y﹣3与3x+1成正比例,且x=2时,y=.(1)求y与x之间的函数关系式,并指出它是什么函数;》(2)若点(a,2)在这个函数的图象上,求a.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【专题】计算题.【分析】(1)根据正比例函数的定义可设y﹣3=k(3x+1),再把x=2,y=代入可计算出k=,则y=x+,然后根据一次函数的定义进行判断;(2)根据一次函数图形上点的坐标特征,把(a,2)代入(1)中的解析式中即可得到a的值.【解答】解:(1)设y﹣3=k(3x+1),把x=2,y=代入得﹣3=k(6+1),解得k=,所以y﹣3=(3x+1),&所以y=x+,y是x的一次函数;(2)把(a,2)代入y=x+得a+=2,解得a=﹣1.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.29.如图,lA ,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B出发后小时与A相遇.(3)B走了一段路后,自行车发生故障,进行修理,所用的时间是小时.…(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.(写出过程)【考点】一次函数的应用.【分析】(1)从图上可看出B出发时与A相距10千米;(2)从图象看出3小时时,两个图象相交,所以3小时时相遇;(3)修理的时间就是路程不变的时间是﹣=1小时;(4)不发生故障时,B的行走的路程和时间是正比例关系,设函数式为y=kx,过(,)点,求出函数式,从而求出相遇的时间,从而求出路程;、(5)S和t的函数关系是一次函数,设函数是为S=kx+t,过(0,10)和(3,),从而可求出关系式.【解答】解:(1)B出发时与A相距10千米.(2)3小时时相遇.(3)修理自行车的时间为:﹣05=1小时.(4)设B修车前的关系式为:y=kx,过(,)点.—=k=15.y=15x.相遇时:S=yx+10=15xx=.y=×15=.小时时相遇,此时B走的路程是千米.(5)设函数是为S=kx+t,且过(0,10)和(3,),,解得.∴S=x+10.【点评】本题考查一次函数的应用,关键从图象上获取信息,根据图象的确定函数形式,设出函数式,代入已知点确定函数式,求变量或函数值或交点.30.有一个带有进出水管的容器,每单位时间内进出的水量是一定的.设从某时刻开始的4分钟内只进水,不出水,在随后的8分钟内既进水又出水,得到x(分)与水量y(升)之间的关系如图:(1)每分钟进水多少(2)0<x≤4时,y与x的函数关系式是什么(3)4<x≤12时,函数关系式是什么(4)你能求每分钟放水多少升吗【考点】一次函数的应用.【专题】数形结合.【分析】(1)根据等量关系:水量=单位时间内进水量×时间,可得出每分钟进水多少.(2)设出x、y的关系式,把(4,20)代入求出即可.(3)设出x、y的关系式,把(4,20)(12,30)代入求出即可.(4)根据等量关系:放水量=单位时间放水量×时间,代入求出即可.【解答】解:(1)如图:当x=4时,y=20∴每分钟进水量是:20÷4=5(升)(2)y与x的函数关系式是y=kx,把(4,20)代入得20=4k,解得:k=5,∴y与x的函数关系式是y=5x(0<x≤4)(3)设y与x的函数关系式是y=kx+b,把(4,20)(12,30)代入得∴k=,b=15∴y与x的函数关系式是y=x+15(4<x≤12)(4)由图知:当4<x≤12时,进水量是5×8=40(升),放水量是40﹣10=30(升),∴每分钟放水量是:30÷8=(升)【点评】本题重点考查了一次函数图象和实际应用相结合的问题.能够根据题意中的等量关系建立函数关系式,能够根据函数解析式求得对应的x的值,渗透了函数与方程的思想.31.某单位急需用车,但又不想买车,他们准备和一个私营车主或一个国营出租车公司签订月租车合同.设汽车每月行驶x千米,应付给私营车主的月费用是y1元,应付给国营出租车公司的月费用是y2元.y1,y2分别与x之间的函数关系如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算(2)每月行驶的路程等于多少时,租两家车的费用相同(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算【考点】一次函数的应用.【专题】图表型.。
苏科版八年级上册第6章一次函数知识点与典型例题及练习
一次函数知识要点与典型例题一、函数函数定义的:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数. 如果当x=a 时y=b ,那么b 叫做当自变量的值为a 时的函数值.变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例:1.在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______.2.在圆的周长公式C=2πr 中,变量是________,常量是_________.函数概念注意(一)、注意理解“在一个变化过程中,有两个变量”自变量 因变量 例、在函数关系式中,自变量为________,常量为________,当x=3时,函数值y 为________.(二)、注意理解“x的每一个确定的值”自变量x 的取值不能使对应关系无意义,如y =11-x ,x 的取值不能为1;(三)、注意理解“x的每一个确定的值,y 都有唯一确定的值与其对应” 例: y = ±x, y______ x 的函数 (填 “是”或“不是”) (四)、注意正确判断“谁是谁的函数”通常,函数因变量写在等号左边。
例、下列等式中,y 是x 的函数的是( )A 、B 、C 、D 、(五)、注意正确确定“自变量的取值范围” 1、自变量的取值必须使含自变量的代数式有意义 (1)整式型:其自变量的取值范围是全体实数.例、函数y=3x+1,y=x 2+x -4中自变量x 的取值范围是______. (2)分式型:其自变量的取值范围是使得分母不为零的实数.例、函数y=12-x 中变量x 的取值范围是______.(3)二次根式型:其自变量的取值范围是使得被开方式为非负数的实数.例、函数y=1-x 中自变量x 的取值范围是______.(4)复合型:即自变量同时含有上述两种或三种情况时,自变量的取值范围是它们的公共解.例、函数y=32--x x 中自变量x 的取值范围是______.函数的三要素:自变量的取值范围、函数的取值范围和两个变量的对应关系【例题】:1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .B .C .D .2.函数y =x 的取值范围是___________.3.已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A.2325≤<-y B.2523<<y C.2523<≤y D.2523≤<y2、自变量的取值必须使实际问题有意义例、1、一个正方形的边长为3cm ,它的各边长减少xcm 后,所得新正方形的周长为ycm.则y 与x 的关系式为______, 自变量x 的取值范围是______ 0 < x < 3.2、.如果一个等腰三角形的周长为30,则底边长y 与腰长x 之间成一函数关系,y 与x 的关系式为______,自变量x 的取值范围是_________函数的图像一般分为三步:①列表;②描点;③连线.函数的表示方法函数有三种表示方法:(1)列表法;(2)图象法;(3)表达式法(也称关系式或解析式).二、一次函数的概念若两个变量x ,y 间的关系式可以表示成y = kx + b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量).特别地,当b = 0时,关系式变为y = kx ,称y 是x 的正比例函数. 〖注意〗:(1)一次函数y = kx + b (k ≠0)特征:① k ≠0 ②x 指数为1 ③ b 取任意实数(2)正比例函数y = kx (k ≠0)特征:①k ≠0 ② x 次数是1 ③常数项b = 0.(3)正比例函数是一次函数的特殊形式.【例题】:1.若函数()2322my m x -=-+是一次函数,则m=_______。
