最新九年级数学上学期期末考试试题
九年级上学期 期末考试数学试题附答案
姓名 得分 一、选择题(本大题有7小题,每小题3分,共21分.) 1.下列计算正确的是( )A .2-2=0B .3+2= 5C .(-2)2=-2 D .4÷2=2 2.方程(x -3)2=0的根是( )A .x =-3B .x =3C .x =±3D .x = 33.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AE=4, EC=2,则AD ︰DB 的值为 ( ) A .21 B .23 C .32D .2 4.若矩形ABCD 和四边形A 1B 1C 1D 1相似,则四边形A 1B 1C 1D 1一定是( ) A .正方形 B .矩形 C .菱形 D .梯形 5.若二次根式2x -4有意义,则x 的取值范围是 ( ) A .x <2 B .x ≤2 C . x >2 D .x ≥2 6.下列说法正确的是 ( )A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨B .“抛一枚硬币正面朝上的概率为21”表示每抛2次就有一次正面朝上 C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖 D .“抛一枚正方体骰子,朝上的点数为2的概率为61”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在61附近. 7.在平面直角坐标系中,已知点O (0,0),A (2,4).将线段OA 沿x 轴向左平移2个单 位,记点O 、A 的对应点分别为点O 1、A 1,则点O 1,A 1的坐标分别是 ( )A .(0,0),(2,4)B .(0,0),(0,4)C .(2,0),(4,4)D .(-2,0),(0,4)二、填空题(本大题有10小题,每小题3分,共30分) 8. 计算:2×3= . 9. 在一幅洗好的52张扑克牌中(没有大小王),随机地抽取一张牌,则这张牌是红桃K 的概率是 . 10.计算:2cos60°-tan45°= .E DCB A(第3题)B CDA第13题图11.若关于x 的方程x 2=c 有解,则c 的取值范围是 . 12.已知线段a 、b 、c 满足b 是a,c 的比例中项,且b =3,则ac = .13.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长26米,且斜坡AB 的坡度为125,则河堤的高BE 为 米.14.x 2-8x +( )=(x - )2.15.如图2,飞机A 在目标B 的正上方3000米处,飞行员测得地面目标C 的俯角∠DAC =30°,则地面目标BC 的长是 米.16.已知梯形ABCD 的面积是20平方厘米,高是5厘米, 则此梯形中位线的长是 厘米. 17. 若a =23+1,则a 2+2a +2的值是 .三、解答题(本大题有7小题,共69分) 18.(本题满分15分)(1)计算:62-52-5+3 5 . (2)计算:)1(932x xx x +-.(3)解方程:x 2+4x -2=0.19.(满分7分)小李拿到四张大小、质地均相同的卡片,上面分别标有数字1,2,3,4,他将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张. (1)用画树状图的方法,列出小李这两次抽得的卡片上所标数字的所有可能情况;(2)计算小李抽得的两张卡片上的数字之积为奇数的概率是多少?20.(本题满分7分)高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定 价为50元,可售出400个;定价每增加1元,销售量将减少10个。
2024年北京密云区初三九年级上学期期末数学试题和答案
北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。
江西省九江市2023-2024学年九年级上学期期末数学试题[答案]
九江市2023-2024学年度上学期期末考试九年级数学试题卷本试卷满分120分,考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.方程2520x x +-=的二次项系数、一次项系数和常数项分别是( )A .0,5,2B .0,5,2-C .1,5,2-D .1,5,22.如图是一根空心方管,它的俯视图是( )A .B .C .D .3.在一个不透明的盒子中装有n 个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n 的值大约为( )A .16B .18C .20D .244.如图,已知直线////a b c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DE EF =( )A .13B .12C .23D .15.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相垂直D .两组对角分别相等6.如图,在平面直角坐标系中,Rt ABC D 的顶点A ,B 分别在y 轴、x 轴上,2OA =,1OB =,斜边//AC x 轴.若反比例函数(0,0)k y k x x=>>的图象经过AC 的中点D ,则k 的值为( )A .4B .5C .6D .8二、填空题(本大题共有6小题,每小题3分,共18分)7.关于x 的一元二次方程22=0x x m -+的一个根为-1,则m 的值为 .8.用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为 .9.如图,在菱形ABCD 中,5AB =,60ABC Ð=o ,则BD 的长为 .10.如图,在矩形ABCD 中,点E ,F 分别是AD ,BC 边的中点,连接EF ,若矩形ABFE 与矩形ABCD 相似,4AB =,则矩形ABCD 的面积为 .11.如图,是反比例函数y=1x 和y=3x在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,则S △ABC = .12.如图,ABC V 为边长为7cm 的等边三角形,6cm BD =,2cm CE =,P 为BC 上动点,以0.25cm/s 的速度从B 向C 运动,假设P 点运动时间为t 秒,当t = 秒时,BDP△与CPE △相似.三、(本大题共5小题,每小题6分,共30分)13.解一元二次方程:(1)2420x x +-=(2)()2362x x-=-14.小明和小丽在操场上玩耍,小丽突然高兴地对小明说:“我踩到你的‘脑袋’了.”如图即表示此时小明和小丽的位置.(1)请画出此时小丽在阳光下的影子;(2)若已知小明的身高为1.60 m ,小明和小丽之间的距离为2 m ,而小丽的影子长为1.75 m ,求小丽的身高.15.宋代数学家杨辉所著《杨辉算法》中有一题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”译文为:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?16.如图,四边形ABCD 为矩形,且有AE DE =.请用无刻度直尺完成下列作图,保留必要的画图痕迹.(1)在图1中求作BC 边的中点F ;(2)在图2中的边BC 上求作点H ,使BG CH =.17.如图,在△ABC 中,AD 平分∠BAC ,E 是AD 上一点,且BE =BD ;求证:△ABE ∽△ACD .四、(本大题共3小题,每小题8分,共24分)18.如图,在平行四边形ABCD 中,点E ,F 分别在BC ,AD 上,BE DF =,AC EF =.(1)求证:四边形AECF 是矩形;(2)若2CE BE =且AE BE =,已知2AB =,求AC 的长.19.已知A ,B ,C ,D ,E 五个红色研学基地,某地为了解中学生的意愿,随机抽取部分学生进行调查,并将统计数据整理后,绘制了不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;若该地区有1000名中学生参加研学活动,则愿意去A 基地的大约有___________人;(3)甲、乙两所学校计划从A ,B ,C 三个基地中任选一个基地开展研学活动,请利用树状图或表格求两校恰好选取同一个基地的概率.20.如图,在平面直角坐标系xOy 中,O 为坐标原点,直线2y x =+交y 轴于点A ,交x 轴于点B ,与双曲线()0k y k x=¹在一,三象限分别交于C ,D 两点,且AB AC BD ==,连接CO ,DO .(1)求k 的值;(2)求CDO V 的面积.五、(本大题共2小题,每小题9分,共18分)21.已知关于x 的一元二次方程()()220a c x bx a c +++-=,其中a 、b 、c 分别为ABC V 三边的长.(1)如果=1x -是方程的根,试判断ABC V 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC V 的形状,并说明理由;(3)如果3a =,4b =,2c =,求这个一元二次方程的根.22.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点M 从点C 出发,以2cm/s 的速度沿CA 向点A 匀速运动,点N 从点B 出发,以1cm/s 的速度沿BC 向点C 匀速运动,当一个点到达终点时,另一点也随即停止运动.(1)经过几秒后,△MCN 的面积等于△ABC 面积的25?(2)经过几秒,△MCN 与△ABC 相似?六、(本题共1小题,共12分)23.[模型探究]Ð=,对角线AC、BD相交于点O.在线段AO上任取一点如图1,菱形ABCD中,ABC a=,则P(端点除外),连接PD、PB.Q为BA延长线上一点,且有PQ PBÐ=__________(用a表(1)PD_________PQ(用>、<、=填写两者的数量关系),DPQ示).[模型应用](2)如图2,当60Ð=o,其他条件不变.ABCV为等边三角形;①连接DQ,运用(1)中的结论证明PDQ②试探究AQ与CP的数量关系,并说明理由.[迁移应用]当90Ð=o,其他条件不变.探究AQ与OP的数量关系,并说明理由.ABC【分析】本题考查了一元二次方程的一般形式,注意找各项的系数时,要带着前面的符号.根据一元二次方程的一般形式得出答案即可.【详解】解:方程2520x x +-=的二次项系数、一次项系数和常数项分别是1,5,2-,故选:C .2.C【分析】根据从上面往下看得到的图形是俯视图,可得答案.【详解】解:如图所示,俯视图为:故选C .【点睛】本题考查了三视图,解题的关键是注意看到的线用实线表示,看不到的线用虚线表示.3.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,100%=20%4n´,解得:20n =,经检验20n =是原方程的根,故C 正确.故选:C .【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.4.B【分析】直接根据平行线分线段成比例定理求解.【详解】解:∵a ∥b ∥c ,∴12DE AB EF BC ==.故选:B .【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成5.B【分析】矩形的对角线互相平分且相等,菱形的对角线互相平分,互相垂直,并且每一条对角线平分一组对角,据此解答.【详解】A 、是菱形的性质,是矩形的性质,故本选项不符合题意;B 、是矩形的性质,不是菱形的性质,故本选项符合题意;C 、是菱形的性质,不是矩形的性质,故本选项不符合题意;D 、矩形、菱形的对角都相等,故本选项不符合题意;故选:B .【点睛】此题考查矩形的性质,菱形的性质,熟记各自的性质特征是解题的关键.6.B【分析】作CE x ^轴于E ,根据作图即可得出2OA CE ==.又易证OAB CBE Ð=Ð,即证明AOB BEC D D ∽,得出BE CE OA OB=,从而求出BE 的长,即得到C 点坐标,进而得出D 点坐标.将D 点坐标代入反比例函数解析式,求出k 即可.【详解】解:作CE x ^轴于E ,//AC x Q 轴,2OA =,1OB =,2OA CE \==,90ABO CBE OAB ABO Ð+Ð=°=Ð+ÐQ ,OAB CBE \Ð=Ð,AOB BEC Ð=ÐQ ,AOB BEC \D D ∽,\BE CE OA OB=,即221BE =,4BE \=,5OE \=,Q 点D 是AC 的中点,5(2D \,2).Q 反比例函数(0,0)k y k x x=>>的图象经过点D ,5252k \=´=.故选:B .【点睛】本题考查相似三角形的判定和性质,反比例函数图象上的点的坐标特征.作出常用的辅助线是解答本题的关键.7.-3【分析】把x =-1代入原方程,解关于m 的一元一次方程即可.【详解】∵关于x 的一元二次方程22=0x x m -+的一个根为-1,∴2(1)2(1)=0m --´-+,解得m =-3,故答案为:-3.【点睛】本题考查了一元二次方程根的定义即使得一元二次方程左右两边相等的未知数的值,正确理解定义,灵活代入计算是解题的关键.8.59【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.9.【分析】本题主要考查了菱形的性质以及含特殊角的三角函数的计算.由四边形ABCD 为菱形,60ABC Ð=o ,可得出1302ABO ABC =Ð=а,AC BD ^,BO DO =,进一步可求出cos BO ABO ABÐ=,则根据特殊三角函数可求出BO 以及BD .【详解】解:设AC 与BD 交于点O ,如下图:∵四边形ABCD 为菱形,60ABC Ð=o ∴1302ABO ABC =Ð=а,AC BD ^,BO DO =,在Rt AOB V 中,cos Ð∴cos 5BO AB ABO =×Ð=,∴22BD BO ===故答案为:.10.【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:设AE =x ,则AD =2AE =2x ,∵矩形ABFE 与矩形ABCD 相似,∴AE AB AB AD=,即442x x =,解得,x 1=2x =-舍),∴AD =2x =,∴矩形ABCD 的面积为AB •AD ==,故答案为:.【点睛】考查了相似多边形的性质,解题的关键是根据相似多边形的性质列出比例式,难度不大.11.1【分析】设A 点的纵坐标是m ,则B 的纵坐标是m ,代入解析式即可求得A 、B 的横坐标,则AB 的长度即可求得,然后根据三角形的面积公式即可求解.【详解】设A 点的纵坐标是m ,则B 的纵坐标是m ,把y m =代入1y x =得:1x m =,把y m =代入3y x =得:3x m=,则312AB m m m =-=,则1212ABC S m mV =´×=.故答案为:1.【点睛】本题考查了反比例函数的比列系数的意义,正确设出A 的纵坐标,表示出AB 的长是关键.12.12或16或21【分析】本题主要考查了相似三角形的性质和判定,等边三角形的性质,先根据等边三角形的性质得60B C Ð=Ð=°,再分BD BP CP CE =和B D B P C E C P=两种情况求出答案即可.【详解】∵ABC V 是等边三角形,∴60B C Ð=Ð=°,7cm BC =,∴=0.25cm B P t ,()=-70.25cm C P t .当BD BP CP CE =时,BDP CPE ∽△△,即60.2570.252t t =-,解得12t =或16t =;当B D B PC E C P =时,P BDP CE △△∽,即60.25270.25t t=-,解得21t =.∴12t =或16或21.故答案为:12或16或21.13.(1)12x =,22x =(2)13x =,21x =【分析】(1)由配方法解方程即可得出答案;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:2420x x +-=,242x x +=,24424x x ++=+,()226x +=,2x +=.∴12x =,22x =;(2)()2362x x -=-,()()2323x x -=-,()()23230x x -+-=,()()310x x --=,∴30x -=或 10x -=,∴13x =,21x =.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.14.(1)图形见解析;(2)1.4 m .【详解】试题分析:(1)利用阳光是平行投影进而得出小丽在阳光下的影子进而得出答案;(2)利用相同时刻身高与影子成正比进而得出即可.试题解析:(1)如图,线段CA 即为此时小丽在阳光下的影子.(2)∵小明的身高为1.60 m ,小明和小丽之间的距离为2 m ,而小丽的影子长为1.75 m ,设小丽的身高为x m ,∴1.6=2 1.75x ,解得x =1.4.答:小丽的身高为1.4 m .15.长比宽多12步.【分析】选择合适的未知数,利用矩形这个桥梁构造一元二次方程求解即可.【详解】解:设矩形的长为x 步,则宽为60x -()步,根据题意,得(60)864x x -=.解得 136x =,224x =(舍去)\当36x =时,6024x -=,362412-=.答:长比宽多12步.【点睛】本题考查了一元二次方程与几何图形的关系,熟练运用一元二次方程解决几何图形的面积是解题的关键.16.(1)见解析(2)见解析【分析】本题主要考查了矩形的性质,线段垂直平分线的性质和判定:(1)连接,AC BD ,过,AC BD 的交点与点E 作直线,交BC 于点F ,即可;(2)方法一:连接AG ,并延长AG 交EF 于点P ,连接DP 交BC 于点H ,即可;方法二:连接AH ,交EF 于点Q ,连接DQ ,并延长DQ 交BC 于点H ,即可;【详解】(1)解:如图,点P 即为所求;(2)解:如图,点H即为所求.17.见解析【分析】根据角平分线的定义可得∠BAD=∠CAD,根据BE=BD,由等边对等角可得∠BED =∠BDE,根据邻补角可得∠AEB=∠ADC,即可证明△ABE∽△ACD.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵BE=BD,∴∠BED=∠BDE,∴∠AEB=∠ADC,∴△ABE∽△ACD.【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法是解题的关键.18.(1)见解析=即可证明出四边形【分析】(1)首先证明四边形AECF是平行四边形,然后结合AC EFAECF 是矩形;(2)首先根据勾股定理得到AE =2CE BE ==,然后利用勾股定理求解即可.【详解】(1)证明:在ABCD Y 中AD BC \=,AD BC ∥,BE DF =Q ,AD DF BC BE \-=-,即AF EC =,\四边形AECF 是平行四边形,AC EF =Q ,\四边形AECF 是矩形;(2)∵四边形AECF 是矩形∴90AEC Ð=°∴90AEB Ð=°∵AE BE =,2AB =∴222AE BE AB +=,即2222AE =解得AE =∴BE AE ==∴2CE BE ==∵90AEC Ð=°∴AC ==【点睛】本题考查了矩形的判定与性质,平行四边形的判定、勾股定理,熟练掌握矩形的判定与性质是解题关键.19.(1)见详解(2)14.4°(3)13【分析】本题主要考查了条形统计图和扇形统计图的相关知识以及用树状图或列表法求概率.(1)先根据扇形统计图以及条形图中选择C 基地的人数以及占比求出抽取学生的总人数,然后再求出选择B 基地的人数即可补全条形统计图.(2)直接用360°乘以选择D 基地人数得占比即可求出D 所在的扇形的圆心角的度数,用总体乘以选项A 基地的占比即可推知整体.(3)列出树状图或表格然后用概率公式即可求出两校恰好选取同一个基地的概率.【详解】(1)本次抽取的学生有:1428%50¸=(人),其中选择B 的学生有:5010142816----=(人),补全的条形统计图如右图所示;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为:236014.450°´=°,该市有1000名中学生参加研学活动,愿意去A 基地的大约有:10100020050´=(人),(3)树状图如下所示:由上可得,一共有9种等可能性,其中两校恰好选取同一个基地的可能性有3种,\两校恰好选取同一个基地的概率为3193=.20.(1)8k =(2)6【分析】本题考查了反比例函数与一次函数的交点问题,(1)过点C 作CH x ^轴于点H ,则OA CH ∥,先求出点A ,B 的坐标,再根据题意表示出点C 的坐标,再根据待定系数法求解即可;(2)联立两个解析式,求出点D 的坐标,再由三角形面积公式求解即可;熟练掌握知识点并添加适当的辅助线是解题的关键.【详解】(1)过点C 作CH x ^轴于点H ,则OA CH ∥,2y x =+Q 与坐标轴交于A ,B 两点,()0,2A \,()2,0B -,则2OA =,2OB =,12AB BC =Q,又OA CH ∥,12BA AO BO BC CH BH \===4BH \=,4CH =,∴2OH =,()2,4C \,Q 点C 在双曲线()0k y k x=¹上,42k \=,∴8k =;(2)令82x x =+,解得24x y =ìí=î或42x y =-ìí=-î,∴()4,2D --,()1112246222CDO AOC AOD C D S S S OA y OA y \=+=×+×=´´+=V V V .21.(1)ABC V 是等腰三角形;理由见解析(2)(3)1x =2x =【分析】(1)把=1x -代入原方程,可得到a b 、的数量关系,即可判断ABC V 的形状;(2)根据方程有两个相等的实数根得到()()()2Δ240b a c a c =-+-=,从而得到222a b c =+,由勾股定理的逆定理即可得到答案;(3)把3a =,4b =,2c =代入原方程,利用公式法解方程即可.【详解】(1)解:ABC V 是等腰三角形,理由如下:Q =1x -是方程的根,()()()()21210a c b a c \+´-+´-+-=,20a c b a c \+-+-=,0a b \-=,即a b =,ABC \V 是等腰三角形;(2)解:ABC V 是直角三角形,理由如下:Q 方程有两个相等的实数根,()()()2Δ240b a c a c \=-+-=,2224440b a c +-\=,222a b c \=+,ABC \V 是直角三角形;(3)解:将3a =,4b =,2c =代入方程得:25810x x ++=,,∴1x ==【点睛】本题考查了一元二次方程的解、勾股定理的逆定理、一元二次方程的根的判别式、等腰三角形的判定、解一元二次方程,熟练掌握以上知识点是解此题的关键.22.(1)4秒;(2)167或4013秒【分析】(1)分别表示出线段MC 和线段CN 的长后利用S △MCN =25S △ABC 列出方程求解;(2)设运动时间为t s ,△MCN 与△ABC 相似,当△MCN 与△ABC 相似时,则有MC NC BC AC =或MC NC AC BC=,分别代入可得到关于t 的方程,可求得t 的值.【详解】解:(1)设经过x 秒,△MCN 的面积等于△ABC 面积的25,则有MC =2x ,NC =8-x ,∴12×2x (8-x )=12×8×10×25,解得x 1=x 2=4,答:经过4秒后,△MCN 的面积等于△ABC 面积的25;(2)设经过t 秒,△MCN 与△ABC 相似,∵∠C =∠C ,∴可分为两种情况:①MC NC BC AC =,即28810t t -=,解得t =167;②MC NC AC BC =,即28108t t -=,解得t =4013.答:经过167或4013秒,△MCN 与△ABC 相似.【点睛】本题考查一元二次方程的应用,相似三角形的判定与性质,三角形的面积,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.(1)=;a ;(2)①证明见解析;②AQ CP =,证明见解析;(3)AQ =,证明见解析;【分析】(1)利用菱形性质,线段垂直平分线的性质、等腰三角形的性质可知PD PB =,继而得到本题答案;(2)①利用含60°的等腰三角形即为等边三角形判定即可;②利用全等三角形判定及性质可证;(3)利用相似三角形判定及性质即可求出.【详解】解:(1)∵四边形ABCD 是菱形,ABC a Ð=,∴AC BD ^,DO BO =,12ABO CBO a Ð=Ð=,∴AC 垂直平分BD ,∴PD PB =,∵PQ PB =,∴PD PQ =,∴PDB PBD PQB PBQ Ð=Ð=Ð=Ð,∴()11801802QPB PQB PBQ DPB a Ð=°-Ð+Ð=°-=Ð,∴13603602(180)2DPQ QPB DPB a a Ð=°-Ð-Ð=°-°-=,综上所述:PD PQ =,DPQ a Ð=;(2)①证明:由(1)得,PQ PD =,60DPQ Ð=°,DPQ \△为等边三角形;②AQ CP =,,证明:设1ADP Ð=Ð,60ABC Ð=°Q ,60ADC \Ð=°,601ADQ CDP \Ð=°-Ð=Ð,又DQ DP =Q ,DA DC =,()QDA PDC SAS \V V ≌,AQ CP \=;(3)AQ =,理由如下:连接DQ ,即DPQ V 、ADO △为等腰直角三角形,,证明:设2QDA Ð=Ð,3PDO Ð=Ð,由题意,四边形ABCD 是正方形,则45ADO Ð=°,由(1)知,90DPQ ABC Ð=Ð=°,PD PQ =,则45QDP Ð=°,24513\Ð=°-Ð=Ð,答案第15页,共15页又::DQ DP DA DO ==Q ,QDA PDO \△∽△,:AQ OP \=,即:AQ =.【点睛】本题考查菱形性质,正方形的判定与性质,三角形内角和定理,等腰三角形的判定与性质,等边三角形的判定及性质,全等三角形的判定及性质,相似三角形判定及性质,熟练掌握相关知识的联系与运用是解答的关键.。
九年级数学第一学期期末考试综合复习测试题(含答案)
九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)
A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
2023—-2024学年上学期九年级期末考试数学试卷
