2.14近似数

合集下载

华师大版数学七年级上册2.14《近似数》教学设计

华师大版数学七年级上册2.14《近似数》教学设计

华师大版数学七年级上册2.14《近似数》教学设计一. 教材分析《近似数》是华师大版数学七年级上册第2章的内容,主要介绍了近似数的概念、四舍五入法以及近似数的求法。

这一节内容是学生学习实数和精确度概念的基础,对于培养学生的数感、提高解题能力具有重要意义。

二. 学情分析七年级的学生已经具备了一定的实数和运算基础,但对于近似数的概念和求法可能较为陌生。

因此,在教学过程中,需要从学生的实际出发,通过生动的实例和实际操作,让学生理解和掌握近似数的概念和求法。

三. 教学目标1.理解近似数的概念,掌握四舍五入法求近似数的方法。

2.能够运用近似数的概念和求法解决实际问题。

3.培养学生的数感,提高学生的解题能力。

四. 教学重难点1.近似数的概念和求法。

2.如何运用近似数解决实际问题。

五. 教学方法采用情境教学法、实例教学法和小组合作学习法。

通过生动的实例和实际操作,让学生理解和掌握近似数的概念和求法,同时引导学生运用所学知识解决实际问题,培养学生的数感。

六. 教学准备1.教材和教学参考书。

2.课件和教学素材。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入近似数的概念,如“天气预报中提到的气温是多少度?”引导学生思考和讨论,引出近似数的概念。

2.呈现(10分钟)讲解近似数的概念和四舍五入法求近似数的方法,通过具体的实例进行讲解,让学生理解和掌握。

3.操练(10分钟)让学生分组进行实际操作,运用四舍五入法求近似数,教师巡回指导,及时纠正错误。

4.巩固(10分钟)让学生解答一些有关近似数的练习题,巩固所学知识,提高解题能力。

5.拓展(10分钟)引导学生运用近似数解决实际问题,如购物时如何估算商品的价格,让学生体会数学在生活中的应用。

6.小结(5分钟)对本节课的内容进行总结,强调近似数的概念和求法,以及运用近似数解决实际问题的重要性。

7.家庭作业(5分钟)布置一些有关近似数的练习题,让学生课后巩固所学知识。

华东师大版七年级数学上册《第2章有理数2.14近似数 》说课稿

华东师大版七年级数学上册《第2章有理数2.14近似数 》说课稿

华东师大版七年级数学上册《第2章有理数2.14近似数》说课稿一. 教材分析华东师大版七年级数学上册《第2章有理数2.14近似数》这一节主要介绍了近似数的概念及其求法。

学生通过学习这一节内容,能够理解近似数的概念,掌握求近似数的方法,并能够运用到实际问题中。

二. 学情分析学生在学习这一节内容之前,已经学习了有理数的基本概念和运算法则,对数学的基础知识有一定的掌握。

但是,对于近似数的概念和求法可能还比较陌生,需要通过实例和练习来理解和掌握。

三. 说教学目标1.让学生理解近似数的概念,知道近似数是一种常用的表示方法,用于简化计算和表示。

2.让学生掌握求近似数的方法,能够运用到实际问题中。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 说教学重难点1.近似数的概念理解和表示方法。

2.求近似数的方法和运用。

五. 说教学方法与手段1.采用问题驱动的教学方法,通过实例和练习来引导学生理解和掌握近似数的概念和求法。

2.使用多媒体教学手段,通过动画和图表来形象地展示近似数的求法,帮助学生更好地理解和掌握。

六. 说教学过程1.引入:通过一个实际问题,引出近似数的概念和作用。

2.讲解:讲解近似数的概念和表示方法,引导学生理解近似数的含义。

3.演示:通过多媒体手段,演示近似数的求法,让学生直观地了解求近似数的过程。

4.练习:让学生通过练习题,运用所学的近似数求法,巩固所学知识。

5.总结:对本节课的内容进行总结,强调近似数的概念和求法。

七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。

可以设计如下板书:•概念:简化的表示方法,用于计算和表示•表示方法:约数、四舍五入等•求法:根据需要,选择合适的求法八. 说教学评价通过课堂提问、练习题和课后作业等方式,对学生对本节课的内容进行评价,了解学生对近似数的概念和求法的掌握情况。

九. 说教学反思在课后,教师应进行教学反思,总结本节课的教学效果和学生的学习情况,对教学方法和手段进行调整和改进,以提高教学效果。

华师大版数学七上2.14《近似数和有效数字》

华师大版数学七上2.14《近似数和有效数字》
Fra bibliotek舍入规则
在运算过程中,应根据需要选 择合适的舍入规则,如四舍五 入、五舍六入等。
特殊情况处理
对于一些特殊情况,如无穷大 、无穷小或非数字值等,应采 取适当的处理方法,以确保运 算结果的准确性。
THANK YOU
感谢聆听
保留数字的有效位数,忽略末尾的零。例如,3.14保 留两位有效数字为3.1×10^2。
四舍五入法
根据需要保留一定的小数位数,对末尾的一位进行 四舍五入。例如,3.1415保留两位小数四舍五入为 3.14。
近似数的分类
精确值
估计值
舍入误差
系统误差
已经知道其准确值的数。
通过测量或计算得到的 近似值。
由于四舍五入或其他舍 入方法产生的误差。
对数和指数运算
结果的有效数字位数与真数相 同。
04
近似数和有效数字的应用
在科学计算中的应用
01
物理实验
在物理实验中,由于测量工具的精度限制,测量得到的数据往往只能是
一个近似数。有效数字的应用能够帮助我们更准确地表示实验结果。
02
化学分析
在化学分析中,由于化学反应的不完全性和测量误差的存在,得到的数
学习目标和意义
掌握近似数和有效数字的表示方法,理解其含义和 作用。
学会在实际问题中应用近似数和有效数字,提高数 据处理和分析能力。
通过学习近似数和有效数字,培养学生对数学的兴 趣和热爱,提高数学素养。
02
近似数的概念和表示方法
近似数的定义
02
01
03
近似数是指一个数接近的数,它可能是一个精确的数 ,也可能是一个估计的数。
旅游
在旅游中,行程时间、距离等常常只能表示为近似数。了 解有效数字的规则能够帮助我们更好地规划行程。

2.14 近似数 教案教学设计

2.14 近似数 教案教学设计

目标教学活动评价要“基于课程标准、中招视野、两类结构”教案设计教学内容:2.14 近似数(一课时)课 型:新授课主备原单位: 修订人:一、学习目标确定的依据1、课程标准本节要求学生了解近似数,对给出的由四舍五入得到的近似数,能说出它的精确度,能用四舍五入的方法取近似数。