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。
2. 一次函数的图像:是不经过原点的一条直线。
3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。
专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。
一次函数各类题型详解加练习
令 +2=-2 -3,解得 =
(提示:求两个函数之间的交点,令两个解析式相等即可得到交点横坐标)
将 = 带入y₁= +2
得:y₁= +2=
∴点C的坐标为( , )
(2)AB=2-(-3)=5(提示:AB与y轴重合,上y减下y求长度。)
(分析:以AB为底,点C到AB的距离为高,就可以求出△ABC的面积。)
求线段AB、CD的长度。
解:∵AB∥x轴
∴AB=6-(-3)= 9
(右x减左x,即可求得长度)
同理∵CD∥x轴
∴CD=5-2=3
③既不平行于x轴,也不平行于y轴:如:点A(x₁,y₁),点B(x₂,y₂),则使用求线段的通用公式AB=
例:点A的坐标为(3,3),点B的坐标为(-3,-5),
求线段AB的长度。
S△COP=
OC·OP= ×8×(2t-8)=8t-32(t≥4)
(上一问中刚求出)
-8t+32=2×16(0≤t<4)
S△COP=2S△AOB,即或解,得:t=0或者t=8
8t-32=2×16(t≥4)
(4)思路:在△COP和△AOB中:∠COP=∠AOB=90°,OC =OA=8
还差一组条件就能证明两三角形全等了,因为整个题目并未有角度的信息,
解:AB中点的坐标为:( , )整理,得( ,3)
∵直线AB的k₁=2,且k₁·k₂=-1
∴垂直于AB的直线的k₂=
设垂直平分线解析式为:y= +b,将( ,3)代入解析式,
可得AB中垂线的解析式为y= +
把y=0代入解析式可得
点P的坐标为:( ,0)
综上:符合要求的点P共有4个:
八年级数学一次函数图象性质 专项练习题(含答案)
参考答案 1、B 2、C ; 3、A 4、C 5、C 6、B 7、A 8、C 9、A 10、C 11、A 12、D 13、B 14、A 15、A 16、A 17、A 18、C 19、D 20、A 21、 22、y=23、答案为 1. 24、-3 25、一、二、三. 26、2 . 27、3 28、答案是:3. 29、答案为 y=3x+4. 30、(0,-1) ;
m313将直线ykx1向上平移2个单位长度可得直线的解析式为aykx3bykx1cykx3dykx114直线y2xb与x轴的交点坐标是20则关于x的方程2xb0的解是ax2bx4cx8dx1015如图直线ykxb与x轴y轴分别相交于点a30b02则不等式kxb0的解集是ax3bx3cx2dx216同一直角坐标系中一次函数y1k1xb与正比例函数y2k2x的图象如图所示则满足y1y2的x取值范围是ax2bx2cx2dx217点ax1y1点bx2y2是一次函数y2x4图象上的两点且x1x2则y1与y2的大小关系是ay1y2by1y20cy1y2dy1y218已知a320则一次函数yaxb的图象不经过6)在 y=k1x 上∴﹣6=3k1∴k1=﹣2 ∵点 P(3,﹣6)在 y=k2x﹣9 上∴﹣6=3k2﹣9∴k2=1; (2)∵k2=1,∴y=x﹣9∵一次函数 y=x﹣9 与 x 轴交于点 A 又∵当 y=0 时,x=9∴A(9,0). 33、(1) ;(2)23;
八年级数学一次函数图象性质 专项练习题
一、选择题: 1、下列函数(1)y=3πx;(2)y=8x-6;(3)y= ( ) A.4 个 2、函数 A.(3,5); B.3 个 C.2 个 D.1 个
1 ;(4)y= -8x;(5)y=5x2-4x+1 中,是一次函数的有 x
一次函数综合练习题
一次函数综合练习题一、选择题1. 一次函数的图象是一条()。
A. 折线B. 曲线C. 直线D. 折线和曲线2. 下列函数中,是一次函数的是()。
A. y = 2x^2 + 1B. y = 3x + 5C. y = x^3D. y = √x3. 一次函数y = kx + b中,当k > 0时,函数图象在()。
A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限4. 一次函数y = 2x 3的图象与x轴的交点坐标是()。
A. (1.5, 0)B. (1.5, 0)C. (3, 0)D. (3, 0)5. 一次函数y = x + 5的图象与y轴的交点坐标是()。
A. (0, 5)B. (0, 5)C. (5, 0)D. (5, 0)二、填空题1. 一次函数的一般形式是_________。
2. 一次函数的图象是一条_________。
3. 一次函数y = 3x 2的斜率是_________,y轴截距是_________。
4. 当一次函数的斜率k > 0时,函数图象_________;当斜率k < 0时,函数图象_________。
5. 一次函数y = 2x + 4的图象与x轴的交点坐标是_________。
三、解答题1. 已知一次函数y = kx + b的图象过点(1, 3)和(3, 7),求该一次函数的解析式。
2. 一次函数y = x + 6的图象与x轴、y轴分别相交于点A、B,求线段AB的长度。
3. 已知一次函数y = 2x 5的图象在x轴下方,求x的取值范围。
4. 画出一次函数y = x 2的图象,并标出其与x轴、y轴的交点坐标。
5. 已知一次函数y = kx + 1的图象过点(2, 5),求斜率k的值。
四、应用题1. 某商品的单价为x元,销售量为y件。
根据市场调查,销售量与单价之间存在一次函数关系,已知当单价为50元时,销售量为100件;当单价为80元时,销售量为50件。
一次函数知识点及其典型例题
一次函数知识点及其典型例题一次函数是数学中的基础概念之一。
其中,变量是在一个变化过程中可以取不同数值的量,而常量则是在一个变化过程中只能取同一数值的量。
例如,在匀速运动公式s=vt中,速度v和时间t是变量,路程s是常量。
在圆的周长公式C=2πr 中,周长C是常量,半径r是变量。
函数是指在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
判断y是否为x的函数,只需要看x取值确定的时候,y是否有唯一确定的值与之对应。
例如,y=πx、y=2x-1、y=-3x+2、y=x-1都是一次函数。
对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。
画一次函数图像的一般步骤是:第一步,列表(表中给出一些自变量的值及其对应的函数值);第二步,描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步,连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
函数的表示方法有三种:列表法、解析式法和图象法。
列表法一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法形象直观,但只能近似地表达两个变量之间的函数关系。
正比例函数是一种特殊的一次函数,其一般形式为y=kx(k是常数,k≠0)。
其中,k叫做比例系数。
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小。
正比例函数必过点(0,0)和(1,k)。
1.若y=x+2-3b是正比例函数,则b的值是()A。