准考证号:__________________姓名:_________(在此卷上答题无效)2023-2024学年第一学期初中毕业班期末考试数学一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A.向上一面的点数是2B.向上一面的点数是奇数C.向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x2=0B.x2-3x-1=0C.x2-2x+5=0D.x2+1=03.如图1,△ABC内接于⊙O,直径AD交BC于点P,连接OB.下列角中,等于12∠AOB的是A.∠OABB.∠ACBC.∠CADD.∠OPB4.关于y=(x-2)2-1(x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x,可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)2=8D.5(1+2x)2=86.如图2,直线l是正方形ABCD的一条对称轴,l与AB,CD分别交于点M,N.AN,BC的延长线相交于点P,连接BN.下列三角形中,与△NCP成中心对称的是A.△NCBB.△BMNC.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4圈才能拧紧,小梧用扳手的卡口卡住螺帽,通过转动扳手的手柄来转动螺帽(如图3所示).以此方式把这个螺帽拧紧,他一共需要转动扳手的次数是A.4B.16C.24D.328.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是=−32t2+60t,则t的取值范围是A.0≤t≤600B.20≤t≤40C.0≤t≤40D.0≤t≤20二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是_________.10.抛物线y=3(x-1)2+4的对称轴是__________.11.已知x=1是方程x2+mx-3=0的根,则m的值为____________.12.四边形ABCD内接于⊙O,E为CD延长线上一点,如图4所示,则图中与∠ADE相等的角是_________.13.如图5,在△ABC中,AB=AC=5,BC=6,AD是△ABC的角平分线.把△ABD绕点A逆时针旋转90°得到△AEF,点B的对应点是点E,则点D与点F之间的距离是___________.14.在平面直角坐标系xOy中,ABCD的对角线交于点O.若点A的坐标为(-2,3),则点C的坐标为_________.15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1468101214累计试验种子数(单位:千粒)15810.512.514.516.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要准备用以辐射的种子数(单位:千粒):_________.16.有四组一元二次方程:①x2-4x+3=0和3x2-4x+1=0;②x2-x-6=0和6x2+x-1=0;③x2-4=0和4x2-1=0;④4x2-13x+3=0和3x2-13x+4=0.这四组方程具有共同特征,我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个有两个不相等实数根但没有“相关方程”的一元二次方程:______________.数学试题第2页(共6页)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.19.(本题满分8分)先化简,再求值:(−1)÷2−2m+1,其中=2+1.20.(本题满分8分)如图7,AB与⊙O相切于点A,OB交⊙O于点C,OC=8,AC的长为2π,求BC 的长.数学试题第3页(共6页)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m,横向排列30个车位,每个车位宽为3m,各车位有相应号码,如:201表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.停车位301…停车位311…升降台316…留空321…停车位330转运板滑行区转运板滑行区图9停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1m/s,载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421前往401取车,升降台回到第四层40s后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.【22题得分情况】正方形的顶点T在某抛物线上,称该正方形为该抛物线的“T悬正方形”.若直线l:y =x+t与“T”是正方形“以T为端点的一边相交,且点T到直线l的距离为2(2-t),则称直线l为该正方形的“T悬割线”.已知抛物线M:y=-(x-1)2+m2-2m+4,其中12≤m<1,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l是正方形ABCD的“A悬割线”,现将抛物线M及正方形ABCD进行相同的平移,是否存在直线l为平移后正方形的“C悬割线”的情形?若存在,请探究抛物线M经过了怎样的平移;若不存在,请说明理由.【23题得分情况】24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P (P不与O重合),连接PC,以点P为圆心,PC长为半径的圆交直线BC于点E,直线AE与直线CD交于点F,如图10所示.(1)当∠ABC=60°时,求证:直线AB与⊙P相切;(2)当AO=2,AF2+EF2=16时,求∠ABC的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C与E不重合,请探究∠AFC与∠CAF的数量关系.25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:[背景]小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A超市了吗?再开一个能吸引顾客吗?“这个问题引起了大家对超市的吸引力展开研究的兴趣. [过程]为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素“为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p”作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s(单位:m2)及其与居民住处的距离r(单位:m),并对p,s,r之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大.这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为F=B122(G是引力常数),我们是不是可以作个类比,试一下看p与2的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与2对应关系的散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与2的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A超市为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,则小悟家的坐标为(400,200).A超市的占地面积为2000m2,规划中的B超市在A超市的正东方向.根据(1)中的对应关系,解决下列问题:①若B超市与A超市距离600m~800m,且对小悟家的吸引力与A超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划B超市开在距A超市300m处,且占地面积最大为490m2,要想与A超市竞争百花巷的居民,该规划是否合适?请说明理由.【25题得分情况】。
江苏省盐城市盐都区2023-2024学年九年级上学期期末数学试题(含答案)
2023/2024学年度第一学期期末学业质量检测九年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分。
3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程属于一元二次方程的是()A. B. C. D.2.二次函数的顶点坐标是( )A. B. C. D.3.已知的半径为4,点到圆心的距离为4.5,则点与的位置关系是( )A.在圆内B.在圆上C.在圆外D.无法确定4.学校组织才艺表演比赛,前5名获奖.有11位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这11名同学成绩的统计量中只需知道一个量,它是( )A.众数B.方差C.中位数D.平均数5.已知与分别为方程的两根,则的值等于( )A. B.2C.D.6.如图,点、、在上,,则的度数是( )A. B. C. D.7.如图,下列条件中不能判定的是()A.B. C. D.321x x+=210x x +-=30x -=140x x+-=2(2)3y x =+-(2,3)-(2,3)--(2,3)(2,3)-O P O P O P P P 1x 2x 2230x x +-=12x x +2-32-32A B C O 30ACB ︒∠=AOB ∠30︒40︒60︒65︒ACD ABC △∽△AB ADBC CD=ADC ACB ∠=∠ACD B ∠=∠2AC AD AB=⋅8.设,,是抛物线上的三点,,,的大小关系为( )A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)9.在比例尺为的扬州旅游地图上,某条道路的长为,则这条道路实际长________.10.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.11.如图,四边形是的内接四边形,的半径为2,,则的长为________.12.如图,在中,中线、相交于点,,则的长为________.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是,则蝴蝶身体的长度为________(结果保留根号)。
九年级数学(上)期末考试试卷含答案
九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。
辽宁省沈阳市皇姑区2023-2024学年九年级上学期期末数学试题(含解析)
....A .2B .45.若x =﹣1是方程x 2+x +m =A .﹣1B .06.如图,反比例函数的图象经过A .120mm B .30mmC .75k y x=A .C .9.如图,正方形ABCD 的对角线作ON ⊥OM ,交CD 于点N A .C .2150216x ⨯=2150150216x +=0c <<0a b c -+12.如图,E是正方形ABCD的边BCABCD AD AB,:三、解答题(本题共8小题,共过程)16.计算(1)计算:0(3)2cos30π--︒(1)请在图中画出路灯灯泡出画法);(2)经测量米,度的长.20.数学活动小组欲测量山坡上一棵大树得大树底端C 的仰角为,测得山坡坡角2OB =BF OP 53︒CBM ∠(1)设点的坐标为,求反比例函数的解析式;(2)若,求直线的解析式.22.问题情境数学活动课上,学习小组进行探究活动,老师给出如下问题:在中,,垂足为,且,点是边上一动点(点不与点连接,过点作交线段于点.各小组在探究过程中提出了以下问题:(1)“智慧小组”提出问题:M (),m n 92AN =MN ABC V CD AB ⊥D AD BD >E AC E DE C CF DE ⊥AD F四边形是正方形,是射线上的动点,点在线段的延长线上,且,连接,将线段绕点顺时针旋转得到,连接,设,四边形的面积为(可等于0).(1)如图①,当点由点运动到点过程中,发现是关于的二次函数,并绘制成如图②所示的图象,抛物线经过原点且顶点为,请根据图象信息,回答下列问题:①正方形的边长为___________(直接填空);②求关于的函数关系式;(2)如图③,当点在线段的延长线上运动时,求关于的函数关系式;(3)若在射线上从下至上依次存在不同位置的两个点,对应的四边形的面积与四边形的面积相等,当时,求四边形的面积.参考答案与解析1.B 【分析】根据左视图是从左边得到的图形进行解答即可.【详解】从左边看,为一个长方形,中间有两条横线,如下图所示:,故选B .【点睛】本题考查了三视图的知识,左视图是从左边看到的视图,要注意长方形被横向分成ABCD E AB F DA AF AE =ED ED E 90︒EG EF BF BG 、、AE x =EFBG y x y ,E A B y x ()24,ABCD y x E AB y x AB 12E E ,1E FBG 2E FBG 122BE BE -=1E FBG【详解】∴,DF AD =∵,,,,,,()4,2A -2AE ∴=4OE =AE CF ∥ AOE COF ∴∽△△C AE OE O CF OF OA ∴==42由折叠与对应易知:∵∴,即又∵x=时,可获得利润最大A A '90EAO AEO ∠+∠=AEO AGD ∠=∠ADG FHE ∠=∠=当∠MDE=90°时,如图2,∴,∵∠DBC=∠C=∠E ,∠BMF=∠∴∠BFM=∠MDE=90°,【点睛】本题考查了勾股定理、直角三角形的性质、折叠的性质、三角形的内角和定理以及155544BM =-=(2)∵∴,∴,∴,MO OE AB OE ⊥⊥AB OP ∥POF ABF V V ∽13AB BF BF OP OF BF OB ===+由(1)知;,,,DCE FBC △∽△∴BF CF CD DE=BF CF = 2CD DE ∴==此时,,,,,,EF CD ∥3BD = 4CD =CD AB ⊥225BC BD CD ∴=+=90B BCD ACD ∠=︒-∠=∠ BDC ∠,,,,,,CF DE ⊥ CD AB ⊥90CDG GDF DFG ∴∠=︒-∠=∠EFG DFG ∴∠=∠90DGF EGF ∠=︒=∠ GF GF =,,,90DEG ∠=︒ 90DEA GEH ∴∠+∠=90DEA EDA ∠+∠= EDA GEH ∴∠=∠EG ED = DAE ∠=,,,,,,设,则,,,90DEG ∠=︒ 90DEA GEH ∴∠+∠=︒90DEA EDA ∠+∠=︒ EDA GEH ∴∠=∠EG ED = DAE GHE ∠=∠=()AAS DAE GEH ∴V V ≌1AE m =14BE m =-122BE BE -= 22BE m ∴=-设,则,,,,在中,令得:在中,令得:1AE n =14BE n =-122BE BE -= 22BE n ∴=-224(2)6AE AB BE n n ∴=+=+-=-24(04)y x x x =-+≤≤x n =y 四边形24(4)y x x x =->6x n =-y 四边形。
河南省南阳市淅川县2023-2024学年九年级上学期期末考试数学试题[答案]
2023年秋期九年级期终质量评估数学试卷注意事项:1.本试卷分试题卷和答题卡两部分.试题卷共8页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、考号、考场、座位号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列计算正确的是( )A .0=B .+=CD )26-=-2.下列说法错误的是( )A .“水涨船高”是必然事件B .“水中捞月”是不可能事件C .“了解一批节能灯管的使用寿命” 最适合用全面调查D .“调查将发射的气象卫星的零部件质量”最适合用全面调查3.关于x 的一元二次方程232302x x -+=根的情况,下列说法中正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定4.在平面直角坐标系中,将二次函数221y x x =+-的图象向右平移2个单位长度,再向上平移1个单位长度,所得函数的解析式为( )A .()233y x =+-B .()211y x =--C .()231y x -=+D .()213y x =--5.如图,点A 、B 、C 在O e 上,BC OA ∥,连接BO 并延长,交O e 于点D ,连接AC 、DC 、若18A Ð=°,则D Ð的大小为.( )A .18°B .36°C .54°D .68°6.班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是( )A .14B .13C .12D .237.如图,ABC V 与DEF V 是位似图形,点O 是位似中心.若()2,1A -,()3,3B -,DE D 的坐标为( )A .33,2æö-ç÷èøB .33,2æöç÷èøC .3,32æöç÷èøD .3,32æö-ç÷èø8.如图,四边形ABCD 是一张矩形纸片.将其按如图所示的方式折叠:使DA 边落在DC 边上,点A 落在点H 处,折痕为DE ;使CB 边落在CD 边上,点B 落在点G 处,折痕为CF .若矩形HEFG 与原矩形ABCD 相似,1AD =,则CD 的长为( )A 1B 1-C 1D 19.如图,在Rt ABC △中,90ACB Ð=°,10AB =,6BC =.点F 是AB 中点,连接CF ,把线段CF 沿射线BC 方向平移到DE ,点D 在AC 上.则线段CF 在平移过程中扫过区域形成的四边形CFDE 的周长和面积分别是( )A .16,6B .18,18C .16.12D .12,1610.如图,抛物线2y ax bx c =++与x 轴相交于点()()2,0,6,0A B -,与y 轴相交于点C ,小红同学得出了以下结论:①240b ac ->;②40a b +=;③当0y >时,26x -<<;④0a b c ++<.其中正确的个数为( )A .4B .3C .2D .13分,共15分)11x 的取值范围是 .12.如图,在4×4正方形网格中,点A ,B ,C 为网格交点,AD BC ^,垂足为D ,则tan BAD Ð的值为 .13.如图,在ABC V 中,O 是AB 边上的点,以O 为圆心,OB 为半径的O e 与AC 相切于点D ,BD 平分ABC Ð,AD =,12AB =,CD 的长是 .14.如图,在扇形AOB 中,∠AOB=90°,OA=4,以OB 为直径作半圆,圆心为点C ,过点C 作OA 的平行线分别交两弧点D 、E ,则阴影部分的面积为 .15.如图,在直角△ABC 中,∠C =90°,AC =6,BC =8,P 、Q 分别为边BC 、AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ = .三、解答题(共75分)16(1)(2)()1tan 60sin 451-°-°--(3)解方程:2-+=.x x251017.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x(单位:分)进行统计:七年级86947984719076839087八年级88769078879375878779整理如下:年级平均数中位数众数方差七年级84a9044.4八年级8487b36.6根据以上信息,回答下列问题:a_______,b=________.(1)填空:=A同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由.18.为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD°»°»°»)的长.(结果精确到0.1米;参考数据:sin160.28,cos160.96,tan160.2919.掷实心球是丰都中考体育考试项目之一,如图1是一名男生投实心球情境,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示、掷出时,起点处高度为1.9m,当水平距离为4m时,实心球行进至最高点3. 5m处.(1)求y 关于x 的函数表达式:(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于9.7m 时,即可得满分10分,该男生在此项考试中能否得满分,请说明理由.20.如图,锐角ABC V 内接于O e ,射线BE 经过圆心O 并交O e 于点D ,连结AD ,CD ,BC 与AD 的延长线交于点F ,DF 平分CDE Ð.(1)求证:AB AC =.(2)若1tan 2ABD Ð=,O e DF 的长.21.某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y (件)与销售单价x (元)之间满足一次函数关系,部分数据如下表所示:销售单价x /元…121314…每天销售数量y /件…363432…(1)直接写出y 与x 之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w (元),当销售单价为多少元时,每天获利最大?最大利润是多少元?22.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点(0,3)C ,且3OC OB =,点M 是抛物线上一点,且位于抛物线对称轴的左侧,过点M 作MN x ∥轴交抛物线于点N .(1)求抛物线的函数关系式;(2)若点M 沿抛物线向下移动,使得89MN ££,求点M 的纵坐标M y 的取值范围;(3)若点P 是抛物线上对称轴右侧任意一点,点P 与点A 的纵坐标的差的绝对值不超过3,请直接写出点P 的横坐标P x 的取值范围.23.我们在没有量角器或三角尺的情况下,用折叠特殊矩形纸片的方法进行如下操作也可以得到几个相似的含有30°角的直角三角形.实践操作第一步:如图①,矩形纸片ABCD 的边AB =ABCD 对折,使点D 与点A 重合,点C 与点B 重合,折痕为EF ,然后展开,EF 与CA 交于点H .第二步:如图②,将矩形纸片ABCD 沿过点C 的直线再次折叠,使CD 落在对角线CA 上,点D 的对应点D ¢恰好与点H 重合,折痕为CG ,将矩形纸片展平,连接GH .问题解决(1)在图②中,sin ACB Ð=______,EG CG=______.(2)在图②中,2CH CG =×______,从图②中选择一条线段填在空白处,并证明你的结论;拓展延伸(3)将上面的矩形纸片ABCD 沿过点C 的直线折叠,点D 的对应点D ¢落在矩形的内部或一边上.设DCD a ¢Ð=,若090a °<£°,连接D A ¢,D A ¢的长度为m ,则m 的取值范围是______.1.D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A. )1=,故该选项不正确,不符合题意;B. +=C.=D. )26-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.2.C【分析】本题考查了必然事件的定义,全面调查与抽样调查的意义.一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.直接利用必然事件的定义以及全面调查与抽样调查的意义判断各项即可.【详解】解:A .“水涨船高”是必然事件,故A 选项不符合题意;B .“水中捞月”是不可能事件,故B 选项不符合题意;C .“了解一批节能灯管的使用寿命” 最适合用抽样调查,原说法错误,故C 选项符合题意;D .“调查将发射的气象卫星的零部件质量”最适合用全面调查,故D 选项不符合题意;故选:C .3.C【分析】直接利用一元二次方程根的判别式即可得.【详解】解:232302x x -+=,其中2a =,3b =-,32c =,∴()23Δ342302=--´´=-<,∴方程没有实数根.故选:C .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=¹,若240b ac D =->,则方程有两个不相等的实数根,若240b ac D =-=,则方程有两个相等的实数根,若24<0b ac D =-,则方程没有实数根.4.B【分析】主要考查了函数图象的平移,先将二次函数解析式化为顶点式,再直接运用平移规律“左加右减,上加下减”解答.【详解】将221y x x =+-化为顶点式为:()=+-2y x 12,将二次函数()=+-2y x 12的图象向右平移2个单位长度,再向上平移1个单位长度,所得函数的解析式为()21221y x =+--+,即()211y x =--.故选:B .5.C【分析】本题考查圆周角定理,平行线的性质.利用平行线的性质求出18ACB Ð=°,再利用圆周角定理求出36AOB Ð=°,利用平行线的性质可得36B Ð=°,再证明90DCB Ð=°,进而可得结论.【详解】解:AO BC Q ∥,18A Ð=°,18ACB OAC \Ð=Ð=°,CBO AOB Ð=Ð,236AOB ACB \Ð=Ð=°,36CBO AOB \Ð=Ð=°,BD Q 是直径,90DCB \Ð=°,903654D \Ð=°-°=°,故选:C .6.C【分析】采用树状图法,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则A ,B 两位同学座位相邻的概率是61122= .故选C.【点睛】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.7.A【分析】本题主要考查了位似三角形,勾股定理.先求出AB ==据ABC V 与DEF V 是位似图形,点O 为位似中心,可得相似比为3:2DE AB ==,再根据点()2,1A -与点D 为对应点,且两个点在原点的两侧,即可作答.【详解】∵()2,1A -,()3,3B -,∴AB ==∵ABC V 与DEF V 是位似图形,点O 为位似中心,∴ABC DEF ∽△△,点()2,1A -与点D 为对应点,∴相似比为:3:2DE AB ==,∵()2,1A -,点()2,1A -与点D 为对应点,且两个点在原点的两侧,即3232æö-´-=ç÷èø,21332æö´=ç÷ø-è-,∴点D 的坐标为33,2æö-ç÷èø.故选:A .8.C【分析】先根据折叠的性质与矩形性质,求得1DH CG ==,设CD 的长为x ,则2HG x =-,再根据相似多边形性质得出EH HG CD AD =,即121x x -=,求解即可.【详解】解:,由折叠可得:DH AD =,CG BC =,∵矩形ABCD ,∴1AD BC ==,∴1DH CG ==,设CD 的长为x ,则2HG x =-,∵矩形HEFG ,∴1EH =,∵矩形HEFG 与原矩形ABCD 相似,∴EH HG CD AD =,即121x x -=,解得:1x =(负值不符合题意,舍去)∴1CD =,故选:C .【点睛】本题考查矩形的折叠问题,相似多边形的性质,熟练掌握矩形的性质和相似多边形的性质是解题的关键.9.C【分析】先论证四边形CFDE 是平行四边形,再分别求出CF 、CD 、DF ,继而用平行四边形的周长公式和面积公式求解即可.【详解】由平移的性质可知:,DF CE DF CE ∥=,∴四边形CFDE 是平行四边形,在Rt ABC △中,90ACB Ð=°,10AB =,6BC =,∴AC 8===在Rt ABC △中,90ACB Ð=°,10AB =,点F 是AB 中点∴152CF AB ==∵DF CE ∥,点F 是AB 中点∴12AD AF AC AB ==,18090CDF ABC Ð=°-Ð=°,∴点D 是AC 的中点,∴142==CD AC ∵D 是AC 的中点,点F 是AB 中点,∴DF 是Rt ABC △的中位线,∴132DF BC ==∴四边形CFDE 的周长为:()()221356DF CF +=´+=,四边形CFDE 的面积为:3412DF CD ´=´=.故选:C .【点睛】本题考查平移的性质,平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半,平行线分线段成比例,三角形中位线定理等知识,推导四边形CFDE 是平行四边形和DF 是Rt ABC △的中位线是解题的关键.10.B【分析】根据二次函数的图像与性质,逐一判断即可.【详解】解:∵抛物线2y ax bx c =++与x 轴交于点A ()2,0-、B ()6,0,∴抛物线对应的一元二次方程20ax bx c ++=有两个不相等的实数根,即24b ac =-△>0,故①正确;对称轴为6222b x a -=-=,整理得4a +b =0,故②正确;由图像可知,当y >0时,即图像在x 轴上方时,x <-2或x >6,故③错误,由图像可知,当x =1时,0y a b c =++<,故④正确.∴正确的有①②④,故选:B .【点睛】本题考查二次函数的性质与一元二次方程的关系,熟练掌握相关知识是解题的关键.11.5x ³-且0x ¹##0x ¹且5x ³-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵有意义,∴50x +³且0x ¹,∴5x ³-且0x ¹,故答案为:5x ³-且0x ¹.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.12.34【分析】本题考查了锐角三角函数的定义以及勾股定理,解题的关键熟记三角函数的定义并灵活运用.先求出BAD CBE Ð=Ð,然后利用利用tan tan CE BAD CBE BEÐÐ==解题即可.【详解】解:如图,∵AD BC ^,∴90BAD ABC Ð+Ð=°,又∵90CBE ABC Ð+Ð=°,∴BAD CBE Ð=Ð,∴3tan tan 4CE BAD CBE BE ÐÐ===,故答案为:34.13.【分析】本题考查了切线的性质,解直角三角形,平行线的判定与性质等知识,根据相切可得90ADO Ð=°,再根据特殊角的正切值可得30A Ð=°,即可得60AOD Ð=°,再证明OD BC ∥,即可得90C ADO Ð=Ð=°,1302CBD ABC Ð=Ð=°,问题随之得解.【详解】O Qe 与AC 相切于点D ,\^AC OD ,90ADO \Ð=°,AD =Q ,tan OD A AD \==,30A \Ð=°,即60AOD Ð=°,BD Q 平分ABC Ð,OBD CBD \Ð=Ð,OB OD =Q ,OBD ODB \Ð=Ð,ODB CBD \Ð=Ð,OD BC \∥,90C ADO \Ð=Ð=°,60ABC \Ð=°,即1302CBD ABC Ð=Ð=°,∵30A Ð=°\162BC AB ==,∵30CBD Ð=°,tan 306CD BC \=×°==14.53π﹣【分析】根据题意和图形,作出合适的辅助线,即可求得阴影部分的面积.【详解】解:连接OE ,如图,∵CE ∥OA ,∴∠BCE=90°,∵OE=4,OC=2,∴∴∠CEO=30°,∠BOE=60°,∴S 阴影部分=S 扇形BOE ﹣S △OCE ﹣S 扇形BCD =2604360p ´´ ﹣12 ﹣2902360p ´´=53π﹣故答案为53π﹣【点睛】本题考查扇形面积的计算、等边三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.154或307【分析】分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;由相似三角形的性质列比例式求解即可.【详解】解:∵∠C=90°,AC=6,BC=8,∴10AB==,①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AC,∴△BPQ∽△BCA,∴BQ PQ BA AC=,∴10106x x-=,∴x=154,∴AQ=154.②当AQ=PQ,∠PQB=90°时,如图2,设AQ=PQ=y.∵∠PQB=∠C=90°,∠B=∠B,∴△BQP∽△BCA,∴PQ BQ AC BC=,∴1068y y-=,∴y =307.综上所述,满足条件的AQ 的值为154或307.