2、教材分析本节知识就是近似数,在小学教材中已经学习接触过近似数,本节是以前学习近似数的复习与巩固,同时比小学教材的近似数更具体。

3、中招考点近 3 年均有考查 近似数的精确度的确定,考查题型一般为填空题或选择题,一般是科学计数法与近似数的综合,分值 5 分左右,题目难度不大。

4、学情分析在学习本节内容以前,学生已经学过用四舍五入法取近似数,对精确度有一定的了解,对本节的学习充满了信心。

二、学习目标1、 能说出准确数与近似数的概念,能判断具体数字是否为准确数或近似数。

2、 对四舍五入得到的近似数你说出它的精确度,能按照指定的精确度要求,用四舍五入的方法求近似数。

重难点 有关带亿、万,和科学计数法表示的数的精确度和取近似值的题目。

三、评价任务1、向同桌说出准确数与近似数的概念,能判断出准确数与近似数。

2、数值较大时,会用科学计数法表示近似数的结果。

四、教学过程学习点 两类结构学习目标1:能说出准自学指导一:1、内容:45页和46页上半部分的内容。

2、时间:3分钟。

准确数近似数确数与近似数的概念,能判断具3、方法:独立自学4、要求:自学后能独立完成下列问题:(1)与实际_____但与实际有______的数是近似数。

与实际______的数是准确数。

(2)会判断45页出现的数,哪些是准确数?全班90%的学生能准确说出准实际体数字是否为准确数或近似哪些是近似数?自学检测一:下列问题中出现的数,哪些是准确数?哪些是近似数?确数与近似数二者之间的关完全相符非常接近数。

(1)郝岗一中七年级有897名学生。

(2)我国有13亿人口。

(3)小华的身高约1.6米。

2.14近似数和有效数字

2.14近似数和有效数字

2.14近似数与有效数字知识要点:1、准确数:与实际完全相同的数,叫准确数。

2、近似数的意义:与非常接近的,可用来估计的数,叫近似数。

3、近似数的精确度:近似数的,就是精确度。

4、有效数字的意义:近似数从左边第一个不是的数字起,到止,所有的数字都叫这个近似数的有效数字。

5、反映近似数的精确度的量:(1)精确到某一位;(2)保留几个有效数字。

6、一般地,一个近似数,四舍五入到某一位,我们就说这个近似数精确到那一位。

7、求一个数的近似值常用“四舍五入”法,有时还常用“去尾法”、“进一法”。

练习:一、选择题:1、①小刚买了3本书,②东东的身高为1.69米,③我们国家的国土面积是960万平方公里,④七年级二班有45名学生,⑤一双没有洗的手带有细菌80000万个,⑥一本书有243页,⑦一年有12个月,⑧我们拥有1个地球,⑨第一节火箭上有36251个零件。

以上各数中,近似数,准确数;2、1.996精确到0.01的近似数是()A 2B 2.0C 1.99D 2.003、0.01020的有效数字是()A 1,2B 1,0,2C 0,1,0,2,0D 1,0,2,04、“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学计数法(四舍五入保留2个有效数字)表示约为()A 26×104平方米B 2.6×104平方米C 2.6×105平方米D 2.6×106平方米5、下列说法中的数是准确数的是()A 初一、二班有31名男生B 月球离地面距离约为38万千米C 小勇同学的体重是48kgD 晓东妈妈买了4斤苹果6、有理数0.0030400中的有效数字有()A 3个B 4个C 5个D 6个7、下列说法正确的是()A 近似数24.00与24.0的精确度一样B 近似数100万的有效数字是1,0,0,0,0,0,0,C 近似数5.29×103与5290的精确度一样D 近似数529和0.529都有三个有效数字8、今年简阳市参加中考的学生人数约为6.01×104人,对于这个近似数,说法正确的是()A 精确到百分位,有3个有效数字B 精确到百位,有3个有效数字C 精确到十位,有3个有效数字 D精确到十位,有2个有效数字9、小华量得自己的身高约1.6米,小李量得自己的身高约1.60米,下列说法正确的是()A 小华和小李一样高B 小华比小李高C 小华比小李矮D 无法确定谁高10、近似数2.40是由a四舍五入得到,则()A 2.35<a<2.45B 2.35≤a<2.45C 2.395≤a≤2.405D 2.395≤a<2.40511、下列结果不能用四舍五入法的有()①每4人一组,9人可分几组,② 20米布,做一套服装3.99米,可做几套服装,③一车可装货物10吨,有11吨货物需几车,④ 300本本子分给110人,每人应分几本A 1个B 2个C 3个D 4个12、近似数2.70所表示的准确数m的范围是()A 2.695≤m<2.705B 2.65≤m<2.75C 2.695<m≤2.705D 2.65<m≤2.7513、数208031精确到万位的近似数是( )A 2×105B 2.1×105C 21×104D 2.08万14、已知13.5亿是四舍五入取得的近似数,它精确到( )A 十分位B 千万位C 亿位D 十亿位15、已知地球表面积约等于5.1亿平方千米,其中,水面面积约等于陆地面积的2971,则地球上陆地面积约等于( )(精确到0.1亿平方千米)A 1.5亿平方千米B 2.1亿平方千米C 3.6亿平方千米D 12.5亿平方千米16、如果a 是b 的近似值,那么我们把b 叫做a 的真值,若近似值是85,那么下列各数不可能是其真值的是( )A 85.01B 84.51C 84.99D 84.49二、填空题:1、近似数0.0020,它精确到 ;有 个有效数字,分别是 ;2、3.6万精确到 位,有 个有效数字,分别是 ;3、某市去年实现地区生产总值1583.45亿元,将这个数用科学计数法表示 元,(保留3个有效数字)4、1.90精确到 位,3.04×104精确到 位。

