八上3.4 平行四边形(2)

合集下载

3[1].4_平行四边形(2)(八上,诚信)_

3[1].4_平行四边形(2)(八上,诚信)_
A D
B
C
(2)以上活动事实, 能用文字语言表达吗? 两组对边分别相等的四边 两组对边分别相等 形是平行四边形.
探索二
活动二
工具:两根长度相等的笔, 两条平行线. 动手:请利用两根长度相等的笔和 两条平行线,摆出以笔顶端 为顶点的平行四边形吗? 试试看吧! 思考:你能说明你们摆出的四边形 是平行四边形吗?
A
B
C
1.P 88 第1.2题
2. 对于四边形ABCD,如果从条件①AB∥CD ②AD∥BC③AB=CD④BC=AD中选出2个, 那么能 说明四边形ABCD是平行四边形的有 _______(填序号,填出符合条件的一种情 况即可) 若对角线AC、BD相交于点O, 且OA=OC,则只需添加一个 条件_____能 说明四边形ABCD是平行四边形.
已知:四边形ABCD中,AD∥BC,AD=BC,
试说明四边形ABCD是平行四边形.
A D
B
C
A
D
B
C
⑶以上活动事实, 一组对边平行且相等 一组对边平行且相等的 能用文字语言表达吗? 四边形是平行四边形.
探索三
活动三
工具:两根不同长度的细纸条. 动手:能否用这两根细纸条在平面上 摆出平行四边形? 试试看吧! 思考:你能说明你们摆出的四边形 是平行四边形吗?
如图:在四边形ABCD中, ∠1=∠2,∠3=∠4。四边形 ABCD是平行四边形吗?为什么?
A
1
4
D
3 2
B
C
如图:AD是ΔABC的边BC边上的中线. (1)画图:延长AD到点E, 使DE=AD,连接BE,CE; A (2)判断四边形ABEC的 形状,并说明理由.
B
E D
C

八年级初二数学数学平行四边形试题含答案

八年级初二数学数学平行四边形试题含答案
(2)在点E运动的过程中,求D、F两点之间距离的最小值;
(3)连接AF、DF,当△ADF是等腰三角形时,求t的值.
8.已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转 ( ),得到线段CE,联结BE、CE、DE. 过点B作BF⊥DE交线段DE的延长线于F.
(1)如图,当BE=CE时,求旋转角 的度数;
(1)求证:CG平分∠DCB;
(2)在正方形ABCO绕点C逆时针旋转的过程中,求线段HG、OH、BG之间的数量关系;
(3)连结BD、DA、AE、EB,在旋转的过程中,四边形AEBD是否能在点G满足一定的条件下成为矩形?若能,试求出直线DE的解析式;若不能,请说明理由.
5.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.
10.如图1,点 为正方形 的边 上一点, ,且 ,连接 ,过点 作 垂直于 的延长线于点 .
(1)求 的度数;
(2)如图2,连接 交 于 ,交 于 ,试证明: .
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)见解析;(2)
【分析】
(1)根据题意先证明四边形ABCD是平行四边形,再由AB=AD可得平行四边形ABCD是菱形;
(2)①当AE=3.5时,平行四边形CEDF是矩形.过A作AM⊥BC于M,求出BM=1.5,根据平行四边形的性质得到∠CDA=∠B=60°,DC=AB=3,BC=AD=5,求出DE=1.5=BM,证明△MBA≌△EDC(SAS),得到∠CED=∠AMB=90°,推出四边形CEDF是矩形;
②根据四边形CEDFCEDF是菱形,得到CD⊥EF,DG=CG=1212CD=1.5,求出∠DEG=30°,得到DE=2DG=3,即可求出AE=AD-DE=5-3=2.

平行四边形的判定(2)(课件)-八年级数学下册(人教版)

平行四边形的判定(2)(课件)-八年级数学下册(人教版)

一组对边平行且相等的四边形是平行四边形吗?
如图,在四边形ABCD中,AB∥CD,AB=CD.
求证:四边形ABCD是平行四边形.
证明:连接AC.
∵ AB∥CD
∴ ∠1=∠2
又∵ AB=CD,AC=CA
∴ △ABC≌△CDA (SAS)
∴ BC=DA
∴ 四边形ABCD的两组对边分别相等,它是平行四边形.
BQ=_________cm;CQ=_________cm.
15-2t
(3)当t为何值时,四边形PDCQ是平行四边形?
解:(3)∵AD//BC
∴当DP=CQ时,四边形PDCQ是平行四边形.
∴12-t=2t
解得t=4
∴t=4s时,四边形PDCQ是平行四边形.
平行四边形判定定理4:一组对边平行且相等的四边形是平行四边形.
t
12-t
AP=_________cm;DP=_________cm;
BQ=_________cm;CQ=_________cm.
2t
15-2t
(1)用含t的代数式表示:
12-t
t
AP=_________cm;DP=_________cm;
2t
BQ=_________cm;CQ=_________cm.
4.如图,在□ABCD中,E,F分别是边BC,AD上的点,有下列条件:
①AE//CF;②BE=FD;③∠1=∠2;④AE=CF.若要添加其中一个条件,使四边
形AECF一定是平行四边形,则添加的条件可以是( B )
A.①②③④
B.①②③
C.②③④
D.①③④
5.已知四边形ABCD,有以下四个条件:①AB//CD;②AB=CD;③BC// AD;④

八上3.4 平行四边形(1)

八上3.4 平行四边形(1)
28

B
C
活动 5
3.如图所示,在 □ ABCD中,若BE 平分∠ABC,则ED= 4cm .
A
5cm 1 2 9cm
5cm 3
E 4cm D 5cm
B
C
活动 5
4.平行四边形ABCD中,AB= 5 2 cm, BE⊥CD于E,且BE= 7 3 cm,求平行四边形 ABCD的面积. 35 6cm2 5.从平行四边形的一个锐角的顶点做两条高 线,如果这两条高线的夹角是135°,求这个 平行四边形的锐角的度数. 45°

B OA=OC,OB=OD
• 通过本节课的学习,你有什么收获? 1.两组对边分别平行的四边形叫做平行四边形. 2.平行四边形的性质:对边平行、对边相等、
对角相等、邻角互补 、对角线互相平分.
如图: □ ABCD的周长是36,由钝角顶点D向 AB、BC引两条高DE、DF,且DE= 4 3
DF=5 3 ,求这个平行四边形的面积
D F
C
A
E

B
想一想
如图:在□ ABCD中,BC=10,AC=8, BD=14,AOD的周长是多少?为什么? △ ABC与△DBC的周长哪个长?
A O B C
D
图 名 文字语言 形 称 定 两组对边分别 义 平行的四边形
图形语言
符号语言
D A D
C ∵AB∥CD,AD∥BC
∴…是平行四边形
B 平 C ∵四边形ABCD是平 性 平行四边形的 行 行四边形 四 质 对边平行;对边 相等;对角相等; A B ∴AB∥CD,AD∥BC 边 D C AB=CD,AD= BC 对角线互相平 形 分 O ∠A=∠C,∠B=∠D
3.4平行四边形(1) 【课件】

平行四边形(第2课时)(课件)八年级数学下册(苏科版)

平行四边形(第2课时)(课件)八年级数学下册(苏科版)

探究新知 证明猜想
猜想1.两组对边分别相等的四边形是平行四边形.
已知:如图,四边形ABCD中,AD=BC,AB=DC. 求证:四边形ABCD是平行四边形.
A
分析:先证△ABD≌△CDB,再证AD∥BC,AB∥DC,
得四边形ABCD是平行四边形.
B
D C
探究新知
证明: 如图,连接BD. ∵AB=CD,AD=CB,BD=DB, ∴△ABD≌△CDB, ∴∠1=∠2,∠3=∠4, ∴AB∥CD,AD∥CB, ∴四边形ABCD是平行四边形.
D
F
C A.2个
C.4个
G
H
B.3个 D.5个
A
E
B
分析:▱ABCD 、▱DEBF 、▱AECF 、▱EHFG
课堂练习
3.如图,四边形AEFD和EBCF都是平行四边形. 求证: 四边形ABCD是平行四边形.
A E
B
证明:∵四边形AEFD是平行四边形, D
∴AD//EF,ADEF. F
∵四边形EBCF是平行四边形, C
课堂练习
2.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,
BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的
选法是
(C )
A.AB∥CD,AB=CD
B.AB∥CD,BC∥AD
C.AB∥CD,BC=AD
D.AB=CD,BC=AD
课堂练习
2.如图,E,F分别是▱ABCD的边AB,CD的中点,则图 中平行四边形的个数共有( C).
A
B
C
方法一:
探究新知
A
D
B
C
方法依据:两组对边分别平行的四边形是平行四边形.