【点睛】本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.16.(1)(2)(3),2x =【分析】本题考查了二次根式的乘除运算,含三角函数的运算,解一元二次方程等知识,(1)根据二次根式的乘除运算法则计算即可;(2)代入特殊角的三角函数值,再计算即可;(3【详解】(1==(2()1tan 60sin 451-°-°--)11-=+--1=1=+;(3)22510x x -+=,∵2a =,=5b -,1c =,∴()22Δ4542117b ac =-=--´´=,∴x =∴1x 17.(1)85,87,七;(2)220(3)八年级,理由见解析【分析】(1)根据中位数和众数的定义即可求出答案;(2)分别求出七、八年级优秀的比例,再乘以总人数即可;(3)两组数据的平均数相同,通过方差的大小直接比较即可.【详解】(1)解:把七年级10名学生的测试成绩排好顺序为:71,76,79,83,84,86,87,90,90,94,根据中位数的定义可知,该组数据的中位数为8486852a +==,八年级10名学生的成绩中87分的最多有3人,所以众数87b =,A 同学得了86分大于85分,位于年级中等偏上水平,由此可判断他是七年级的学生;故答案为:85,87,七;(2)562002002201010´+´=(人),答:该校这两个年级测试成绩达到“优秀”的学生总人数为220人;(3)我认为八年级的学生掌握国家安全知识的总体水平较好,理由:因为七、八年级测试成绩的平均数相等,八年级测试成绩的方差小于七年级测试成绩的方差,所以八年级的学生掌握防震减灾科普知识的总体水平较好.【点睛】本题考查中位数、众数、方差的意义和计算方法以及用样本估计总体,理解各个概念的内涵和计算方法是解题的关键.18.2.2米【分析】过点A 作AG BC ^于点G ,AF CE ^于点F ,则四边形AFCG 是矩形,在Rt ABG △中,求得,BG AG ,进而求得,,CG AF DF ,根据CD CF DF =-,即可求解.【详解】解:如图所示,过点A 作AG BC ^于点G ,AF CE ^于点F ,则四边形AFCG 是矩形,依题意, 16BAG Ð=°,5AB =(米)在Rt ABG △中,sin 5sin1650.28 1.4GB AB BAG =´Ð=´°»´=(米),cos1650.96 4.8AG AB =´°»´=(米),则 4.8CF AG ==(米)∵4BC =(米)∴4 1.4 2.6AF CG BC BG ==-=-=(米)∵45ADF Ð=°,∴ 2.6DF AF ==(米)∴ 4.8 2.6 2.2CD CF DF =-=-=(米).【点睛】本题考查了解直角三角形的应用,添加辅助线构造直角三角形是解题的关键.19.(1)2010819...y x x =-++(2)该男生在此项考试中能得满分.【分析】(1)已知顶点坐标为(4,3.5),设成顶点式2435().y a x =-+,将(0,1.9)代入求出a 的值,即可求出函数表达式.(2)根据(1)中的表达式,求出0y =时x 的值,即D 点的坐标,则可知OD 的长,再与9.7作比较,即可判断是否得满分.【详解】(1)设2435().y a x =-+将(0,1.9)代入得163519..a +=解得0.1a =-201435.().y x \=--+2010819...x x =-++(2)当0y =时,20108190...x x -++=2x4x ===14240x x ==<(舍去)257324935..,=<Q57.>497.\+>∴该男生在此项考试中能得满分.【点睛】本题主要考查了求二次函数表达式,及二次函数的实际应用,熟练掌握求二次函数表达式式是解题的关键.20.(1)见解析(2)6【分析】(1)根据圆内接四边形的性质可得CDF ABC Ð=Ð,再结合圆周角定理以及角平分线的性质可得A ABC CB =Ð∠,问题即可得证;(2)先得出90BAD Ð=°,再结合1tan 2AD ABD ABÐ==,勾股定理可得2AD =,4AB =;结合(1)证明BAD FAB V V ∽,即可求出8AF =,问题随之得解.【详解】(1)证明:Q 四边形ABCD 为O e 的内接四边形,CDF ABC \Ð=Ð,EDF ADB Ð=ÐQ ,ADB ACB Ð=Ð,EDF ACB \Ð=Ð,DF Q 平分CDE Ð,CDF EDF \Ð=Ð,ABC ACB \Ð=Ð,AB AC \=;(2)由题意可得,BD 是O e 的直径,90BAD \Ð=°,1tan 2AD ABD AB \Ð==,即12AD AB =,又O QeBD \=又∵222BD AD BA =+,2AD \=,4AB =,由 (1)可知,ADB ACB ABC Ð=Ð=Ð,BAD FAB Ð=Ð,BAD FAB \V V ∽,\AB AD AF AB =,\424AF =,8AF \=,826DF AF AD \=-=-=,DF \的长为6.【点睛】本题主要考查了圆内接四边形的性质,三角函数,圆周角定理,相似三角形的判定与性质,等角对等边,勾股定理等知识,熟练掌握圆内接四边形的性质,相似三角形的判定与性质是解答本题的关键.21.(1)260y x =-+(2)18元(3)19元,198元【分析】(1)利用待定系数法求解即可;(2)根据题意可列出关于x 的一元二次方程,解出x 的值,结合x 的取值范围求解即可;(3)根据题意可列出w 与x 的函数关系式,再根据二次函数的性质求解即可.【详解】(1)解:设y 与x 之间的函数关系式为()0y kx b k =+¹,由所给表格可知:36123613k b k b=+ìí=+î,解得:260k b =-ìí=î,故y 与x 的函数关系式为260y x =-+;(2)解:根据题意得:()()10260192x x --+=,解得:x x 121822==,.又∵1019x ££,∴18x =,答:销售单价应为18元.(3)解:()()()210260220200w x x x =--+=--+,∵20a =-<,∴抛物线开口向下.∵对称轴为直线20x =,∴当1019x ££时,w 随x 的增大而增大,∴当19x =时,w 有最大值,max 198W =.答:当销售单价为19元时,每天获利最大,最大利润是198元.【点睛】本题考查一次函数、二次函数的实际应用,一元二次方程的实际应用.理解题意,找出等量关系,列出等式是解题关键.22.(1)223y x x =--+(2)65124M y -££-(3)01p x ££-【分析】本题考查二次函数的图象及性质、待定系数法求二次函数解析式,熟练掌握二次函数的图象及性质,数形结合以及分类讨论思想是解题的关键.(1)用待定系数法求函数的解析式即可;(2)由抛物线的对称轴为直线=1x -,89MN ££,可得点N 的横坐标的取值范围为94112N x -££-,即732N x ££,由于当732N x ££时,y 随x 的增大而减小,求出72x =时,27765()23224y =--´+=-,当3x =时,2323312y =--´+=-.最后求解即可;(3)将3y =代入223y x x =--+得:2323x x =--+,解得:10x =,22x =-,将=3y -代入223y x x =--+得:2323x x -=--+,解得:1211x x =--=-+P x 的取值即可.【详解】(1)解: (0,3)C Q ,3OC \=.又3OC OB =Q ,1OB =∴,(1,0)B \.(1,0)B Q ,(0,3)C 为抛物线2y x bx c =-++上的点,\将(1,0)B ,(0,3)C 代入,得103b c c -++=ìí=î,解得23b c =-ìí=î,\抛物线的解析式为223y x x =--+.(2)Q 抛物线的对称轴为直线=1x -,89MN ££,\点N 的横坐标的取值范围为94112N x -££-,即732N x ££,当732N x ££时,y 随x 的增大而减小,当72x =时,27765()23224y =--´+=-,当3x =时,2323312y =--´+=-.\点N 的纵坐标N y 的取值范围为65124N y -££-.M N y y =Q ,\点M 的纵坐标M y 的取值范围为65124M y -££-.(3)Q 点P 与点A 的纵坐标的差的绝对值不超过3,\将3y =代入223y x x =--+得:2323x x =--+,解得:10x =,22x =-,将=3y -代入223y x x =--+得:2323x x -=--+,解得:1211x x =-=-P \点横坐标P x 的取值范围是:12P x -££-或01P x ££-+Q 点P 是抛物线上对称轴右侧任意一点,P \点横坐标P x 的取值范围是: 01P x ££-23.(1)12,14;(2)AE (答案不唯一),证明见解析;(33m £<【分析】(1)根据矩形的性质,结合折叠知识,得出HC DC ==AEH CFH V V ≌,得出AH CH ==,得出AC =sin ACB Ð;设DG GH x ==,则32GE x =-,在Rt GEH V 中,根据勾股定理,列出关于x 的方程,解方程得出x 的值,求出,GE CG ,即可得出答案;(2)根据1sin 2ACB Ð=,得出30ACB Ð=°,根据90DCB Ð=°,得出60DCA Ð=°,根据折叠得出1302DCG GCH DCH Ð=Ð=Ð=°,即可得出GCH HCF Ð=Ð,从而可以证明GCH HCF V V ∽,根据相似三角形的性质,即可得出结论;(3)先根据折叠确定点D ¢的轨迹,然后根据其轨迹找出D A ¢的最大值和最小值,即可确定m 的取值范围.【详解】解:(1)∵四边形ABCD 为矩形,∴DC AB ==,90ADC Ð=°,∵点D 的对应点D ¢恰好与点H 重合,∴HC DC ==∵矩形纸片ABCD 对折,使点D 与点A 重合,点C 与点B 重合,折痕为EF ,然后展开,EF 与CA 交于点H ,∴AE CF =,90AEH CFH Ð=Ð=°,AHE CHF Ð=Ð,∴AEH CFH V V ≌,∴AH CH ==,12EH HF EF ===即AC =∴1sin 2AB ACB AC Ð===;在Rt ACD △中,3AD ===,根据折叠可知,DG GH =,1322DE AE AD ===,设DG GH x ==,32GE x =-,在Rt GEH V 中,222GH GE EH =+,即22232x x æö=-+ç÷èø,解得:1x =,∴31122GE =-=,2CG ===,∴11224EG CG ==;故答案为:12;14.(2)∵1sin 2ACB Ð=,∴30ACB Ð=°,∵90DCB Ð=°,∴903060DCA Ð=°-°=°,根据折叠可知,1302DCG GCH DCH Ð=Ð=Ð=°,∴GCH HCF Ð=Ð,∵90GHC HFC Ð=Ð=°,∴GCH HCF V V ∽,∴CG CH CH CF=,即2CH CG CF =×,∵CF BF AE DE ===,∴空白处可以填AE 或CF 或BF 或DE .故答案为:AE 或CF 或BF 或DE (填其中任意一条即可).(3)∵在将上面的矩形纸片ABCD 沿过点C 的直线折叠,点D 的对应点D ¢在以点C 为圆心,以CD 为半径的圆上,∴当点D ¢在AC 上时,D A ¢最小,即D A ¢的最小值为AH ,∴m ³,∵点D ¢落在矩形的内部或一边上,∴当点D ¢在点D 时,D A ¢最大,∵090a °<£°,∴D A ¢最大无法取到最大值3,m<,∴3综上分析可知,m3£<.m3£<.m【点睛】本题主要考查了矩形的折叠问题,熟练掌握矩形的性质、三角函数的定义、三角形全等的判定和性质,三角形相似的判定和性质,勾股定理的应用,根据折叠得出D¢的轨迹,是解题的关键.。
黑龙江哈尔滨市香坊区2023-2024学年九年级上学期期末数学试题(含答案)
香坊区2023—2024学年度上学期教育质量综合评价学业发展水平监测九年级数学学科试卷考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考场”、“座位号”在答题卡上填写清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸上、试题纸上答题无效。
4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工吴波、字迹清楚。
5.保证卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。
第Ⅰ卷选择题(共30分)(涂卡)一、选择题(每题3分,共计30分)1.若点是反比例函数图象上一点,则常数的值为()A.3B.C. D.2.下列图形中,只是中心对称图形的是()A.B. C. D.3.将抛物线向右平移3个单位,再向上平移4个单位,得到的抛物线是()A. B.C. D.4.如图是用5个相同的立方体搭成的几何体,其俯视图是()A. B. C. D.5.在中,,,,则的值是()A.5C.46.在一个不透明的袋子中有2个红球,3个绿球和4个蓝球,它们只有颜色上的区别,若从袋子里随机取出一()1,3A ()0ky k x=≠k 3-3232-2y x =()234y x =-+()234y x =++()234y x =+-()234y x =--Rt ABC △90C ∠=︒2BC =3sin 4A =AC球,则取出这个球是绿球的概率为()A.B.C.D.7.如图,为钝角三角形,将绕点按逆时针方向旋转得到,连接,若,则的度数为()A. B. C. D.8.如图,四边形内接于,、为对角线,经过圆心,若,则的度数为()A. B. C. D.9.如图,已知,,则下列比例中错误的是()A.B.C.D.10.如图,抛物线与轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③;④其中正确的结论有()25151349ABC △ABC △A 120︒AB C ''△BB 'AC BB ''P CAB '∠45︒60︒70︒90︒ABCD O e AC BD BD O 40BAC ∠=︒DBC ∠40︒50︒60︒70︒DEBC P EF AB P EF CEAB CA=CE CFCA CB=DE AEBC EC=AD BFAB BC=()20y ax bx c a =++≠x ()4,01x =0abc <240b ac ->20a b +=420a b c -+=A.1个B.2个C.3个D.4个第Ⅱ卷非选择题(共90分)二、填空题(每题3分,共计30分)11.在平面直角坐标系中,点关于原点对称的点的坐标为________.12.已知二次函数的顶点坐标为________.13.若点,在反比例函数的图象上,则,的大小关系用“<”连接的结果为________.14.如图,设在小孔口前处有一支长的蜡烛,经小孔形成的像,恰好照在距小孔后面处的屏幕上,则像的长________.15.如图,是的切线,切点为,的延长线交于点,若,则的度数为________.16.如图,是操场上直立的一个旗杆,旗杆上有一点,用测角仪(测角仪的高度忽略不计)测得地面上的点到点的仰角,到点的仰角,若米,则旗杆的高度________米.17.某学习小组由1名男生和3名女生组成,在一次合作学习中,若随机抽取2保同学汇报展示,则抽到1名()2,3A -B ()224y x =-+()1,A a -()2,B b ()0ky k x=<a b O 24cm 21cm AB AB O A B ''O 16cm A B ''cm PA O e A PO O e B 40P ∠=︒B ∠AC AC B D B 45BDC ∠=︒A 60ADC ∠=︒3BC =AC =男生和1名女生的概率为________.18.一个扇形的圆心角为,弧长为,则此扇形的面积是________.19.在矩形中,点在直线上,,若,,则的正切值为________.20.如图1,在中,,是上一点,过点作交于,将绕点顺时针旋转到图2的位置,若,,则线段的长为________.图1图2三、解答题(共计60分)21.(本题7分)先化简,再求代数式的值,其中.22.(本题7分)如图所示,在平面直角坐标系中,为坐标原点,的各顶点坐标分别为,,.(1)画出关于原点中心对称的图形;(2)将绕点顺时针旋转得到,请画出;120︒4cm πABCD E BC 2BE CE =2AB =3AD =DAE ∠Rt ABC △90ABC ∠=︒D AB D DEBC P AC E ADE△A 54BD CE =8AB =BC 2242x x x x x ⎛⎫++÷- ⎪⎝⎭tan 602tan 45x =︒+︒O ABC △()1,1A -()2,3B -()3,2C -ABC △111A B C △ABC △C 90︒22A B C △22A B C △(3)连接并直接写出线段的长.23.(本题8分)如图,某座山的主峰观景平台高450米,登山者需由山底处先步行300米到达处,再由处乘坐登山缆车到达观景平台处.已知点,,,,,在同一平面内,,于,山坡的坡角为,缆车行驶路线与水平面的夹角为(换乘登山缆车的时间忽略不计).(1)求登山缆车上升的高度;(2)若小明步行速度为,登山缆车的速度为,求小明从山底处到达山顶处大约需要多少分钟(结果精确到).(参考数据:,,)24.(本题8分)如图,、、都是的半径,.(1)求证:;(2)若,,求的半径.25.(本题10分)把边长为的正方形硬纸板(如图1),在四个顶点处分别剪掉一个小正方形,折成一个长方体形的无盖盒子(如图2),折纸厚度忽略不计.21B A 21B A A B B D A B C D E F 90DFA ∠=︒BE DF ⊥E AB 30︒BD 53︒DE 30m /min 60m /min A D 0.1min sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈OA OB OC O e 2ACB BAC ∠=∠2AOB BOC ∠=∠8AB=BC =O e 44cm图1图2(1)要使折成的盒子的底面积为,剪掉的正方形边长应是多少厘米?(2)折成的长方体盒子侧面积(四个侧面的面积之和)有没有最大值?如果没有,说明理由:如果有,求出这个最大值,并求出此时剪掉的正方形边长.26.(本题10分)菱形中,对角线、相交于点,,点为上一点,点为上一点,连接,将线段绕点顺时针旋转得到对应线段,连接.图1图2图3图4(1)当点与点重合时:①如图1,点落在对角线上,则线段、之间的数量关系为________;②如图2,点不落在对角线上,则①问中结论是否成立,为什么?(2)当点与点不重合时:①如图3,点不落在对角线上,则(1)问中结论,________;(填“成立”或“不成立”)②如图4,在①的条件下,延长交于点,交于点,若,,,求线段的长.27.(本题10分)如图,在平面直角坐标系中,点为坐标原点,抛物线交轴负半轴于点,交轴正半轴于点,交轴于点,直线经过点,并抛物线于点.2576cm ABCD AC BD O 60ABC ∠=︒F BO E AD EF FE F 60︒FG DG A E G BD GF GD G BD A E G BD FG CD M OC N 2DF BF =1ON =:5:8CM DE =MN O 23y ax bx =+-x A x ()3,0B y C 112y x =+A D图1图2图3(1)如图1,求抛物线解析式;(2)如图2,为抛物线第四象限上一点,连接、,设点的横坐标为,的面积为,求与之间的函数关系式,并直接写出自变量的取值范围;(3)如图3,在(2)的条件下,过点作交轴于点,垂足为点,为抛物线第二象限上一点,连接,,过点作轴交于点,若,求的值及点坐标.P PA PB P PAB △S S P PH AD ⊥y F H G FG 135PAB GFO ∠+∠=︒P PE x ⊥AD E :4:5HE DE =S G香坊区2023-2024学年度九年级数学参考答案一、选择题:序号12345678910答案ADABDCDBCC二、填空题:三、解答题:21.解:原式………………………………………………1分…………………………………………1分……………………………………………………………………1分∵……………………2分∴原式………………………………2分22.(1)画图3分(2)画图3分(3)分2222422x x x x x x ⎛⎫++=÷- ⎪⎝⎭2242x x x x +-=÷22(2)(2)x x x x x +=⋅+-22x =-tan 602tan 45212x =+=+⨯=︒︒22x ====-21B A =23.(1)解:如图,过点作于,∴∵,∴,∵,∴四边形是矩形,…………………………1分在中,,,,∴,……………………………………1分∵∴………………………………1分答:登山缆车上升的高度;………………………………1分(2)解:在中,,,,………………………………1分∴从山底处到达山顶处大约需要:………………………………2分答:从山底处到达山顶处大约需要.…………………………1分24.(1)证明:∵,B BC AF ⊥C 90BCF ∠=︒BE DF ⊥90BEF ∠=︒90DFA ∠=︒BEFC Rt ABC △90ACB ∠=︒30A ∠=︒300m AB =1150m 2EF BC AB ===450mDF =450150300m DE DF EF =-=-=300m DE =Rt BDE △90DEB ∠=︒53DBE ∠=︒300DE =300375m sin 530.8DE BD ===︒A D 30037516.2516.3min 3060+=≈A D 16.3min »»AB AB =∴……………………1分∵,∴,………………………………1分∵∴……………………………………1分∴………………………………1分(2)解:∵,作半径于,交圆于点,连接,∴弧弧,,∴,∴,∵,∴,∵,………………………………1分∴中,……………………1分设圆的半径,∴,∴中,,∴,…………………………1分解得,∴的半径为5………………………………………………1分2AOB ACB ∠=∠»»BCBC =2BOC BAC ∠=∠2ACB BAC∠=∠BOC ACB ∠=∠AOB BOC ∠=∠8AB =OM AB ⊥D O M BM AM =BM 4AD BD ==AOM BOM ∠=∠2AOB BOM ∠=∠2AOB BOC ∠=∠BOM BOC ∠=∠BC =BM BC ==Rt BDM △2DM ===O OM OB r ==2OD OM DM r =-=-Rt BOD △222OB OD BD =+()22224r r =-+5r =O e25.解:(1)设剪掉的正方形的边长为.则,……………………………………2分即,解得(不合题意,舍去),…………………………1分.…………………………………………1分∴剪掉的正方形的边长为;………………………………1分(2)侧面积有最大值.设剪掉的小正方形的边长为,盒子的侧面积为,则与的函数关系为:,即,……………………1分即,………………………………1分∵二次项系数为,自变量的取值范围为:…………………………1分∴当时,有最大值,.………………………………1分即当剪掉的正方形的边长为时,长方形盒子的侧面积最大为.……………………1分26.答案:(1)①………………………………2分②仍成立,理由如下:如图连接、,∵为菱形,∴,,∴为等边三角形,∴,∴,,∵,,∴为等边三角形,…………………………1分∴,,∴,∴,…………1分∴,∵为菱形,∴,平分,∴,∴,∴,又∵,,∴,∴,又∵,∴……1分(2)①成立………………1分②连接,,过点作于点,过做于点,∴,,∵,,∴为等边三角形,∵菱形,∴,,,,,∴,设,,,,,在中,,∴,在中,,∴,∴,∴,,cm x ()2442576x -=2212x -=±134x =210x =10cm cmt 2cm y y ()4442y t t =-28176y t t =-+()2811968y t =--+80-<022t <<11t =y 968y =最大11cm 2968cm GF GD =GF GD =CG AG ABCD AB BC AD CD ===60ABC ∠=︒ABC △AB AC =AC CD =60BAC ∠=︒AF FG =60AFG ∠=︒AFG △60FAG ∠=︒AF AG FG ==BAF CAG ∠=∠ABF ACG ≅△△30ABO ACG ∠=∠=︒ABCD AB CD P AC BCD ∠60ACD BAC ∠=∠=︒603030GCD ACD ACG ∠=∠-∠=︒-︒=︒ACG DCG ∠=∠AC CD =CG CG =ACG DCG ≅△△GD GA =AG GF =GF GD =AF EG G GT OD ⊥T M MH OC ⊥H 90FTG ∠=︒90MHC OHM ∠=∠=︒AF FG =60AFG ∠=︒AFG △ABCD OB OD =OA OC =30ABO CBO ∠=∠=︒30ADO CDO ∠=∠=︒AC BD ⊥90BOC BOA ∠=∠=︒2BF a =24DF BF a ==6BD a =3OB OD a ==OF a =ABO △tan 30AO OB︒=tan 30AO OB =⨯︒=AOF △tan AO AFO OF ∠===60AFO ∠=︒EFG AFO ∠=∠AFE DFG ∠=∠18090FAD AFD ADF ∠=︒-∠-∠=︒∴,,∴,……………………1分∴,,,∴,∴,∴,,∴,∴,∴,∴,∴,………………………………1分设,则,,,∴,,,,,在中,,,在中,.…………1分在中,,∴分27.(1)∵直线经过点,当时,,∴∵抛物线经过点、两点∴……………………1分解得:∴抛物线解析式为………………………………1分(2)过点作轴,垂足为点90FAD FTG ∠=∠=︒FE FG =FAE FTG ≅△△FA FT =AE TG =9030FAO AFO ∠=︒-∠=︒22AF FO a ==2FT a =OF OT a ==90BOC BTG ∠=∠=︒OC GT P FON FTG :△△12FO ON FT TG ==2TG =2AE TG ==5CM k =8DE k =82AD k =+41AO k CO =+=4CN k =)41FO k =+1522CH CM k ==32HN k =MH =NMH △tan 32HNM ∠==HNM FNO ∠=∠FNO △tan OF FNO ON∠==1k =NMH △MN ==MN =112y x =+A 0y =2x =-()2,0A -23y ax bx =+-()2,0A -()3,0B 04230933a b a b =--⎧⎨=+-⎩1212a b ⎧=⎪⎪⎨⎪=-⎪⎩211322y x x =--P PK x ⊥K∵,∴∵,∴,∴…………………………1分∵点在为抛物线第四象限上,∴设,∴∴即:………………………………1分………………………………1分(3)∵在抛物线上,设∵在直线上,∴解得:,(舍),∴…………………………1分()2,0A -2AO =()3,0B 3BO =235AB =+=P P 211,322P t t t ⎛⎫-- ⎪⎝⎭211322PK t t =-++21111532222S AB PK t t ⎛⎫=⋅=⨯⨯-++ ⎪⎝⎭25515442S t t =-++()03t <<D 211322y x x =--211,322D m m m ⎛⎫-- ⎪⎝⎭D 112y x =+211131222m m m --=+14m =22m =-()4,3D∵直线交轴于点,当时,,∴,∴过点作,过点作,垂足分别为、∴∵,∴设,∴,∴∴设,∴,,∴,∵轴,在直线上,∴∴∴∵,,∴∴,∴解得:,(舍)………………………………1分∴……………………………………1分112y x =+y L 0x =1y =1LO =1tan 2LAO ∠=H HM PE ⊥D DN PE ⊥M N 90HME N ∠=∠=︒PH AD ⊥90PHE ∠=︒EHM α∠=90MHP α∠=︒-HPM LAO α∠=∠=1tan tan tan 2LAO EHM HPM ∠=∠=∠=EM k =2HM k =4PM k =25HM PE =PE y P E AD 1,12E t t ⎛⎫+ ⎪⎝⎭2211111342222PE t t t t t ⎛⎫=+---=-++ ⎪⎝⎭221285555HM PE t t ==-++4DN t=-HEM NED ∠=∠HME N ∠=∠HEM DEN:△△HE HM DE DN=2128455554t t t -++=-12t =24t =255155442S t t =-++=∴∴,,∴∴,∵,∴∵∴,∴延长交轴于点,过点作∴∵∴∴,∴过点作轴,∴,,∴在中,在中,设,∴,∴,∴∴,∴,∴…………………………1分∵,∴解析式为:∵在抛物线上,设∵在上,∴解得:,(舍)∴…………………………………………1分(不同解法请按相应标准给分)()2,2P -2PK =()224AK =--=1tan tan 2PK PAB LAO AK ∠===∠PAB LAO ∠=∠LAO LFH ∠=∠PAB LFH ∠=∠135PAB GFO ∠+∠=︒135LFH GFO ∠+∠=︒135GFP ∠=︒GF x T T TQ FP⊥45TFQ ∠=︒90LOA FHL ∠=∠=︒LAO LFH∠=∠1tan tan 2LAO LFH ∠=∠=tan 2tan FRO TRQ ∠==∠P PJ y ⊥2PJ =2OJ =4JF =422FO =-=Rt FOR △FR =Rt RQT △RQ a =2TQ FQ a ==RT =2RF a a a =-=a =5RT ==156OT =+=()6,0T ()0,2F FT 123y x =-+G 211,322G n n n ⎛⎫-- ⎪⎝⎭G FT 211132223n n n --=-+13n =-2103n =()3,3G -。