一次函数经典例题大全
一.定义型例1. 已知函数是一次函数,求其解析式。
解:由一次函数定义知,,故一次函数的解析式为y=-6x+3。
注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。
如本例中应保证m-3≠0。
二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。
解:一次函数的图像过点(2, -1),,即k=1。
故这个一次函数的解析式为y=x-3。
变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。
三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。
解:设一次函数解析式为y=kx+b,由题意得,故这个一次函数的解析式为y=2x+4四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2)有故这个一次函数的解析式为y=-2x+2五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。
解析:两条直线;。
当k1=k2,b1≠b2时,直线y=kx+b与直线y=-2x平行,。
又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2六. 平移型例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。
解析:设函数解析式为y=kx+b,直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行直线y=kx+b在y轴上的截距为b=1-2=-1,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。
解:由题意得Q=20-0.2t ,即Q=-0.2t+20故所求函数的解析式为Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。
【教师卷】初中数学八年级数学下册第十九章《一次函数》习题(培优)(1)
一、选择题1.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( ) A .12y y > B .12y y = C .12y y <D .不确定A解析:A 【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案. 【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0,∴12y y >, 故选A . 【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键. 2.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A .m >0 B .m <0C .m >2D .m <2D解析:D 【分析】根据正比例函数的大小变化规律判断k 的符号. 【详解】解:根据题意,知:y 随x 的增大而减小, 则k <0,即m ﹣2<0,m <2. 故选:D . 【点睛】本题考查了一次函数的性质:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.3.如图,在矩形ABCD 中,3AB =,4BC =,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,ADP △的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .D解析:D 【分析】分别求出04x ≤≤、47x <<时函数表达式,即可求解. 【详解】解:由题意当04x ≤≤时,如题图,1134622y AD AB =⨯⨯=⨯⨯=, 当47x <<时,如下图,11(7)414222y PD AD x x =⨯⨯=⨯-⨯=-.故选:D . 【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.4.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .A解析:A 【分析】根据0k b +=,且k b >确定k ,b 的符号,从而求解. 【详解】解:因为实数k 、b 满足k+b=0,且k >b , 所以k >0,b <0,所以它的图象经过一、三、四象限, 故选:A . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A .20210x y y x +-=⎧⎨-+=⎩B .20210x y y x -+=⎧⎨+-=⎩C .20210x y y x -+=⎧⎨--=⎩D .2010x y y x ++=⎧⎨+-=⎩B解析:B 【分析】由图易知两条直线分别经过(-1,1)、(1,0)两点和(0,2)、(-1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题. 【详解】由图知,设经过(-1,1)、(1,0)的直线解析式为y=ax+b (a≠0). 将(-1,1)、(1,0)两点坐标代入解析式中,解得1-212a b ⎧=⎪⎪⎨⎪=⎪⎩故过(-1,1)、(1,0)的直线解析式y=1122x -+,对应的二元一次方程为2 y +x -1=0. 设经过(0,2)、(-1,1)的直线解析式为y=kx+h (k≠0). 将(0,2)、(-1,1)两点代入解析式中,解得12k h =⎧⎨=⎩故过(0,2)、(-1,1)的直线解析式为y=x+2,对应的二元一次方程为x-y+2=0.因此两个函数所对应的二元一次方程组是+20210x y y x -=⎧⎨+-=⎩故选择:B 【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.6.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m < B .12m >C .m 1≥D .1m <A解析:A 【分析】由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围. 【详解】 解:∵点P (-1,y 1)、点Q (3,y 2)在一次函数y=(2m-1)x+2的图象上, ∴当-1<3时,由题意可知y 1>y 2, ∴y 随x 的增大而减小, ∴2m-1<0,解得m <12, 故选:A . 【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.7.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <D 解析:D 【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可. 【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确;B 、∵x 2>0,∴21x>0,∴211+2y x =>12,此选项正确; C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确; D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误, 故选:D . 【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.8.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A.①②B.②③C.②④D.