江永县第二中学七年级数学上册 第2章 有理数2.14 近似数教案 华东师大版

江永县第二中学七年级数学上册 第2章 有理数2.14 近似数教案 华东师大版

2.14 近似数【基本目标】1.使学生初步理解近似数的概念,并由给出的近似数,说出它精确到哪一位;2.给一个数,能熟练地按要求四舍五入取近似数.【教学重点】近似数、精确度等概念和给一个数能按照精确到哪一位或保留几个有效数字的要求,四舍五入取近似数.【教学难点】按要求取一个数字的近似数.一、情境导入,激发兴趣1.问题(1)统计班上喜欢看球赛的同学?(2)量一量课本的宽度.了解准确数和近似数的概念:统计的人数是一个实际完全符合的数,是准确数;如果量得课本的宽度是18.4cm,是一个与实际宽度非常接近的数,称之为近似数.【教学说明】通过具体的例子,让学生明确准确数和近似数的概念,引起学生的探究兴趣.2.从学生原有认知结构提出问题在小学里我们计算圆的面积S=πR2,π一般取多少?(3.14)这是一个精确的数吗?小数位数太多,不便于计算,常常保留两位小数,由“四舍五入”取π≈3.14,这就是“近似数”,小学里在小数计算中经常把最后答案取近似数.【教学说明】从学生已经掌握的知识入手,进一步渗透为什么需要近似数以及如何取一个数的近似数,为后面的学习奠定基础.二、合作探究,探索新知在实际问题中,我们经常要用近似数.使用近似数就有一个近似程度的问题,也就是精确度的问题.我们都知道,π=3.14159…,我们对这个数取近似数:如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01)……概括:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.【教学说明】让学生按照要求取近似数,教师适时总结精确度的规律,在总结时,一定要紧紧结合上面的实际例子来进行,这样学生理解的更透彻.三、示例讲解,巩固提高例1 下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4;(2)0.0572;(3)2.40万.解:(1)132.4精确到十分位(精确到0.1),共有4个有效数字1、3、2、4;(2)0.0572精确到万分位(精确到0.0001),共有3个有效数字5、7、2;(3)2.40万精确到百位,共有3个有效数字2、4、0.注意:由于2.40万的单位是万,所以不能说它精确到百分位.【教学说明】让学生尝试说明,对于(3),学生可能会存在一些争论,教师要鼓励学生进行争论,在争论中找到正确的结果,使学生印象更深刻,教师适时总结,看精确到哪一位,要看最后一个数字的实际位数.例2 用四舍五入法,按括号中的要求把下列各数取近似数.(1)0.34082(精确到千分位);(2)64.8 (精确到个位);(3)1.504 (精确到0.01);(4)130542 (精确到千位).解:(1)0.34082 ≈ 0.341;(2)64.8 ≈ 65;(3)1.504 ≈ 1.50;(4)130 542 ≈ 1.31×105.(2)例2 的(4)中,如果把结果写成131 000,会误认为是精确到个位得到的近似数,所以我们用科学记数法,把结果写成1.31×105,就确切的表示精确到千位;(3)有一些量,我们或者很难测出它的准确值,或者没有必要算得它的准确值,这时通过粗略的估算就能得到所要的近似数,有时近似数也并不总是按“四舍五入”法得到的.【教学说明】学生尝试自主完成,教师重点讲解(4),要讲清楚为什么要写成科学记数法的形式,如果把结果写成131000,会误认为是精确到个位得到的近似数,所以我们用科学记数法,把结果写成1.31×105,就确切的表示精确到千位.紧接着教师举出实际例子说明有时近似数也并不总是按“四舍五入”法得到的,介绍“进一法”和“去尾法”.四、练习反馈,巩固提高1.用四舍五入法,括号中的要求对下列各数取近似数.(1) 0.34 0 82 (精确到千分位);(2) 64.8 (精确到个位);(3) 1.5046 (精确到0.01);(4) 30542 (精确到百位).≤a <2. 605≤a< 2.70≤2.605≤2.6053.某校学生320人外出参观,已有65名学生坐校车出发,还需要几辆54座的大巴()A.4辆B.5辆C.6辆D.7辆4.做一个零件需要整材料钢精6厘米,现有15厘米的钢精10根,一共可做零件多少个()A.15个B.20个C.30个D.40个【教学说明】学生独立完成,教师要特别注意学生对第3题的理解,教师可多举几个例子进行讲解,使学生理解的更透彻.【答案】1.(1)0.340 82≈0.341 (2)64.8≈65 (3)1.504 6≈1.50(4)30 542≈3.05×1042.A3.C4.B五、师生互动,课堂小结(1)一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位;(2)有一些量,我们或者很难测出它的准确值,或者没有必要算它的准确值,这时通过粗略的估算就能得到所要的近似数,有时近似数也并不总是按“四舍五入”法得到的,可以用“进一法”或“去尾法”;(3)对一个大于10的数取近似数时,有的要先写成科学记数法记数,再取近似数.【教学说明】教师引导学生对本节课知识进行系统的归纳总结进一步巩固所学知识,使知识形成系统.完成本课时对应的练习.学生在小学已学过近似数和有效数字,在实际运算时(特别是除法运算除不尽时)根据需要,按四舍五入法保留一定的小数位数,求出近似值.教学设计中,首先通过大量实例,说明实际中遇到的大量的数都是近似数,这样,就引出了精确度的问题.通过两个实例的教学,让学生知道如何根据实际中的要求或题目中的要求用四舍五入法取其近似数.4.整式的加减【基本目标】1.通过对以前所学知识的综合复习,从而顺利过渡到整式的加减运算;2.在整式的加减中,能灵活结合各方面运算法则,进行正确的计算,提高计算的灵活性.【教学重点】结合各方面知识进行整式的加减运算.【教学难点】如何更灵活、更准确地进行整式的加减.一、创设情境,导入新课做一做:某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?①学生写出答案:n+(n+1)+(n+2)+(n+3)②提问:以上答案还能进一步化简吗?如何化简?我们进行了哪几步运算?③学生尝试计算.【教学说明】从实际问题引入,让学生经历一个实际背景,体会进行整式的加减运算的必要性.再通过尝试计算,为学生概括出整式的加减的一般步骤做必要的准备.二、合作探究,探索新知1.试一试:化简下列各式.(1)(x+y)—(2x-3y);(2)2(a2-2b2)-3(2a2+b2).学生尝试计算,教师提问:以上化简实际上进行了哪几步运算?怎样进行整式的加减运算?2.小结(1)整式的化简实质上就是整式的加减,去括号和合并同类项是整式加减的基础.(2)整式加减的一般步骤可以总结为:①如果有括号,那么先去括号;②如果有同类项,再合并同类项.【教学说明】教师在学生解答后提问,让学生通过回顾解答的过程进行总结.教师予以补充完善.三、示例讲解,掌握新知例1求整式x2―7x―2与―2x2+4x―1的差.解:原式=( x2―7x―2)―(―2x2+4x―1)= x2―7x―2+2x2―4x+1=3x2―11x―1.【教学说明】本例应先列式,列式时注意先给两个多项式都加上括号,然后进行整式的加减.例2计算:―2y3+(3xy2―x2y)―2(xy2―y3).解:原式=―2y3+3xy2―x2y―2xy2+2y3= xy2―x2y.【教学说明】本例让学生体会整式的加减实质是去括号、合并同类项这两个知识的综合.有利于将新知识转化为已有的知识,使学生的知识结构得到更新.