江苏省徐州市2023-2024学年九年级上学期期末数学试题(含答案)
2023-2024学年度第一学期期末抽测九年级数学试题一、选择题(每题3分,共24分)1.若⊙O的半径为8cm,点P到圆心的距离为7cm,则点P与⊙O的位置关系()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.无法确定2.若△ABC∽△A’B’C’,且相似比为1:2,则△ABC与△A’B’C’的面积比为()A.1:2 B.1:4 C.2:1 D.4:13.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据为A样本的每个数据都加2,则A,B两个样本具有相同的()A.平均数B.众数C.中位数D.方差4.若关于x的一元二次方程x²-3x+c=0有两个相等的实数根,则实数c的值为()A.―94B.94C.-9 D.95.在Rt△ABC中,∠C=90°,AC=4,BC=5,那么sinB的值是()A.43B.34C.45D.356.将函数y=x²的图象向右平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x-1)² B.y=x²-1 C.y=(x+1)² D.y=x²+17.二次函数y=ax²+bx+c的图象如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0 C.a+b+c>0 D.当x<-1时,y随x的增大而减小8.如图,A,B,C为圆形纸片圆周上的点,AC为直径,将该纸片沿AB折叠,使AB与AC交于点D,若BC 的度数为35°,则AD的度数为()A.108° B.110° C.120° D.145°二、填空题:(每题4分,共32分)9.若x2=y3,则xy=.10.两次抛掷同一枚质地均匀的硬币,均出现正面向上的概率是.11.二次函数y=(x-2)²+1的图象的顶点坐标是.12.《周髀算经》中记载了“偃矩以望高”的方法.“矩”指两条边呈直角的曲尺ABC,“偃矩以望高”的意思是用仰立放的“矩”可测量物体的高度,如图点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC交于点D,若AB=40cm,BD=20cm,AQ=12m,则树高PQ= m.13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若母线长l为3cm,扇形的圆心角θ为120°,则圆锥的底面半径r为cm.14.某招聘考试分笔试和面试两种,小明笔试成绩90分,面试成绩为80分,若笔试成绩、面试成绩按3:2计算,则小明的平均成绩为分.15.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD= °.16.如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB 的延长线于点G,若AF=2,FB=1,则MG= .三、解答题:(本大题共9小题,共84分)17.(10分)(1)计算:20230―(―1)2024+12―tan60°(2)解方程:3x2―2x―1=0 18.(8分)如图,将下列4张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为2的概率为;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌上的数字相同的概率.19.(8分)某校舞蹈队共16名学生,将其身高(单位:cm)数据统计如下:A.16名学生身高:162,163,163,165,166,166,166,167,167,168,169,169,171,173,173,176;B.16名学生身高的平均数、中位数、众数:平均数中位数众数167.75m n(1)m= ,n= ;(2)对于不同组的学生,如果一组学生身高的方差越小,则认为改组舞台呈现效果越好,据此推断,下列两组学生中,舞台呈现效果更好的是;(填“甲组”后“乙组”)甲组身高163166166167167乙组身高162163165166176(3)该舞蹈队计划选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为169,169,173,他们身高的方差为32.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生身高的方差9,其次要求所选的两名学生与已确定的三名学生所组成的五名学生身高的平均数尽可能大,则选出的另小于329外两名学生身高分别为和.20.(10分)已知函数y=―x2+bx+c的图象经过点A(-1,0),B(0,3).(1)求该函数的表达式;(2)在所给的方格纸中,画该函数的图象;(3)该函数图象上到x轴距离等于3的点,共有个.21.(10分)如图,学校计划围一个矩形花园,它的一边是墙(长度大于10m),其余三边利用长为10m的围栏,试确定其余三边的长度,使其分别满足下列条件:(1)花园的面积为12㎡;(2)花园的面积最大.22.(8分)如图,在△ABC中,AC=4,∠B=66°,以AC为直径的⊙O与BC交于点D,E为ACD上一点,且∠EDC=40°.(1)求CE的长;(2)若∠DCE=74°,判断直线AB与⊙O的位置关系,并说明理由.23.(10分)如图,位于大同街的钟鼓楼曾是民国时期徐州的最高建筑,某校综合实践小组利用测角仪测量钟鼓楼的高度AO,测角仪的目镜距离地面1m,他们在地面B处测得钟鼓楼顶部A的仰角为30°,然后沿地面前进28m至点D处,测得点A的仰角为75°,已知BC=DE=OH=1m.(1)求AC的长(结果保留根号);(2)求钟鼓楼的高度AO(结果精确到1m).(参考数据:2≈1.41,3≈1.73)24.(8分)如图,P是⊙O外一点,用两种不同的方法过P作⊙O的一条切线.要求:(1)用无刻度的直尺和圆规作图;(2)保留作图痕迹,不写作法.25.(12分)如图,在平面直角坐标系中,抛物线y=ax²+bx经过点A(3,-3),对称轴是直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1,过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E,在抛物线对称轴右侧,是否存在点B,使以B,C,D,E为顶点的四边形面积为3若存在,求出t的值;若不存在,请说明理由.22023~2024学年度第一学期期末抽测九年级数学参考答案题号12345678答案A B D B C A C B 9. 10. 11. 12.613.1 14.86 15.36 1617.(1)原式(4分). 5分(2)法一:..6分(7分)(8分).即. 10分法二:,(7分)或,(8分).10分18.(1); 3分(2)列表或画树状图(略). 6分共有12种等可能的结果(7分),其中2种符合题意.. 8分19.(1)167,166;(4分)(2)甲组;(6分)(3)171,173. 8分20.(1)将和代入,得 2分解得.(3分)∴函数表达式为. 4分(2)列表(略),(6分) 函数图象如图; 8分(3)4. 10分21.(1)设其余三边的长度分别为. 1分2314(2,1)11=-+-=3,2,1a b c ==-=-224(2)43(1)16b ac -=--⨯⨯-=x =246±==1211,3x x ==-(1)(31)0x x -+=(1)0x -=(31)0x +=1211,3x x ==-1221126P ∴==()1,0-()0,32y x bx c =-++10,3.b c c --+=⎧⎨=⎩2b =223y x x =-++m,m,(102)m x x x -由题意,得.3分解得. 4分答:其余三边的长度分别为或. 5分(2)设其余三边的长度分别为.花园的面积为. 6分由题意,得. 7分整理,得. 8分∴当时,y有最大值. 9分答:其余三边的长度分别为时,花园的面积最大. 10分22.(1)连接.. 1分∵直径,∴半径. 2分∴弧的长为. 3分(2)与相切. 4分.,. 5分,. 6分,. 7分,即.与相切. 8分23.(1)如图,过点E 作于点F . 1分在中,,..(102)12x x -=121,3x x ==2m,2m,6m 3m,3m,4m m,m,(102)m x x x -2m y (102)y x x =-2525222y x ⎛⎫=--+ ⎪⎝⎭52x =25255m,m,5m 22OE 280COE EDC ∠=∠=︒4AC =2OC OE ==CE 808223609ππ⨯⨯=AB O ,OC OE OCE OEC =∴∠=∠ 80COE ∠=︒ 50OCE ∴∠=︒74DCE ∠=︒ 24ACB DCE OCE ∴∠=∠-∠=︒66B ∠=︒ 90B ACB ∴∠+∠=︒90BAC ∴∠=︒OA AB ⊥AB ∴O EF AC ⊥Rt CFE △30FCE ∠=︒28CE BD ==sin 30,cos30EFCFCE CE ︒=︒=(2分),.3分在中,. 4分. 5分. 6分(2)在中,.. 7分(8分).9分答:钟鼓楼的高度为.10分24.(两种方法,各4分)参考解法:法一:如图①,利用“直径所对的圆周角等于”法二:如图②,利用“三角形全等的性质”法三:如图③,利用“三角形中位线的性质” 图① 图② 图③25.(1)由题意,得(2分) 解得 4分(2)由(1)得抛物线为.当时,;当时,.∴点. 5分设对应的函数表达式为,把代入得;对应的函数表达式为,∴点. 6分①当时,如图①,过点D 作于点F ,则.此时. 8分sin 3014EF CE ∴=⋅︒=cos30CF CE =⋅︒=Rt AFE △753045FAE AEH ACE ∠=∠-∠=︒-︒=︒45,14ACB DCE AF EF ∴∠=∠=︒∴==14AC CF AF ∴=+=Rt ACH△30,14ACH AC ∠=︒=sin 30,sin 307AH AH AC AC︒=∴=⋅︒=+8AO AH OH ∴=+=20≈20m 90︒933,2.2a b b a+=-⎧⎪⎨-=⎪⎩1,4.a b =⎧⎨=-⎩24y x x =-x t =24y t t =-1x t =+22(1)4(1)23y t t t t =+-+=--()()22,4,1,23B t t t C t t t -+--OA y kx =(3,3)-33,1k k -=∴=-OA ∴y x =-(,),(1,1)D t t E t t -+--23t <<DF CE ⊥1DF =()()2222()43,23[(1)]2BD t t t t t CE t t t t t =---=-+=----+=--由.解得. 9分②当时,点B 与D 重合,四点B 、C 、D 、E 不构成四边形.③当时,如图②,过点D 作于点H ,则.此时.. 10分解得(舍),(舍). 11分综上所述,. 12分 图① 图②注:以上各题如有另解,请参照本评分标准给分.()22113()321222DBEC S BD CE DF t t t t =+⋅=-++--⋅=四边形52t =3t =3t >DH CE ⊥1DH =()()22224()3,23[(1)]2BD t t t t t CE t t t t t =---=-=----+=--()22113()321222BDEC S BD CE DH t t t t =+⋅=-+--⋅=四边形113t =+<213t =<52t =。
第一学期期末考试试题( 卷)九年级数学附答案
1O DCB AP第一学期期末考试试题( 卷)九年级数学1.抛物线3)5(32+--=x y ,下列说法正确的是( )A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(-5,3)D.开口向上,顶点坐标(-5,3) 2.抛物线22x y -=经过平移得到3)1(22-+-=x y ,平移方法是( )A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位3.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,且△ABC 的周长为18,则△DEF 的周长为( )A .12B .27C .54D .81 4. 在Rt△ABC 中,各边的长度都扩大两倍,那么锐角A 的各三角函数( ) A .都扩大两倍 B.都缩小两倍 C .不变D .都扩大四倍5. 计算:︒∙︒+︒30cos 60tan 45cos 2等于( )A .1 B.2 C. 3 D . 26.由6个大小相同的正方体搭成的几何体如右图所示,则关于它的视图说法正确的是( )A .三个视图的面积一样大B .正视图的面积最大C .左视图的面积最大D .俯视图的面积最大 7.小刚走路时发现自己的影子越走越长,这是因为( )A .从路灯下走开,离路灯越来越远B .走到路灯下,离路灯越来越近C .人与路灯的距离与影子长短无关D .路灯的灯光越来越亮8. 如下左图,AB ∥CD ,AC 、BD 交于O ,BO=6,DO=3,AC=12,则AO 长为( )A .4B .6C .8D .109.如上右图所示,图中共有相似三角形( ) A .2对 B .3对 C .4对 D .5对 10. 如下图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )11. 如下左图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=53,则BC 的长是( ) A 、4cm B 、6cm C 、8cm D 、10cm12. 如上右图为二次函数y=ax 2+bx +c 的图象,在下列说法中:①ac <0; ②方程ax 2+bx +c=0的根是x 1= -1, x 2= 3 ③a +b +c >0 ④当x >1时,y 随x 的增大而增大。
九年级数学上学期期末检测试题(含答案)
九年级数学上学期期末检测试题(含答案)注意事项:本试题共8页,满分为150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并将考点、姓名、准考证号和座号填写在试题规定的位置.考试结束后,仅交回答题卡....... 第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.) 1.sin30︒的值为( ) A.1223 D.12.如图中几何体的左视图为( )A. B.C. D.3.如果25a b =,那么下列比例式中正确的是( ) A.25a b = B.25a b= C.52a b = D.25a b = 4.下列的各点中,在反比例函数1y x=图象上的点是( ) A.()2,4B.()1,5C.1,22⎛⎫⎪⎝⎭D.11,23⎛⎫⎪⎝⎭5.关于x 的一元二次方程2210kx x ++=有两个相等的实数根,则k 的值为( )A.2-B.1-C.0D.16.若点()11,y -,()21,y ,()32,y 在反比例函数ky x=(0k <)的图象上,则下列结论中正确的是( ) A.123y y y >> B.132y y y >>C.312y y y >>D.321y y y >>7.如图,在64⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC △的顶点均是格点,则sin ABC ∠的值是( )510 25D.458.一次函数y cx a =-(0c ≠)和二次函数2y ax x c =++(0a ≠)在同一平面直角坐标系中的图象可能是( )A. B.C. D.9.如图,在矩形ABCD 中,连接BD ,分别以B 、D 为圆心,大于12BD 的长为半径画弧,两弧交于P 、Q 两点,作直线PQ ,分别与AD 、BC 交于点M 、N ,连接BM 、DN .若3AB =,6BC =,则四边形MBND 的周长为( )A.15B.9C.154D.9410.如图,已知开口向上的抛物线2y ax bx c =++与x 轴交于点()1,0-,对称轴为直线1x =.下列结论:①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >.其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分.)11.如图,四边形ABCD ∽四边形A B C D '''',若55B ∠=︒,80C ∠=︒,110A ∠'=︒,则D ∠=______°.12.在一个不透明的袋子里装有若干个红球和6个黄球,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则估计袋子中红球的个数是______个. 13.如图,若点A 在反比例函数ky x=(0k ≠)的图象上,AM x ⊥轴于点M ,AMO △的面积为8,k =______.14.将抛物线()2213y x =-+向右移3单位,上移2单位所得到的新抛物线解析式为______. 15.定义一种运算:()sin sin cos cos sin αβαβαβ+=+,()sin sin cos cos sin αβαβαβ-=-. 例如:当60α=︒,45β=︒时,()321262sin 604522224-︒=⨯-⨯︒=, 则sin75︒的值为______.16.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒, 下列四个结论:①当2MN MC =时,则22.5BAM ︒∠=;②90AMN MNC ︒∠+∠=;③MNC △的周长不变;④若2DN =,3BM =,则ABM △的面积为15.其中正确结论的序号是______.三、解答题(本大题共10小题,共86分) 17.(6分)计算:()0π12sin60123︒---. 18(6分)2670x x +-=.19.(6分)如图,在菱形ABCD 中,CE AB ⊥于点E ,CF AD ⊥于点F ,求证:AE AF =.20.(8分)如图,12∠=∠,B D ∠=∠,9AE =,12AD =,20AB =.求AC 的长度.21.(8分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A .音乐;B .体育;C .美术;D .阅读;E .人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了______名学生; ②补全条形统计图(要求在条形图上方注明人数); ③扇形统计图中圆心角a =______度;(2)若该校有2800名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.22.(8分)为进一步加强疫情防控工作,长清区某学校决定安装红外线体温检测仪,对进入测温区域的人员进行快速测温(如图1),其红外线探测点O 可以在垂直于地面的支杆OP 上下调节(如图2),已知探测最大角(OBC ∠)为61°,探测最小角(OAC ∠)为37°.若该校要求测温区域的宽度AB 为1.4米,请你帮助学校确定该设备的安装高度OC .(参考数据:sin610.87≈︒,cos610.48︒≈,tan61 1.8≈︒,sin370.6≈︒,cos370.8≈︒tan370.75︒︒≈)23.(10分)某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个.现在采取提高商品定价减少销售量的办法增加利润,定价每增加1元,销售量净减少10个. (1)商店若将准备获利2000元,则定价应增加多少元?(2)若商店要获得最大利润,则定价应增加多少元?最大利润是多少? 24.(10分)如图,一次函数1y x =-的图象与反比例函数ky x=(0x >)的图象交于点()3,B a ,与x 轴交于点A .点C 在反比例函数ky x=(0x >)的图象上的一点,CD x ⊥轴,垂足为D ,CD 与AB 交于点E ,OA AD =.(1)求a ,k 的值;(2)若点P 为x 轴上的一点,求当PB PC +最小时,点P 的坐标;(3)F 是平面内一点,是否存在点F 使得以A 、B 、C 、F 为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由. 25.(12分)【发现问题】(1)如图1,已知CAB △和CDE △均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是______.(2)将图1中的CDE △绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F . ①判断线段AD 和BE 的数量关系,并证明你的结论; ②图2中AFB ∠的度数是______. 【探究拓展】(3)如图3,若CAB △和CDE △均为等腰直角三角形,90ABC DEC ︒∠=∠=,AB BC =,DE EC =,直线AD 和直线BE 交于点F ,分别写出AFB ∠的度数,线段AD 、BE 间的数量关系,并说明理由.26.(12分)综合与探究:如图,抛物线23y ax bx =+-(0a ≠)与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .(1)求此抛物线的函数表达式;(2)若点D 是第三象限抛物线上一动点,连接AD ,CD ,AC ,求ACD △面积的最大值,并求出此时点D 的坐标;(3)若点E 在抛物线的对称轴上,线段EB 绕点E 逆时针旋转90°后,点B 的对应点B '恰好也落在此抛物线上,请直接写出点E 的坐标.参考答案一、选择题(本大题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案ADCCDBABAD11. 115 12. 2 13.16- 14.()2245y x =-+ 15.426+ 16.①③. 三.解答题(本大题共10小题,共86分)17.(6分)计算:()03π12sin601231223332--︒+-=-= 18.(6分)2670x x +-=.公式法:算出64=△,11x ∴=,27x =-因式分解法:()()170x x -+=,11x ∴=,27x =- 配方法:()2316x +=,11x ∴=,27x =- 19.(6分) 证明:菱形ABCD ,AB AD BC CD ∴===,B D ∠=∠CE AB ⊥,CF AD ⊥.90BEC DFC ∴∠=∠=︒()BCE DCF AAS ∴△≌△(或者连接AC ,证()ACE ACF AAS △≌△) AE AF ∴=.20.(8分) 证明:12∠=∠,12BAE BAE ∴∠+∠=∠+∠,DAE BAC ∴∠=∠B D ∠=∠,DAE BAC ∴△∽△ AD AE AB AC ∴=,12920AC∴=,15AC ∴= 21.(8分)根据图中信息,解答下列问题: (1)①400;②60,60;③54 (2)1402800980400⨯=(人) 答:参加D 组(阅读)的学生人数为280人 (3)列表或画树状图正确共有12中等可能的结果,其中恰好抽到A ,C 两人同时参赛的有两种P ∴(恰好抽中甲、乙两人)21126== 22.(8分)方法1:解:在Rt OBC △中,8tan tan 6 1.1O B OBC CC∠==︒=, ∴设BC x =,则 1.8OC x =在Rt OAC △中,1tan ta 5n 37.80.71.4OC C AC O xA x=+==∠︒=, 1x ∴=.经检验,1x =是原方程的解1.8 1.8OC x ∴==方法2:解:在Rt OAC △中,7tan tan 330.547O C A C A O C ∠=︒===∴设3OC x =,则4AC x =在Rt OBC △中,3 1.81tan .t 4n 614a O C C x BC OB x ==-∠=︒=0.6x ∴=经检验,0.6x =是原方程的解3 1.8OC x ∴==23.(10分)(1)解:设定价应增加x 元()()5240180102000x x -+-=解得18x =,22x =-采取提高商品定价减少销售量的办法增加利润22x ∴=-不合题意舍去,8x ∴=答:定价应增加8元.(1)设定价增加x 元时获利y 元()()215240108016010026y x x x x -+=-+-=+当3x =时,y 有最大值,为2250元.答:若商店要获得最大利润,则定价应增加3元,最大利润是2250元. 24.(10分)(1)求出2a =,6k =;(2)求出()2,3C ,画图找到P 点,求出点P 的坐标1305⎛⎫⎪⎝⎭,; (3)()14,5F ,()22,1F -,()30,1F 25.(12分)【发现问题】 (1)AD BE =(2)①AD BE =,证明过程 ②60度 (3)写出45AFB ∠=度,2AD BE =证明过程26.(12分)(1)解出1a =,2b =,∴抛物线的函数表达式223y x x =+- (2)求出点()0,3C -,AC 直线关系式3y x =--设点()2,23D m m m +-,过点D 作x 轴的垂线,交AC 于点F , 则点(),3F m m --,()()223233DE m m m m m ∴=---+-=--23922m m S --∴=当32m =-时,S 有最大值为827,此时315,24D ⎛⎫-- ⎪⎝⎭,(3)()11,3E -,()21,2E --。
江苏省无锡市宜兴市2023-2024学年九年级上学期期末数学试题(解析版)