《平行四边形的性质(2)》学案

《平行四边形的性质(2)》学案

长春市第五十二中学教育集团八年级(上)数学学案平行四边形的性质(2)命题人:沈红岩审题人:冯丽亚一、学习目标:1、理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力。

2、通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力。

3、培养学生独立思考的习惯与合作交流的意识,体验探索成功后的快乐。

二、自主学习1.已学平行四边形的性质:平行四边形的对边_______,对角_______;2.阅读教材页“探究”:了解“中心对称图形”的知识,并利用它发现平行四边形新的性质:平行四边形的对角线_____________;3.用三角形的全等来证明“平行四边形的对角线互相平分”这个性质:已知:在□ABCD中,对角线AC、BD相交于O.求证:OA=OC, OB=OD证明: 四边形ABCD是平行四边形∴AD=BC, ∠1=∠2,∠3=∠4∴△AOD≌△COB (ASA)∴OA=OC OB=OD∴平行四边形的对角线互相平分.三、经典例题例1:已知:如图,在□ABCD中,AC、BD交于点O,过O点作EF交AB、CD于E、F,那么OE、OF是否相等,说明理由.练习:如图,在□ABCD中,已知∠ADB=90°,AC=10cm,BD=6cm.求AD的长度。

例2:已知:如图,□ABCD的周长为60cm,对角线AC、BD相交于点O,AOB∆的周长比BOC∆的周长多 8cm,求这个平行四边形各边的长.例3:如图,已知ABCD的对角线交于O,过O作直线交AB、CD的反向延长线于E、F,试说明OE=OF.课后作业一、填空题1.已知□ABCD的对角线AC、BD相交于点O,AC=8cm,BD=10cm,则AO= ,BO= .2.如图,□ABCD的周长为22cm,AC、BD相交于点O,△AOD的周长比△AOB的周长小3cm,则AD=______cm, AB=______cm.3.如图,在□ABCD中,对角线AC、BD相交于点O, AC与BD的和为24cm,BC的长为8cm,则△AOD的周长为 .4.一个平行四边形的周长为20cm,一条对角线将它分成两个三角形的周长都是18cm,则这条对角线的长是。