③④D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.9.关于x的一次二项式ax+b的值随x的变化而变化,分析下表列举的数据,若ax+b=11,则x的值是()x﹣101 1.5ax+b﹣3﹣112A.3 B.﹣5 C.6 D.不存在C解析:C【分析】设y=ax+b ,把x=0,y=-1和x=1,y=1代入求出a 与b 的值,即可求出所求. 【详解】 解:设y =ax+b ,把x=0,y=-1和x=1,y=1代入得:11a b b +=⎧⎨=-⎩,解得:21a b =⎧⎨=-⎩,∴2x ﹣1=11, 解得:x =6. 故选:C . 【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.10.对函数22y x =-+的描述错误是( ) A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于解析:B 【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案. 【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交= 故选:B . 【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.二、填空题11.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数的图象在一次函数的图象上方时且两者的函数图象都在x 轴上方时x 的取值范围【详解】解:(1)方程组的解就是一次函数解析:34x y =⎧⎨=⎩35x << 【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围. 【详解】解:(1)方程组y kx by mx n=+⎧⎨=+⎩的解就是一次函数y kx b =+与y mx n =+的交点坐标的横纵坐标,由图知,34x y =⎧⎨=⎩; (2)不等式0kx b mx n <+<+的解就是找到图中一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围,由图知,35x <<. 【点睛】本题考查一次函数与二元一次方程组和不等式的关系,解题的关键是能够理解方程组的解就是函数图象的交点坐标的横纵坐标,以及利用函数图象解不等式的方法. 12.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤ 【分析】根据一次函数的定义进行一一判断. 【详解】 ①3x y =是一次函数;②2y x =是一次函数,③1y x =不是一次函数,④23y x=-是一次函数,⑤()222121y x x x x =--+=+是一次函数. 故答案为:①②④⑤. 【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.13.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒.(或625)【分析】根据图像可知爸爸跑完全程用时20秒可计算爸爸的速度其次儿子比爸爸早到20米的时间计算爸爸跑完20米用时从而得到儿子跑完全程的时间计算速度即可【详解】根据图像可知爸爸跑完全程用时2解析:254(或6.25). 【分析】根据图像可知,爸爸跑完全程用时20秒,可计算爸爸的速度,其次,儿子比爸爸早到20米的时间,计算爸爸跑完20米用时,从而得到儿子跑完全程的时间,计算速度即可. 【详解】根据图像可知,爸爸跑完全程用时20秒,∴爸爸的速度为10020=5米/秒, ∵儿子比爸爸早到20米,∴父子共用时间20-20÷5=16秒, ∴儿子的速度为10016=254米/秒, 故答案为:254.【点睛】本题考查了函数的图像,根据题意,读懂图像,学会把生活问题数学化是解题的关键. 14.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -++-+=_________.【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限可得a-2<0进而得到a <2再根据二次根式的性质进行计算即可【详解】解:∵一次函数的图象不经过第三象限∴解得:故答案为:【点睛】本题考 解析:52a -【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限,可得a-2<0,进而得到a <2,再根据二次根式的性质进行计算即可. 【详解】解:∵一次函数()21y a x =-+的图象不经过第三象限, ∴20a -<, 解得:2a <,224496a a a a -++-+ ()()2223a a =-+-23a a =-+- 23a a =-+- 52a =-,故答案为:52a -. 【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b >0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.15.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.100【分析】根据题意分别求出每一段路程的速度然后进行判断即可得到答案【详解】解:根据题意0~15分的速度:;25分~35分的速度:;45分~50分的速度:;∵∴王阿姨在整个过程中走得最快的速度是1解析:100【分析】根据题意,分别求出每一段路程的速度,然后进行判断,即可得到答案.【详解】解:根据题意,0~15分的速度:160800153÷=; 25分~35分的速度:(800500)1030-÷=; 45分~50分的速度:5005100÷=;∵160301003<<, ∴王阿姨在整个过程中走得最快的速度是100米/分;故答案为:100.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象解决相应的问题.16.如图,直线(0)y kx b k =+≠经过(1,2)A --和(3,0)B -两点,则关于x 的不等式组10x kx b +<+<的解是____________.【分析】用待定系数法求出kb 的值然后将它们代入不等式组中进行求解即可【详解】解:将A(−1-2)和B(−30)代入y=kx+b 中得:解得:∴y=-x-3则x+1<-x-3<0解得:−3<x<−2故答解析:32x -<<-【分析】用待定系数法求出k 、b 的值,然后将它们代入不等式组中进行求解即可.【详解】解:将 A(− 1,-2) 和 B(− 3,0) 代入 y=kx+b 中得:230k b k b -+=-⎧⎨-+=⎩解得:13k b =-⎧⎨=-⎩, ∴y=-x-3,则 x+1<-x-3<0 ,解得: −3<x<−2,故答案为:−3<x<−2【点睛】本题考查了待定系数法求一次函数解析式以及不等式的解法,难度不大.17.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式的解集【详解】解:两条直线的交点坐标为(-11)当x <-1时直线y=ax+4在直线y=kx 的下方当x >-1 解析:1x >-【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式4kx ax <+的解集.【详解】解:两条直线的交点坐标为(-1,1),当x <-1时,直线y=ax+4在直线y=kx 的下方,当x >-1时,直线y=ax+4在直线y=kx 的上方,故不等式kx <ax+4的解集为x>-1.故答案为:x>-1.【点睛】本题考查了一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.18.请写出一个符合下列要求的一次函数的表达式:_______.①函数值y 随自变量x 增大而增大;②函数的图像经过第二象限.