2023年秋学期宜兴市初中学业水平调研测试九年级数学试题 2024.01考试时间为120分钟,试卷满分150分.注意事项:1.答卷前,考生务必用毫米黑色墨水签字笔将自己的姓名、班级、考试号填写在答题卡的相应位置上,并认真核对姓名、班级、考试号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.)1. 一元二次方程的根为( )A. B. C. , D. ,【答案】C【解析】【分析】本题考查了因式分解法解一元二次方程,根据因式分解法解一元二次方程,即可求解.【详解】解:,即,解得:,,故选:C .2. 下列图形中,是中心对称图形的是( )A. B. C. D.【答案】B【解析】0.50.52x x =120x x ==121x x ==10x =21x =10x =21x =-2x x =()10x x -=10x =21x =【分析】本题考查中心对称图形的概念,根据图形绕某点旋转后,仍与原图形重合,一一作出判断即可解题.【详解】解:A 、是轴对称图形,不是中心对称图形,不符合题意.B 、是中心对称图形,符合题意.C 、是轴对称图形,不是中心对称图形,不符合题意.D 、是轴对称图形,不是中心对称图形,不符合题意.故选:B .3. 若一组数据2,3,4,的方差比另一组数据5,6,7,8的方差大,则的值可能是( )A. 1B. 3C. 5D. 7【答案】D【解析】【分析】本题主要考查方差,解题的关键是掌握方差的定义和方差的意义.观察两组数据分布特点,根据方差的意义求解,也可先计算出后一组数据的方差,再取一个x 的值计算出前一组数据的方差求解.【详解】解:数据5,6,7,8,每2个数相差1;数据2,3,4, x 前3个数据也相差1,若或,两组数据方差相等,而数据2,3,4,的方差比另一组数5,6,7,8的方差大,说明2,3,4,的波动大,则x 的值可能是7,故D 正确.故选D .4. 某商品经过两次降价,售价由原来的每件25元降到每件16元,已知两次降价的百分率相同,则每次降价的百分率为( )A. 20%B. 25%C. 30%D. 36%【答案】A【解析】【分析】可设降价的百分率为,第一次降价后的价格为,第二次降价后的价格为,根据题意列方程求解即可.【详解】解:设每次降价的百分率为,根据题意可列方程为:,解得:,(舍),∴每次降价得百分率为,故A 正确.的180︒x x 1x =5x =x x x ()251x -()2251x -x ()225116x -=115x =295x =20%【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键.5. 若关于的一元二次方程有两个相等的实数根,则实数的值为( )A. B. C. D. 9【答案】C【解析】【分析】根据一元二次方程有两个相等的实数根,可得,进而即可求解.【详解】解:∵关于的一元二次方程有两个相等的实数根,∴.解得:.故选:C .【点睛】本题考查了一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.6. 如图,中,弦相交于点,若,,则的度数为( )A. B. C. D. 【答案】A【解析】【分析】本题考查了圆周角的性质应用,三角外角的性质应用是解题的关键,根据外角,求出,由同弧所对圆周角相等,即可求出.【详解】解:∵,,,,x 230x x m -+=m 9-94-94Δ0=x 230x x m -+=24940b ac m ∆=-=-=94m =20ax bx c ++=0a a b c ≠,,,24b ac ∆=-0∆>Δ0=Δ0<O AB CD 、P 46A ∠=︒80APD ∠=︒B ∠34︒44︒46︒54︒APD ∠C ∠B ∠46A ∠=︒80APD ∠=︒804634C ∠=︒-︒=︒34B C ∠=∠=︒7. 已知抛物线经过点,则下列结论错误的是( )A. 抛物线的开口向上B. 抛物线关于直线对称C. 抛物线与坐标轴有两个交点D. 当时,关于的一元二次方程有实根.【答案】C【解析】【分析】本题考查了二次函数的图象与性质、二次函数与一元二次方程的联系.将点代入可求出二次函数的解析式,再根据二次函数的图象与性质、二次函数与一元二次方程的联系逐项判断即可得.【详解】解:∵抛物线经过点,∴,解得:,∴抛物线的开口向上,故A 选项正确,不符合题意;∴抛物线的解析式为,∴抛物线关于直线对称,故B 选项正确,不符合题意;∴抛物线的顶点坐标为,即抛物线的最低点为,∵抛物线的开口向上,∴抛物线与x 轴有两个交点,当时,,∴抛物线与y 轴的交点为,∴抛物线与坐标轴有3个交点,故C 选项错误,符合题意;当时,抛物线与直线有交点,∴关于的一元二次方程有实根,故D 选项正确,不符合题意;故选:C .253y ax x =--()1,4-54x =498t ≥-x 2530ax x t ---=()1,4-253y ax x =--()1,4-534a +-=2a =22549253248y x x x ⎛⎫=--=-- ⎪⎝⎭54x =549,48⎛⎫- ⎪⎝⎭549,48⎛⎫- ⎪⎝⎭0x ==3y -()0,3-498t ≥-2253y x x =--y t =x 2530ax x t ---=8. 如图,四边形是的内接四边形,,,,,则的长为( )A. B. C. D. 6【答案】C【解析】【分析】本题考查了圆的内接四边形对角互补,特殊角的三角函数值,如图,延长,,二线交于点,可求得,在中,利用计算,在中,利用计算,根据求解即可;【详解】如图,延长,,二线交于点,,,,,,,在中,,在中,,,ABCD O 90B Ð=°120BCD ∠=︒5AB =3CD =AD28-10-AD BC E 30E ∠=︒Rt CDE tan30︒DE Rt ABE sin30︒AE AD AE DE =-AD BC E 90B ∠=︒ 120BCD ∠=︒60A ∴∠=︒30E ∠=︒90ADC ∠=︒ADC EDC ∴∠=∠=90︒Rt CDE tan30︒=DC DEDE ∴==Rt ABE sin30︒=AB AEAB ∴=51012=AD AE DE ∴=-=10-,故选:C .9. 如图,矩形中,,.点在边上,点在边上,点在对角线上.若四边形是菱形,则的长是( )A. B. 6 C. D. 【答案】A【解析】【分析】首先连接交于O ,再由矩形和菱形的性质得出,由全等三角形得,再用勾股定理求出的长,再由得,即可求得答案.【详解】解:连接交于O ,如下图:∵四边形是菱形,∴,,∵四边形是矩形,∴,∴,在和中,,∴,∴,∵,ABCD 4AB =2BC =E AB F CD G H 、AC EGFH AE 52EF AC CFO AEO≌AO CO =,AC AO AOE ABC∽AO AE AB AC=EF AC EGFH FE AC ⊥OE OF =ABCD 90,B D ∠=∠=︒AB CD ∥ACD CAB ∠=∠CFO △AEO △FCO OAE FOC AOE OF OE ∠=∠⎧⎪∠=∠⎨⎪=⎩CFO AEO ≌()AAS AO CO ====AC∴,∵,∴∴,,∴,故选:A .【点睛】本题主要考查了菱形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用判定和性质是解题的关键.10. 发动机的曲柄连杆将直线运动转化为圆周运动,如图是其示意图.点在直线上往复运动,推动点做圆周运动形成,与表示曲柄连杆的两直杆,点是直线与的交点;当点运动到时,点到达;当点运动到时,点到达.若,,则下列结论:①②③当与相切时,④当时,.其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题考查切线的性质,勾股定理,直线与圆的位置关系.由题意得,,求出,得到,由切线的性质定理得到,由勾股定理求出,又,得到,由勾股定理求出,求出.【详解】解:由题意,,12AO AC==∠=∠CAB EAO 90,AOE B ∠=∠=︒,AOE ABC ∽AO AE AB AC==52AE =A lB O AB BOCD 、l O AE B C AF B D 12AB =5OB =2FC =10EF =AB O 4EA =OB CD ⊥5AF=-12EC DF AB ===5OC OD OB ===2FC FD CD =-=10EF EC FC =-=OB AB ⊥13AO ==17OE EC OC =+=17134EA OE OA =-=-=AO =7OF FC OC =+=7AF AO OF =-=-12EC DF AB ===5OC OD OB ===,故①符合题意;,,,,故②符合题意;与相切时,,,,,③符合题意;当时,,,故④不符合题意.其中正确结论的个数是3个.故选:.二、填空题(本大题共8小题,每题3分,共计24分.请把答案直接填写在答题卡相应位置上.)11. 一组数据7,-2,-1,6的极差为____.【答案】9【解析】【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.【详解】解:一组数据,,,的极差为故答案为:9.【点睛】本题考查了极差的定义.解题的关键在于熟练掌握极差的定义.12. 如果关于的一元二次方程的一个解是,则代数式的值为______.【答案】2025∴12522FC FD CD =-=-´= EF EC FC =-12EC =2FC =∴10EF = AB O ∴OB AB ⊥∴13AO == 12517OE EC OC =+=+=∴17134EA OE OA =-=-=OB CD ⊥∴AO = 257OF FC OC =+=+=∴7AF AO OF =-=-∴C 72-1-6()729--=x 210ax bx ++=1x =2024a b --【解析】【分析】本题主要考查了一元二次方程的解.把代入,可得,再代入,即可求解.【详解】解:∵方程的一个解是,∴,∴,∴.故答案为:202513. 古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝斤,干燥后耗损斤两(古代中国斤等于两).今有干丝斤,问原有生丝多少?”则原有生丝为__________斤.【答案】【解析】【分析】设原有生丝斤,根据题意列出方程,解方程即可求解.【详解】解:设原有生丝斤,依题意,解得:,故答案为:.【点睛】本题考查了一元一次方程的应用,根据题意列出方程解题的关键.14. 用半径为3的半圆围成一个圆锥的侧面,则圆锥的底面半径等于______.【答案】【解析】【分析】本题综合考查有关扇形和圆锥的相关计算.半径为的半圆的弧长是:,则圆锥的底面周长等于侧面展开图的扇形弧长是,依此列出方程即可.【详解】解:设圆锥的底面半径是,则,解得:,圆锥底面半径为,1x =1a b +=-2024a b --210ax bx ++=1x =10a b ++=1a b +=-()()20242024202412025a b a b --=-+=--=3031211612967x x 30121230316x =-967x =9673233π3πr 23r ππ=32r =32故答案为:.15. 一个二次函数图像的顶点在x 轴负半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是______.【答案】(答案不唯一)【解析】【分析】本题考查了二次函数的图象与系数的关系以及二次函数的性质,掌握数形结合思想是解题的关键;根据二次函数的图象与系数的关系即可解答(答案不唯一).【详解】二次函数图像的顶点在x 轴负半轴上,顶点坐标为,令顶点坐标抛物线对称轴左侧的部分是上升的,,令这个二次函数的解析式可以是(答案不唯一).16. 如图,在中,,,以为直径作半圆,交于点,交于点,则的长为______.【答案】##【解析】【分析】本题考查了等腰三角形三线合一性质,圆周角定理,弧长公式.连接,,,根据等腰三角形三线合一性质,圆周角定理,弧长公式计算即可.【详解】解:如图,连接,,,为322y ax bx c =++()21y x =-+ 2y ax bx c =++∴,02⎛⎫- ⎪⎝⎭b a 02b a -<()1,0- ∴a<01a =-∴()21y x =-+ABC 5AB AC ==50BAC ∠=︒AB BC D AC E DE2536π2536πAD OD OE AD OD OE∵为直径,∴,∵,,∴,,∴,,∴弧的长为,故答案为:.17. 如图,在中,是的中点,点在上,连接并延长交于点,若,,则的长为______.【答案】【解析】【分析】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.过点作,交于,根据平行线分线段成比例定理得到等式,计算即可.【详解】解:过点作,交于,则,,AB AD AB ⊥5AB AC ==50BAC ∠=︒BD CD =1252BAD CAD BAC ∠=∠=∠=︒250DOE BAD ∠=∠=︒115222OD AB AC ===DE 55025218036ππ⨯⨯=2536πABC D AC F BD AF BC E :3:1BF FD =8BC =CE 165D DH AE ∥BC H D DH AE ∥BC H 1CH CD HE DA ==3BE BF EH FD==,,.故答案为:.18. 如图,在中,,,.动点从点出发,以的速度沿射线匀速运动,到点停止运动,同时动点从点出发,的速度沿射线匀速运动.当点停止运动时,点也随之停止运动.在的右侧作,且,点在射线上.设点的运动时间为().与的重叠部分的面积为(),则当______()时最大;当______()时.【答案】①. ②. 、【解析】【分析】根据题意得出然后根据题意画出图形,找到临界点,分情况讨论,得出,建立方程,解方程即可求解.【详解】解:∵中,,,,∴作于点,在∴32BE EC =8BC = 216855CE ∴=⨯=165ABC 90ACB ∠=︒30A ∠=︒4AB =cm P A 1cm /s AB B Q A cm /s AC P Q PQ PQH QH AB ⊥H AB P t s PQH ABC S 2cm t =s S t =s S 2cm 16713AC =())220216247x x S x x <≤=⎨⎫⎪-<≤⎪⎪⎭⎩ABC 90ACB ∠=︒30A ∠=︒4AB =cos 4AC AB A =⋅∠==PD AC ⊥D由题意得,,∴,∴,∴是线段的垂直平分线,∴,∴,,∴,,则,当点Q 运动到与点重合时,∴,当点P 运动到与点重合时,∴,,∴当时,,当时,如图所示,∵,则,则是等边三角形,则,,AP x=AQ=cos30AD AP =⋅︒=12AD DQ AQ ==PD AQ 30PQA A ∠=∠=︒60QPH ∠=︒PQ AP x ==12QH AQ x ==PQ PA x ==1122PH PQ x ==C 122AP PN AB ===2x =B 4AP AB ==4x =02x <≤21122S x x x =⨯=24x <≤,30PA PQ A =∠=︒60QPB B ∠=∠=︒PTB V 4BP PT TB x ===-)4TI x x =-=-,,∵,∴,∴,∴,∴,综上所述,,∴当时,取得最大值,当时,,解得:(负值舍去),或,解得:或(舍去),故答案为:;或.【点睛】本题考查了解直角三角形,等边三角形的性质与判定,二次函数的性质,解一元二次方程,分类QH PA x ===CQ AQ AC =-=-9060CQK A ∠=︒-∠=︒2cos 60CQ QK CQ ===-︒(KH QH QK x x =-=--=-()1111422222HI PH PI PQ PT x x x =-=-=--=-)()2114222PTI TIHK S S S x x x x ⎛⎫=+=-++⋅- ⎪ ⎪⎝⎭梯形)()()242x x =-+-=-2167x ⎫=-+⎪⎭())220216247x x S x x <≤=⎨⎫⎪-+<≤⎪⎪⎭⎩167x =S S =2x =1x =+-=3x =117x =16713讨论是解题的关键.三、解答题(本大题共10小题,共计96分.解答应写出必要的文字说明或演算步骤.)19. 解方程(1);(2).【答案】19. 20. ,【解析】【分析】本题考查了解一元二次方程;(1)根据配方法解一元二次方程,即可求解;(2)根据因式分解法解一元二次方程,即可求解.【小问1详解】解:∴∴即解得:【小问2详解】解:∴,∴,解得:,.20. 如图,在矩形中,点分别在边上,,垂足为点.22410x x --=2221x x x -=-1211x x =-=112x =21x =22410x x --=2122x x -=23212x x -+=()2312x -=1211x x ==2221x x x -=-()()2110x x --=210x -=10x -=112x =21x =ABCD ,E F ,DC BC AE DF ⊥G(1)求证:.(2)若,,,求长.【答案】(1)见解析(2)【解析】【分析】本题是相似形综合题目,考查了相似三角形的判定与性质、矩形的性质质等知识,熟练掌握矩形的性质、三角形相似的判定与性质是解题的关键,属于中考常考题型.(1)由矩形的性质得,再证,即可得出结论;(2)由可得,再由矩形的性质可得,,再代入求值即可.【小问1详解】证明:∵四边形是矩形,∴,∴,∵,∴,∴,∴,∴;【小问2详解】解:∵∴∵四边形是矩形,,,∴,,∴的ADE DCF △∽△6AB =9BC =4DE =BF 19390ADE DCF ∠=∠=︒AED DFC ∠=∠ADE DCF △∽△AD DF DC FC =6CD AB ==9AD BC ==ABCD 90ADE DCF ∠=∠=︒90CDF DFC ∠+∠=︒AE DF ⊥90DGE ∠=︒90CDF AED ∠+∠=︒AED DFC ∠=∠ADE DCF △∽△ADE DCF△∽△AD DE DC FC=ABCD 6AB =9BC =4DE =6CD AB ==9AD BC ==946FC=∴∴21. 某中学积极推进校园文学创作,倡导每名学生每学期向校报编辑部至少投1篇稿件.学期末,学校对七、八年级学生投稿情况进行调查.分别从两个年级随机抽取相同数量的学生,统计每人在本学期投稿的篇数,制作了频数分布表.投稿篇数(篇)12345七年级频数(人)71015126八年级频数(人)210134(1)扇形统计图中圆心角______,并补全频数直方图.(2)根据频数分布表分别计算有关统计量:统计量中位数众数平均数方差七年级33八年级直接写出表格中______、______、______.(3)从中位数、众数、平均数、方差中,任选两个统计量,对七、八年级学生的投稿情况进行比较,并作出评价.【答案】(1),补全频数直方图:10,21(2),4,3(3)八年级学生的投稿情况比七年级学生的投稿情况好【解析】的83FC =819933BF =-=aα=x 1.48m n 3.3 1.01m =n =x =72︒3.5【分析】本题考查统计图表、统计的数字特征、熟练利用运算和逻辑推理是解题的关键,(1)利用乘以七年级学生投稿2篇的学生所占百分比即可得的值,根据八年级学生的投稿篇数的频数分布表补全频数直方图即可;(2)根据中位数和众数的定义,加权平均数公式即可得答案;(3)从平均数、方差的意义进行分析即可得评价.【小问1详解】解:由题可知:七年级和八年级随机抽取学生数量相同且均为(人),其中七年级学生投稿2篇的学生有10人,∴七年级学生投稿2篇的学生所点百分比为,∴.由频数分布表可得:,补全频数分布直方图如下:【小问2详解】解:将八年级学生的投稿篇数按从小到大进行排序后,第25个和第26个数的平均数即为其中位数,∵,,即第25个和第26个数分别是3和4,∴中位数,∵在八年级学生的投稿数中,投稿数4出现的次数最多,∴众数,∴七年级的平均数为.【小问3详解】解:由(2)统计表可知,八年级学生的平均数高于七年级学生的平均数,而且从方差来看,八年级学生的方差小于七年级学生的方差,360︒α7101512650++++=101505=10360100%7250α=︒⨯⨯=︒()5021013421a =-+++=2101325++=210132146+++=34 3.52m +==4n =1721031541256350x ⨯+⨯+⨯+⨯+⨯==八年级学生的投稿情况比七年级学生的投稿情况好.22. 为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品:若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.(1)求该顾客首次摸球中奖的概率;(2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由【答案】(1) (2)应往袋中加入黄球,见解析【解析】【分析】(1)直接由概率公式求解即可;(2)根据列表法求分别求得加入黄球和红球的概率即可求解.【小问1详解】解:顾客首次摸球的所有可能结果为红,黄①,黄②,黄③,共4种等可能的结果.记“首次摸得红球”为事件,则事件发生的结果只有1种,所以,所以顾客首次摸球中奖的概率为.【小问2详解】他应往袋中加入黄球.理由如下:记往袋中加入的球为“新”,摸得的两球所有可能的结果列表如下:第二球第一球红黄①黄②黄③新红红,黄①红,黄②红,黄③红,新黄①黄①,红黄①,黄②黄①,黄③黄①,新黄②黄②,红黄②,黄①黄②,黄③黄②,新14A A ()14P A =14黄③黄③,红黄③,黄①黄③,黄②黄③,新新新,红新,黄①新,黄②新,黄③共有种等可能结果.()若往袋中加入的是红球,两球颜色相同的结果共有种,此时该顾客获得精美礼品的概率;()若往袋中加入的是黄球,两球颜色相同的结果共有种,此时该顾客获得精美礼品的概率;因为,所以,所作他应往袋中加入黄球.【点睛】本小题考查简单随机事件的概率等基础知识,考查抽象能力、运算能力、推理能力、应用意识、创新意识等,考查统计与概率思想、模型观念,熟练掌握概率公式是解题的关键.23. 正方形中,点在边上(不与点重合),射线与射线交于点,若.(1)求正方形的边长.(2)以点为圆心,长为半径画弧,交线段于点.若,求的长.【答案】(1)(2)【解析】【分析】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是解题的关键.(1)通过证明,由相似三角形的性质可得,即可求解;(2)设,则,,然后根据勾股定理解题即可.【小问1详解】∵四边形是正方形,∴,,20ⅰ8182205P ==ⅱ122123205P ==2355<12P P <ABCD E AD ,A D BE CD F 9AE CF ⋅=ABCD B BC BE G 2ED EG =ED 3AB =6ED =-ABE CFB ∽AB AE CF BC=EG x =32AE x =-3BE x =+ABCD 90A C ∠=∠=︒AB CD ∥AB BC =∴,∴,∴,∴.∴正方形的边长.【小问2详解】设,则,.在中,,即,解得.∴.24. 如图,已知,,是边上一个定点,连接.图1 图2(1)尺规作图:若分别为边上的动点,请你用圆规和无刻度的直尺在图1中作出取得最小值时所在位置;(2)在(1)的条件下,若,,,则的最小值是______.【答案】24. 见解析25. 【解析】【分析】本题考查作图-复杂作图,轴对称最短问题,相似三角形的判定和性质,勾股定理,解题的关键是理解题意,灵活运用所学知识解决问题.(1)分别以,为圆心,,为半径作弧,两弧交于点,连接,过点作于点,交于点,连接,点、即为所求;(2)过点作于点,在上取一点,使得,连接.证明ABE F ∠=∠ABE CFB ∽AB AE CF BC=9AE CF AB BC ⋅=⋅=ABCD 3AB =EG x =32AE AD DE x =-=-3BE BG GE BC GE x =+=+=+Rt ABE △222AB AE BE +=()()2223323x x +-=+3x =6ED =-ABC 90C ∠=︒E AC BE P Q 、AB EB 、EP PQ +P Q 、6AC =8BC =1EC =EP PQ +A B AE BE E 'E B 'E 'E Q EB '⊥Q AB P EP P Q E EH AB ⊥H BH T ET BT =ET,得,,设,求出,再证明,,进而可证,得,求出可得结论.【小问1详解】解:以,为圆心,,为半径作弧,两弧交于点,连接,过点作于点,交于点,连接,由作图可知:,,则点与点关于对称,∴,则,当时,取得最小值;如图,点、即为所求;【小问2详解】过点作于点,在上取一点,使得,连接.∵,,,∴,∴,∴,∵,,∴,∴,∴,∴,,∴,AEH ABC ∽△△4EH =3AH =ET BT x ==6514ET BT ==EBE ETH '∠=∠ETH E BQ '△∽△EH ET E Q E B=''E Q 'A B AE BE E 'E B 'E 'E Q EB '⊥Q AB P EP AE AE '=BE BE '=E E 'AB PE PE '=EP PQ PE PQ E Q ''+=+≥E Q EB '⊥EP PQ +P Q E EH AB ⊥H BH T ETBT =ET 6AC =8BC =90C ∠=︒10AB ===1EC =5AE AC EC =-=EB ==A A ∠=∠90AHE C ∠=∠=︒AEH ABC ∽△△AE EH AH AB BC AC==51086EH AH ==4EH =3AH =7BH AB AH =-=设,则有,∴,则,∵,∴,∴,由对称可知:,则,∴,∴,∴,则,∴∴的最小值.25. 如图,中,以为直径的交于点D ,是的切线,且,垂足为E ,延长交于点F .(1)求证:;(2)若,,求的长.【答案】(1)见解析(2)【解析】【分析】(1)连接,由切线的性质得,结合可证,推出,由等腰三角形的性质得到,故,即可证明;(2)连接,,证明得到,即可求出,证明得ET BT x ==()22247x x =+-6514x =6514ET BT ==ET BT =TEB TBE ∠=∠2ETH TEB TBE TBE ∠=∠+∠=∠EBT E BT '∠=∠2EBE EBT '∠=∠EBE ETH '∠=∠ETH E BQ '△∽△EH ET E Q E B =''4E Q ='E Q '=PE PQ +E Q '=ABC AB O BC DE O DEAC ⊥CA O AB AC =3AE =5DE =AF 163OD OD DE ⊥DE AC ⊥OD AC ∥C ODB ∠=∠B ODB ∠=∠C B ∠=∠AB AC =BF AD CDE DAE ∽△△AE DE DE EC =253EC =DE BF ∥,可求出,然后根据求解即可.【小问1详解】如图所示,连接,∵以为直径的交于点D ,是的切线,∴,∵,∴,∴,又,∴,∴,∴;【小问2详解】连接,,则,∴∴∴∴∴即∴又∵是直径,∴,∴∴1CE CD EF BD ==253EF EC ==AF EF AE =-OD AB O BC DE O OD DE ⊥DE AC ⊥OD AC ∥C ODB ∠=∠OB OD =B ODB ∠=∠C B ∠=∠AB AC =BF AD AD BC ⊥BD CD=90ADC ADB AED DEC ∠=∠=∠=∠=︒DAE ADE DAC C∠+∠=∠+∠ADE C∠=∠CDE DAE∽△△AE DE DE EC =355EC=253EC =AB BF CF ⊥DE BF∥1CE CD EF BD==∴∴【点睛】本题考查切线的性质,圆周角定理,相似三角形的判定和性质,等腰三角形的判定和性质,熟练掌握圆的性质、相似三角形的判定与性质是解答本题的关键.26. 商店出售某品牌护眼灯,每台进价为50元,在销售过程中发现,月销量(台)与销售单价(元)之间满足一次函数关系,规定销售单价不低于进价,且不高于进价的倍,其部分对应数据如下表所示:销售单价(元)…607080…月销量(台)…908070…(1)求与之间的函数关系式;(2)当护眼灯销售单价定为多少元时,商店每月出售这种护眼灯所获的利润最大?最大月利润为多少元?【答案】(1)(2)当定价定为90元时,所获利润最大,最大月利润为2400元【解析】【分析】本题考查了一次函数的应用、二次函数的应用:(1)用待定系数法求解即可;(2)设销售利润为W 元,列出W 关于x 的函数关系式,结合二次函数的性质即可得出答案.【小问1详解】解:设与之间的函数关系式,当,;当,;∴,解得:,∴与之间的函数关系式;【小问2详解】解:设销售利润为元,则,整理得:,253EF EC ==2516333AF EF AE =-=-=y x 1.8x y y x 150y x =-+y x ()0y kx b k =+≠60x =90y =70x =80y =60907080k b k b +=⎧⎨+=⎩1150k b =-⎧⎨=⎩y x 150y x =-+W ()()()5050150W x y x x =-=--+22007500W x x =-+-∵销售单价不低于进价,且不高于进价的倍,∴,∵,,∴当时,随的增大而增大∴当时,有最大值,且最大值为2400;答:当定价定为90元时,所获利润最大,最大月利润为2400元.27. 如图,菱形中,,,点分别是边上的动点,点与点不重合,且,作,交边于点,连接,将四边形沿直线翻折得到四边形.(1)当是的中点时,求四边形面积;(2)设,四边形面积为,求关于的函数关系式.【答案】(1(2)【解析】【分析】(1)连接,设与交于点,根据菱形的性质以及已知条件得出,是正三角形,由翻折得,当为中点时,,,则,三点共线,进而根据勾股定理求得,根据梯形的面积公式,即可求解;(2)同(1)分别勾股定理得,过作于,表示出,根据梯形的面积公式列出函数关系式,即可求解.【小问1详解】连接,设与交于点,1.85090x ≤≤10-<()21002500W x =--+100x ≤W x 90x =W ABCD 60A ∠=︒6AB =E F 、AB AD 、E A B 、AF AE =EG EF ⊥BC G DG EGDF AD E G DF ''E AB EE G G ''()06AE x x =<<EE G G ''S S x 2S x =BD EE 'AD H 120ABC ∠=︒BCD AEF 、△△EE AD '⊥E AB AE EB BG GC ===DG BC ⊥DG AD ⊥,,D G G ',,EH DG DH EG E EQ GG '⊥Q EQ BD EE 'AD H∵四边形是菱形,,,,∴,,,∴,是正三角形,由翻折得,∴为的中点,,∴,,由翻折得∵,∴,∴,当为中点时,,∴,则,∴三点共线,∴∴【小问2详解】由(1)得,在中,,,∴,∴,ABCD 60A ∠=︒AF AE =6AB =60C A ∠=∠=︒AD BC ∥CD BC =120ABC ∠=︒BCD AEF 、△△EEAD '⊥H AF 60FEA ∠=︒EH ==32AH =39622DH =-=2EE EH'==⊥EF EG 30GEB BGE ∠=︒=∠BE BG =E AB AE EB BG GC ===DG BC ⊥DG AD ⊥,,D G G 'DG ==2GG DG '==(1922E EG G S ''=+⨯=GG '=Rt AEH △AE x =60A ∠=︒EH x ==2EE EH '=在中,,,∴,过作于,在中,,∴,∴.【点睛】本题考查了菱形的性质,等边三角形的性质与判定,勾股定理,列函数关系式,折叠的性质,熟练掌握以上知识是解题的关键.28. 在平面直角坐标系中,已知抛物线与轴交于点,两点,与轴交于点,点是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点在第一象限时,连接交于点.当的值最大时,求点的坐标及的最大值;(3)过点作轴的垂线交直线于点,连接,将沿直线翻折,当点的对应点恰好落在轴上时,请直接写出此时点的坐标.【答案】(1)(2)最大值; (3),【解析】【分析】本题考查二次函数的图象及性质.(1)用待定系数法求函数的解析式即可;(2)过点P 作x 轴的垂线交直线于点M ,过点A 作轴交直线于点N ,则,可EBG30BEG BGE ∠=∠=︒6EB x =-)6EG x ==-E EQ GG '⊥Q R t EG Q 60QGE ∠=︒))1662EQ x x =-=-()213622S x x =⨯+⨯-=-()06x <<24y ax bx =++x ()1,0A -()4,0B y C P P AP BC D PD AD P PD ADP x BC M PC PCM △PC M M 'y M 234y x x =-++45()2,6(4+(4BC AN x ⊥BC PM AN ∥得,求出直线的解析式为,设,则,得到,当时,的值最大为,此时;(3)由折叠可知,,再由,推导出,设,则,得到方程求出m 的值即可确定点M 的坐标.【小问1详解】解:将代入,∴,解得,∴函数的解析式为;【小问2详解】解:过点P 作x 轴的垂线交直线于点M ,过点A 作轴交直线于点N ,∴,∴,当时,,∴,PD PM AD AN=BC 4y x =-+()2,34P t t t -++(),4M t t -+()214255PD PM t AD AN ==--+2t =PD AD 456(2)P ,CM CM M CP PCM ''=∠=∠,CM PM '∥MP CM =()2,34P m m m -++(),4M m m -+24m m -+=()()1040A B -,,,24y ax bx =++4016440a b a b -+=⎧⎨++=⎩=1=3a b -⎧⎨⎩234y x x =-++BC AN x ⊥BC PM AN ∥PD PM AD AN=0x =4y =()04C ,设直线的解析式为,∴,解得,∴直线的解析式为,设,则,∴,∵,∴,∴,∴,当时,的值最大为,此时;【小问3详解】解:由折叠可知,,∵在y 轴上,∴,∴,∴,∴,设,则,∴,∴解得,∴或.BC 4y kx=+440k +=1k =-BC 4y x=-+()2,34P t t t -++(),4M t t -+24PM t t =-+()1,0A -()1,5N -5AN =()224142555PD PM t t t AD AN -+===--+2t =PD AD 456(2)P ,CM CM M CP PCM ''=∠=∠,M 'CM PM '∥'CPM M CP ∠=∠PCM CPM ∠=∠MP CM =()2,34P m m m -++(),4M m m -+24PM m m =-+CM =24m m -+=4m =+4m =(4M +(4M。