例3化简求值:(2x3―xyz)―2(x3―y3+xyz)+(xyz―2y3),其中x=1,y=2,z=―3.解:原式=2x3―xyz―2x3+2y3―2xyz+xyz―2y3=―2xyz.当x=1,y=2,z=―3时,原式=—2×1×2×(—3)=12.【教学说明】本例让学生经历求代数式的值时,应先考虑将代数式化简,在代入求值的过程,体会先化简再求值的优越性.四、练习反馈,巩固提高1.填空:(1)3x与-5x的和是,3x与-5x的差是 .(2)a-b,b-c,c-a三个多项式的和是 .(3)化简:(x+y+z)+(z-y+x)-(x-y-z)= .2.将代数式先化简,再求值:2a2-b2+2(b2-a2)-(a2+2b2),其中a=243,b=3.3.计算2(x-3x2+1)-3(2x2-x-2).4.先化简,再求值:5x-[3x-x(2x-3)],其中x=2.5.如果某三角形第一条边长为(2a-b) cm,第二条边比第一条边长(a+b) cm,第三条边比第一条边的2倍少b cm,求这个三角形的周长.【教学说明】第1、2、3、4题是对整式加减运算进行训练,要注意强调解题步骤的规范性,化简求值,一般应先化简,再代入求值,注意格式的规范性,第5题是一个实际应用性的问题,可以提示学生分步解答.【答案】1.(1)-2x 8x (2)0(3)x+y+3z2.解:2a2-b2+(2b2-2a2)-(a2+2b2)=2a2-b2+2b2-2a2-a2-2b2=-a2-b2,当a=243,b=3时,原式=-2432+(-32)=-590583.-12x2+5x+84.2x2-x,65.解:(2a-b)+[(2a-b)+(a+b)]+[2(2a-b)-b]=9a-4b五、师生互动,课堂小结1.整式的加减实际上就是去括号、合并同类项这两个知识的综合.2.整式的加减的一般步骤:(1)如果有括号,那么先算括号;(2)如果有同类项,则合并同类项.3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便.4.数学是解决实际问题的重要工具.【教学说明】教师引导学生对整式加减的一般步骤和求代数式的值的过程进行回顾,使学生思维更清晰,强调解题格式的规范性,体会数学是解决实际问题的重要工具.完成本课时对应的练习.通过实际问题,让学生经历一个实际背景,去体会进行整式的加减的必要性.通过“去括号、合并同类项”习题的练习归纳总结出整式的加减的一般步骤.培养学生的观察、分析、归纳和概括的能力,掌握知识的发生发展过程,理解整式的加减实质就是去括号、合并同类项.教学过程中由学生小组讨论概括出整式的加减的一般步骤,然后出示例题,由学生解答.同时采取由学生出题,其他同学抢答等形式,来提高学生的学习兴趣,充分发挥他们的主观能动性,提高课堂教学效益.有理数的乘方1.下列各组数中,运算后的结果相等的是( )A .43与34B .-53与(-5)3C .(-6)2与-62D .⎝ ⎛⎭⎪⎫-522与⎝ ⎛⎭⎪⎫-2522.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2,计算结果为负数的个数有( )A .4个B .3个C .2个D .1个3.[2017·陕西]⎝ ⎛⎭⎪⎫-122-1=( )A .-54B .-14C .-34D .04.计算:(-1)2+(-1)3=( )A .-2B .-1C .0D .25.[2017·自贡]计算(-1)2 017的结果是( )A .-1B .1C .-2 017D .2 0176.计算:(1)43=____;(2)⎝ ⎛⎭⎪⎫234=____;(3)(-5)2=____;(4)[2016·镇江](-2)3=____;(5)07=____;(6)-(-2)4=____;(7)-⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫-133=____.7.计算:(1)(-3)2;(2)(-2)3;(3)(-4)4;(4)⎝ ⎛⎭⎪⎫323; (5)(-2)2·(-3)2; (6)-32×⎝ ⎛⎭⎪⎫-13; (7)⎝ ⎛⎭⎪⎫-452÷⎝ ⎛⎭⎪⎫253; (8)(-3)2×⎝ ⎛⎭⎪⎫-322×⎝ ⎛⎭⎪⎫232. 8.[2017秋·金城江区期中]将下列各数填在相应的集合里.-12,-20%,4.3,-⎪⎪⎪⎪⎪⎪-207,42,0,-⎝ ⎛⎭⎪⎫-35,-32. 整数集合:正分数集合:负分数集合:9.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A .42B .49C .76D .7710.按照如图所示的操作步骤,若输入x 的值为2,则输出的值为____.11.你喜欢吃拉面吗?拉面馆的师傅,用一根粗的面条,把两头捏合在一起拉伸再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条.如图,这样捏合到第____次后可以拉出128根面条.12.[2017秋·虎林市校级月考]现有一个病毒A ,每隔半小时分裂一次,若不考虑其他因素,10小时后,能有多少个A 病毒?若有某细菌B ,专门消灭病毒A ,现有2万个这样的细菌B ,若该种群每半小时增加2万个,则10小时后有多少个细菌B ?若将10小时后的两种微生物混合在一起(一个细菌只能吞噬一个病毒),那么谁会有剩余?13.[2017秋·木里县校级月考]某股票经纪人给他的投资者出了一道题,说明投资人的赢利净赚情况(单位:元):请你计算一下,投资者到底是赔了还是赚了,赔了或赚了多少元?14.有一张厚度是0.1 mm的纸片,将它对折一次后,厚度为2×0.1 mm.(1)对折2次后,厚度为多少毫米?(2)对折10次后,厚度为多少毫米?(3)对折20次后,厚度为多少毫米?(4)我们住的住宅楼每层平均高度约为2.8 m,那么这张纸对折20次后约有多少层楼房高?参考答案BBCCA64 1681 25 -8 0 -16 -1277.解:(1)(-3)2=9;(2)(-2)3=-8;(3)(-4)4=256;(4)⎝ ⎛⎭⎪⎫323=278;(5)(-2)2·(-3)2=4×9=36;(6)-32×⎝ ⎛⎭⎪⎫-13=-9×⎝ ⎛⎭⎪⎫-13=3;(7)⎝ ⎛⎭⎪⎫-452÷⎝ ⎛⎭⎪⎫253=1625÷8125=1625×1258=10;(8)(-3)2×⎝ ⎛⎭⎪⎫-322×⎝ ⎛⎭⎪⎫232=9×94×49=9.8. {__42,0,-32,__…}⎩⎨⎧⎭⎬⎫4.3,-⎝ ⎛⎭⎪⎫-35, …⎩⎨⎧⎭⎬⎫-12,-20%,-⎪⎪⎪⎪⎪⎪-207, …9.C10.2011.712. 解:由已知条件知:细菌每半小时分裂一次,则经过十个小时就会分裂20次, 又∵细菌每半小时分裂一次(由一个分裂为两个),∴分裂20次这种细菌由1个可分裂繁殖成220=1 048 576,B 种群每半小时增加2万个,则10小时后可有2+2×10×2=42万个=420 000,∵420 000<1 048 576,∴病毒A会有剩余.13. 解:天河:500×23 =4 000(元)北斗:1.5×1 000=1 500(元)白马:-3×1 000=-3 000(元)海潮:2×500=1 000(元 )4 000+1 500-3 000+1 000=5 500-3 000+1 000=3 500(元)∴投资者赚了3 500元.答:赚了3 500元.14. 解:(1)22×0.1=0.4(mm);(2)210×0.1=1 024×0.1=102.4(mm);(3)220×0.1=1 048 576×0.1=104 857.6(mm);(4)104 857.6×11 000÷2.8=104.857 6÷2.8≈37(层).答:对折20次后的厚度约有37层楼高.。