八年级初二数学 平行四边形知识归纳总结附解析

八年级初二数学 平行四边形知识归纳总结附解析

八年级初二数学 平行四边形知识归纳总结附解析一、选择题1.如图,ABCD □中,4,60AB BC A ==∠=︒,连接BD ,将BCD 绕点B 旋转,当BD (即BD ')与AD 交于一点E ,BC (即BC ')与CD 交于一点F 时,给出以下结论:①AE DF =;②60BEF ∠=︒;③DEB DFB ∠=∠;④DEF 的周长的最小值是423+.其中正确的是( )A .①②③B .①②④C .②③④D .①③④2.如图,点P 是正方形ABCD 的对角线BD 上一点(点P 不与点B 、D 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③仅有当∠DAP =45°或67.5°时,△APD 是等腰三角形;④∠PFE =∠BAP :⑤2PD =EC .其中有正确有( )个.A .2B .3C .4D .53.如图,正方形ABCD 的周长是16,P 是对角线AC 上的个动点,E 是CD 的中点,则PE +PD 的最小值为( )A .5B .3C .2D .44.如图,在长方形ABCD 中,AD=6,AB=4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和为( )A .5B .6C .7D .8 5.如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是( )A .32B .1C .32D .236.在矩形ABCD 中,点E 、F 分别在AB 、AD 上,∠EFB=2∠AFE=2∠BCE ,CD=9,CE=20,则线段AF 的长为( ).A .32B .112C .19D .47.如图,在平面直角坐标系中,A 点坐标为(8,0),点P 从点O 出发以1个单位长度/秒的速度沿y 轴正半轴方向运动,同时,点Q 从点A 出发以1个单位长度/秒的速度沿x 轴负半轴方向运动,设点P 、Q 运动的时间为(08)t t <<秒.以PQ 为斜边,向第一象限内作等腰Rt PBQ ∆,连接OB .下列四个说法:①8OP OQ +=;②B 点坐标为(4,4);③四边形PBQO 的面积为16;④PQ OB >.其中正确的说法个数有( )A .4B .3C .2D .18.如图,正方形ABCD(四边相等、四内角相等)中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=4,BE=DF=3,则EF的平方为()A.2 B.125C.3 D.49.如图,在正方形ABCD中,AB=4,E是CD的中点,将BCE沿BE翻折至BFE,连接DF,则DF的长度是()A.55B.255C.355D.45510.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH=14BC,③BF=2OD,④∠CHF=45°.正确结论的个数为( )A.4个B.3个C.2个D.1个二、填空题11.如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为.12.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是直线AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连结AM、MN,若AC=6,AB=5,则AM -MN 的最大值为________.13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.14.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.15.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.16.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.17.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.18.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.19.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D 落在AB 边的点F 处,得折痕AE ,再折叠,使点C 落在AE 边的点G 处,此时折痕恰好经过点B ,如果AD=a ,那么AB 长是多少?”常明说;“简单,我会. AB 应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B ,而是经过了AB 边上的M 点,如果AD=a ,测得EC=3BM ,那么AB 长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.综合与实践.问题情境:如图①,在纸片ABCD □中,5AD =,15ABCD S =,过点A 作AE BC ⊥,垂足为点E ,沿AE 剪下ABE △,将它平移至DCE '的位置,拼成四边形AEE D '. 独立思考:(1)试探究四边形AEE D '的形状.深入探究:(2)如图②,在(1)中的四边形纸片AEE D '中,在EE '.上取一点F ,使4EF =,剪下AEF ,将它平移至DE F ''的位置,拼成四边形AFF D ',试探究四边形AFF D '的形状;拓展延伸:(3)在(2)的条件下,求出四边形AFF D '的两条对角线长;(4)若四边形ABCD 为正方形,请仿照上述操作,进行一次平移,在图③中画出图形,标明字母,你能发现什么结论,直接写出你的结论.22.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.23.如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连结CH 、CG .(1)求证:CG 平分∠DCB ;(2)在正方形ABCO 绕点C 逆时针旋转的过程中,求线段HG 、OH 、BG 之间的数量关系;(3)连结BD 、DA 、AE 、EB ,在旋转的过程中,四边形AEBD 是否能在点G 满足一定的条件下成为矩形?若能,试求出直线DE 的解析式;若不能,请说明理由.24.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .(1)补全图形,并求证:DM =CN ;(2)连接OM ,ON ,判断OMN 的形状并证明.25.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.26.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC .(直接写出结果)27.如图1,点E 为正方形ABCD 的边AB 上一点,EF EC ⊥,且EF EC =,连接AF ,过点F 作FN 垂直于BA 的延长线于点N .(1)求EAF ∠的度数;(2)如图2,连接FC 交BD 于M ,交AD 于P ,试证明:2BD BG DG AF DM =+=+.28.已知:如图,在ABC 中,直线PQ 垂直平分AC ,与边AB 交于点E ,连接CE ,过点C 作//CF BA 交PQ 于点F ,连接AF .(1)求证:四边形AECF 是菱形;(2)若8AC =,AE=5,则求菱形AECF 的面积.29.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.30.在四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF ,GH 分别交边AB 、CD ,AD 、BC 于点E 、F 、G 、H .(1)观察发现:如图①,若四边形ABCD 是正方形,且EF ⊥GH ,易知S △BOE =S △AOG ,又因为S △AOB =14S 四边形ABCD ,所以S 四边形AEOG = S 正方形ABCD ; (2)类比探究:如图②,若四边形ABCD 是矩形,且S 四边形AEOG =14S 矩形ABCD ,若AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示); (3)拓展迁移:如图③,若四边形ABCD 是平行四边形,且S 四边形AEOG =14S ▱ABCD ,若AB =3,AD =5,BE =1,则AG = .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据题意可证△ABE ≌△BDF ,可判断①②③,由△DEF 的周长=DE +DF +EF =AD +EF =4+EF ,则当EF 最小时△DEF 的周长最小,根据垂线段最短,可得BE ⊥AD 时,BE 最小,即EF 最小,即可求此时△BDE 周长最小值.【详解】解:∵AB=BC=CD=AD=4,∠A=∠C=60°∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°,∵将△BCD绕点B旋转到△BC'D'位置,∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',∴△ABE≌△BFD,∴AE=DF,BE=BF,∠AEB=∠BFD,∴∠BED+∠BFD=180°,故①正确,③错误;∵∠ABD=60°,∠ABE=∠DBF,∴∠EBF=60°,故②正确∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,∴当EF最小时,∵△DEF的周长最小.∵∠EBF=60°,BE=BF,∴△BEF是等边三角形,∴EF=BE,∴当BE⊥AD时,BE长度最小,即EF长度最小,∵AB=4,∠A=60°,BE⊥AD,∴EB=∴△DEF的周长最小值为4+故④正确,综上所述:①②④说法正确,故选:B.【点睛】本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.2.D解析:D【分析】过P作PG⊥AB于点G,根据正方形对角线的性质及题中的已知条件,证明△AGP≌△FPE 后即可证明①AP=EF;④∠PFE=∠BAP;在此基础上,根据正方形的对角线平分对角的性质,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得EC,得出⑤正确,即可得出结论.【详解】过P作PG⊥AB于点G,如图所示:∵点P 是正方形ABCD 的对角线BD 上一点,∴GP=EP ,在△GPB 中,∠GBP=45°,∴∠GPB=45°,∴GB=GP ,同理:PE=BE ,∵AB=BC=GF ,∴AG=AB-GB ,FP=GF-GP=AB-GB ,∴AG=PF ,在△AGP 和△FPE 中,90AG PF AGP FPE PG PE ⎧⎪⎨⎪∠∠⎩︒====,∴△AGP ≌△FPE (SAS ),∴AP=EF ,①正确,∠PFE=∠GAP ,∴∠PFE=∠BAP ,④正确;延长AP 到EF 上于一点H ,∴∠PAG=∠PFH ,∵∠APG=∠FPH ,∴∠PHF=∠PGA=90°,∴AP ⊥EF ,②正确,∵点P 是正方形ABCD 的对角线BD 上任意一点,∠ADP=45°,∴当∠PAD=45°或67.5°时,△APD 是等腰三角形,除此之外,△APD 不是等腰三角形,故③正确.∵GF ∥BC ,∴∠DPF=∠DBC ,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC ,∴在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,∴2EC , 即22PD=EC ,⑤正确.∴其中正确结论的序号是①②③④⑤,共有5个.故选D.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.3.A解析:A【解析】【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【详解】解:如图,连接BE,设BE与AC交于点P',∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.即P在AC与BE的交点上时,PD+PE最小,即为BE的长度.∴直角△CBE中,∠BCE=90°,BC=4,CE=12CD=2,∴224225BE=+=故选:A.【点睛】本题题考查了轴对称中的最短路线问题,要灵活运用正方形的性质、对称性是解决此类问题的重要方法,找出P点位置是解题的关键4.C解析:C【分析】连接EG、FH,根据题意可知△AEF与△CGH全等,故EF=GH,同理EG=FH,再证四边形EGHF为平行四边形,所以△PEF和△PGH的面积和是平行四边形的面积一半,平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小的直角三角形的面积即可求得.【详解】连接EG、FH,如图所示,在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB-BE=4-1=3,CH=CD-DH=3,∴AE=CH,在△AEF和△CGH中,AE=CH,∠A=∠C=90°,AF=CG,∴△AEF≌△CGH,∴EF=GH,同理可得△BGE≌△DFH,∴EG=FH,∴四边形EGHF为平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=12⨯平行四边形EGHF的面积,求得平行四边形EGHF的面积=4⨯6--12⨯2⨯3-12⨯1⨯(6-2)-12⨯2⨯3-12⨯1⨯(6-2)=14,∴△PEF和△PGH的面积和=1142⨯=7.【点睛】此题主要考察矩形的综合利用.5.D解析:D【分析】分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD 上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.【详解】解:分三种情况:①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,过A作AF⊥BC于F,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C+∠B=180°,∵∠C=120°,∴∠B=60°,Rt△ABF中,∠BAF=30°,∴BF=12AB=1,AF=3,∴此时△ABE的最大面积为:12×4×3=23;②当E在CD上时,如图2,此时,△ABE的面积=12S▱ABCD=12×4×3=23;③当E在AD上时,E与D重合时,△ABE的面积最大,此时,△ABE的面积3综上,△ABE的面积的最大值是3故选:D.【点睛】本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.6.C解析:C【分析】如图,取CE的中点H,连接BH,设∠EFB=2∠AFE=2∠ECB=2a,则∠AFB=3a,进而求出BH=CH=EH=10,∠HBC=∠HCB=a,再根据AD∥BC求出EF∥BH,进而得出△EFG和△BGH 均为等腰三角形,则BF=EH=10,再根据勾股定理即可求解.【详解】如图,取CE的中点H,连接BH,设∠EFB=2∠AFE=2∠ECB=2a,则∠AFB=3a,∵在矩形ABCD 中有AD ∥BC ,∠A=∠ABC=90°,∴△BCE 为直角三角形,∵点H 为斜边CE 的中点,CE=20,∴BH=CH=EH=10,∠HBC=∠HCB=a ,∵AD ∥BC ,∴∠AFB=∠FBC=3a ,∴∠GBH=3a-a=2a=∠EFB ,∴EF ∥BH ,∴∠FEG=∠GHB=∠HBC+∠HCB=2a=∠EFB=∠GBH ,∴△EFG 和△BGH 均为等腰三角形,∴BF=EH=10,∵AB=CD=9, ∴222210919AF BF AB =-=-=故选C.【点睛】本题考查直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,解题的关键是根据题意正确作出辅助线. 7.B解析:B【分析】根据题意,有OP=AQ ,即可得到8OP OQ OA +==,①正确;当4t =时,OP=OQ=4,此时四边形PBQO 是正方形,则PB=QB=OP=OQ=4,即点B 坐标为(4,4),②正确;四边形PBQO 的面积为:4416⨯=,在P 、Q 运动过程面积没有发生变化,故③正确;由正方形PBQO 的性质,则此时对角线PQ=OB ,故④错误;即可得到答案.【详解】解:根据题意,点P 与点Q 同时以1个单位长度/秒的速度运动,∴OP=AQ ,∵OQ+AQ=OA=8,∴OQ+OP=8,①正确;由题意,点P 与点Q 运动时,点B 的位置没有变化,四边形PBQO 的面积没有变化, 当4t =时,如图:则AQ=OP=4,-=,∴OQ=844∴点B的坐标为:(4,4),②正确;此时四边形PBQO是正方形,则PB=QB=OP=OQ=4,⨯=,③正确;∴四边形PBQO的面积为:4416∵四边形PBQO是正方形,∴PQ=OB,t=时,PQ=OB,故④错误;即当4∴正确的有:①②③,共三个;故选择:B.【点睛】本题考查了正方形的判定和性质,等腰直角三角形的性质,以及坐标与图形,解题的关键是根据点P、Q的运动情况,进行讨论分析来解题.8.A解析:A【分析】根据AB=5,AE=4,BE=3,可以确定△ABE为直角三角形,延长BE构建出直角三角形,在利用勾股定理求出EF的平方即可.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD=5,如图,延长BE交CF于点G,∵AB=5,AE=4,BE=3,∴AE2+BE2=AB2,∴△ABE是直角三角形,同理可得△DFC是直角三角形,∵AE=FC=4,BE=DF=3,AB=CD=5,∴△ABE≌△CDF,∴∠BAE=∠DCF,∵∠ABC=∠AEB=902,∴∠CBG=∠BAE,同理可得,∠BCG=∠CDF=∠ABE,△ABE≌△BCG,∴CG=BE=3,BG=AE=4,∴EG=4-3=1,GF=4-3=1,∴EF2=EG2+GF2=1+1=2故选择:A【点睛】此题考查三角形的判定,勾股定理的运用,根据已知条件构建直角三角形求值是解题的关键.9.D解析:D【分析】由勾股定理可求BE的长,由折叠的性质可得CE=EF=2,BE⊥CF,FH=CH,由面积法可求CH=45,由勾股定理可求EH的长,由三角形中位线定理可求DF=2EH=45.【详解】解:如图,连接CF,交BE于H,∵在正方形ABCD中,AB=4,E是CD的中点,∴BC=CD=4,CE=DE=2,∠BCD=90°,∴BE2216425BC CE+=+=∵将△BCE沿BE翻折至△BFE,∴CE=EF=2,BE⊥CF,FH=CH,∵S△BCE=12×BE×CH=12×BC×CE,∴CH=55,∴22165 455CE CH-=-=,∵CE=DE,FH=CH,∴DF=2EH,故选:D.【点睛】本题考查了翻折变换,正方形的性质,全等三角形的判定与性质,掌握折叠的性质是本题的关键.10.B解析:B【分析】①只要证明OH是△DBF的中位线即可得出结论;②根据OH是△BFD的中位线,得出GH=12CF,由GH<14BC,可得出结论;③易证得△ODH是等腰三角形,继而证得OD=12 BF;④根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论.【详解】解:∵EC=CF,∠BCE=∠DCF,BC=DC,∴△BCE≌△DCF,∴∠CBE=∠CDF,∵∠CBE+∠BEC=90°,∠BEC=∠DEH,∴∠DEH+∠CDF=90°,∴∠BHD=∠BHF=90°,∵BH=BH,∠HBD=∠HBF,∴△BHD≌△BHF,∴DH=HF,∵OD=OB∴OH是△DBF的中位线∴OH∥BF;故①正确;∴OH=12BF,∠DOH=∠CBD=45°,∵OH是△BFD的中位线,∴DG=CG=12BC,GH=12CF,∵CE=CF,∴GH=12CF=12CE∵CE<CG=12 BC,∴GH<14BC,故②错误.∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF(SAS),∴∠EBC=∠CDF=22.5°,∴∠BFH=90°-∠CDF=90°-22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°-∠DCH=90°-22.5°=67.5°,∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故④正确;∴∠ODH=∠BDC+∠CDF=67.5°,∴∠OHD=180°-∠ODH-∠DOH=67.5°,∴∠ODH=∠OHD,∴OD=OH=12BF;故③正确.故选:B.【点睛】此题考查了全等三角形的判定和性质、等腰三角形的判定与性质以及正方形的性质.解答此题的关键是作出辅助线,构造等腰直角三角形,利用等腰直角三角形的性质结合角平分线的性质逐步解答.二、填空题11.5【详解】由于点B与点D关于AC对称,所以如果连接DE,交AC于点P,那PE+PB的值最小.在Rt△CDE中,由勾股定理先计算出DE的长度,即为PE+PB的最小值.连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=4,E是BC的中点,∴CE=2,在Rt △CDE 中, DE=25.考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.12.52【分析】连接DM ,直角三角形斜边中线等于斜边一半,得AM=DM ,利用两边之差小于第三边得到AM MN DN -≤,又根据三角形中位线的性质即可求解.【详解】连接DM ,如下图所示,∵90BAC EDF ∠=∠=︒又∵M 为EF 中点 ∴AM=DM=12EF ∴AM MN DM MN DN -=-≤(当D 、M 、N 共线时,等号成立)∵D 、N 分别为BC 、AC 的中点,即DN 是△ABC 的中位线 ∴DN=12AB=52∴AM MN -的最大值为52 故答案为52. 【点睛】 本题考查了直角三角形斜边中线的性质,三角形的三边关系,关键是确定AM MN -的取值范围.13.2【分析】首先由对边分别平行可判断四边形ABCD 为平行四边形,连接AC 和BD ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,通过证明△ADF ≌△ABC 来证明四边形ABCD 为菱形,从而得到AC 与BD 相互垂直平分,再利用勾股定理求得BD 长度.【详解】解:连接AC 和BD ,其交点为O ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE ,∵两纸条宽度相同,∴AF=AE ,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:2【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.14.4:9【分析】设DP =DN =m ,则PN 2m ,PC =2m ,AD =CD =3m ,再求出FG=CF=12BC=32m ,分别求出两个阴影部分的面积即可解决问题.【详解】根据图形的特点设DP =DN =m ,则PN 22m m +2m ,∴2m=MC ,22PM MC +,∴BC =CD =PC+DP=3m ,∵四边形HMPN 是正方形,∴GF ⊥BC∵∠ACB =45︒,∴△FGC 是等腰直角三角形,∴FG=CF=12BC=32m , ∴S 1=12DN×DP=12m 2,S 2=12FG×CF=98m 2, ∴12:S S =12m 2: 98m 2=4:9, 故答案为4:9.【点睛】本题考查正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.15.201812【分析】根据几何图形特征,先求出1C 、2C 、3C ,根据求出的结果,找出规律,从而得出2020C .【详解】∵点E 是BC 的中点,ED ∥AB ,EF ∥AC∴DE 、EF 是△ABC 的中位线∵等边△ABC 的边长为1∴AD=DE=EF=AF =12 则1C =1422⨯= 同理可求得:2C =1,3C =12发现规律:规律为依次缩小为原来的12 ∴2020C =201812 故答案为:201812.【点睛】 本题考查找规律和中位线的性质,解题关键是求解出几组数据,根据求解的数据寻找规律.16.8或12【分析】根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA ,∠ABF=∠BFC ,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.【详解】在ABCD中,AB∥CD,BC=AD=5,∴∠BAE=∠DEA,∠ABF=∠BFC,∠的平分线交CD于点E,∵BAD∴∠BAE=∠DAE,∴∠DAE=∠DEA,∴DE=AD=5,同理:CF=BC=5,∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,故答案为:8或12.【点睛】此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.17.5【分析】过点B作BD⊥l2,交直线l2于点D,过点B作BE⊥x轴,交x轴于点E.则22+OABC是平行四边形,所以OA=BC,又由平行四边形的性OE BE质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE最小时,OB取得最小值,从而可求.【详解】解:过点B作BD⊥l2,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E,直线l1与OC交于点M,与x轴交于点F,直线l2与AB交于点N.∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线l1与直线l2均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC,在△OAF 和△BCD 中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAF ≌△BCD (ASA ),∴BD=OF=1,∴OE=4+1=5,∴OB=22OE BE +.由于OE 的长不变,所以当BE 最小时(即B 点在x 轴上),OB 取得最小值,最小值为OB=OE=5.故答案为:5.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质,以及勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18.72;【分析】连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,判定△AOC ≌△FOB (ASA ),即可得出AO=FO ,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,∵O 是正方形DBCE 的对称中心,∴BO=CO ,∠BOC=90°,∵FO ⊥AO ,∴∠AOF=90°,∴∠BOC=∠AOF ,即∠AOC+∠BOA=∠FBO+∠BOA ,∴∠AOC=∠FBO ,∵∠BAC=90°,∴在四边形ABOC 中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO ,在△AOC 和△FOB 中,AOC FOB AO FOACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△FOB (ASA ),∴AO=FO ,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=故答案为.【点睛】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.19.9或1).【分析】分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.【详解】解:①如图1,延长EA 交DC 于点F ,∵菱形ABCD 的周长为24,∴AB=BC=6,∵∠ABC=60°,∴三角形ABC 是等边三角形,∴∠BAC=60°,当EA ⊥BA 时,△ABE 是等腰直角三角形,∴AE=AB=AC=6,∠EAC=90°+60°=150°,∴∠FAC=30°,∵∠ACD=60°,∴∠AFC=90°,∴CF=12AC=3,则△ACE 的面积为:12AE×CF=12×6×3=9;②如图2,过点A 作AF ⊥EC 于点F ,由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,∵AB=BE=BC=6,∴∠BEC=∠BCE=15°,∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,∴AF=12AE ,AF=CF=22AC=32 ∵AB=BE=6,∴AE=2∴2236AE AF -=∴EC=EF+FC=3632则△ACE 的面积为:12EC×AF=1(3632)329(31)2⨯⨯=. 故答案为:9或31).【点睛】本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.202a 321a - 【分析】(1)根据折叠的性质可得出,四边形AFED 为正方形,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=,得出AB=AE ,继而可得解;(2)结合(1)可知,AE AM 2a ==,因为EC=3BM ,所以有1BM 2FM =,求出BM ,继而可得解.【详解】解:(1)由折叠的性质可得,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=,∴AB=AE ,∵AE ==∴AB =.(2)结合(1)可知,AE AM ==,∴FM a =-,∵EC=3BM , ∴1BM 2FM =∴BM 2a -=∴AB =+=.;12a . 【点睛】 本题是一道关于折叠的综合题目,主要考查折叠的性质,弄清题意,结合图形找出线段间的数量关系是解题的关键.三、解答题21.(1)矩形;(2)菱形;(3)4)见解析【分析】(1)由平移推出AD EE '=,即可证得四边形AEE D '是平行四边形,再根据AE BC ⊥,得到90AEE '∠=︒即可得到结论;(2)由平移推出AD FF '=,证得四边形AFF D '是平行四边形,根据AE EF ⊥得到90AEE '∠=︒,再根据勾股定理求出AF=5=AD ,即可证得四边形AFF D '是菱形;(3)先利用勾股定理求出DF ==,再根据菱形的面积求出F A ';(4)在BC 边上取点E ,连接AE ,平移△ABE 得到△DCF ,可得四边形AEFD 是平行四边形.【详解】(1)四边形AEE D '是矩形,在ABCD □中,//AD BC ,AD BC =,由平移可知:BE CE ''=,∴BC EE '=,∴AD EE '=,∴四边形AEE D '是平行四边形,∵AE BC ⊥,∴90AEE '∠=︒,∴四边形AEE D '是矩形;(2)四边形AFF D '是菱形,在矩形AEE D '中,//AD EE ' ,AD EE '=,由平移可知:EF E F ='',∴EE FF ''=,∴AD FF '=,∴四边形AFF D '是平行四边形,∵AE EF ⊥,∴90AEE '∠=︒,在Rt AEF ,2222345AF AE EF =+=+=, ∴AF AD =,∴四边形AFF D '是菱形;(3)连接F A ',在Rt DFE '△中,22221310DF E F E D ''=+=+=,15ABCD AFF D S S '==平行四边形菱形,∴·30F A FD '=,∴310F A '=;(4)在BC 上取一点E ,连接AE ,平移△ABE 得到△DCF ,可得四边形AEFD 是平行四边形.【点睛】此题考查了平行四边形的性质,矩形的判定定理,菱形的判定及性质,平移的性质的应用,勾股定理.22.(1)见解析;(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形,证明详见解析【分析】(1)证明四边形OCFD 是平行四边形,得出OD=CF ,证出OB=CF ,再证明全等即可(2)证出四边形ABCD 是矩形,由矩形的性质得出OC=OD ,即可得出四边形OCFD 为菱形.【详解】(1)证明:∵//,//CF BD DF AC ,∴四边形OCFD 是平行四边形, OBE CFE ∠=∠,∴OD CF =,∵四边形ABCD 是平行四边形,∴OB OD =,∴OB CF =,在FCE △和BOE △中, OBE CFE BEO FEC OB CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()FCE BOE AAS ≌.(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形.理由如下:∵90ADC ∠=︒,四边形ABCD 是平行四边形,∴四边形ABCD 是矩形∴,,,OA OC OB OD AC BD ===∴OC OD =,∴四边形OCFD 为菱形【点睛】本题考查全等三角形判定与性质,平行四边形和菱形的判定与性质等知识,熟练掌握平行四边形的判定和性质和菱形的判定是解题的关键.23.(1)见解析;(2) HG =OH +BG ;(3)能成矩形,y 3342x =-. 【分析】(1)根据旋转和正方形的性质可得出CD =CB ,∠CDG =∠CBG =90,根据全等直角三角形的判定定理(HL )即可证出Rt △CDG ≌Rt △CBG ,即∠DCG =∠BCG ,由此即可得出CG 平分∠DCB ;(2)由(1)的Rt △CDG ≌Rt △CBG 可得出BG =DG ,根据全等直角三角形的判定定理(HL )即可证出Rt △CHO ≌Rt △CHD ,即OH =HD ,再根据线段间的关系即可得出HG =HD +DG =OH +BG ;(3)根据(2)的结论即可找出当G 点为AB 中点时,四边形AEBD 为矩形,再根据正方形的性质以及点B 的坐标可得出点G 的坐标,设H 点的坐标为(x ,0),由此可得出HO =x ,根据勾股定理即可求出x 的值,即可得出点H 的坐标,结合点H 、G 的坐标利用待定系数法即可求出直线DE 的解析式.【详解】(1)∵正方形ABCO 绕点C 旋转得到正方形CDEF ,∴CD =CB ,∠CDG =∠CBG =90°.在Rt △CDG 和Rt △CBG 中,∵CG CG CD CB =⎧⎨=⎩,∴Rt △CDG ≌Rt △CBG (HL ),∴∠DCG =∠BCG ,即CG 平分∠DCB . (2)由(1)证得:Rt △CDG ≌Rt △CBG ,∴BG =DG .在Rt △CHO 和Rt △CHD 中,∵CH CH CO CD =⎧⎨=⎩,∴Rt △CHO ≌Rt △CHD (HL ),∴OH =HD ,∴HG =HD +DG =OH +BG .(3)假设四边形AEBD可为矩形.当G点为AB中点时,四边形AEBD为矩形,如图所示.∵G点为AB中点,∴BG=GA12=AB,由(2)证得:BG=DG,则BG=GA=DG12=AB12=DE=GE,又AB=DE,∴四边形AEBD为矩形,∴AG=EG=BG=DG.∵AG12=AB=3,∴G点的坐标为(6,3).设H点的坐标为(x,0),则HO=x,∴HD=x,DG=3.在Rt△HGA中,HG=x+3,GA=3,HA=6﹣x,由勾股定理得:(x+3)2=32+(6﹣x)2,解得:x=2,∴H点的坐标为(2,0).设直线DE的解析式为:y=kx+b(k≠0),将点H(2,0)、G(6,3)代入y=kx+b中,得:2063k bk b+=⎧⎨+=⎩,解得:3432kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线DE的解析式为:y3342x=-.故四边形AEBD能为矩形,此时直线DE的解析式为:y33 42x=-.【点睛】本题考查了矩形的性质、旋转的性质、全等三角形的判定及性质、待定系数法求函数解析式以及勾股定理.解题的关键是:(1)证出Rt△CDG≌Rt△CBG;(2)找出BG=DG、OH=HD;(3)求出点H、G的坐标.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边和角是关键.24.(1)见解析;(2)MON为等腰直角三角形,见解析【分析】(1)如图1,由正方形的性质得CB=CD,∠BCD=90°,再证明∠BCN=∠CDM,然后根据“AAS”证明△CDM≌△CBN,从而得到DM=CN;(2)如图2,利用正方形的性质得OD=OC,∠ODC=∠OCB=45°,∠DOC=90°,再利用∠BCN=∠CDM得到∠OCN=∠ODM,则根据“SAS”可判断△OCN≌△ODM,从而得到ON=OM,∠CON=∠DOM,所以∠MON=∠DOC=90°,于是可判断△MON为等腰直角三角形.【详解】(1)证明:如图1,∵四边形ABCD 为正方形,∴CB =CD ,∠BCD =90°,∵DM ⊥CP ,BN ⊥CP ,∴∠DMC =90°,∠BNC =90°,∵∠CDM+∠DCM =90°,∠BCN+∠DCM =90°,∴∠BCN =∠CDM ,在△CDM 和△CBN 中DMC CNB CD CBCDM BCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CDM ≌△CBN ,∴DM =CN ;(2)解:△OMN 为等腰直角三角形.理由如下:如图2,∵四边形ABCD 为正方形,∴OD =OC ,∠ODC =∠OCB =45°,∠DOC =90°,∵∠BCN =∠CDM ,∴∠BCN ﹣45°=∠CDM ﹣45°,即∠OCN =∠ODM ,在△OCN 和△ODM 中CN DM OCN ODM OC OD =⎧⎪∠=∠⎨⎪=⎩, ∴△OCN ≌△ODM ,∴ON =OM ,∠CON =∠DOM ,∴∠MON =∠DOC =90°, ∴MON 为等腰直角三角形.【点睛】本题考查正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.也考查全等三角形的判定与性质.25.(1)四边形ABGE 的形状是正方形;(2)①详见解析;②DF=3CF【分析】(1)由四边形ABCD 是矩形,可得90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,根据三个内角是直角可判断四边形ABGE 为矩形,由折叠得:AB=BG ,根据一组邻边相等的矩形是正方形可判断矩形ABGE 为正方形;(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,由△ABE 沿BE 折叠后得到△GBE ,可得BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,故∠EGF=∠D=90°,由HL 可判断Rt △EGF ≌Rt △EDF ,得到DF=FG ,问题得证;②设AB=DC=a ,则3,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF =2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,代入数据运算可得:x=14a ,即CF=14a ,DF=a-x=34a ,进而可得DF 与CF 关系. 【详解】 (1)四边形ABGE 的形状是正方形.理由是:∵四边形ABCD 是矩形,∴90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,∴四边形ABGE 为矩形,由折叠得:AB=BG ,∴矩形ABGE 为正方形;故答案为:正方形.(2)①如图,连结EF ,。