2023-2024学年山东省济南市槐荫区九年级上学期数学期末试题及答案
山东省济南市槐荫区九年级上学期数学期末试题及答案本试题分试卷和答题卡两部分.第I 卷满分为40分;第II 卷满分为110分.本试题共8页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将试卷、答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题共40分)注意事项:第I 卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案写在试卷上无效.一、选择题(本大题共10个小题.每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知四条线段a ,b ,c ,d 是成比例线段,其中3cm 6cm 9cm b c d ===,,,则线段a 的长度为( )A. 8cmB. 2cmC. 4cmD. 1cm 【答案】B【解析】【分析】根据比例线段定义求解,注意线段顺序;【详解】解:由题意,得a cb d =∴632(cm)9c a bd =×=´=.故选:B【点睛】本题考查成比例线段的定义,掌握成比例线段的定义是解题的关键.2. 如图,点B ,C ,D 在O e 上,若30BCD Ð=°,则BOD Ð的度数是( )A. 75°B. 70°C. 65°D. 60°【答案】D【解析】【分析】本题考查了圆周角定理;根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.【详解】解:30BCD Ð=°Q ,223060BOD BCD \Ð=Ð=´°=°.故选:D .3.已知ABC DEF ∽△△,且3AB =,6DE =,若ABC V 的周长为20,则DEF V 的周长为( )A. 5B. 10C. 40D. 80【答案】C【解析】【分析】本题考查的是相似三角形的性质.根据相似三角形周长的比等于相似比解答即可.【详解】解:ABC DEF Q △∽△,∴ABC V 的周长:DEF △的周长:3:61:2AB DE ===,ABC Q V 周长为20,DEF \V 的周长为40.故选:C .4.10月8日,杭州亚运会乒乓球比赛全部结束,国乒揽获除女双项目外的6块金牌,展现了在乒乓球领域强大的统治力.乒乓球比赛采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为( )A. ()113802x x -= B. ()1380x x -=C. ()21380x x -= D. 2380x =【答案】B【解析】的【分析】本题考查由实际问题抽象出一元二次方程,关键是设参赛队伍有x 支,根据参加乒乓球比赛的每两队之间都进行两场比赛,共要比赛380场,可列出方程.【详解】解:设参赛队伍有x 支,由题意可得:()1380x x -=,故选B .5.如图,矩形ABCD 为一个正在倒水的水杯的截面图,18AB =cm ,杯中水面与CD 的交点为E ,当水杯底面BC 与水平面的夹角为30°时,杯中水的最大深度为( )cmA. 9B. 15C.D. 【答案】D【解析】【分析】过点B 作BF AE ^于点F ,如图,则BF 的长即为杯中水的最大深度,然后根据含30度角的直角三角形的性质和勾股定理求解即可.【详解】解:过点B 作BF AE ^于点F ,如图,则90AFB Ð=°,∵四边形ABCD 是矩形,∴90ABC Ð=°,∵30CBH Ð=°,∴30ABF CBH Ð=Ð=°,∵18AB =cm ,∴192AF AB ==cm ,∴BF ==cm ,即杯中水的最大深度为cm ;故选:D.【点睛】本题考查了矩形的性质、含30度角的直角三角形的性质和勾股定理等知识,正确理解题意、掌握解答的方法是关键.6.中国结寓意团圆、美满,以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴,小陶家有一个菱形中国结装饰,测得12BD cm =,16AC cm =,直线EF AB ^交两对边于点E ,F ,则EF 的长为( )A. 8cmB. 10cmC. 48cm 5D. 96cm 5【答案】C【解析】【分析】根据菱形的性质与勾股定理可求出菱形的边长,再根据菱形的面积为对角线乘积的一半,或底乘以高可求出高EF .【详解】∵四边形ABCD 是菱形∴AC BD ^()11168cm 22AO CO AC ===´=()11126cm 22BO DO BD ===´=∴在Rt ABO △中,()10cm AB ===∵12ABCD S AC BD =×菱形或ABCD S AB EF =×菱形∴12AC BD AB EF ×=×,即11612102EF ´´=∴48cm 5EF =故选:C【点睛】本题考查菱形的性质,菱形的面积,熟练运用菱形的面积公式是解题的关键.7.的卡塔尔世界杯受到广泛关注,在半决赛中,梅西的一脚射门将足球沿着抛物线飞向球门,此时,足球距离地面的高度h 与足球被踢出后经过的时间t 之间的关系式为2h t bt =-+.已知足球被踢出9s 时落地,那么足球到达距离地面最大高度时的时间t 为( )A. 3sB. 3.5sC. 4sD. 4.5s【答案】D【解析】【分析】根据题意可得当9t =时,0h =,再代入,可得到该函数解析式为29h t t =-+,然后化为顶点式,即可求解.【详解】解:根据题意得:当9t =时,0h =,∴2099b =-+,解得:9b =,∴该函数解析式为29h t t =-+,∵()229 4.520.25h t t t =-+=--+,∴足球到达距离地面最大高度时的时间t 为4.5s .故选:D【点睛】此题主要考查了二次函数的应用,关键是正确确定函数解析式,掌握函数函数图象经过的点必能满足解析式.8.翻花绳是中国民间流传的儿童游戏,在中国不同的地域,有不同的称法,如线翻花、翻花鼓、挑绷绷、解股等等,如图1是翻花绳的一种图案,可以抽象成如右图,在矩形ABCD 中,,IJ KL EF GH ∥∥,1230Ð=Ð=°,3Ð的度数为( ).A. 30°B. 45°C. 50°D. 60°【答案】D【解析】【分析】由矩形的性质可得90D C Ð=Ð=°,进而可得60HGC IJD Ð=Ð=°;再根据三角形内角和定理可得60GMJ Ð=°;然后再证四边形NUMV 是平行四边形,由平行四边形的性质可得60VNU GMJ Ð=Ð=°,最后由对顶角相等即可解答.【详解】解:如图:∵矩形ABCD 中,∴90D C Ð=Ð=°∵1230Ð=Ð=°,∴60HGC IJD Ð=Ð=°,∴60GMJ Ð=°,∵,IJ KL EF GH ∥∥,∴四边形NUMV 是平行四边形,∴60VNU GMJ Ð=Ð=°,∴360VNU Ð=Ð=°.故选D .【点睛】本题主要考查了矩形的性质、平行四边形的判定与性质等知识点,灵活运用相关判定、性质定理是解答本题的关键.9.中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设,计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为A ,曲线终点为B ,过点,A B 的两条切线相交于点C ,列车在从A 到B 行驶的过程中转角a 为60°.若圆曲线的半径1.5km OA =,则这段圆曲线»AB 的长为( ).A. km 4pB. km 2pC. 3km 4pD.3km 8p 【答案】B【解析】【分析】由转角a 为60°可得120ACB Ð=°,由切线的性质可得90OAC OBC Ð=Ð=°,根据四边形的内角和定理可得36060AOB ACB OAC OBC Ð=°-Ð-Ð-Ð=°,然后根据弧长公式计算即可.【详解】解:如图:∵60a Ð=°,∴120ACB Ð=°,∵过点,A B 的两条切线相交于点C ,∴90OAC OBC Ð=Ð=°,∴36060AOB ACB OAC OBC Ð=°-Ð-Ð-Ð=°,∴602 1.5km 3602p p °´´´=°.故选B .【点睛】本题主要考查了圆的切线的性质、弧长公式等知识点,根据题意求得60AOB Ð=°是解答本题的关键.10.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A ,()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A. 45c -£<B. 43c -£<-C. 164c -£<D. 114c -£<【答案】A【解析】【分析】本题考查二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数与一次函数的交点问题,由题意得,三倍点所在的直线为3y x =,根据二次函数2y x x c =--+的图象上至少存在一个“三倍点”转化为2y x x c =--+和3y x =至少有一个交点,求0D ³,再根据3x =-和1x =时两个函数值大小即可求出答案.【详解】解:由题意得,三倍点所在的直线为3y x =,在31x -<<的范围内,二次函数2y x x c =--+的图象上至少存在一个“三倍点”,即在31x -<<的范围内,二次函数2y x x c =--+和3y x =至少有一个交点,令23x x x c =--+,整理得,240x x c +-=,则241640b ac c D=-=+³,解得4c ³-,把3x =-代入2y x x c =--+得6y c =-+,代入3y x =得9y =-,96c \->-+,解得3c <-;把1x =代入2y x x c =--+得2y c =-+,代入3y x =得3y =,32c \>-+,解得:5c <,综上,c 的取值范围为:45c -£<.故选:A .第II 卷(非选择题共110分)注意事项:所有答案必须用0.5毫米的黑色签字笔(不得使用铅笔和圆珠笔)写在答题卡各题目指定区域内(超出方框无效),不能写在试卷上,不能使用涂改液、修正带等.不按以上要求作答,答案无效.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是_______.【答案】4a >-##4a-<【解析】【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x a --=有两个不相等的实数根,∴()()22Δ44410b ac a =-=--´×->,∴4a >-,故答案为:4a >-.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=¹,若240b ac D =->,则方程有两个不相等的实数根,若240b ac D =-=,则方程有两个相等的实数根,若24<0b ac D =-,则方程没有实数根.12. 如图,P 是反比例函数y = 3x图象上一点,PA⊥x轴于点A ,则PAO S =V _______________.【答案】32【解析】【分析】根据反比例函数k 的几何意义即可求解.【详解】解:∵P是反比例函数y = 3x图象上一点PA⊥x轴于点A ,∴PAO S =V 32,故答案为:32.【点睛】本题考查了反比例函数k 的几何意义,掌握反比例函数k 的几何意义是解题的关键.13.如图,有一个直径为4cm 的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的面积是__________.【答案】2【解析】【分析】如图,连接OA OB 、,则,60OA OB AOB =Ð=°,可得AOB V 是等边三角形,作OC AB ^于C ,利用等边三角形的性质求出OC ,进而求解.【详解】如图,连接OA OB 、,则,60OA OB AOB =Ð=°,∴AOB V 是等边三角形,作OC AB ^于C ,∵AOB V 是等边三角形,∴60OAB Ð=°,∴30AOC Ð=°,∵2OA =cm ,∴1AC =cm ,∴OC ==cm ,∴这个正六边形纸片的面积是21622´´=;故答案为:2.【点睛】本题考查了正多边形和圆,本题中,求出OC 是解题的关键.14.如图,在矩形ABCD 中,点E 为BA 延长线上一点,F 为CE 的中点,以B 为圆心,BF 长为半径的圆弧过AD 与CE 的交点G ,连接BG .若4AB =,10CE =,则AG =_________.【答案】3【解析】【分析】本题主要考查矩形的性质、直角三角形斜边中线的性质和勾股定理,根据中点和矩形的性质5BG =,利用勾股定理即可求得答案.【详解】解:∵10CE =,F 为CE 的中点,∴5CF FE ==,∵四边形ABCD 是矩形,∴90ABC Ð=°,∴5BG FB FC ===,在Rt ABG V 中,3AG ===.故答案为:3.15.只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A ,B ,C ,D 四点,利用刻度尺量得该纸条宽为7cm ,6cm AB =,8cm CD =.请你帮忙计算纸杯的直径为___________cm .【答案】10【解析】【分析】设圆心为O ,根据垂径定理可以得到4CE =,3AF =,再根据勾股定理构建方程解题即可.【详解】解:设圆心为O ,EF 为纸条宽,连接OC ,OA ,则EF CD ^,EF AB ^,∴118422CE CD ==´=,116322AF AB ==´=,设OE x =,则7OF x =-,又∵OC OA =,∴2222CE OE AF OF +=+,即()2222437x x +=+-,解得:3x =,∴半径5OC ==,即直径为10cm ,故答案为:10.【点睛】本题考查垂径定理,勾股定理,构建直角三角形利用勾股定理计算是解题的关键.16.京剧是中国一门传统文化艺术.如图,在平面直角坐标系xOy 中,某脸谱轮廓可以近似的看成是一个半圆与抛物线的一部分组合成的封闭图形,记作图形G .点A ,B ,C ,D 分别是图形G 与坐标轴的交点,已知点D 的坐标为()0,3-,AB 为半圆的直径,且4AB =,半圆圆心M 的坐标为()1,0.关于图形G 给出下列五个结论,其中正确的是______(填序号).①图形G 关于直线1x =对称;②线段CD的长为3+;③图形G 围成区域内(不含边界)恰有12个整点(即横、纵坐标均为整数的点);④当42a -££时,直线y a =与图形G 有两个公共点;⑤图形G 的面积小于2π8+.【答案】①②【解析】【分析】本题以半圆为抛物线合成的封闭图形为背景、曲线的对称性、整点问题、构造直角三角形、勾股定理等知识点,掌握数形结合思想是解题的关键.由题意很明显可以得到图形G 的对称轴为,故①正确;构造直角三角形、利用勾股定理求得OC 的长,进而求得CD 的长,故②正确;从图中可以很直观的得到③错误;根据图形可得当4a =-、2a =,直线y a =与图形G 有一个公共点,即不能得出结论④,故④错误;如图:连接AE BE ,,可求得28ABE S S p +=+V 半圆,从而判定⑤错误.【详解】解:如图:由圆M 可知()()()1,0,3,0,1,0A B M -且点A ,B 在抛物线上,∴图形G 关于1x =对称,即①正确;如图:连接CM ,的在Rt MOC V 中,∵1OM =, 2CM =,OC \==又(03),D -Q ,3OD \=,3CD OC OD \=+=根据题意得,由图形G 围成区域内(不含边界)恰有13个整点(即横、纵坐标均为整数的点),故③错误;由图形可得:当4a =-、2a =,直线y a =与图形G 有一个公共点,故④错误;如图:连接AE BE ,, 2114448,2222ABE S S p p æö=´´===ç÷èøV 半圆,∴82ABE G S S S p +=+<V 半圆,故⑤错误.故答案为①②.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤.)17. 计算:2tan 452sin 30cos 45cos 60°+°-°+°.【答案】2【解析】【分析】本题考查特殊锐角的三角函数值.利用特殊锐角的三角函数值计算即可.【详解】解:2tan 452sin 30cos 45cos 60°+°-°+°2111222=+´-+111122=+-+2=.18. 在ABC V 中,C Ð = 90°,A Ð = 30°且AB = 20cm ,求边AC 的长度.【答案】【解析】【分析】根据含30度角的直角三角形的性质可得10cm BC =,进而勾股定理即可求解.【详解】ABC Q V 中,90C Ð=°,30A Ð=°,20cm AB =,BC \=1210cm AB =,AC \===cm .【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,熟练掌握勾股定理是解题的关键.19.如图,在ABC V 中,D 为AB 上一点,64ACD B AC AD Ð=Ð==,,.求AB 的长.【答案】AB 的长为9.【解析】【分析】根据已知条件证明ACD ABC △∽△,得到AD AC AC AB=求出即可.【详解】解:∵ACD B A A Ð=ÐÐ=Ð,,∴ACD ABC △∽△∴AD AC AC AB=∴23694AC AD AB ===.故AB 的长为9.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是根据相似三角形的性质求解.20.如图,在平面直角坐标系中,ABC V 的顶点坐标为()1,2A -,()4,3B -,()3,1C -.(1)以点B 为位似中心,在点B 的下方画出11A BC V ,使11A BC V 与ABC V 位似,且位似比为2:1;(2)求四边形11CC A A 的面积.【答案】(1)作图详见解析(2)152【解析】【分析】本题考查了位似的性质,平面直角坐标系内三角形面积的求法,(1)根据相似比的以及点,,A B C 的坐标即可求得11A BC V ;(2)根据位似的性质可得到的坐标,利用割补法即可求得四边形11CC A A 的面积.【小问1详解】解:如图所示,11A BC V 即为所求,【小问2详解】解:35231122=´---=△ABC S ,∵11A BC V 与ABC V 位似,且位似比为2:1;则1114ABC A BC S S =△△,∴1110A BC S =△.11115151022A BC ABC CC A A S S S =-=-=△△四边形.21. 祖冲之发明的水碓(duì)是一种舂米机具(如图1),在我国古代科学家宋应星的著作《天工开物》中有详细记载,其原理是以水流推动轮轴旋转进而拨动碓杆上下舂米.图2是碓杆与支柱的示意图,支柱OM 高4尺且垂直于水平地面,碓杆AB 长16尺,3OB OA =.当点A 最低时,60AOM Ð=°,此时点B 位于最高点;当点A 位于最高点A ¢时,108.2A OM Т=°,此时点B 位于最低点B ¢.(1)求点A 位于最低点时与地面的垂直距离;(2)求最低点B ¢与地面的垂直距离.(参考数据:sin18.20.31°»,cos18.20.95°»,tan18.20.33°»)【答案】(1)点A 距离地面2尺(2)点B ¢到地面之间的垂直距离约为0.28尺【解析】【分析】(1)分别过点O 作直线EF OM ^,作AH OM ^,H 为垂足,分别过点B 、B ¢作BC EF ^、B D EF ¢^,垂足分别为C 、D ;根据30度角所对的边是斜边的一半,可得122OH OA ==,2MH OM OH =-=,即可求得;(2)根据16AB =,3OB AO =,求得3124OB AB ==,根据三角函数的定义,可得sin18.2120.31 3.72DB OB =×°=´»¢¢,即可求得.【小问1详解】分别过点O 作直线EF OM ^,作AH OM ^,H 为垂足,分别过点B 、B ¢作BC EF ^、B D EF ¢^,垂足分别为C 、D .∵90EOM Ð=°,60AOM Ð=°∵4OA =∴122OH OA ==,2MH OM OH =-= ∴点A 距离地面2尺;【小问2详解】∵16AB =,3OB AO=∴33161244OB AB ==´=∴sin18.2120.31 3.72DB OB =×°=´»¢¢∴4 3.720.28-=故点B ¢到地面之间的垂直距离约为0.28尺.【点睛】本题考查含30度角的直角三角形,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.22.芯片目前是全球紧缺资源,市政府通过资本招商引进“芯屏汽合、集终生智”等优势产业,发展新兴产业.某芯片公司,引进了一条内存芯片生产线,开工第一季度生产200万个,第三季度生产288万个.试回答下列问题:(1)已知每季度生产量的平均增长率相等,求前三季度生产量的平均增长率;(2)经调查发现,1条生产线最大产能是600万个/季度,若每增加1条生产线,每条生产线的最大产能将减少20万个/季度.现该公司要保证每季度生产内存芯片2600万个,在增加产能同时又要节省投入成本的条件下(生产线越多,投入成本越大),应该再增加几条生产线?【答案】(1)20% (2)4条【解析】【分析】(1)设求前三季度生产量的平均增长率为x ,根据第一季度生产200万个,第三季度生产288万个,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设应该增加m 条生产线,则每条生产线的最大产能为(600-20m )万个/季度,利用总产量=每条生产线的产量×生产线的数量,即可得出关于m 的一元二次方程,解之即可得出m 的值,再结合在增加产能同时又要节省投入,即可确定m 的值.【小问1详解】解:设求前三季度生产量的平均增长率为x ,依题意得:2200(1)288x +=,解得:1x =02=20%,2x =-2.2(不合题意,舍去).答:前三季度生产量的平均增长率20%;【小问2详解】解:设应该增加m 条生产线,则每条生产线的最大产能为(600-20m )万个/季度,依题意得:(1+m )(600-20m )=2600,整理得:2291000m m -+=,解得:1m =4,2m =25,∵在增加产能同时又要节省投入,∴m=4.答:应该再增加4条生产线.【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程.23. 如图,AB 为O e 的直径,D E 、是O e 上两点,延长AB 至C ,连接CD ,BDC A Ð=Ð.(1)求证:CD 是O e 的切线;(2)若tan 34E =,8AC =,求O e 的半径.【答案】(1)证明见解析(2)O e 的半径为74【解析】【分析】本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键;(1)连接OD ,由圆周角定理得出90ADB Ð=°,证出OD CD ^,由切线的判定可得出结论;(2)证明BDC DAC ∽△△,由相似三角形的性质得出34CD BC BD AC CD DA ===,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.【小问1详解】证明:连接OD ,∵AB 为O e 的直径,∴90ADB Ð=°,∴90Ð+Ð=°A ABD ,∵OB OD =,∴ABD ODB Ð=Ð,∵BDC A Ð=Ð,∴90BDC ODB Ð+Ð=°,∴90ODC Ð=°,∴OD CD ^,∵OD 是O e 的半径,∴CD 是O e 切线;【小问2详解】解:∵90ADB Ð=°,tan 34E Ð=,∴3tan 4BD BAD AD Ð==,∵BDC A Ð=Ð,C C Ð=Ð,∴BDC DAC ∽△△,∴34CD BC BD AC CD AD ===,∵8AC =,∴384CD =,∴6CD =,∴364BC =,∴92BC =,∴97822AB AC AB =-=-=.∴O e 的半径为74.24. 【背景】在一次物理实验中,小冉同学用一固定电压为12V 的蓄电池,通过调节滑动变阻器来改变电流大小,完成控制灯泡L (灯丝的阻值L 2ΩR =)亮度的实验(如图),已知的串联电路中,电流与电阻L RR 、之间关系为L U I R R =+,通过实验得出如下数据:/ΩR …1a 346…/A I …43 2.42b …(1)=a _______,b =_______;(2)【探究】根据以上实验,构建出函数()1202y x x =³+,结合表格信息,探究函数()1202y x x =³+的图象与性质.①在平面直角坐标系中画出对应函数()1202y x x =³+的图象;②随着自变量x 的不断增大,函数值y 的变化趋势是_________.(3)【拓展】结合(2)中函数图象分析,当0x ³时,123622x x ³-++的解集为________.【答案】(1)2,1.5(2)①见解析;②函数值y 逐渐减小(3)2x ³或0x =【解析】【分析】(1)根据解析式求解即可;(2)①根据表格数据,描点连线画出函数图象;②根据图象可得出结论;(3)求出第一象限的交点坐标,结合图象可得结论.【小问1详解】解:由题意,122I R =+,当3I =时,由1232a =+得2a =,当6R =时,12 1.562b ==+,故答案为:2,1.5;【小问2详解】解:①根据表格数据,描点、连线得到函数()1202y x x =³+的图象如图:②由图象可知,随着自变量x 的不断增大,函数值y 逐渐减小,故答案为:函数值y 逐渐减小;【小问3详解】解:当2x =时,32632y =-´+=,当0x =时,6y =,∴函数()1202y x x =³+与函数362y x =-+的图象交点坐标为()2,3,()0,6,在同一平面直角坐标系中画出函数362y x =-+的图象,如图,由图知,当2x ³或0x =时,123622x x ³-++,即当0x ³时,123622x x ³-++的解集为2x ³或0x =,故答案为:2x ³或0x =.【点睛】本题考查函数的图象与性质、描点法画函数图象、两个函数图象的交点问题,根据表格画出函数的图象,并利用数形结合思想探究函数性质是解答的关键.25. 如图1,已知二次函数图象与y 轴交点为(0,3)C ,其顶点为(1,2)D .(1)求二次函数的表达式;(2)直线CD 与x 轴交于M ,现将线段CM 上下移动,若线段CM 与二次函数的图象有交点,求CM 向上和向下平移的最大距离;(3)若将(1)中二次函数图象平移,使其顶点与原点重合,然后将其图象绕O 点顺时针旋转90°,得到抛物线G ,如图2所示,直线2y x =-+与G 交于A ,B 两点,P 为G 上位于直线AB 左侧一点,求ABP D 面积最大值,及此时点P 的坐标.【答案】(1)223y x x =-+(2)CM 向下平移的最大距离为14,向上平移的最大距离为6. (3)11,42P æö-ç÷èø【解析】【分析】(1)由待定系数法即可求解;(2)①设直线CD 向下平移最大距离为m ,由△140m =-=,即可求解;②设直线CD 向上平移最大距离为n ,同理可解;(3)由1()2ABP A B S PQ y y D =-,即可求解.【小问1详解】解:Q 顶点(1,2)D ,设二次函数的解析式为2(1)2y a x =-+,把(0,3)代入得:32a =+,1a \=,2(1)2y x \=-+,即223y x x =-+;【小问2详解】解:由点C 、D 的坐标得,直线CD 解析式为3y x =-+,(3,0)\M ,①设直线CD 向下平移最大距离为m ,\平移后的直线解析式为3y x m =-+-,此时直线与抛物线有一个交点,把3y x m =-+- 代入223y x x =-+,得2233x x x m -+=-+-,20x x m -+=,△140m =-=,即:14m =.②设直线CD 向上平移最大距离为n ,此时C ,M 对应点为C ¢,M ¢,则(3,)M m ¢,当M ¢恰在二次函数上时,23233m \-×+=,6m \=,\向上平移的最大距离为6.综上,CM 向下平移的最大距离为14,向上平移的最大距离为6;【小问3详解】解:二次函数平移后顶点与原点重合时顶点为(0,0),则函数的解析式为:2y x =,设2(,)F m m 为2y x = 上一点,F 绕O 顺时针旋转90° 后,对应点为F ¢,则FMO F M O ¢¢≌△△,则FM F M m ¢==,2FN OM OM m ¢===,2:()F m m ¢-,,若F 在y 轴左侧同理可证成立,即满足横坐标为纵坐标的平方,所以2:G x y =,把2y x =-+ 代入2x y =,22y y \=-+,解得:12y =-,21y =;则(1,1)A ,(4,2)B -,设:2()P m m ,,过点P 作PQ x ∥轴交AB 于点Q ,:2AB y x =-+Q ,(2,)Q m m \-,22PQ m m \=--,\1()2ABP A B S PQ y y D =-21(2)32m m =--×233322m m =--+,当12m =- 时,ABP S D 有最大值,278max S =,此时11,42P æö-ç÷èø.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的基本性质、待定系数法求函数表达式、面积的计算、图象的旋转等,有一定的综合性,难度较大.26.在矩形ABCD 中,3AB =,AD =E 在射线BC 上,将射线AE 绕点A 逆时针旋转90°,交CD 延长线于点G ,以线段AE AG ,为邻边作矩形AEFG .(1)如图1,若E 在线段BC 上,连接AC ,则tan ACB Ð=______,BE DG=______;(2)如图2,若E 在线段BC 延长线上,当点F B D 、、共线时,求线段BE 的长;(3)如图3,若E 在线段BC 上,当2EA EC =时,在平面内有一动点P ,满足2PE EF =,连接PA PC ,,请直接写出12+PC PA 的最小值.【答案】(1(2)BE =(3)【解析】【分析】(1)通过证明ABE ADG ∽△△,可得BE AB DG AD ==;(2)同理可证,ABE ADG ABE EMF V V V V ∽∽,可求EM 的长,由锐角三角函数可列出方程,即可求解;(3)由勾股定理可求,,BE AE EC 的长,由锐角三角函数可求60AEB Ð=°,通过证明AEP CEP ¢V V ∽,可得12P C AP ¢=,则当P 、C 、P ¢三点共线时,12PC AP +有最小值,最小值为PP ¢的长,由相似三角形的性质和勾股定理可求解.【小问1详解】解:∵四边形ABCD 是矩形,3,AB DC BC AD \====tan AB ACB BC \Ð==∵将射线AE 绕点A 逆时针旋转90°,90,EAG BAD \Ð=Ð=°,BAE DAG \Ð=Ð又90,ADG ABC Ð=Ð=°∴ABE ADG ∽△△,BE AB DG AD \==【小问2详解】过F 作FM BE ^交BE 延长线于M ,由(1)可知:ABE ADG ∽△△,90,ABC M AHF Ð=Ð=Ð=°Q 90,AHB MHF AHB BAH \Ð+Ð=°=Ð+Ð∴,BAH MHF Ð=ÐABE EMF \V V ∽,则AB BE AE AE AB EM MF EF AG AD =====,3EM \=EM \=设3,BE x FM ==,∴在Rt BMF V 中,tan FM FBM BM Ð====解得x =,3BE x \==【小问3详解】设EC a =,2,AE EC =Q2,,AE a BE a \==-2223,AB AB BE AE =+=Q ,2223)(2),a a \+-=a \=2AE a BE EC \====tan BEA \Ð=60BEA \Ð=°120,AEC \Ð=°作120PEP ¢Ð=°,且12EP PE ¢=,连接,P C PP ¢¢,120,AEC PEP ¢\Ð=Ð=°,AEP CEP ¢\Ð=Ð又2,AE PE EC P E==¢Q ,AEP CEP ¢\V V ∽1,2P C AP ¢\=1,2P C AP ¢\=1,2PC AP PC P C ¢\+=+∴当P 、C 、P ¢三点共线时,12PC AP +有最小值,最小值为PP ¢的长,,ABE ADG QV V ∽AB AE AD AG \==又AE =Q 4,AG EF \==又28,PE EF ==Q 14,2P E PE ¢\==120,PEP ¢Ð=°Q 18060,HEP PEP ¢¢\Ð=°-Ð=°9030,HP E HEP ¢¢\Ð=°-Ð=°12,2HE HE PH \====10,PH HE PE \=+=在Rt HPP ¢V 中,PP ¢===【点睛】本题是相似形综合题,考查了正方形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造相似三角形是解题的关键.。