(答案不唯一保证即可)【分析】根据题意和一次函数的性质可以写出符合要求的一个一次函数本题得以解决【详解】解:∵一次函数的函数值y 随自变量x 增大而增大∴k >0∵函数的图象经过第二象限∴b >0∴符合下列解析:23y x =+(答案不唯一,保证0k >,0b >即可)【分析】根据题意和一次函数的性质,可以写出符合要求的一个一次函数,本题得以解决.【详解】解:∵一次函数的函数值y 随自变量x 增大而增大,∴k >0,∵函数的图象经过第二象限,∴b >0,∴符合下列要求的一次函数的表达式可以是23y x =+,故答案为:23y x =+(答案不唯一).【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答. 19.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______. 【分析】由点P 的纵坐标为40代入求得点P 的坐标再利用两图象的交点坐标满足方程组方程组的解就是交点坐标据此求解即可【详解】∵点P 的纵坐标为40∴解得:∴点P 的坐标为()∴方程组即的解为故答案为:【点睛解析:240x y =⎧⎨=⎩ 【分析】由点P 的纵坐标为40,代入20y x =求得点P 的坐标,再利用两图象的交点坐标满足方程组,方程组的解就是交点坐标,据此求解即可.∵点P 的纵坐标为40,∴4020x =,解得:2x =,∴点P 的坐标为(2,40),∴方程组2040y x y ax =⎧⎨=-⎩即20040x y ax y -=⎧⎨-=⎩的解为, 故答案为:240x y =⎧⎨=⎩. 【点睛】本题主要考查了一次函数与二元一次方程(组)的关系,函数图象交点坐标为两函数解析式组成的方程组的解,利用了数形结合思想.20.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.【分析】根据一次函数的图象当时y 随着x 的增大而减小分析即可【详解】解:因为A (x1y1)B (x2y2)是一次函数图象上的不同的两个点当x1>x2时y1<y2可得:解得:a <1故答案为:【点睛】本题考解析:1a <【分析】根据一次函数的图象(1)2y a x =-+,当10a -<时,y 随着x 的增大而减小分析即可.【详解】解:因为A (x 1,y 1)、B (x 2,y 2)是一次函数(1)2y a x =-+图象上的不同的两个点, 当x 1>x 2时,y 1<y 2,可得:10a -<,解得:a <1.故答案为:1a <.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b 的性质:当k <0时,y 随着x 的增大而减小;k >0时,y 随着x 的增大而增大;k=0时,y 的值=b ,与x 没关系.三、解答题21.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?解析:(1)y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)30本(1)根据题意,可以分别写出y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式; (2)将y=24分别代入甲和乙的函数解析式,求出相应的x 的值,然后比较大小,即可得到最多可以买多少本练习本.【详解】解:(1)由题意可得,y 甲=10×1+(x ﹣10)×1×0.7=0.7x+3,y 乙=x×1×0.85=0.85x ,即y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)当y 甲=24时,24=0.7x+3,解得x =30,当y 乙=24时,24=0.85x ,解得x≈28,∵30>28,∴小明现有24元,最多可以买30本练习本.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 22.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标;(2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积.解析:(1)332y x =-+,点B 的坐标是()0,3;(2)一次函数的图象如图所示;见解析;(3)ABP ∆的面积为3或9.【分析】(1)利用待定系数法求出解析式,令y=0求出x 的值得到点B 的坐标;(2)利用描点法画出函数图象;(3)根据2OP OA =,得到A 1P 1=2或A 1P 2=6,再利用三角形的面积公式计算得出答案.【详解】(1)把点()2,0A 的坐标代入3y kx =+中,得230k +=, 解得32k =-, 所以,一次函数表达式为332y x =-+,当0x =,y=3,所以,点B 的坐标是()0,3;(2)一次函数的图象如图所示;(3)因为点A 的坐标是()2,0A ,所以2OA =,因为点P 在x 轴上,且2OP OA =,所以OP=2OA=4,∴AP 1=2或AP 2=6, ∴111123322ABP S AP OB ∆=⨯⨯=⨯⨯=; 221163922ABP S AP OB ∆=⨯⨯=⨯⨯=, 所以,ABP ∆的面积为3或9.【点睛】此题考查待定系数法求函数的解析式,一次函数与坐标轴的交点坐标,描点法画一次函数的图象,分类思想求一次函数图象构成的三角形的面积.23.如图,矩形OABC 中,8AB =,4OA =.以O 点为坐标原点,OC 、OA 所在的直线分别为x 轴、y 轴,建立直角坐标系,把矩形OABC 折叠,使点B 与点O 重合,点C 移到点F 位置,折痕为DE .(1)求OD 的长.(2)求F 点坐标.(3)求直线DE 的函数表达式,并判断点B 关于x 轴对称的点B '是否在直线DE 上? 解析:(1)5;(2)1612,55F ⎛⎫-⎪⎝⎭;(3)210y x =-+;点B '不在直线DE 上. 【分析】(1)设OD=x ,则DB=x ,AD=8-x ,在RT △AOD 中利用勾股定理可得222OA AD OD +=,即()22248x x +-=,解出即可得出答案;(2)运用面积法求出FG ,再运用勾股定理求出OG 的长即可确定点F 的坐标;(3)根据题意求出点E 坐标,利用待定系数法确定DE 的解析式,继而确定B'的坐标,代入解析式可判断出是否在直线DE 上.【详解】解:(1)矩形OABC 折叠,点B 与点O 重合,点C 点F 重合,OD DB ∴=,设OD x =则DB x =,8AD x =-,在AOD △中,90OAD ∠=︒,由勾股定理得:222OA AD OD +=,()22248x x ∴+-=,解得:5x =,5OD ∴=.(2)四边形OABC 是矩形, 4OA BC ∴==,//AB OC ,把矩形OABC 折叠,4BC OF ∴==,BDE ODE ∠=∠,90BCO F ∠=∠=︒,//AB OC ,BDE DEO ∴∠=∠,ODE DEO ∴∠=∠,OD OE ∴=,由(1)知5OD =,5OE ∴=,在Rt OEF △中,由勾股定理得:223EF OE OF =-=,过F 作FG x ⊥轴交于点G ,OEF OEF S S =△△,1122OE FG EF OF ∴⨯⨯=⨯⨯, 即1153422FG ⨯⨯=⨯⨯,125FG =, 在Rt OFG △中,由勾股定理得:22165OG OF FG =-=, 又F 在第四象限内,1612,55F ⎛⎫∴- ⎪⎝⎭. (3)由(1)得:853AD =-=,()3,4D ∴,由(2)得:5OE =,()5,0E ∴,设直线DE 的关系式为y kx b =+,则3450k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线DE 的关系式为:210y x =-+,点B 关于x 轴对称的点B '的坐标为()8,4-,把8x =代入210y x =-+得:64y =-≠-,∴点B '不在直线DE 上.