八上3.4 平行四边形(1)

八上3.4 平行四边形(1)

3.平行四边形相对的边称为 对边 相对的角称为 对角
活动 4
思考:平行四边形的对边之间、对角之间、邻角之 间、对角线之间分别有什么关系?由此你能得到什 么结论?
A O D


活动 4
平行四边形的性质
A D
B
C
平行四边形的对边平行且相等. 平行四边形的对角相等. 平行四边形的邻角互补. 平行四边形对角线互相平分
A
活动 2
1 2
F
D
B
E
C
∵∠1=∠2 , ∴AD∥BC. 同理:AB∥DC , ∴四边形ABCD是平行四边形.
活动 3
相关概念
1.两组对边分别平行的四边形 叫做平行四边形. 如图:四边形ABCD是平行四边形, B 记作:□ABCD A
D
C
2.平行四边形不相邻的两个顶点连成的线段叫平 行四边形的对角线. 线段AC就是□ ABCD的一条对角线
活动 5
1.已知: ABCD中,∠A=100°,你能求出 其他各角的度数吗?说说你的理由.
∠B=80° ∠ D=80° ∠C=100°
B
A
D
C
活动 5
2.如图,四边形ABCD是平行四边形,则:
1)∠ADC= 58° , ∠BCD= 122° ;
2)边AB= 28 A
58°
,
32
BC = 32 D

B OA=OC,OB=OD
• 通过本节课的学习,你有什么收获? 1.两组对边分别平行的四边形叫做平行四边形. 2.平行四边形的性质:对边平行、对边相等、
对角相等、邻角互补 、对角线互相平分.
如图: □ ABCD的周长是36,由钝角顶点D向 AB、BC引两条高DE、DF,且DE= 4 3

八年级数学上册 第四章知识点整理 北师大版

八年级数学上册 第四章知识点整理 北师大版

北师大版八上数学第四章知识点整理 一、平行四边形(一)定义和性质:1、定义:两组对边分别平行的四边形叫做平行四边形。

2、性质:平行四边形两对边平行平行四边形对边相等平行四边形的对角相等平行四边形是中心对称图形平行四边形对角线相互平分(二)判定:两组对角线互相平分的四边形是平行四边形一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对边分别平行的四边形是平行四边形两组对角分别相等的四边形是平行四边形二、菱形(一)定义和性质:1、定义:一组邻边相等的平行四边形叫做菱形2、性质:菱形的四条边都相等,两条对角线相互垂直平分,每一条对角线平分一组对角,面积等于对角线乘积的一半(二)判定:一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四条边都相等的四边形是菱形三、矩形:(一)定义和性质:1、定义:有一个内角是直角的平行四边形叫做矩形2、性质:矩形的对角线相等,四个角都是直角(二)判定:对角线相等的平行四边形是矩形一个角是直角的平行四边形是矩形四、正方形:(一)定义和性质:1、定义:一组邻边相等的矩形叫做正方形2、性质:正方形具有平行四边形、菱形、矩形的一切性质边:四条边都相等且对边平行角:四个角都是直角对角线:对角线互相平分且垂直、相等(二)判定:一组邻边相等的矩形是正方形对角线互相垂直的矩形是正方形有一个角是90度的菱形是正方形对角线相等的菱形是正方形五、梯形和等腰梯形(一)定义和性质:一组对边平行而另一组对边不平行的四边形叫做梯形,两条腰相等的梯形叫做等腰梯形。