2024届四川省成都市青羊区成都石室中学九年级数学第一学期期末考试试题含解析
2024届四川省成都市青羊区成都石室中学九年级数学第一学期期末考试试题 注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,则对角线BD 等于( )A .2B .4C .6D .82.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC 等于( )A .180°﹣2αB .2αC .90°+αD .90°﹣α3.如图,△ABC 是⊙O 的内接三角形,∠A=55°,则∠OCB 为( )A .35°B .45°C .55°D .65° 4.已知,则等于( ) A . B . C .2 D .35.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为( )A .12B .14C .18D .1166.不等式组3(2)41213x x x x --≤-⎧⎪+⎨>-⎪⎩的整数解有( ) A .4 个 B .3 个 C .2个 D .1个7.如图,⊙O 的半径OC 垂直于弦AB ,P 是优弧AB 上的一点(不与点A B 、重合),若55BOC ∠=︒,则APC ∠等于( )A .27.5B .25C .22.5D .208.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是()A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>9.数据1,3,3,4,5的众数和中位数分别为( )A .3和3B .3和3.5C .4和4D .5和3.510.下列抛物线中,其顶点在反比例函数y =12x 的图象上的是( )A .y =(x ﹣4)2+3B .y =(x ﹣4)2﹣3C .y =(x +2)2+1D .y =(x +2)2﹣1二、填空题(每小题3分,共24分)11.如图,////AB EF DC ,//AD BC ,EF 与AC 交于点G ,则是相似三角形共有__________对.12.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是______.13.如图,将ABC ∆沿BC 方向平移得到A B C '''∆,ABC ∆与A B C '''∆重叠部分(即图中阴影部分)的面积是ABC ∆面积的13,若3BC =,则ABC ∆平移的距离BB '是__________. ,14.如图在Rt △OAB 中∠AOB =20°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB =____.15.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约55000000年,那么55000000用科学记数法表示为_______.16.)已知反比例函数y =-2x,下列结论:①图象必经过点(-1,2);②y 随x 的增大而增大;③图象在第二、四象限内;④若x >1,则y >-2.其中正确的有__________.(填序号)17.如图,已知二次函数3(1)(4)4y x x =-+-的图象与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点,C P 为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则PK AK 的最大值为__________.18.如图,在矩形ABCD 中,∠ABC 的角平分线BE 与AD 交于点E ,∠BED 的角平分线EF 与DC 交于点F ,若AB=8,DF=3FC ,则BC=__________.三、解答题(共66分)19.(10分)如图,二次函数的图象与x 轴交于A (﹣3,0)和B (1,0)两点,交y 轴于点C (0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)请直接写出D 点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围.20.(6分)如图,在ABC 中,90ACB ∠=︒,CD 是AB 边上的中线,过点A 作AE CD ⊥,垂足为M ,交BC 于点E ,2AM CM =.(1)求sin B 的值:(2)若5CD =,求BC 的长.21.(6分)如图,△ABC 是等边三角形,AO ⊥BC ,垂足为点O ,⊙O 与AC 相切于点D ,BE ⊥AB 交AC 的延长线于点E ,与⊙O 相交于G ,F 两点.(1)求证:AB 与⊙O 相切;(2)若AB =4,求线段GF 的长.22.(8分)如图,O 是矩形ABCD 的对角线的交点,E ,F ,G ,H 分别是OA ,OB ,OC ,OD 上的点,且AE =BF =CG =DH.(1)求证:四边形EFGH 是矩形;(2)若E ,F ,G ,H 分别是OA ,OB ,OC ,OD 的中点,且DG⊥AC,OF =2cm ,求矩形ABCD 的面积.23.(8分)如图,DC EF GH AB ,12AB =,6CD =,::3:4:5DE EG GA =.求EF 和GH 的长.24.(8分)近年来某市大力发展绿色交通,构建公共、绿色交通体系,将“共享单车”陆续放置在人口流量较大的地方,琪琪同学随机调查了若干市民用“共享单车”的情况,将获得的数据分成四类,A :经常使用;B :偶尔使用;C :了解但不使用;D :不了解,并绘制了如下两个不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的总人数是 人,“C :了解但不使用”的人数是 人,“D :不了解”所占扇形统计图的圆心角度数为 .(2)某小区共有10000人,根据调查结果,估计使用过“共享单车”的大约有多少人?(3)目前“共享单车”有黄色、蓝色、绿色三种可选,某天小张和小李一起使用“共享单车”出行,求两人骑同一种颜色单车的概率.25.(10分)如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC ,过点D 作DE ⊥AC ,垂足为E .(1)求证:AB =AC ;(2)求证:DE 为⊙O 的切线;(3)若⊙O 的半径为5,sin B =45,求DE 的长.26.(10分)在平面直角坐标系xOy 中,已知抛物线243y ax ax a =-+.(1)求抛物线的对称轴;(2)当0a >时,设抛物线与x 轴交于,A B 两点(点A 在点B 左侧),顶点为C ,若ABC ∆为等边三角形,求a 的值;(3)过(0,)T t (其中12t -≤≤)且垂直y 轴的直线l 与抛物线交于,M N 两点.若对于满足条件的任意t 值,线段MN 的长都不小于1,结合函数图象,直接写出a 的取值范围.参考答案一、选择题(每小题3分,共30分)1、A【分析】由菱形的性质可证得ABD ∆为等边三角形,则可求得答案. 【题目详解】四边形ABCD 为菱形,//AD BC ∴,AD AB =,180A ABC ∴∠+∠=︒,18012060A ∴∠=︒-︒=︒,ABD∴∆为等边三角形,2BD AB∴==,故选:A.【题目点拨】主要考查菱形的性质,利用菱形的性质证得ABD∆为等边三角形是解题的关键.2、D【解题分析】连接OC,则有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.3、A【分析】首先根据圆周角定理求得∠BOC,然后根据三角形内角和定理和等腰三角形的性质即可求得∠OCB.【题目详解】解:∵∠A=55°,∴∠BOC=55°×2=110°,∵OB=OC,∴∠OCB=∠OBC=12(180°-∠BOC)=35°,故答案为A.【题目点拨】本题主要考查了圆周角定理、等腰三角形的性质以及三角形的内角和定理,掌握并灵活利用相关性质定理是解答本题的关键.4、A【解题分析】由题干可得y=2x,代入计算即可求解.【题目详解】∵,∴y=2x,∴,故选A .【题目点拨】 本题考查了比例的基本性质:两内项之积等于两外项之积.即若,则ad =bc ,比较简单.5、B【分析】根据概率公式直接解答即可. 【题目详解】∵共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境, ∴他选择的景点恰为丝路花雨的概率为14; 故选:B .【题目点拨】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.6、B【分析】先解出不等式组的解集,然后再把所有符合条件的整数解列举出来即可.【题目详解】解:解3(2)4x x --≤-得1≥x , 解1213x x +>-得4x <, ∴不等式组的解集为:14x ≤<,整数解有1、2、3共3个,故选:B.【题目点拨】本题考查了一元一次不等式组的的解法,先分别求出各不等式的解集,注意化系数为1时,如果两边同时除以一个负数,不等号的方向要改变;再求各个不等式解集的公共部分,必要时,可用数轴来求公共解集.7、A【分析】根据题意,⊙O 的半径 O C 垂直于弦 AB ,可应用垂径定理解题, O C 平分弦,平分弦所对的弧、平分弦所对的圆心角,故 55AOC BOC ∠=∠=︒,又根据同一个圆中,同弧所对的圆周角等于其圆心角的一半,可解得27.5APC ∠=︒【题目详解】 ⊙O 的半径 O C 垂直于弦AB , AC BC ∴=55BOC ∠=︒127.52APC BOC ∴∠=∠=︒ 故选A【题目点拨】本题考查垂径定理、圆周角与圆心角的关系,熟练掌握相关知识并灵活应用是解题关键.8、D【分析】根据二次函数y=ax 2+bx+1的图象经过点A ,B ,画出函数图象的草图,根据开口方向和对称轴即可判断.【题目详解】解:由二次函数y=ax 2+bx+1可知图象经过点(0,1),∵二次函数y=ax 2+bx+1的图象还经过点A ,B ,则函数图象如图所示,抛物线开口向下,∴a <0,,又对称轴在y 轴右侧,即02b a-> , ∴b >0,故选D9、A【分析】根据众数和中位数的定义:一般来说,一组数据中,出现次数最多的数就叫这组数据的众数;把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;即可得解.【题目详解】由已知,得该组数据中,众数为3,中位数为3,故答案为A.【题目点拨】此题主要考查对众数、中位数概念的理解,熟练掌握,即可解题.10、A 【分析】根据y =12x得k =xy =12,所以只要点的横坐标与纵坐标的积等于12,就在函数图象上. 【题目详解】解:∵y =12x ,∴k =xy =12,A 、y =(x ﹣4)2+3的顶点为(4,3),4×3=12,故y =(x ﹣4)2+3的顶点在反比例函数y =12x的图象上, B 、y =(x ﹣4)2﹣3的顶点为(4,﹣3),4×(﹣3)=﹣12≠12,故y =(x ﹣4)2﹣3的顶点不在反比例函数y =12x 的图象上,C 、y =(x +2)2+1的顶点为(﹣2,1),﹣2×1=﹣2≠12,故y =(x +2)2+1的顶点不在反比例函数y =12x的图象上, D 、y =(x +2)2﹣1的顶点为(﹣2,﹣1),﹣2×(﹣1)=2≠12,故y =(x +2)2﹣1的顶点不在反比例函数y =12x 的图象上,故选:A .【题目点拨】本题考查的知识点是抛物线的顶点坐标以及反比例函数图象上点的坐标,根据抛物线的解析式确定抛物线的顶点坐标是解此题的关键.二、填空题(每小题3分,共24分)11、6【分析】图中三角形有:△AEG,△ADC,△CFG,△CBA,因为////AB EF DC ,//AD BC ,所以△AEG∽△ADC∽△CFG∽△CBA,有6中组合,据此可得出答案.【题目详解】图中三角形有:△AEG,△ADC,△CFG,△CBA,∵////AB EF DC ,//AD BC ,∴△AEG∽△ADC∽△CFG∽△CBA共有6个组合分别为:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案为6.【题目点拨】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.12、38【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【题目详解】由图可知,黑色方砖6块,共有16块方砖, ∴黑色方砖在整个地板中所占的比值63168 ,∴小球最终停留在黑色区域的概率是38, 故答案为:38. 【题目点拨】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.13、31-【分析】A B ''与AC 相交于点G ,因为平移,CB G CBA '213CB G CBA S CB S CB ''⎛⎫== ⎪⎝⎭ 由此求出CB ',从而求得BB '【题目详解】解:A B C '''∆由ABC ∆沿BC 方向平移得到 CB G CBA '∴213CB G CBA S CB S CB ''⎛⎫∴== ⎪⎝⎭ 13CB CB '∴=, 1CB '∴=31BB '=-【题目点拨】本题考查了平移的性质,以及相似三角形的性质.14、80°.【分析】由将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,可求得∠A 1OA 的度数,继而求得答案.【题目详解】∵将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,∴∠A 1OA =100°,∵∠AOB =20°,∴∠A 1OB =∠A 1OA ﹣∠AOB =80°.故答案为:80°.【题目点拨】此题考查了旋转的性质.注意找到旋转角是解此题的关键.15、75.510⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】解:将55000000用科学记数法表示为:5.5×1, 故答案为:5.5×1. 【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16、①③④【解题分析】①当x=﹣1时,y=2,即图象必经过点(﹣1,2);②k=﹣2<0,每一象限内,y 随x 的增大而增大;③k=﹣2<0,图象在第二、四象限内;④k=﹣2<0,每一象限内,y 随x 的增大而增大,若x >1,则y >﹣2,故答案为①③④.17、45【分析】由抛物线的解析式易求出点A 、B 、C 的坐标,然后利用待定系数法求出直线BC 的解析式,过点P 作PQ ∥x 轴交直线BC 于点Q ,则△PQK ∽△ABK ,可得PK PQ AK AB =,而AB 易求,这样将求PK AK的最大值转化为求PQ 的最大值,可设点P 的横坐标为m ,注意到P 、Q 的纵坐标相等,则可用含m 的代数式表示出点Q 的横坐标,于是PQ 可用含m 的代数式表示,然后利用二次函数的性质即可求解. 【题目详解】解:对二次函数2339(1)(4)3444y x x x x =-+-=-++, 令x =0,则y =3,令y =0,则3(1)(4)04x x -+-=, 解得:121,4x x =-=,∴C (0,3),A (-1,0),B (4,0),设直线BC 的解析式为:y kx b =+,把B 、C 两点代入得:340b k b =⎧⎨+=⎩, 解得:343k b ⎧=-⎪⎨⎪=⎩, ∴直线BC 的解析式为:334y x =-+, 过点P 作PQ ∥x 轴交直线BC 于点Q ,如图,则△PQK ∽△ABK ,∴PK PQ AK AB=, 设P (m ,239344m m -++), ∵P 、Q 的纵坐标相等,∴当239344y m m =-++时,233933444x m m -+=-++, 解得:23x m m =-,∴()2234PQ m m m m m =--=-+,又∵AB =5, ∴()224142555PK m m m AK -+==--+. ∴当m =2时,PK AK 的最大值为45. 故答案为:45.【题目点拨】本题考查了二次函数与坐标轴的交点、二次函数的性质和二次函数图象上点的坐标特征、待定系数法求函数的解析式、相似三角形的判定和性质等知识,难度较大,属于填空题中的压轴题,解题的关键是利用相似三角形的判定和性质将所求PK AK的最大值转化为求PQ 的最大值、熟练掌握二次函数的性质.18、62+1.【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰直角三角形,并求得其斜边BE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据△EFD ∽△GFC 得出比例式,DF=3FC 计算得出CG 与DE 的倍数关系,并根据BG=BC+CG 进行计算即可.【题目详解】解:延长EF 和BC ,交于点G∵矩形ABCD 中,∠B 的角平分线BE 与AD 交于;∴∠ABE=∠AEB=45°,∴AB=AE=8,∴直角三角形ABE 中,2又∵∠BED 的角平分线EF 与DC 交于点F ,∴∠BEG=∠DEF∵AD ∥BC ∴∠G=∠DEF∴∠BEG=∠G∴2,∵∠G=∠DEF ,∠EFD=∠GFC ,∴△EFD ∽△GFC ∵DF=3FC ,133CG CF CF DE DF CF === 设CG=x ,DE=3x ,则AD=8+3x=BC∵BG=BC+CG∴2=8+3x+x解得x=2-1,∴BC=8+3(2-1)2+1,故答案为:+1.【题目点拨】本题主要考查矩形的性质、相似三角形性质和判定以及等腰三角形的性质,解决问题的关键是得出BG=BE,从而进行计算.三、解答题(共66分)19、(1)D(﹣2,3);(2)二次函数的解析式为y=﹣x2﹣2x+3;(3)一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.【题目详解】试题分析:(1)由抛物线的对称性来求点D的坐标;(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;(3)由图象直接写出答案.试题解析:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x=322-+=﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得9303a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得123abc=-⎧⎪=-⎨⎪=⎩,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.考点:1、抛物线与x 轴的交点;2、待定系数法;3、二次函数与不等式(组).20、(15(2)4 【分析】(1)根据∠ACB=90°,CD 是斜边AB 上的中线,可得出CD=BD ,则∠B=∠BCD ,再由AE ⊥CD ,可证明∠B=∠CAM ,由AM=2CM ,可得出CM :AC=15sinB 的值;(2)根据sinB 的值,可得出AC :AB=15AB=5AC=2,根据勾股定理即可得出结论.【题目详解】(1)∵90ACB ∠=︒,CD 是斜边AB 的中线,∴CD BD =,∴B DCB ∠=∠,∵AE CD ⊥,∴90ACD CAM ∠+∠=︒.∵90DCB ACD ∠+∠=︒,∴DCB CAM ∠=∠.∴B CAM ∠=∠.在Rt ACM 中,∵2AM CM =, ∴()222225AC AM CM CM CM CM =+=+=. ∴5sin sin 55CM B CAM AC CM =∠====. (2)∵5CD =,∴225AB CD ==.由(1)知5sin B =, ∴5sin 52AC AB B =⨯==.∴()22222524BC AB AC =-=-=.【题目点拨】本题主要考查了勾股定理和锐角三角比,熟练掌握根据锐角三角比解直角三角形是解题的关键.21、(1)见解析;(2)22.【解题分析】试题分析:(1)过点O 作OM ⊥AB ,垂足是M .证明OM 等于圆的半径OD 即可;(2)过点O 作ON ⊥BE ,垂足是N ,连接OF ,由垂径定理得出NG =NF =12GF .证出四边形OMBN 是矩形,在Rt OBM △利用三角函数求得OM 和BM 的长,则BN 和ON 即可求得,在Rt ONF 中利用勾股定理求得NF ,即可得出GF 的长. 试题解析:()1如图,∵⊙O 与AC 相切于点D ,∴OD ⊥AC ,∴∠ADO =∠AMO =90°. ∵△ABC 是等边三角形,AO ⊥BC ,∴∠DAO =∠MAO ,∴OM =OD .∴AB 与⊙O 相切;()2如图,过点O 作ON ⊥BE ,垂足是N ,连接OF ,则NG =NF =12GF .∵O 是BC 的中点, ∴OB =2.在Rt △OBM 中,∠MBO =60°,∴∠BOM =30°,∴BM =12BO =1, ∴OM 23OB BM -=∵BE ⊥AB ,∴四边形OMBN 是矩形,∴ON =BM =1.∵OF =OM 3由勾股定理得NF ()2231-2∴GF =2NF =2.22、 (1)证明见解析;(2)矩形ABCD 的面积为(cm 2).【解题分析】(1)首先证明四边形EFGH 是平行四边形,然后再证明HF=EG ;(2)根据题干求出矩形的边长CD 和BC ,然后根据矩形面积公式求得.【题目详解】证明:∵四边形ABCD 是矩形,∴OA =OB =OC =OD.∵AE =BF =CG =DH ,∴AO -AE =OB -BF =CO -CG =DO -DH ,即OE =OF =OG =OH ,∴四边形EFGH 是矩形.解:∵G 是OC 的中点,∴GO =GC.又∵DG ⊥AC ,∴CD =OD.∵F 是BO 中点,OF =2cm ,∴BO =4cm.∴DO =BO =4cm ,∴DC =4cm ,DB =8cm ,∴CB =(cm),∴矩形ABCD 的面积为(cm 2).【题目点拨】本题主要考查矩形的判定,首先要判定四边形是平行四边形,然后证明对角线相等.23、7.5EF =,9.5GH =.【分析】过C 作CQ ∥AD ,交GH 于N ,交EF 于M ,交AB 于Q ,则可判断四边形AQCD 为平行四边形,所以AQ=CD=6,同理可得EM=EM=CD=6,则BQ=AB-AQ=6,再利用平行线分线段成比例定理得到DE :EG :GA=CF :HF :HB=3:4:5,然后根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到MF :BQ=CF :CB=3:12,NH :BQ=CH :CB=7:12,则可计算出MF 和NH ,从而得到GH 和EF 的长【题目详解】解:过C 作CQ AD ,交GH 于点N ,交EF 于点M ,交AB 于Q ,如图,∵CD AB ,∴四边形AQCD 为平行四边形.∴6AQ CD ==,同理可得6GN EM CD ===.∴6BQ AB AQ =-=.∵DC EF GH AB ,∴::::3:4:5DE EG GA CF HF HB ==.∵MF NH BQ ,∴()::3:345MF BQ CF CB ==++,()()::34:345NH BQ CH CB ==+++. ∴36 1.512MF =⨯=,76 3.512NH =⨯=. ∴6 1.57.5EF EM MF =+=+=,6 3.59.5HG GN NH =+=+=.故答案为7.5EF =,9.5GH =.【题目点拨】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.24、(1)200,50,108;(2)4500人;(3)13【分析】(1)根据条形统计图和扇形统计图的信息,即可求解;(2)由小区总人数×使用过“共享单车”的百分比,即可得到答案;(3)根据题意,列出表格,再利用概率公式,即可求解.【题目详解】(1)50÷25%=200(人),200×(1-30%-25%-20%)=50(人),360°×30%=108°,答:这次被调查的总人数是200人,“C :了解但不使用”的人数是50人,“D :不了解”所占扇形统计图的圆心角度数为108°.故答案是:200,50,108;(2)10000×(25%+20%)=4500(人),答:估计使用过“共享单车”的大约有4500人;(3)列表如下:由列表可知:一共有9种等可能的情况,两人骑同一种颜色有三种情况:(黄色,黄色),(蓝色,蓝色),(绿色,绿色)()31 93P∴==两人骑同一颜色.【题目点拨】本题主要考查扇形统计图和条形统计图以及简单事件的概率,列出表格,得到事件的等可能的情况数,是解题的关键.25、(1)见解析;(2)见解析;(3)24 5.【解题分析】(1)连接AD,根据圆周角定理得到AD⊥BC,根据线段垂直平分线的性质证明;(2)连接OD,根据三角形中位线定理得到OD∥AC,得到DE⊥OD,证明结论;(3)解直角三角形求得AD,进而根据勾股定理求得BD、CD,据正弦的定义计算即可求得.【题目详解】(1)证明:如图,连接AD,∵AB是⊙O的直径,∴AD⊥BC,又DC=BD,∴AB=AC;(2)证明:如图,连接OD,∵AO=BO,CD=DB,∴OD是△ABC的中位线,∴OD∥AC,又DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线;(3)解:∵AB=AC,∴∠B =∠C ,∵⊙O 的半径为5,∴AB =AC =10,∵sin B =AD AB =45 , ∴AD =8,∴CD =BD =22AB AD - =6,∴sin B =sin C =DE CD =45, ∴DE =245.【题目点拨】本题考查的是圆周角定理、切线的判定定理以及三角形中位线定理,掌握相关的性质定理和判定定理是解题的关键.26、 (1)x=2;3(3)43a ≥或83a ≤-. 【解题分析】(1)利用配方法将二次函数解析式变形为顶点式,由此即可得出抛物线的对称轴;(2)利用二次函数图象上点的坐标特征可得出点A,B 的坐标,由(1)可得出顶点C 的坐标,再利用等边三角形的性质可得出关于a 的一元一次方程,解之即可得出a 值;(3)分0a >及0a <两种情况考虑:①当0a >时,利用二次函数图象上点的坐标特征可得出关于a 的一元一次不等式,解之即可得出a 的取值范围;②当0a <时,利用二次函数图象上点的坐标特征可得出关于a 的一元一次不等式,解之即可得出a 的取值范围.综上,此题得解.【题目详解】(1)∵()22432y ax ax a a x a =-+=--,∴抛物线的对称轴为直线2x =.(2)依照题意,画出图形,如图1所示.当0y =时,2430ax ax a -+=,即()()130a x x --=,解得:11x =,23x =.由(1)可知,顶点C 的坐标为()2,a -.∵0a >,∴0a -<.∵ABC ∆为等边三角形,∴点C 的坐标为()2,3-, ∴3a -=-,∴3a =.(3)分两种情况考虑,如图2所示:①当0a >时,3313122a ⎛⎫⎛⎫-⨯-≤-⎪ ⎪⎝⎭⎝⎭, 解得:43a ≥; ②当0a <时,3313222a ⎛⎫⎛⎫-⨯-≥⎪ ⎪⎝⎭⎝⎭, 解得:83a ≤-.【题目点拨】本题考查了二次函数的三种形式、二次函数图象上点的坐标特征、等边三角形的性质以及解一元一次不等式.。