2022-2023学年华东师大版七年级数学上册《第2章有理数2.14近似数 》教案

2022-2023学年华东师大版七年级数学上册《第2章有理数2.14近似数 》教案

2022-2023学年华东师大版七年级数学上册《第2章有理数2.14近似数》教案一. 教材分析华东师大版七年级数学上册第2章《有理数》2.14节主要介绍了近似数的概念、近似数的求法以及近似数的应用。

本节内容是学生在学习了有理数的基本概念和运算法则之后,对数的进一步理解,为学生今后的数学学习打下了基础。

二. 学情分析七年级的学生已经掌握了有理数的基本概念和运算法则,具备了一定的逻辑思维和抽象思维能力。

但是对于近似数的概念和求法可能还比较陌生,需要通过具体的实例和练习来理解和掌握。

三. 教学目标1.让学生理解近似数的概念,知道近似数的求法。

2.培养学生运用近似数解决实际问题的能力。

3.培养学生合作探究、解决问题的能力。

四. 教学重难点1.近似数的概念和求法。

2.近似数在实际问题中的应用。

五. 教学方法采用问题驱动法、实例教学法、小组合作探究法等,以学生为主体,教师为指导,激发学生的学习兴趣,培养学生解决问题的能力。

六. 教学准备1.准备相关近似数的实例和练习题。

2.准备PPT课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用PPT课件,展示一些与近似数相关的实例,如天气预报中的温度、身高、体重等,引导学生思考:这些数值是如何得到的?引入近似数的概念。

2.呈现(10分钟)讲解近似数的定义,让学生明确近似数是对实际数值的一种估计,通常用四舍五入法取得。

通过具体的例子,演示近似数的求法,如将3.14159近似为3.14。

3.操练(10分钟)让学生独立完成一些近似数的求解练习题,如将2.789近似为两位小数、将1.23456近似为整数等。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)通过一些实际问题,让学生运用近似数进行计算,如购物时找零、制作蛋糕时测量食材等。

让学生明白近似数在实际生活中的应用。

5.拓展(10分钟)讨论近似数在科学研究和工程技术中的应用,如测量、计算、设计等。

引导学生思考:为什么近似数在这些领域中如此重要?6.小结(5分钟)对本节课的主要内容进行总结,让学生明确近似数的概念、求法以及应用。

华师大版七年级数学上册教案:2.14 近似数

华师大版七年级数学上册教案:2.14 近似数

2.14近似数一、基本目标【知识与技能】1.理解近似数与有效数字的意义;2.能够正确地说出一个近似数的精确度及有效数字;3.让学生能按照精确度的要求,用四舍五入法求出近似数;4.了解到近似数和有效数字是由实践中产生的,并能对含有较大数字的信息作出合理的解释和推断.【过程与方法】1.在现实情境中获得准确数和近似数的初步认识;2.在实践的过程中,认识近似数与有效数字的意义;3.在教师的引导下,通过观察、猜测、验证、交流探索出多种估算的方法,获得处理实际问题中估算的初步经验.一.创设情境做一做: 统计班上喜欢看球赛的同学的人数.统计结果:35人.则35这个数是与实际完全符合的准确数,一个也不多,一个也不少.我们知道,数学的一个特点是精确,有一位科学家说过:数学是和人类思想中的精确部分相一致的科学.在数学中,说话要有根有据,因为什么,所以什么,清清楚楚,来不得半点马虎.在前面的有理数运算中,我们首先要做到的也就是准确.但是,在实际生活中的许多情形里, 人们并不要求每个量都要十分精确.问题:有10千克苹果,平均分给3个人,应该怎样分?具体怎么做呢?学生讨论:实际上,只要从10千克苹果中称出两次3.3千克就行了,剩下一堆虽然多一点,但肯定谁也不在乎.二.实验归纳做一做:量一量你的数学课本的宽度.测量结果:数学课本的宽为13.5cm.由于所用尺的刻度有精确度限制,而且用眼观察不可能非常细致,因此与实际宽度会有一点偏差.这里的13.5cm只是一个与实际宽度非常接近的数,称为近似数(approximate number).说明:在解决一些实际问题时,有时要把结果搞得完全准确是办不到的或没有必要的,往往只能用近似数.比如说,测量的结果,往往是近似数.你还能举出一些日常遇到的近似数吗?使用近似数就有一个近似程度的问题,也就是精确度的问题.以分苹果的问题为例,我们知道如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;如果结果取1位小数,那么应为3.3,就叫做精确到十分位(或叫精确到0.1位);如果结果取2位小数,那么应为3.33,就叫做精确到百分位(或叫精确到0.01位);…………试一试:你知道圆周率π吗? π=3.1415926…如果结果只取整数,那么按四舍五入的法则应为_______,就叫做精确到_______.如果结果取1位小数,那么应为_______,就叫做精确到_______.如果结果取2位小数,那么应为_______,就叫做精确到_______.如果结果取3位小数,那么应为_______,就叫做精确到_______.一般地,一个近似数,四舍五入到某一位,就说这个近似数精确到那一位.归纳:从左边第一个不是0的数字起,到末位数字为止,所有的数字都叫做这个数的有效数字(significantdigits).例如,小明的身高为1.70米,1.70这个近似数精确到百分位,共有3个有效数字:1,7,0.精确到第几位和有几个有效数字是精确度的两种常用表示形式,他们的实际意义是不一样的,前者可以表示出误差值绝对数的大小,后者则往往可以比较几个近似数中哪个相对更精确一些.三.实践应用例1下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)132.4;(2)0.0572 ;(3)2.40万;(4)1.90×104.分析:(1)有效数字应从左边第一个不是0的数字数起,到精确到的数位止;(2)带有单位的数的精确度,如2.40万,0在百位,所以它精确到百位,其有效数字与2.40的有效数字相同,有3个,不能把它写成24 000后在确定精确度和有效数字的个数;(3)用科学记数法表示的数往往要把它写成19 000,知道9后面的0在百位,所以1.90×104精确到百位,其有效数字与1.90相同,有3个.解(1)132.4精确到十分位(精确到0.1),共有4个有效数字:1,3,2,4.(2)0.0572精确到万分位(精确到0.0001),共有3个有效数字:5,7,2.(3)2.40万精确到百位,共有3个有效数字:2,4,0.(4) 1.90×104精确到百位,共用3个有效数字:1, 9, 0.教法说明:对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.练习下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)127.32;(2)0.0407;(3)20.053;(4) 230.0千;(5) 4.002;(6)0.03060;(7)15.4亿;(8)3.06×105.例2 用四舍五入法,按括号中的要求对下列各数取近似数:(1)0.34082(精确到千分位);(2)64.8(精确到个位);(3)1.5046(精确到0.01位);(4)0.0692(保留2个有效数字);(5)30542(保留3个有效数字).分析:(1)第(3)题中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉.(2)第(5)题中,如果写成30500,就看不出哪些是保留的有效数字,所以我们要用科学记数法,把结果写成3.05×104.解(1)0.34082≈0.341 ;(2)64.8≈65 ;(3)1.5046≈1.50;(4)0.0692≈0.069;(5)30542≈3.05×104.练习用四舍五入法,将下列各数按括号中的要求取近似数:(1)0.6328 (精确到0.01); (2)79122 (精确到千位);(3)47155 (精确到百位); (4)130.06 (保留4个有效数字);(5)460215(保留3个有效数字).有一些量,我们或者很难测出它的准确值,或者没有必要算得它的准确值,这时通过近似数或粗略的估算就能得到所要的结果.而且估算能力还是日常生活的一种很有用的本领,要求学生多留心日常生活中的问题,因为在以后的生活和工作中常常会用上.例3 某地遭遇旱灾,约有10万人的生活受到影响.政府拟从外地调运一批粮食救灾,需估计每天要调运的粮食数.分析如果按一个人平均一天需要0.4千克粮食算,那么可以估计出每天要调运4万千克粮食;如果按一个人平均一天需要0.5千克粮食算,那么可以估计出每天要调运5万千克粮食.例4 某校初一年级共有112名同学,想租用45座的客车外出秋游.问应该租用客车几辆?分析因为112÷45=2.488…,这里就不能用四舍五入法,而要用进一法来估计应该租用客车的辆数,即应租3辆.除了进一法,有的情况下还用到去尾法.例如某小店现进25.2千克的糖,要把它包装成每袋0.5千克出售,问可包装几袋?分析: 因为25.3÷0.5=50.6, 这里即不能用四舍五入法,也不能用进一法,而要用去尾法估计可包装50袋.练习:一次水灾中,大约有20万人的生活受到影响,灾情将持续一个月.请推断:大约要组织多少顶帐蓬?多少吨粮食?四.交流反思问:本节课同学们学习了哪些内容?你觉得在求一个近似数的精确度、有效数字以及按照要求的精确度求一个数的近似数时要注意哪些方面呢?你觉得估算有哪些优越性呢?五.检测反馈1.下列各个数据里,哪些数是准确数?哪些数是近似数?(1)小琳称得体重为38千克; (2)现在的气温是-2度;(3)1m等于100cm;(4)东风汽车厂2000年生产14500辆.2.下列由四舍五入法得到的近似数各精确到哪一位?各有几个有效数字?(1)5.67;(2)0.003 010;(3)111万;(4)1.200亿.3.用四舍五入法,按要求对下列各数取近似值:(1)1 102.5亿(精确到亿); (2)0.002 91 (精确到万分位);(3)0.079 02 (保留三位有效数字).4.用四舍五入法,按要求对下列各数取近似值,并用科学记数法表示:(1)129 551(保留3个有效数字);(2)4 753 010 (保留2个有效数字).5.量出语文课本封面的长度和宽度(精确到1mm).请完成本课时对应练习!。