【点睛】此题考查了翻折变换的性质、待定系数法求函数解析式、勾股定理及矩形的性质,属于综合型题目,解答本题的关键是所涉及知识点的融会贯通,难度较大.24.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,12,y y 关于x 的图象如图所示:(1)客车的速度是 千米/小时,出租车的速度是 千米小时:(2)根据图象,分别直接写出12,y y 关于x 的关系式;(3)求两车相遇的时间;(4)x 为何值时,两车相距100千米.解析:(1)60,100;(2)y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)两车相遇的时间为154小时;(4)258小时或358小时. 【分析】(1)根据速度=路程÷时间,列式进行计算即可得解;(2)根据两函数图象经过的点的坐标,利用待定系数法求一次函数解析式解答即可; (3)由12y y =列出方程,求出即可;(4)由两车相距100千米,可得|y 1-y 2|=100,即可求解.【详解】解:(1)由图可知,甲乙两地间的距离为600km ,所以,客车速度=600÷10=60(km/h ),出租车速度=600÷6=100(km/h ),故答案为:60,100;(2)设客车的函数关系式为y 1=k 1x ,则10k 1=600,解得k 1=60,所以,y 1=60x (0≤x≤10),设出租车的函数关系式为y 2=k 2x+b ,则206600k b b +⎧⎨=⎩=, 解得2100600k b =-⎧⎨=⎩, 所以,y 2=-100x+600(0≤x≤6),故答案为:y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)当出租车与客车相遇时,60x=-100x+600,解得x=154. 所以两车相遇的时间为154小时; (4)由题意可得:|-100x+600-60x|=100,∴x=258或358, 答:x 为258小时或358小时,两车相距100千米. 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.某校服生产厂家计划在年底推出两款新校服A 和B 共80套,预计前期投入资金不少于20900元,但不超过20960元,且所投入资金全部用于两种校服的研制,其成本和售价如表:(2)该厂家要想获得最大的利润,最大利润为多少?(3)经市场调查,年底前每套B 款校服售价不会改变,而每套A 款校服的售价将会提高m 元()0m >,且所生产的两种校服都可以售完,该厂家又该如何安排生产校服才能获得最大利润呢?解析:(1)3种;(2)4320元;(3)当010m <<时,安排生产A 校服48套时,可获最大利润;当10m =时,生产利润定值是4800元;当10m >时,安排生产A 校服50套,可获最大利润【分析】(1)设生产A 校服x 套,根据题意列方程组并求解,结合x 为整数,即可得到答案; (2)设总利润为y ,结合(1)的结论,根据题意列一次函数,再结合一次函数的性质分析,可得到最大利润;(3)结合(2)的结论,根据一次函数的性质,对m 的取值分三种情况分析,即可完成求解.【详解】(1)设生产A 校服x 套,则生产B 校服()80x -套根据题意得:250280(80)20900250280(80)20960x x x x +-≥⎧⎨+-≤⎩解得:4850x ≤≤又∵x 为整数∴x 只能取48,49,50∴厂家共有3种方案可供选择;(2)设总利润为y结合题意,A 校服利润为30025050-=,B 校服利润为34028060-=()50608010+4800y x x x =+-=-100-<∴y 随x 的增大而减小∴当48x =时,y 最大,最大值为480010484320-⨯=(元)∴当生产A 校服48套时,有最大利润4320元;(3)根据题意得:()()506080y m x x =++-()104800m x =-+当010m <<时,100m -<,y 随x 增大而减小∴安排生产A 校服48套时,可获最大利润,此时生产B 校服32套;当10m =时,4800y =,即生产利润定值为4800元,3种方案一样的利润; 当10m >时,100m ->,y 随x 增大而增大∴安排生产A 校服50套时,可获最大利润,此时生产B 校服30套.【点睛】本题考查了一元一次不等式组、一次函数的知识;解题的关键是熟练掌握一元一次不等式组、一次函数的性质,并运用到实际问题中,从而完成求解.26.某校801班师生共45人前往某景区游览,该景区窗口票价标明:成人票每张30元,学生票享受六折优惠.(1)若老师有x 名,801班师生景区游览的门票总费用为y 元,请用x 的代数式表示y . (2)若师生门票总费用y 不超过858元,问至少有几名学生.解析:(1)y=12x+810;(2)至少有41名学生【分析】(1)根据总费用=老师费用+学生费用列出关系式即可;(2)根据总费用不超过858元列出不等式,求解即可解答.【详解】(1)根据题意得:y=30x+30×0.6×(45﹣x )=12x+810,故总费用y=12x+810;(2)由题意得:12x+810≤858,解得:x≤4,则45﹣x≥41,故至少有41名学生.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,理解题意,正确列出函数关系式是解答的关键.27.如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.解析:(1)12k =,3b =;(2)点P 的坐标为()2,2-,()10,2--. 【分析】 (1)求出F 的坐标,将E ,F 代入解析式求解即可;(2)确定直线关系式,根据POE △的面积为6,得到点P 的纵坐标,代入关系式即可求解;【详解】(1)∵3OF =,∴点()0,3F ,将点()6,0E -,点()0,3F 分别代入到3y kx =+中,得:3b =,60k b -+=,解得:12k =,3b =,(2)∵12k =, ∴直线EF 的解析式为:132y x =+. ∵点E 的坐标为()6,0-, ∴6OE =, ∴116622OPE p p S OE y y =⋅=⨯⨯=△, ∴2p y =. 令132y x =+中2y =,则1232x =+, 解得:2x =-.∴点P 的坐标为()2,2-, 令132y x =+中2y =-,则1232x -=+, 解得:10x =-.∴点P 的坐标为()2,2-,()10,2--.【点睛】本题主要考查了一次函数图像上点的坐标特征,准确分析计算是解题的关键. 28.已知一次函数y kx b =+,在0x =时的值为4,在1x =-时的值为2,(1)求一次函数的表达式.(2)求图象与x 轴的交点A 的坐标,与y 轴交点B 的坐标;(3)在(2)的条件下,求出△AOB 的面积;解析:(1)24y x =+;(2)A (-2,0)B (0)4,;(3)4 【分析】(1)把两组x 和y 值代入解析式,求出k 和b 值,即可得到结论;(2)利用函数解析式分别代入x=0和y=0的情况就可求出A 、B 两点坐标;(3)通过A 、B 两点坐标即可算出直角三角形AOB 的面积.【详解】(1)把0x =,4y =和1x =-,2y =代入y kx b =+得42b k b =⎧⎨-+=⎩解得24k b =⎧⎨=⎩所以这个一次函数的表达式为24y x =+.(2)把0y =代入24y x =+,得:2x =-则A 点坐标为(20)-,把x=0代入24y x =+,得y=4,则B 点坐标为(0)4,; (3)根据题意作函数大致图像:由图可知:2OA =,4OB =, 所以11 24422OAB S OA O B =⋅=⨯⨯=△ 【点睛】本题考查一次函数解析式求法和一次函数图象上点的坐标特点,正确求出一次函数与x 轴和y 轴的交点是解题的关键.。