等腰梯形同一底上的两个内角相等,对角线相等。

第 四 章 四 边 形 性 质 探(二)判定:两腰相等的梯形是等腰梯形。

同一底上的两个内角相等的梯形是等腰梯形。

八上3.4 平行四边形(1)

八上3.4 平行四边形(1)

3.4 平行四边形(1)班级姓名学号学习目标1.理解并掌握平行四边形的定义;2.掌握平行四边形的性质1及性质2、性质3。

3.培养学生综合运用知识的能力学习难点1.平行四边形的概念和性质1和性质22. 平行四边形的性质1和性质2的应用教学过程(一)复习1、活动1:由投影仪中的图片复习所学过的图形。

2、活动2:将一张纸对折,剪下两张叠放的三角形纸片.将这两个三角形相等的一组边重合,你会得到怎样的图形.(二)新课讲解1、引入:(1)你拼出了怎样的四边形?与同伴交流(2)一位同学拼出了如下图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由.2、平行四边形的定义:(1).两组对边分别平行的四边形叫做平行四边形.几何语言:∵AB∥CD AD∥BC∴四边形ABCD是平行四边形。

反过来:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC。

(2).平行四边形不相邻的两个顶点连成的线段叫平行四边形的对角线(3).平行四边形相对的边称为对边,相对的角称为对角3、思考:平行四边形的对边之间、对角之间、邻角之间、对角线之间分别有什么关系?由此你能得到什么结论?(1).定义的双重性具备“两组对边分别平行”的四边形,才是“平行四边形”;反过来,“平行四边形”就一定具有“两组对边分别平行”性质。

平行四边形的表示:用符号□表示是一个平行四边形,如□ABCD表示平行四边形ABCD 。

设问:平行四边形有什么性质呢?边之间有什么关系呢?活动:让学生看课本上P92探究,用先做好的平行四边形纸板,可量得对边相等。

设问:能否用推理证明这个性质是否成立吗?(让学生思考本题的已知条件及证明过程)(2).平行四边形的性质:平行四边形的对边相等:前提:是一个平行四边形:结论:这个平行四边形的对边相等。

(提问学生写出已知、求证及证明过程,然后教师加以讲评及纠正。

)小结:用几何语言表示:∵ □ ABCD ∴ AB =CD ,AD =BC 。

平行四边形的判定说课稿(通用8篇)

平行四边形的判定说课稿(通用8篇)

平行四边形的判定说课稿平行四边形的判定说课稿(通用8篇)作为一名老师,通常需要用到说课稿来辅助教学,说课稿有助于顺利而有效地开展教学活动。

快来参考说课稿是怎么写的吧!下面是小编整理的平行四边形的判定说课稿范文,仅供参考,欢迎大家阅读。

平行四边形的判定说课稿篇1一、说教材本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“对角线互相平行的四边形是平行四边形”这两种判定方法。

它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。

二、说学情八年级的学生已经学习了初中阶段包括全等三角形的相关知识、平行四边形的性质在内的绝大多数几何概念及定理。

学生的抽象思维能力、逻辑推理能力有了很大的提高,学生对于新鲜的知识也充满着好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。

因此,由教师组织教学,让学生自主探索平行四边形的判定定理不仅成为可能,又可以作为初中几何知识综合能力的一次检验、一次再提升!三、教学目标【知识技能目标】1、运用类比的方法,通过学生的合作探究,得出平行四边形的第三个判定方法。

2、理解平行四边形的这两种判定方法,并学会简单运用。

【过程与方法目标】1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力、合情推理能力。

2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。

【情感态度与价值观目标】1、使学生学会将平行四边形的问题转化为三角形的问题,渗透化归意识。

2、通过对平行四边形两个判定方法的探究,提高学生解决问题的能力。

3、通过对平行四边形两个判定方法的探究和运用,使学生感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。

四、教学重点、难点【重点】平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用。

鲁教版初中数学八年级上册《平行四边形的性质》同步练习2

鲁教版初中数学八年级上册《平行四边形的性质》同步练习2

5.1平行四边形的性质一.填空题:(每题4分,共32分)1.已知ABCD 中,AB =8cm ,BC =7cm ,则此平行四边形的周长为 cm .2.已知ABCD 中,100B D ∠+∠=,则=∠A .3.已知平行四边形的周长为20cm ,一条对角线把它分成两个周长都是18cm 的三角形,则这条对角线长为 cm .4.如图,在ABCD 中,已知AB 、BC 、CD 三条边长分别为()()21,3,13x cm x cm cm +-,则 ABCD 的周长为 cm .(第4题) (第5题) (第6题)5.如图,已知直线a ∥b ,点A 、点C 分别在直线a 、b 上,且AB ⊥b ,CD ⊥a ,垂足分别为B 、D ,有以下四种说法:①点A 到直线b 的距离为线段AB 的长;②点D 到直线b 的距离为线段CD 的长;③a 、b 两直线之间距离为线段AB 的长;④a 、b 两直线之间距离为线段CD 的长;⑤AB=CD ,其中正确的有(只填相应的序号) .6.如图,点O 是ABCD 的对角线AC 、BD 的交点,则图中全等的三角形共有 对.7.如图,AE ∥BD ,AE =5,BD =8,ABD ∆的面积为16,则ACE ∆的面积为 .(第7题) (第8题) (第9题) 8.如图,在ABCD 中,AC 、BD 相交于点O ,若BOC ∆的面积为3,则平行四边形ABCD 的面积为 . 二.选择题:(每题4分,共24分)9.如图,在ABCD 中,下列各式不一定正确的是( )A.12180∠+∠=B.23180∠+∠=C.34180∠+∠=D.24180∠+∠=ABECABCDOabABCDA BCDA BCDO10.有下列说法:①平行四边形既是中心对称图形,又是轴对称图形;②平行四边形的对角线一定相等;③平行四边形相邻的两角一定互补;④平行四边形的对角线一定互相平分.其中,说法正确的有( )A.1种B.2种C.3种D.4种 11.在ABCD 中,D C B A ∠∠∠∠:::的值可以是( )A.1:2:3:4B.1:1:2:2C.1:2:1:2D.2:3:3:2 12.如图,ABCD 中,AF 垂直对角线BD 于点E ,交BC 于点F ,若 30=∠ADE ,则AFB ∠的度数是 ( ) A. 35 B. 55 C. 70 D. 60(第12题) 13.在给定的条件中,能画出平行四边形的是 ( ) A.以60cm 为一条对角线,20cm 、34cm 为两条邻边 B.以6cm 、10cm 为对角线,8cm 为一边 C.以20cm 、36cm 为对角线,22cm 为一边 D.以6cm 为一条对角线,3cm 、10cm 为两条邻边 14.如图,E 是ABCD 的一边AD 上任一点,若EBC ∆的 面积为1S ,ABCD 的面积为S ,则下列S 与1S 的大小关系中正确的是 ( ) (第14题) A.112S S = B.112S S < C.112S S > D.无法确定S 与1S 的大小关系 三.解答题:(第15、16每题10分,第17题12分,共32分)15.如图,在ABCD 中,点E 是BC 边上的一点,且AB=BE ,AE 的延长线交DC 的延长线于点F ,若 62=∠F ,试求ABCD 的各个内角的度数.(第15题)ABCDE1SAE FBDCABDFEC16.如图, 已知ABCD 的周长为32cm ,AC 、BD 交于点O ,BOC ∆的周长比AOB ∆的周长多4cm ,试求AB 的长.(第16题)17.已知ABCD 对角线AC 平分DAB ∠,请问对角线AC 、BD 是否互相垂直平分?并说明理由.18.在ABCD 中,一个角的平分线把一条边分成3cm 和4cm 的两部分,试求ABCD 的周长.四.探索题:(共12分)19.如图,ABCD 中,BE 平分ABC ∠,若AB =6cm ,BC=10cm . 试求:(1)ABCD 的周长;(2)边DE 的长. (第19题)ABCDOABCDE备选题:20.如图,已知ABCD 的周长为12cm ,对角线AC 、BD 相交于点O ,且BD =4cm ,AOB ∆与BOC ∆的周长之和为15cm ,试求对角线AC 的长.(第20题)21.如图,在ABCD 中,点E 是AB 边的中点,点M 是CD 边(除端点C 、D 外)上的任意一点,请问EBM ∆与ABC ∆的面积之间有什么关系,并说明理由.(第21题)ABCDOABDEM参考答案1.30.2.130.3.8.4.32cm .提示:在ABCD 中,由AB =CD ,即2113x +=,解得6x =,所以ABCD 的周长为()()2213332.AB BC +=⨯+=5.①②③④⑤.6.4.提示:它们是,,,.ABO CDO AOD COB ABC CDA ABD CDB ∆≅∆∆≅∆∆≅∆∆≅∆7.10.提示:设AE 与BD 之间的距离为h ,则116,2ABD S BD h ∆=⋅=解得4h =.所以110.2ACE S AE h ∆=⋅= 8.12.提示:由已知可说明,,,AOB BOC COD DOA ∆∆∆∆的面积相等, 所以44312ABCDBOC SS ∆==⨯=.9.D. 10.B. 11.C. 12.D.13.C.提示:解答本题的依据是三角形的三边关系,即“三角形的任何两边的和大于第三边” .当两邻边与一条对角线构成三角形时,才能画出平行四边形,因此,A 、D 选项不正确;同时,两条对角线各取一半与一边构成三角形时, 才能画出平行四边形,因此B 选项不正确.只有选C.14.A.提示:过E 作EH BC ⊥,垂足为H ,则EH 既是EBC ∆的BC 边上的高,也是ABCD 中BC 边上的高,又1,2EBC ABCDS BC EH S BC EH∆=⋅=⋅,所以112S S =,选A.15.因为四边形ABCD 是平行四边形,所以AB ∥DC ,所以 62=∠=∠F BAE .在ABE ∆中,由AB=BE ,可得 62=∠=∠BAE BEA ,从而()18056B BEA BAE ∠=-∠+∠=.根据平行四边形对角相等,邻角互补,可得 56=∠=∠B D ,124180=∠-=∠=∠B BCD BAD .16.由ABCD 的周长为32cm ,可得2(AB+BC )=32,即 AB+BC=16 ① 又因为平行四边形的对角线互相平分,所以OA=OC .又BOC ∆的周长比AOB ∆的周长多4cm ,所以(BC+OC+OB )-(AB+OA+OB )=4, 从而有 BC -AB=4 ② 由①、②,得 AB =6cm . 17.AC 、BD 互相垂直平分.理由:如图,由已知AC 平分DAB ∠,所以DAC BAC ∠=∠.又ABCD 中AD ∥BC ,所ABDO以ACB DAC ∠=∠.从而有ACB BAC ∠=∠,所以AB=BC . 因为平行四边形的对角线互相平分,所以OA=OC . 在等腰ABC ∆中,由OA=OC ,根据等腰三角形的“三线合 一”,可得BD AC ⊥.18.如图,点E 把AD 分成了3cm 和4cm 的两条线段,应该有以下两种情况.本题应有两个解.因为四边形ABCD 是平行四边形,所以AD ∥BC , 所以∠AEB =∠EBC .因为BE 是∠ABC 的平分线,所以∠EBA =∠EBC .所以∠EBA =∠AEB ,所以AB =AE .(1)若AE =3cm ,则ED =4cm .所以AB=AE =3cm .所以CD=AB =3cm ,BC=AD =7cm .所以周长为()220AB BC cm +=.(2)若AE =4cm ,则ED =3cm ,仿照(1)可得周长为()=+BC AB 222cm . 所以ABCD 的周长为20cm 或22cm .19. (1)ABCD 的周长=2(AB +BC )=()=+⨯106232(cm ); (2)因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以ABE AEB EBC ABE ABC BE EBC AEB ∠=∠∠=∠∠∠=∠从而所以平分又因为,,., 所以AE=AB =6,所以DE=AD-AE=BC-AB =10-6=4(cm ).20.由ABCD 的周长是12cm ,可得()122=+BC AB ,即AB+BC =6.又因为四边形ABCD 是平行四边形,所以OB =221=BD .因为的周长与BOC AOB ∆∆之和为15,所以()5226152)(15,15)(=⨯--=-+-=+=+++++OB BC AB OC OA BC OC OB OB OA AB 从而,所以).(5cm AC =D4cm3cmABCE4cm 3cmABCDE21.过点M作从而的延长线于点交作过点的延长线于点或交,,,,H AB AB CH C F AB AB AB MF ⊥⊥ 有MF=CH .因为点E 是AB 的中点,所以AB BE 21=.又EBM ∆的面积=,212121MF AB MF BE ⨯⨯=⨯⨯ ABC ∆的面积=,21CH AB ⨯⨯所以EBM ∆的面积是ABC ∆的面积的21.。