山东省青岛市城阳九中学2025届九年级数学第一学期期末考试模拟试题含解析
山东省青岛市城阳九中学2025届九年级数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,点E 、F 是边长为4的正方形ABCD 边AD 、AB 上的动点,且AF =DE ,BE 交CF 于点P ,在点E 、F 运动的过程中,PA 的最小值为( )A .2B .22C .42﹣2D .25﹣22.2018年,临江市生产总值为1587.33亿元,请用科学记数法将1587.33亿表示为( )A .1587.33×108B .1.58733×1013C .1.58733×1011D .1.58733×1012 3.已知二次函数()22y x a b =---的图象如图所示,则反比例函数ab y x=与一次函数y ax b =+的图象可能是 ( )A .B .C .D .4.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为( )A .6个B .8个C .9个D .12个5.已知圆锥的底面半径为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .212cm πB .215cm πC .220cm πD .230cm π6.下列运算正确的是( )A .x 6÷x 3=x 2B .(x 3)2=x 5C .2(2)2-=±D .33(2)2-=-7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A .2:3B .2:3C .4:9D .16:819.如图// //,,AB CD EF AF BE 相交于点G ,下列比例式错误的是( )A .AC BD CF DE =B .AG BG GF GE = C .GC CD GF EF= D .AB AC EF CF = 10.下列各点在反比例函数2y x =-图象上的是( ) A .(2,1)-- B .(1,2)- C .(1,2)-- D .(2,1)二、填空题(每小题3分,共24分)11.长为4m 的梯子搭在墙上与地面成45︒角,作业时调整为60︒角(如图所示),则梯子的顶端沿墙面升高了______m .12.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.13.已知:如图,PA ,PB ,DC 分别切O 于A ,B ,E 点.若10cm PA =,则PCD 的周长为________.14.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了_____度.15.有三张除颜色外,大小、形状完全相同的卡片,第一张卡片两面都是红色,第二张卡片两面都是白色,第三张卡片一面是红色,一面是白色,用三只杯子分别把它们遮盖住,若任意移开其中的一只杯子,则看到的这张卡片两面都是红色的概率是__________.16.如图,在△ABC 中,D,E 分别是AC,BC 边上的中点,则三角形CDE 的面积与四边形ABED 的面积比等于 ____________17.一个不透明的盒子中有4个白球,3个黑球,2个红球,各球的大小与质地都相同,现随机从盒子中摸出一个球,摸到白球的概率是_____.18.当m _____时,2(1)210m x x -+-=是关于x 的一元二次方程. 三、解答题(共66分)19.(10分)如图,AB 是O 的直径,点F C 、在O 上且BC CF =,连接,AC AF ,过点C 作CD AF ⊥交AF的延长线于点D .求证:CD 是O 的切线;20.(6分)已知木棒AB 垂直投射于投影面a 上的投影为11A B ,且木棒AB 的长为8cm .(1)如图(1),若AB平行于投影面a,求11A B长;(2)如图(2),若木棒AB与投影面a的倾斜角为30,求这时11A B长.21.(6分)若关于x的一元二次方程(m+1)x2﹣2x﹣1=0有两个不相等的实数根,(1)求m的取值范围;(2)若x=1是方程的一个根,求m的值和另一个根.22.(8分)如图,AB与CD相交于点O,△OBD∽△OAC,ODOC=35,OB=6,S△AOC=50,求:(1)AO的长;(2)求S△BOD23.(8分)今年“五•一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;(2)求抽奖人员获奖的概率.24.(8分)前苏联教育家苏霍姆林斯曾说过:“让学生变聪明的方法,不是补课,不是増加作业量,而是阅读,阅读,再阅读”.课外阅读也可以促进我们养成终身学习的习惯.云南某学校组织学生利用课余时间多读书,读好书,一段时间后,学校对部分学生每周阅读时间进行调查,并绘制了不完整的频数分布表和频数分布直方图,如图所示:时间(时)频数百分比03x≤<10 10%36x<≤25 m69x ≤<n 30% 912x ≤< a 20%1215x ≤< 15 15%根据图表提供的信息,回答下列问题:(1)填空:m =______,n =________;(2)请补全频数分布直方图;(3)该校共有3600名学生,估计学生每周阅读时间x (时)在612x ≤<范围内的人数有多少人?25.(10分)某汽车销售商推出分期付款购车促销活动,交首付款后,余额要在30个月内结清,不计算利息,王先生在活动期间购买了价格为12万元的汽车,交了首付款后平均每月付款y 万元,x 个月结清.y 与x 的函数关系如图所示,根据图像回答下列问题:(1)确定y 与x 的函数解析式,并求出首付款的数目;(2)王先生若用20个月结清,平均每月应付多少万元?(3)如果打算每月付款不超过4000元,王先生至少要几个月才能结清余额?26.(10分)如图,已知正方形ABCD 的边长为22E 是对角线AC 上一点,连接DE ,将线段DE 绕点D 顺时针旋转90︒至DF 的位置,连接AF 、EF .(1)求证:ADF CDE△≌△;(2)当点E在什么位置时,AEF的面积最大?并说明理由.参考答案一、选择题(每小题3分,共30分)1、D【分析】根据直角三角形斜边上的中线等于斜边的一半,取BC的中点O,连接OP、OA,然后求出OP =CB=1,利用勾股定理列式求出OA,然后根据三角形的三边关系可知当O、P、A三点共线时,AP的长度最小.【详解】解:在正方形ABCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵AB BCBAE ABCAE BF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如图,取BC的中点O,连接OP、OA,则OP=12BC=1,在Rt △AOB 中,OA =22222425AB OB +=+=,根据三角形的三边关系,OP +AP ≥OA ,∴当O 、P 、A 三点共线时,AP 的长度最小,AP 的最小值=OA ﹣OP =25﹣1.故选:D .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系. 确定出AP 最小值时点P 的位置是解题关键,也是本题的难点.2、C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:用科学记数法将1587.33亿表示为1587.33×108=1.58733×1. 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3、B【分析】观察二次函数图象,找出a >0,b >0,再结合反比例函数、一次函数图象与系数的关系,即可得出结论.【详解】观察二次函数图象,发现:抛物线()22y x a b =---的顶点坐标()a b -,在第四象限,即00a b >-<,, ∴0a >,0b >.∵反比例函数ab y x=中0ab >, ∴反比例函数图象在第一、三象限;∵一次函数0y ax b a =+>,,0b >,∴一次函数y ax b=+的图象过第一、二、三象限.故选:B.【点睛】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出0a>,b>.解决该题型题目时,熟记各函数图象的性质是解题的关键.4、C【分析】设有x个队参赛,根据题意列出方程即可求出答案即可解决.【详解】解:设有x个队参赛,根据题意,可列方程为:12x(x﹣1)=36,解得:x=9或x=﹣8(舍去),故选:C.【点睛】本题考查了一元二次方程的应用,解决本题的关键是正确理解题意,找到题意中蕴含的等量关系.5、B【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【详解】圆锥的侧面积=2π×3×5÷2=15π.故选:B.【点睛】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.6、D【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A.x6÷x3=x3,故本选项不合题意;B.(x3)2=x6,故本选项不合题意;2=,故本选项不合题意;2=-,正确,故本选项符合题意.故选:D.【点睛】本题主要考查了算术平方根、立方根、同底数幂的除法以及幂的乘方与积的乘方,熟记修改运算法则是解答本题的关键.7、D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、B【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,23.故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.9、D【分析】根据相似三角形的性质和平行线分线段成比例定理,对每个选项进行判断,即可得到答案.【详解】解:∵// //AB CD EF,∴AC BDCF DE=,AG BGGF GE=,故A、B正确;∴△CDG∽△FEG,∴GC CDGF EF=,故C正确;不能得到AB ACEF CF=,故D错误;故选:D.【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,解题的关键是熟练掌握平行线分线段成比例定理.10、B【分析】将每个选项中点的横坐标代入反比例函数解析式中,看函数值是否一致,如果一致,说明点在函数图象上,反之则不在.【详解】A 选项中,当2x =-时,22112y x =-=-=≠--故该选项错误; B 选项中,当1x =时,22221y x =-=-=-=-,故该选项正确; C 选项中,当1x =-时,22221y x =-=-=≠--,故该选项错误; D 选项中,当2x =时,22112y x =-=-=-≠,故该选项错误. 故选B【点睛】本题主要考查点是否在反比例函数图象上,掌握反比例函数变量的求法是解题的关键.二、填空题(每小题3分,共24分)11、23-22【详解】由题意知:平滑前梯高为4•sin45°=4•=. 平滑后高为4•sin60°=4•=.∴升高了232m . 故答案为232. 12、8179【分析】如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:如图所示,∵∠CEB =∠DBF =90°,∠CFE =∠DFB ,CE=DB =1,∴△CEF ≌△DBF ,∴BF =EF =12BE =12, ∵BF ∥AD ,∴△BOF ∽△AOD ,∴11248BO BF AO AD ===,∴89AO AB=,∵221417 AB=+=,∴8179 AO=.故答案为:817 9【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.13、20cm【分析】根据切线长定理由PA、PB分别切⊙O于A、B得到PB=PA=10cm,由于DC与⊙O相切于E,再根据切线长定理得到CA=CE,DE=DB,然后三角形周长的定义得到△PDC的周长=PD+DC+PC=PD+DB+CA+PC,然后用等线段代换后得到三角形PDC的周长等于PA+PB.【详解】∵PA、PB分别切⊙O于A、B,∴PB=PA=10cm,∵CA与CE为⊙的切线,∴CA=CE,同理得到DE=DB,∴△PDC的周长=PD+DC+PC=PD+DB+CA+PC∴△PDC的周长=PA+PB=20cm,故答案为20cm.【点睛】本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.14、60【分析】时钟上的分针匀速旋转一周需要60min,分针旋转了360°;求经过10分,分针的旋转度数,列出算式,计算即可. 【详解】根据题意得,1060×360°=60°. 故答案为60°. 【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.15、13【分析】根据概率的相关性质,可知两面都是红色的概率=两面都是红色的张数/总张数. 【详解】P (两面都是红色)=13 . 【点睛】本题主要考察了概率的相关性质.16、1:3【分析】根据中位线的定义可得:DE 为△ABC 的中位线,再根据中位线的性质可得DE ∥AB ,且1AB 2DE =,从而证出△CDE ∽△CAB ,根据相似三角形的性质即可求出CDE CAB S S,从而求出三角形CDE 的面积与四边形ABED 的面积比. 【详解】解:∵D,E 分别是AC,BC 边上的中点,∴DE 为△ABC 的中位线∴DE ∥AB ,且1AB 2DE = ∴△CDE ∽△CAB∴21AB 4CDE CAB S DE S ⎛⎫== ⎪⎝⎭ ∴ABED 11413CDES S ==-四边形 故答案为:1:3.【点睛】此题考查的是中位线的性质和相似三角形的判定及性质,掌握中位线的性质、用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.17、49.【分析】直接利用概率求法,白球数量除以总数进而得出答案.【详解】∵一个不透明的盒子中有4个白球,3个黑球,2个红球, ∴随机从盒子中摸出一个球,摸到白球的概率是:49. 故答案为:49. 【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.18、1≠【分析】根据一元二次方程的定义得到m−1≠0,解不等式即可.【详解】解:∵方程2(1)210m x x -+-=是关于x 的一元二次方程,∴m−1≠0,∴m≠1,故答案为:1≠.【点睛】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.三、解答题(共66分)19、见解析【分析】连结OC ,由FC BC =,根据圆周角定理得FAC BAC ∠=∠,而OAC OCA ∠=∠,则FAC OCA ∠=∠,可判断//OC AF ,由于CD AF ⊥,所以OC CD ⊥,然后根据切线的判定定理得到CD 是O 的切线;【详解】解:证明:连结OC ,如图,FC BC =, FAC BAC =∠∴∠,OA OC =,OAC OCA ∴∠=∠,FAC OCA ∴∠=∠,//OC AF ∴,CD AF ⊥,OC CD ∴⊥,CD ∴是O 的切线;【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.20、(1)118A B cm =;(2)1143A B cm=. 【分析】(1)由平行投影性质:平行长不变,可得A 1B 1=AB ;(2)过A 作AH ⊥BB 1,在Rt △ABH 中有AH=ABcos30°,从而可得A 1B 1的长度.【详解】解:(1)根据平行投影的性质可得,A 1B 1=AB=8cm ;(2)如图(2),过A 作AH ⊥BB 1,垂足为H .∵AA 1⊥A 1B 1,BB 1⊥A 1B 1,∴四边形AA 1B 1H 为矩形,∴AH=A 1B 1,在Rt △ABH 中,∵∠BAH=30°,AB=8 cm ,∴()3cos30843cm 2AH AB =︒=⨯=, ∴1143cm A B =.【点睛】本题主要考查平行投影的性质,线段的平行投影性质:平行长不变、倾斜长缩短、垂直成一点.21、(1)m >﹣2且m ≠﹣1;(2)方程的另一个根为x =﹣13. 【分析】(1)根据判别式的意义得到△=(-2)2+4(m+1)>0,然后解不等式即可;(2)先根据方程的解的定义把x=1代入原方程求出m 的值,则可确定原方程变为3x 2-2x-1=0,然后解方程得到方程的另一根.【详解】(1)根据题意得△=(﹣2)2+4(m +1)>0,解得m >﹣2,且m +1≠0,解得:m ≠﹣1,所以m >﹣2且m ≠﹣1;(2)把x =1代入原方程得m +1﹣2-1=0,解得m =2,∴原方程变为3x 2﹣2x ﹣1=0解方程得x 1=1,x 2=﹣13, ∴方程的另一个根为x =﹣13. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.22、 (1)10;(2)1.【分析】(1)根据相似三角形对应边之比相等可得BO AO =DO CO =35,再代入BO =6可得AO 长; (2)根据相似三角形的面积的比等于相似比的平方可得BODAOC S S=925,进而可得S △BOD . 【详解】解:(1)∵△OBD ∽△OAC ,∴BO AO =DO CO =35∵BO =6,∴AO =10;(2)∵△OBD ∽△OAC ,DO CO =35∴BODAOC S S =925∵S △AOC =50,∴S △BOD =1.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积之比等于相似比的平方.23、(1)详见解析(2)。
山东省烟台龙口市2023-2024学年九年级上学期期末考试数学试题
山东省烟台龙口市2023-2024学年九年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A ....4.如图,四边形ABCD O 的内接四边形,160AOC =︒的度数是(A .80︒.100︒140︒160︒5.Rt △ABC 中,∠C =,AC =6,AB =,若以点C 为圆心为半径的圆与AB 所在直线相交,则r 可能为()A .3.44.856.如图,在矩形ABCD 中,以点A 为圆心,以AD 长为半径画弧交于点E ,将扇形ADE 剪下来做成圆锥,若22AB BE ==,则该圆锥底面半径为(A .127.如图,若要测量小河两岸正对的两点的一点C ,测得BC A .50sin 40︒米B .50cos 8.某校举行“激情十月,唱响青春丁四名同学,则甲、乙同学获得前两名的概率是(A .129.二次函数2y ax =x…3-2-y…167下列结论正确的是(A .a<0是15x -<<C .顶点坐标为(则12y y >10.如图,已知正方形交DC 于F,设BE=是()A.B.C.D.二、填空题13.如图,小树AB在路灯O的照射下形成树影BP=,则路灯的高度树与路灯的水平距离 4.5m16.如图,等边三角形则图中阴影部分的面积为三、解答题17.计算:sin30 tan30︒⋅︒⋅18.如图,正方形纸板19.某商店经营儿童益智玩具,已知成批购进时的单价是是30元时,月销售量是230玩具售价不能高于40元,设每件玩具的销售单价上涨了利润为y元.21.如图,等边ABC 的边长为8,O 上沿A B C A ---方向运动.(1)O 从A 点出发至回到A (2)当O 与边AC 相切时,求求:(1)调整后的台阶坡面会加长多少?(2)调整后的台阶约多占多长一段水平地面?(结果精确到(1)求证:EF 是O 的切线;(2)若10AB =,45BC =25.如图1,已知抛物线(1)求b ,c 的值.(2)在第二象限的抛物线上,是否存在一点P ,使得PBC 及PBC 的面积最大值.若不存在,请说明理由.(3)如图2,点E 为线段BC 上一个动点(不与B ,C 重合)面积取得最小值时,求点E坐标.过点B且垂直于BC的直线交于点F,当OEF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效. 2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】
1.在Rt △ABC 中,∠C =90°,如果AC =4,BC=3,那么∠A 的正切值为( )
(A )43
;(B )3
4;(C )53;(D )5
4.
2.把抛物线2x y =向右平移1个单位后得到的抛物线是( ) (A )12+=x y ; (B )12-=x y ;(C )2)1(+=x y ;(D )2)1(-=x y . 3.下列各组图形一定相似的是( )
(A )两个直角三角形;(B )两个等边三角形;(C )两个菱形;(D )两个矩形.
4.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =2,BD =3,那么由下列条件能判断DE ∥BC 的是( )
(第4题图)
A D E B
C
(A )
32=BC DE ;(B )52=BC DE ;C )32=AC AE ;(D )5
2
=AC AE .
5.已知e →
为单位向量,a =-3e →
,那么下列结论中错误..的是() (A )a ∥e →
;(B )3a =;(C )a 与e →
方向相同;(D )a 与e →
方向相
反.
6.如图,在△ABC 中,D 、E 分别在边AB 、AC 上,DE ∥BC ,EF ∥
CD 交AB 于F ,那么下列比例式中正确的是( ) (A )
BC DE DF AF = ; (B )DF AF
DB DF =
; (C )BC DE CD EF = ; (D )AB
AD
BD AF =
. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.已知3
4=b
a ,那么
b
b
a -=_____. 8.在比例尺为1︰50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实 际距离是___________千米. 9.在Rt △ABC 中,∠C =90°,如果sinA =5
2
,BC=4,那么AB=________. 10.已知线段AB =2cm ,点C 在线段AB 上,且AC 2=BC ·AB ,则
AC 的长___________cm .
11.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.
12.如果点()14,A y -、()23,B y -是二次函数22+y x k =(k 是常数)图像
上的两点,那么1y _______2y .(填“>”、“<”或“=”)
13.小明沿坡比为1︰3的山坡向上走了100米.那么他升高了______米.
(第6题图)
F
E D C
B
A
14.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、
C 、E 和B 、
D 、F ,如果AC =3,C
E =5,D
F =4,那么BD =_______.
15.如图,已知△ABC ,D 、E 分别是边AB 、AC 上的点,且
1
3
AD AE AB AC ==.
设AB a =,DE b =,那么AC =______________.
(用向量a 、b 表示)
16.如图,已知△ABC ,D 、E 分别是边BA 、CA 延长线上的点,且
D E ∥
B C .如果
3
5
DE BC =,CE=4,那么AE 的长为_______. 17.如图,已知△ABC ,AB =6,AC =5,D 是边AB
的中点,E 是边AC 上一点,∠ADE =∠C ,∠BAC 的平分线分别交DE 、
BC 于点F 、G ,
那么AF AG
的值为_______.
18.如图,在直角坐标平面xoy 中,点A 坐标为(3,
2),∠AOB =90°,∠OAB =30°,AB 与x 轴交于点C ,那么AC :BC 的值为______.
(第18题图)
a b
c
A B C
D
E
F m
n
(第14题图)
(第17题图)
G
F E D
C
B A
(第16题图)
C B
A D E
A
(第15题图)
三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)
将二次函数2241y x x =+-的解析式化为()k m x a y ++=2的形式,并
指出该函数图像的开口方向、顶点坐标和对称轴.
20.(本题满分10分)
如图,已知△ABC 中,AB =AC =5,cos A =5
3
.求底边BC 的长.
21.(本题满分10分)
如图,在△ABC 中,D 、E 分别是边AB 、AC 上的点,DE ∥BC , 点F 在线段DE 上,过点F 作FG ∥AB 、FH ∥AC 分别交B C 于 点G 、H ,如果BG ︰GH ︰HC =2︰4︰3.求
FGH
ADE
S S ∆∆的值. 22.(本题满分10分)
某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长),直线MN 垂直于地面,垂足为点P .在地面A 处测得点M 的仰角为58°、点N 的仰角为45°,在B 处测得点M 的仰角为
31°,AB=5米,且A 、B 、P 三点在一直线上.请根据以上数据求广告牌的宽MN 的长.
(参考数据:sin580.85︒=,cos580.53︒=,tan58 1.60︒=,
sin310.52︒=,cos310.86︒=,tan310.60︒=.)
C B
A (第20题图)
(第22题图)
B A
M N P
广告牌
(第21题图) H
G
F E D B
C
A
23.(本题满分12分,第(1)小题5分,第(2)小题7分)
已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,E 是对角线AC 上一点,且AC ·CE=AD ·BC . (1)求证:∠DCA=∠EBC ;
(2)延长BE 交AD 于F ,求证:AB 2=AF ·AD.
24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)
如图,抛物线c bx x y ++-=2
2
1经过点A
(﹣2,0),点B (0,4).
(1)求这条抛物线的表达式; (2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标; (3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO =2OF ,求m 的值.
25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)
如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E .
(第23题图)
E
D
C
B
A (第
24题图)
(1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长; (2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cosA 的值; (3)联结PD ,如果222BP CD ,且CE =2,ED =3,求线段PD 的长.
(备用图2)
A B C D (备用图1)
A B
C D (第25题图)
A B
P D E。