专题训练十一 一次函数图象与k、b的关系(共12张PPT)
努力,未来老婆的婚纱都是租的。只有你的笑才能 无尽黑暗中找到光明。我受过的伤都是我的勋章。 而不世故,是最善良的成熟。愿你早日领教过这世 的恶意,然后开启爱他吗谁谁的快意人生。第二名 着你是头号输家——科比·布莱恩特。当你感觉累 你正在走上坡路。如果每个人都理解你,那你得普 么样。赚钱的速度一定要超过父母变老的速度。不 现以前的自己是个傻逼的过程,就是成长。脾气永 大于本事。你பைடு நூலகம்能叫活着么?你那“你如今的气质 着你走过的路,读过的书,和爱过的人。”素质是 问题,和未成年没关系。总会有人是第一,那为什 是我?你可以没钱没颜,但你不可以不努力。如果 取得了成功,一定是昨天我拼上了全部努力。阳光 孩子风雨里做个大人。枯木逢春犹再发,人无两度 世界那么大,我要赚钱带父母去看看人情世故要看
一次函数之k,b的几何意义(讲义及答案)
一次函数之k,b的几何意义(讲义)➢知识点睛1.一次函数表达式:y=kx+b(k,b为常数,k≠0)①k是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM即为____________,BM即为____________,则AMkBM .②b是直线与y轴交点的纵坐标.2.设直线l1:y1=k1x+b1,直线l2:y2=k2x+b2,其中k1,k2≠0.①若k1=k2,且b1≠b2,则直线l1_____l2;②若k1·k2=_________,则直线l1_____l2.3.一次函数与几何综合的思考角度:坐标几何图形一次函数①要求坐标,______________________________________;②要求函数表达式,________________________________;③要研究几何图形,________________________________.➢精讲精练M AB1.如图,在平面直角坐标系中,四边形OABC是矩形,点A在x轴上,点C(0,3),直线2233y x=-与x轴、线段AB分别交于点E,F,若AF=2BF,则△AEF的面积为________.2.如图,点B,C分别在直线y=2x和y=kx上,A,D是x轴上的两点,若四边形ABCD是正方形,则k的值为________.3.如图,点A,B分别在直线y=kx和y=-4x上,C,D是x轴上的两点,若四边形ABCD是矩形,且AB:AD=3:2,则k的值为________.4.如图,△OAB是等腰直角三角形,∠OBA=90°,OBA在x轴上,过点Bx轴交于点C,则点C的坐标为______.5.如图,直线l1与x轴、y轴分别交于点A,B,直线l2与x轴、y轴分别交于点C,D,且OA=OD,OB=OC.(1)直线l 1,l 2的位置关系为_________;(2)若直线l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=_______.第5题图 第6题图6. 如图,直线y =2x +6与x 轴、y 轴分别交于点A ,B ,线段AB 的垂直平分线交x 轴于点C ,交AB 于点D ,则直线CD 的表达式为____________.7. 如图,在平面直角坐标系中,直线443y x =-+与x 轴、y 轴分别交于点A ,B ,点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x轴正半轴上的点C 处,则直线AD 的解析式为______________,直线CD 的解析式为______________.第7题图 第8题图8. 如图,已知直线l 1:2833y x =+与直线l 2:y =-2x +16相交于点C ,直线l 1,l 2与x 轴分别交于点A ,B ,矩形DEFG 的顶点D ,E 分别在l 1,l 2上,顶点F ,G 都在x 轴上,且点G 与点B 重合,则DEFG S 矩形:ABC S △=_________.【参考答案】➢知识点睛1.①竖直高度;水平宽度.2.①∥;②-1;⊥.3.①利用函数表达式或线段长转坐标;②待定系数法或k,b的几何意义;③坐标转线段长或k,b的几何意义.➢精讲精练1. 32.2 33.4 54.(6,0)5.(1)l1⊥l2;(2)-1.6.1924 y x=-+7.y=2x-6;364y x=-8.8 9。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一次函数的图像和性质练习题一次函数是数学中的基础概念之一,也是高中数学中的重要内容。
它的图像和性质是我们学习一次函数的关键,通过练习题的形式,我们可以更好地理解和掌握一次函数的图像和性质。
1. 练习题一:给定一次函数y = 2x + 3,求出它的图像和性质。
首先,我们可以根据一次函数的一般式y = kx + b,确定该函数的斜率和截距。
斜率k表示函数图像的倾斜程度,截距b表示函数图像与y轴的交点。
对于给定的一次函数y = 2x + 3,斜率k = 2,截距b = 3。
根据斜率和截距的定义,我们可以知道该函数图像是一条斜率为2,截距为3的直线。
其次,我们可以绘制该函数的图像。
选择一些x的值,代入函数中求得对应的y值,然后将这些点连接起来,就可以得到该函数的图像。
例如,当x = 0时,y = 2*0 + 3 = 3;当x = 1时,y = 2*1 + 3 = 5;当x = -1时,y = 2*(-1) + 3 = 1。
我们可以选择更多的x值,计算出对应的y值,然后将这些点连接起来,就得到了一次函数y = 2x + 3的图像。
最后,我们可以分析该函数的性质。
根据斜率的正负,我们可以知道当x增大时,y也随之增大,表示该函数是递增的。
根据截距的正负,我们可以知道该函数与y轴的交点在正半轴,表示该函数在y轴右侧。
2. 练习题二:给定一次函数y = -0.5x + 2,求出它的图像和性质。
根据一次函数的一般式y = kx + b,我们可以得到该函数的斜率k = -0.5,截距b = 2。
根据斜率和截距的定义,我们可以知道该函数图像是一条斜率为-0.5,截距为2的直线。
绘制该函数的图像,选择一些x的值,代入函数中求得对应的y值,然后将这些点连接起来,就可以得到该函数的图像。
例如,当x = 0时,y = -0.5*0 + 2 = 2;当x = 1时,y = -0.5*1 + 2 = 1.5;当x = -1时,y = -0.5*(-1) + 2 = 2.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数k 与b 的练习
1、直线521,321--=+-=x y x y 可以看作是直线x y 2
1-=向平移个单位得到的; 向平移个单位得到的。
2、直线x y 2
1-=经过 象限,函数的图象从左向右看是(上升、下降,y 随x 增大而。
由平移可知,x y 2
1-=+3通过 象限,函数的图象从左向右看是 (上升、下降),y 随x 增大而。
x y 2
1-=-5通过 象限,函数的图象从左向右看是 (上升、下降,y 随x 增大而。
3、直线y =2x +3可以看作是直线向平移个单位得到的,通过
象限,函数的图象从左向右看是(上升、下降), y 随x 增大
而。
延伸
1、将直线y =-2x +3经过象限 ,向下平移5个单位,得到直线.经 过象限
2.函数y =kx -4的图象平行于直线y =-2x ,求函数若直线4y kx =-的解析式为;
3、直线y=2x-3可以由直线y=2x 经过 单位而得到;直线y=-3x+2可以由直线y=-3x 经过 向平移个单位长度而得到,通过象限;直线y=x+2可以由直线y=x-3经过 向平移个单位长度而得到,通过象限。
4、直线y=-5x +7可以看作是由直线y=-5x -1向平移个单位得到的
5、写出一条与直线y=2x -3平行的直线
7、直线y=-5x +7可以看作是由直线y=-5x -1向平移个单位得到的
8、直线y=kx+b 通过一、二、三象限,则k0,b0.