八年级数学期中复习(一)平移与旋转、平行四边形华东师大版知识精讲

八年级数学期中复习(一)平移与旋转、平行四边形华东师大版知识精讲

初二数学期中复习(一)平移与旋转、平行四边形华东师大版【同步教育信息】一. 本周教学内容:期中复习(一)平移与旋转、平行四边形[教学目标]1. 理解平移、旋转的基本概念,掌握平移旋转的基本特征,并能利用轴对称、平移与旋转或它们的组合进行图案设计,以及应用图形的基本变换于实际生活中。

2. 认识平行四边形,掌握平行四边形特征及识别方法,并能根据图形特征及识别方法解决简单的推理与计算等问题,学会合情推理与数学说理。

二. 重点、难点:教学重点:1. 图形的平移变换、旋转变换、中心对称的基本特征。

2. 平行四边形的特征和识别方法。

教学难点:1. 能按要求作出简单的平面图形的平移后的图形,旋转后的图形,理解中心对称图形。

2. 综合利用平行四边形的特征和识别方法来解决实际问题。

[知识网络]图形之间的变换关系轴对称—连结对应点的线段被对称轴垂直平分平移—连结对应点的线段平行或在同一条直线上且相等对应线段平行或在同一条直线上,并且相等旋转对应点与旋转中心的距离相等每一点都绕旋转中心旋转了同样大小的角度旋转对称——中心对称在轴对称、平移、旋转这些图形变换下,线段的长度不变;角的大小不变()()⎧⎨⎪⎩⎪⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪【典型例题】例1. 如图所示,请你先观察,然后确定第四张图形为()分析:首先观察图形,从(1)到(2)再到(3)是怎么变换得到的,按照规律确定(4)的图状。

解:C例2. 如图,这是两张大小、形状完全相同的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面的图案绕O点顺时针旋转,至少旋转____________度角后,两张图案构成的图形是中心对称图形。

分析:提示两点:1. 把图形抽象成线段;2. 目前图形是轴对称图形,要构造成旋转180°与自身重合的中心对称图形,该图应作何种变换→旋转→怎么转→至少多少度。

解:60例3. 如图,△ABC与△CDE都是等边三角形,D为AE上一点。

平3.4行四边形详案

平3.4行四边形详案

二、知识结构(一)基础知识(含基本概念、基本公式,适用范围等)1.掌握平行四边形的概念;2.探索并掌握平行四边形的性质;3.能运用平行四边形的性质解决相关问题.(二)策略知识(基本方法,含知识发生、获取、应用的基本方法)本节课是以中心对称为主线,让学生通过:操作——观察——探索——交流、归纳——有条理地表达,从而获得平行四边形的性质;让学生通过经历知识的形成与应用过程,更好地理解平行四边形的概念及性质,掌握必要的基础知识与基本技能,发展学生的探究意识和有条理地表达的能力,提高学生应用数学的意识与能力.(三)教学要求(A、B、C级)和考试频数(在近5年中考或高考中出现次数)A(了解):要求对所列知识的含义有最基本的认识,并能解决相关的简单问题. B(理解):要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.C(掌握):要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.三、设计思路1.学生已有知识分析刚学习了中心对称及中心对称图形,利用中心对称图形的性质研究平行四边形的性质,学生比较容易理解和接受. 在日常生活中,也可以找到许多平行四边形的实例,让学生感觉到数学源于生活,激发学生学习数学的兴趣. 经过七年级的空间与图形的学习,学生已经具备了初步的探究意识和有条理地表达的能力,为本节课的活动奠定了基础.2.难点突破的方式以及对重点的关注方式本节课的重点是平行四边形的性质的探索及应用,难点是平行四边形性质的应用.利用中心对称图形的性质探索平行四边形的性质非常方便,突破了传统的全等法,也是本套教材的特色。

教师在带领学生探索平行四边形性质时,借助多媒体课件的展示,更易于让学生得出结论。

为抓住本节课的重点,通过一系列的题目巩固目标,以达到让学生熟练掌握平行四边形性质的目的. 四、教学过程(一) 创设情境,引入课题前面刚刚学过中心对称及中心对称图形,下面请大家动手画一画。

1.操作、观察、思考(1) 如图,BO 是△ABC 边AC 上的中线,画出△ABC 关于点O 对称的图形. (投影展示)生打开课本P85,在图3-13上画。

八年级数学《平行四边形的性质2》教案

八年级数学《平行四边形的性质2》教案

19.1.1 平行四边形性质2情理推导,认识性质1、演示操作。

2、提出下列问题。

3、发现结论。

ABCD绕它的中心O旋转180°后与自身重合,这时我们说 ABCD是中心对称图形,点O叫对称中心。

平行四边形的对角线互相平分.4、证明性质。

5、指导认识。

(几何语言)教师活动:操作投影仪,显示“探究”中的问题,组织学生观察操作,发现结论。

学生活动:观察操作、交流,从中领悟并验证平行四边形ABCD绕点O旋转180度仍和平行四边形EFGH重合,从中观察出平行四边形对边相等、对角相等、对角线互相平分。

教师活动:指导写已知、求证,启导学生分析思路。

学生活动:合作学习,互相讨论自己的思路。

师生归纳:平行四边形性质三平行四边形对角线互相评分。

设计意图采用动手操作感知,辅以三角形全等知识的应用,发现、验证了所要学习的内容,解决了重点,突破的难点。

应用新知,提高认识范例点击应用所学例(投影仪)四边形ABCD是平行四边形,AB=10,AD=8,AC垂直BC,求BC、CD、AC、OA的长以及平行四边形的面积。

思路点拨:可以利用平行四边形对变相等求出BC=AD=8,CD=AB=10,在求出AC长度时,因为∠ACB=90°,可以在求出RT⊿ABC中应用勾股订立求出AC=6,由于OA=OC,因此AO=3.求的平行四边形面积是48。