华东师大版七年级数学上册教案《2.14近似数》

华东师大版七年级数学上册教案《2.14近似数》

《2.14近似数》此处是文字。

【知识与能力目标】了解近似数的概念,并按要求取近似数。

【过程与方法目标】经历对实际问题的探究过程,体会用近似数字刻画现实问题的思想。

【情感态度价值观目标】在独立思考的基础上,积极参与对数学问题的讨论,并敢于表现自己,丰富学习数学的成功体验,激发对空间与图形的好奇心。

【教学重点】了解近似数、精确度的意义,能根据具体要求取近似数。

【教学难点】近似数的意义,按实际需要取近似数。

教师准备:课件、多媒体;学生准备:练习本;一、导入新课问题1:(一)生活中的情景:对于参加同一个会议的人数,有两个报道.一个报道说:“会议秘书处宣布,参加今天会议的有513人.”另一报道说:“约有5百人参加了今天的会议。

”问题2:在这些数据中,哪些是与实际接近的?哪些数据是与实际完全符合的?二、新课学习1、得出概念问题1:根据我们预习的结果,上述的4个问题中,是准确数,是不能准确反映实际情况的。

这些数只是一个大概的数,我们给它取个名字叫做。

问题2:你能列举出生活中哪些是准确数,哪些用到近似数吗?问题3:七年级的实际学生数为224,与第2个问题相比较,误差是。

问题4:为什么会产生这个误差?近似数与准确数的接近程度,用精确度表示524精确到个位,而约5百精确到位。

2、尝试解决问题问题5:按四舍五入对圆周率取得的近似数精确到哪一位?π≈3(精确到位)π≈3.1(精确到0.1或叫做精确到位)π≈3.14(精确到或叫做精确到位)π≈3.142(精确到或叫做精确到位)练习:教材P46页练习问题6:在表示近似数的方法有和。