9、直线y=(m-1)x+(3-m)通过一、二、三象限,则k0,b0.
10、一条与直线y=2x -3平行,且经过点(2,7)的直线
一次函数与坐标轴交点练习
1、直线y =-x +2与x 轴的交点坐标是,与y 轴的交点坐标是
2、直线y =-x -1与x 轴的交点坐标是,与y 轴的交点坐标是
3、直线y =4x -2与x 轴的交点坐标是,与y 轴的交点坐标是
4、直线y =
23
2-x 与x 轴的交点坐标是,与y 轴的交点坐标是 5、直线231+-=x y 过点(,0)、(0,). 5、(1)一次函数y=kx+b 当x=0时,y= ,横坐标为0点在轴上,在y kx b =+中,;当y=0时,x=纵坐标为0点在轴上。
画一次函数的图象,常选取(0,)、(,0)两点连线。
(2)直线y =4x -3过点(_____,0)、(0,);
6、 分别在同一直角坐标系内画出下列直线,写出各直线分别与x 轴、y 轴的交点坐标,并
指出每一小题中两条直线的位置关系.
(1)y =-x +2 ; y =x+2
y =-x +2 ; y =x+2 都经过y 轴上的同一点( 、 )
7、直线y=2x +5与直线521+=
x y ,都经过y 轴上的同一点( 、 )
7、 画出函数y =-2x +3的图象,借助图象找出:
(1) 直线上横坐标是2的点,它的坐标是( ,)
(2) 线上纵坐标是-3的点,它的坐标是( ,)
(3) 直线上到y 轴距离等于2的点,它的坐标是( ,)
(4)点(2、7)是否在此图象上;()
(5)找出横坐标是-2的点,并标出其坐标;( ,)
(6)找出到x 轴的距离等于1的点,并标出其坐标;( ,)
(7)找出图象与x 轴和
y 轴的交点,并标出其坐标。
( ,)
8、求函数323-=
x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.
分析求直线32
3-=x y 与x 轴、y 轴的交点坐标,根据x 轴、y 轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标;结合图象,易知直线32
3-=x y 与x 轴、y 轴围成的三角形是直角三角形,两条直角边就是直线32
3-=x y 与x 轴、y 轴的交点与原点的距离.
思考9、一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24,求b .
一次函数的性质
1、 做一做,画出函数y =-2x +2的图象,结合图象
回答下列问题。
函数y =-2x +2的图象中:
(1) 随着x 的增大,y 将(填“增大”或“减小”)
(2) 它的图象从左到右(填“上升”或“下降”)
(3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是
这个函数中,随着x 的增大,y 将增大还是减小?它的图象从左到右怎样变化?
2、函数y =3x -6的图象中:
(1)随着x 的增大,y 将(填“增大”或“减小”)
(2)它的图象从左到右 (填“上升”或“下降”)
(3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是
3、已知函数y =(m -3)x -3
2. (1) 当m 取何值时,y 随x 的增大而增大?
(2) 当m 取何值时,y 随x 的增大而减小?
[B 组]
1、 写出一个y 随x 的增大而减少的一次函数
2、 写出一个图象与x 轴交点坐标为(3,0)的一次函数
3、 写出一个图象与y 轴交点坐标为(0,-3)的一次函数
1.一次函数y=5x+4的图象经过___________象限,y 随x 的增大而________,它的图象与x 轴. Y
轴的坐标分别为________________(2).函数y=(k-1)x+2,当k >1时,y 随x 的增大而______,当k <1时,y 随x 的增大而_____。
2、函数y =-7x -6的图象中:
(1)随着x 的增大,y 将(填“增大”或“减小”)
(2)它的图象从左到右 (填“上升”或“下降”)
(3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是
(4)x 取何值时,y=2? 当x=1时,y=
3.某个一次函数的图象位置大致如下图所示,试分别确定k 、b 的符号,并说出函数的性质.
(k 0, b 0) (k 0, b 0)
4、已知一次函数y =(2m-1)x +m +5,
当m 取何值时,y 随x 的增大而增大?
当m 取何值时,y 随x 的增大而减小?
5.已知点(x1, y1)和(x2, y2)都在直线y=43
x-1上,若x1 < x2, 则 y 1__________y 2
6.已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象经过二、
三、四象限,求m的取值范围.
7.已知函数
m
x
m
y m
m+
-
=-
-1
2
)1
(,当m为何值时,这个函数是一次函数.并且图象经过
第二、三、四象限?
8.已知一次函数y=(1-2k)x+(2k+1).
①当k取何值时,y随x的增大而增大?
②当k取何值时,函数图象经过坐标系原点?
③当k取何值时,函数图象不经过第四象限?
9.若 a 是非零实数 , 则直线 y=ax-a 一定()
A.第一、二象限
B. 第二、三象限
C.第三、四象限
D. 第一、四象限
10.已知关于x的一次函数y=(-2m+1)x+2m2+m-3.
(1)若一次函数为正比例函数,且图象经过第一、第三象限,求m的值;
(2)若一次函数的图象经过点(1,-2),求m的值.
11.已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.
(1)求m的值;(2)当x取何值时,0<y<4?。