还有其它的吗?3、例题讲解教材P46例6。

注意精确度1.8与1.80的区别。

4、扩展问题7:3.21×105精确到位。

科学记数法是为了便于表示比较大的数而产生的。

分析:321 000保留3位有效数字,若只取3 2 1,则与原数出入太大,不合理。

这时我们用科学记数来表示,可表示为3.21×105,这样就符合了题目。

2.14近似数(教案)-人教版七年级数学上册

2.14近似数(教案)-人教版七年级数学上册
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解近似数的基本概念。近似数是指用来代替精确数值的数,它是用有限的数字来表示一个实际数值的方法。近似数在科学研究、工程技术以及日常生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。例如,当我们测量一根木棒的长度时,得到的结果可能是2.8米或3米,这些数值就是近似数。这个案例展示了近似数在实际中的应用,以及它如何帮助我们解决问题。
4.近似数的运算:学习近似数的加减乘除运算规则,了解运算过程中误差的传播。
5.近似数在实际问题中的应用:通过实例分析,培养学生运用近似数解决实际问题的能力。
6.近似数的精度:了解不同精度近似数的表示方法,如千位、百位、十位等。
7.近似数的改写:掌握将一个近似数改写成另一个近似数的方法,如将3.14改写为1.57。
-举例:解释为什么在科学计算中,有时需要保留更多的小数位数,而在日常生活中,则可以使用较少的小数位数。
-近似数的误差处理:学生在进行近似数的运算时,可能会忽略误差的累积,导致结果不准确。
-举例:通过具体的计算例子,展示在连续运算中,误差是如何累积的,以及如何通过适当的近似方法减少误差。
-近似数与精确数的区别:学生可能会混淆近似数与精确数的概念,认为近似数就是准确的数值。
五、教学反思
在今天的教学过程中,我发现学生们对于近似数的概念和表示方法掌握得相对较好。通过引入日常生活中的实例,他们能够迅速理解近似数在实际中的应用。然而,我也注意到在讲解近似数的运算规则和误差传播时,部分学生显得有些困惑。这让我意识到,这部分内容是本节课的难点,需要我在今后的教学中进一步强化。
在实践活动环节,学生们分组讨论和实验操作的表现让我感到惊喜。他们能够积极参与,提出自己的观点,并将所学的近似数知识应用到实际问题中。但同时,我也发现有些小组在讨论时,对于如何将近似数应用于实际问题还显得有些迷茫。为此,我计划在下一节课中增加一些更具针对性的案例分析,以帮助他们更好地理解近似数的实际应用。

七年级数学上册 第2章2.14 近似数例题与讲解 (新版)华东师大版

七年级数学上册 第2章2.14 近似数例题与讲解 (新版)华东师大版

2.14 近似数1.准确数和近似数的意义(1)准确数:与实际完全符合的数叫做准确数.例如某校初中部有38个教学班,其中七年级有13个班,每班均有50人.这里的38,13,50都是准确的.(2)近似数:与实际接近的数叫近似数.近似数主要是从计算和度量中产生出来的,主要包括以下几种:①在计算时,有时只能得到近似数.如10÷3得近似商3.33;②在度量时,由于受测量工具和测量技术的局限性影响,一般只能得到近似数.如现有最小刻度分别是厘米、毫米的尺子各一把,用它们分别测量同一个人的身高就会得到不完全相同的结果;③在计算和测量中有时并不需要很准确的数,只需要一个近似数即可.如地球的表面积为5.1亿平方千米,某市有50万人等,这里的5.1亿,50万都是近似数.(3)近似数识别的方法:①语句中带有“约”“左右”等词语,里面出现的数据都是近似数.如:“某城市约有100万人口”、“这篇文章有2 000字左右”,这两个语句中的100万和2 000都是近似数.②诸如“温度”“身高”“体重”“长度”等这些词语用数据来描述时,这些数都是近似数.如:“现在的气温是-2 ℃”,“小明的体重是55千克”这两个语句中的-2和55都是近似数.谈重点近似数的取值范围近似数M的近似值是m(整数),则M的取值范围:m-0.5≤M<m+0.5.【例1】下列各题中的数据,哪些是准确数?哪些是近似数?(1)某字典共有1 234页;(2)我们班级有97人,买门票大约需要800元;(3)小红测得数学书的长度是21.0厘米.分析:(1)字典的页数是不需要估计或测量的,有多少页是固定的,所以1 234是一个准确数;(2)一个班级的人数是不需要估计的,而是确定的,所以97是一个准确数,买门票大约需要800元是一个估计值,所以800是一个近似数;(3)测量的结果都是近似的,所以21.0是一个近似数.解:(1)1 234是准确数;(2)97是准确数,800是近似数;(3)21.0是近似数.2.近似数精确到哪一位(1)近似数的精确数位四舍五入法:对要精确的数精确到数位后的一位数字,采用满五进一,不足五舍去的办法,所求出的近似数.一般地,一个近似数四舍五入到哪一位,我们就说这个数精确到哪一位.如一个近似数M精确到十分位后的近似值是3.3,那么这个近似数M的取值范围是:3.25≤M<3.35.具体的做法是一个近似数要求精确到哪一位,只要从它的下一位四舍五入即可,按要求求近似数不能连续从末位向前四舍五入.如将数3.024 6四舍五入到百分位,应从4开始四舍五入得3.02,而不是从6开始得3.03.(2)近似数的表示方法若一个近似数M的值是3.56,则它可记作M≈3.56,这里的“≈”应读作“近似于”或“约等于”,但绝不能读作“近似”,特别地,近似数小数点后的0不能随便省掉,以便区别其精确度.如1.302表示这个数精确到0.001,即精确到千分位;而1.302 0表示这个数精确到0.000 1,即精确到万分位.【例2】用四舍五入法,按括号中的要求对下列各数取近似数.(1)0.030 49(精确到0.001);(2)199.5(精确到个位);(3)48.396(精确到百分位);(4)67 294(精确到万位).分析:四舍五入法是指把要求确定到某一位的后一位数四舍五入,大于或等于5的就进一位,小于5就舍去.(1)精确到0.001,即精确到千分位,由于万分位上的数是4,故这位及后面的9全部舍去,所以0.030 49≈0.030.(2)精确到个位,由于十分位上的数是5,故应向个位进1,所以199.5≈200.(3)精确到百分位,由于千分位上的数是6,故应向百分位进1,所以48.396≈48.40.(4)精确到万位,由于千位上的数是7,故应向万位进1,所以67 294≈70 000,为了不让人误以为70 000精确到个位,所以结果应写成7×104,或7万.解:(1)0.030 49≈0.030;(2)199.5≈200;(3)48.396≈48.40;(4)67 294≈7×104.警误区取近似数需要注意的问题近似数的舍入,只考虑紧挨着这一数位后面的第一个数字,且近似数小数点后末位数是0时千万不能省掉.3.精确度的确定一个近似数四舍五入到哪一位,我们就说这位数精确到哪一位.①普通数直接判断;②科学记数法形式(形如a×10n).这类数先还原成普通数,再看a最右边的数字处在什么数位上,处在什么数位上就是精确到什么数位.③带有“文字单位”的近似数,在确定它的精确度时,分两种情况:当“文字单位”前面的数是整数时,则近似数精确到“文字单位”;当“文字单位”前面的数是小数时,则先将近似数还原成原来的数,再看最右边的数字的位置.【例3-1】 12.30万精确到( ).A.千位B.百分位C.万位D.百位解析:12.30万还原成原来的数是123 000,所以精确到的数位是百位,故选D.答案:D【例3-2】由四舍五入法得到的近似数3.20×105,下列说法中正确的是( ).A.精确到百位B.精确到个位C.精确到万位D.精确到千位解析:用科学记数法表示的近似数3.20×105,精确度的确定,要把用科学记数法表示的数还原成原数,即3.20×105=320 000,所以精确到千位.故选D.答案:D解技巧较大的数精确数位的确定方法较大的数取近似值时,常用×万,×亿等等来表示,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如9.03万=90 300,因为“3”在百位上,所以9.03万精确到百位.4.求近似数的范围求近似数的取值范围时,只要把原近似数加上(减去)精确到的最后一个数位的半个单位即可得到近似数的取值范围.如果一个数x的近似数为a,那么x可能取值的范围是:a-M≤x<a+M,其中M为原近似数精确到的最后一个数位的半个单位.如近似数1.20所表示的准确数x的取值范围是 1.20-0.005≤x<1.20+0.005,即1.195≤x<1.205;又如近似数4.7×103所表示的准确数x的取值范围是4 700-50≤x<4 700+50,即4650≤x<4 750.【例4】若k的近似值为4.3,求k的取值范围.分析:一个数的近似值为4.3,表明这个近似值是精确到十分位的近似数.十分位上的数字3是由下一位即百分位上的数字四舍五入得到的,如果百分位上的数字是0,1,2,3,4中的任意一个,根据四舍五入取近似值的方法,应该把百分位上的数字舍去,那么就要求k 的十分位上的数字必须是3,才能保证近似数是4.3.若k的百分位上的数字是5,6,7,8,9中的任意一个,根据四舍五入取近似值的方法,应该把百分位上的数字去掉后,在十分位的数字上加1,那么就要求k的十分位上的数字必须是2,才能得到近似数4.3.综上所述,k 只能取大于或等于4.25且小于4.35之间的数,才能保证得到精确到0.1的近似值是4.3.解:∵4.3-0.05≤k<4.3+0.05,∴4.25≤k<4.35.5.在实际问题中取近似数的方法取近似数的方法一般用四舍五入法,另外在特殊情况下还可以用去尾法和进一法.(1)在大量的数学问题中,都会遇到近似数的问题.使用近似数,就有一个近似程度的问题,也就是精确度的问题,一般用四舍五入法取值,对四舍五入要有深入理解;(2)有时候一些近似值并不一定都是按照四舍五入法得到的.如100名学生,用30座客车运送,需要100÷30=3.333……≈4次才能运完.这里用的就不是四舍五入法,而是进一法.再如用100元钱去买单价为30元的书包,能买100÷30=3.333……≈3个书包,这里用的也不是四舍五入法,而是去尾法.总之,取近似数的方法主要有三种:四舍五入法、进一法和去尾法.【例5-1】全班51人参加100米跑测验,每6人一组,问至少要分几组?分析:由于51÷6=8(组)……3(人),即分成8组后还剩下3人,所以采用进一法,分成9组.解:51÷6=8(组)……3(人),8+1=9(组),所以至少要分9组.【例5-2】一辆汽车要装4只轮胎,50只轮胎能装配几辆汽车?分析:由于50÷4=12(辆)……2(只),即装配12辆汽车后还剩下2只轮胎,所以采用去尾法,能装配12辆汽车.解:50÷4=12(辆)……2(只),所以能装配12辆汽车.【例5-3】一根方便筷子的长、宽、高大约为20 cm,0.5 cm,0.4 cm,估计1 000万双方便筷子要用多少木材?这些木材要砍伐半径为0.1米、高10米(除掉不可用的树梢)的大树多少棵?(保留2个有效数字)分析:长方体的体积公式V=abc,圆柱的体积公式V=πr2h.解:一双筷子的体积为2×0.4×0.5×20≈8(cm3),1 000万双筷子的体积为1 000×10 000×8=8×107(cm3)=80(m3),一棵大树的体积为π×0.12×10≈0.314(m3),1 000万双筷子要砍伐大树棵数为80÷0.314≈255(棵).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3) 1.5046≈ 1.50 (4)1295330000≈1.30×109
课堂小结
一、精确度(重点)
二、给一个近似数,正确指出精确到哪一位?(难点) 三、几点注意:
1、两个近似数1.5与1.50表示的精确程度不一样。
2、两个近似数6.3万与6.3精确到的数位不同。
一、判断:
1、3.008是精确到百分位的数. (
近似数——与实际非常接近,
但存在一定差别的数。
在许多情况下,很难取得准确数,或者不必 使用准确数,使用近似数便可。
我国陆地面积约为 960万平方公里
长江长约 6300千米
宇宙年龄约为 200亿年
你还能举出其它例子吗?
练习
下列各数,哪些是近似数?哪些是准确数?
⑴ 1 小时有60分。
准确数
⑵绿化队今年植树约2万棵。 近似数
C. 38.549
B. 38.56001
D. 38.5099
取一位小数
十分位或叫做精确到______) 0.1 π≈3.1 (精确到_______,
取二位小数
0.01 百分位或叫做精确到_______) π≈3.14(精确到_______,
取三位小数
0.001 千分位或叫做精确到_______) π≈3.142(精确到_______,
概括

一般地,一个近似数四舍五入到某一位, 就说这个近似数精确到那一位。 例如,小明的身高为 1.70 米, 1.70 这个近 似数精确到百分位。
用四舍五入法,括号中的要求对下列各数取近似数 (1) 0.34082 (精确到千分位) (2) 64.8 (精确到个位) (3) 1.5046 (精确到0.01) (4) 1295330000(精确到千万位)近似数1.50末 位的0能否去 解: (1) 0.34082 ≈0.341 掉?近似数1.50 (2) 64.8 ≈65 和1.5相同吗?
准确数 ⑶小明到书店买了10本书。
⑷一次测验中,2人得100分。 准确数
⑸某区在校中学生近5万人。 近似数
⑹初一二班有62人。 准确数
知识点2
近似数与准确数的接近程度,可以用 精确度表示.
按四舍五入法对圆周率π取近似数时,有 π≈ 只取整数
3.141592...
个位 π≈ 3 (精确到_____)
× )
2、近似数3.80和近似数3.8 的精确度相同. (
×)
三、选择:
1、下列各数中,不是近似数的是(
A. 王敏的身高是1.72米 B. 李刚家共有4 口人 C. 我国的人口约有12 亿 D. 书桌的长度是0.85 米
B

2、下列数中不能由四舍五入得到近似数38.5的 数是( )
B
A. 38.53
小小实验
1.统计我班的男生人数和女生人数
男生43人
女生30人
与实际完全符 合的数
2.量一量<<数学非常 接近的数
对于参加同一个会议的人数,有两种报道:
参加今天会 议的有513人
约有500人参加 了今天的会议
与实际完全 符合的数
与实际非常 接近的数
知识点1
准确数——与实际完全符合的数。

例 1. 下列由四舍五入法得到的近似数,各精确到 了哪一位?
(1)0.600 (2)2.7954 4 (3)40.6万 (4)3.08×10 解:(1) 0.600精确到千分位
(2) 2.7954精确到万分位 (3) 40.6万=406000精确到千位
(4)
4 3.08×10 =30800精确到百位
相关文档
最新文档