补充例题,如图,已知平行四边形ABCD和平行四边形EBFD的顶点A、E、F、C在一条直线上,那么线段AE、CF的大小关系如何?说明理由。

教师活动:分析讲例题,教会学生分析思路是本例题的重点。

渗透综合分析法。

学生活动:参与教师分析,学生几何分析的基本思路,学会综合分析法。

设计意图:本例题是要复习巩固平行四边形的对边相等、对角线互相平分性质,同时,还涉及了勾股定理以及平行四边形的面积计算问题,在以后的学习中经常要运用到,这一点要引起学生的注意。

设计意图证明线段相等,学生通常证法一:AE=CF,在⊿ABF ≌⊿CDE 中 ∵AB ∥CD, ∴∠BAC=∠DCE 又四边形是平行四边形 ∴BF=DE, ∠BFE=∠DEC, ∴⊿ABF ≌⊿CDE(AAS) ∴AF=CE AF-EF=CE-EF 即 AE=CF (同理,可通过证明⊿BCE ≌⊿AFD 或⊿ABE ≌⊿CDF 或,⊿AED ≌⊿CFB 得到AE=CF ) 证法二:连接BD,交AC 于O.因为四边形都是平行四边形 所以OA=OC.OE=OF,所以OA-OE=OC-OF 即AE=CF. 课堂演练 说一说,练一练 1、在平行四边形ABCD 中, BC=10cm, AC=8cm, BD=14cm, (1)△ AOD 的周长是多少?为什么? ( 2) △ ABC 与△ DBC 的周长哪个长?长多少? 2、平行四边形ABCD 的对角线AC 与BD 相交于O,直线EF 过点 O 与 AB 、CD 分别相交于E 、F,试探究OE 与OF 的大小关系?并说明理由。

江苏省兴化市大邹高级中学八上3.4平行四边形(3)

江苏省兴化市大邹高级中学八上3.4平行四边形(3)

A B 3.4 平行四边形(3)练习反馈:1.能判断一个四边形是平行四边形的为………………………………( )A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C.一组对边平行,一组对角互补D.一组对边平行,两条对角线相等2.如图,平行四边形ABCD 中,∠C =108°,BE 平分∠ABC ,则∠ABE =( )A. 18°B. 36°C. 72°D. 108°3. 下列特征中,平行四边形不一定具有的是( )A .邻角互补B .对角互补C .对角相等D .内角和为360°4.▱ABCD 中:⑴已知∠A=80°,则∠C= °,∠B= °。

⑵已知∠A=21∠B,则∠C= °,∠D= °.5.⊿ABC 中,D 、E 分别为AB 、AC 中点,延长DE 到F ,使EF=DE ,AB=12,BC=10,则四边形BCFD 的周长为 。

6.平行四边形ABCD 中,AB=3,BC=4,∠A 、∠D 的平分线交BC 于E 、F ,则EF= 。

7.如图,在▱ABCD 中,已知AB=6,周长等于22,求其余三条边的长。

8.在平行四边形ABCD 中,DB=DC ,∠C=70°,AE ⊥BD 于E ,求∠DAE 的度数。

9.如图,▱ABCD 中,EF ∥AD, MN∥AB, MN 与EF 交于点P ,且点P 在BD 上。

⑴.图中除了▱ABCD 外,还有 个平行四边形。

⑵.图中面积相等的平行四边形有哪些?你能说明其中的原因吗?拓展提高:10.已知:平行四边形ABCD 中,E 、F 分别是BA 、DC 上的点,且AE ∥CF ,交BC 、AD 于点G 、H 。

试说明:EG=FHCA B C D E F M N P11.已知下面各图形被一条直线将其面积平分:观察以上图形,用所得到的结论或启示将下面每个图形(或其阴影部分)的面积平分。

北师大版数学八上《平行四边形的性质》word说课教案2课时

北师大版数学八上《平行四边形的性质》word说课教案2课时

第四章四边形性质探索1.平行四边形的性质(一)一、学生起点分析学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。

学生活动经验基础:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。

二、学习任务分析四边形和三角形一样,也是基本的平面图形,在七年级下册“空间与图形”有关知识的基础上,探索并掌握四边形的基本性质,进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节将用多种手段(直观操作、图形的平移、旋转、说理及简单推理等)探索平行四边形的性质并培养学生的探索意识。

教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。

教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学方法:探索归纳法三、教学过程设计本节课分5个环节:第一环节:实践探索,直观感知第二环节:探索归纳,交流合作第三环节:推理论证,感悟升华第四环节:应用巩固,深化提高第五环节:评价反思,概括总结第一环节:实践探索,直观感知1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。

将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

目的:通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形;平行四边形的相邻的两个顶点连成的一段叫做它的对角线。

教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示“”2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。

八年级平行四边形(二)

八年级平行四边形(二)
C .8cm和14cm D .8cm和12cm
【答案】B
4、如图,在平行四边形ABCD中,AB= AC,若平行四边形ABCD的周长为38 ,△ABC的周长比平行四边形ABCD的周长少l0 ,求平行四边形ABCD的一组邻边的长.
【提示】△ABC的周长: =28
平行四边形ABCD的周长:
【答案】
5、如图,平行四边形ABCD中,BE平分∠ABC且交边AD于点E,如果AB=6 ,BC=l0 ,试求:
题型二:证明线段互相平分
例1、已知:如图.平行四边形ABCD中,E、F分别是AB、CD的中点,G、H分别在AD、BC上,AG =CH.求证:EF与GH互相平分.
【提示】根据本题要证得结论可以分析出本题只要证明四边形GFHE是平行四边形即可.连结GF、FH、HE、EG
例2、如图,平行四边形ABCD的对角线AC和BD交于O,E、F分别为OB、OD的中点,过O任作一直线分别交AB、CD于G、H.求证:GF∥EH.
【注意】边:对边平行,对边相等;角:对角相等,邻角互补;对角线:对角线互相平分。
知识点3:平行四边形的判定
根据定义来判定:两组对边分别平行的四边形叫做平行四边形,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形。
1.平行四边形判定定理l:如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形.
【提示】AD EF BC.
1、专题精讲
题型一:证明线段相等
例1、己知:如图,在平行四边形ABCD中,AC、BD交于点O,EF过点O,分别交CB,AD的延长线于点E、F,求证:AE=CF.
【提示】易证△DOF≌△BOE,DF=BE,AF CE,证得四边形AECF为平行四边形.(△DOF≌△BOE及已知条件,根据对角线互相平分的四边形是平行四边形,证得四边形AECF为平行四边形.)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4平行四边形(2)-- [ 教案]
班级姓名学号
学习目标
1、探索并掌握平行四边形的识别条件。

2、经历平行四边形识别条件的探索过程,使学生逐步掌握探究的方法和说理的
基本技能。

3、在有关活动中发展学生全情推理意识。

学习难点
平行四边形的判定定理的灵活应用。

教学过程
㈠情境创设
回忆:平行四边形的概念
平行四边形有哪些性质?
㈡探索活动
活动一
工具:两对长度分别相等的牙签.
动手:能否在平面内用这四根牙签摆成一个平行四边形?试试看!
思考:你能说明你们摆出的四边形是平行四边形吗?
已知:四边形ABCD中,AD=BC,AB=CD. 试说明四边形ABCD是平行四边形.
以上活动事实,能用文字语言表达吗?
两组对边分别相等的四边形是平行四边形.
活动二
工具:两根长度相等的牙签,两条平行线.
动手:请利用两根长度相等的牙签和两条平行线,摆出以牙签顶端为顶点的平行四边
形吗? 试试看吧!
思考:你能说明你们摆出的四边形是平行四边形吗?
已知:四边形ABCD中,AD∥BC,AD=BC,试说明四边形ABCD是平行四边形.
说明:1学生会想到连接BD,证明△ABD≌△CDB,得到∠ABD=∠CDB,从而得到AB∥DC
2课本是运用平移的性质说明线段AB∥DC
在教学中应先复习平移的概念和性质。

【无论用哪种方法,都是依据平行四边形的概念:2组对边平行的四边形是平行四边形。


以上活动事实,能用文字语言表达吗?
一组对边平行且相等的四边形是平行四边形.
那么一组对边平行另一组对边相等的四边形是平行四边形吗?
活动三
工具:两根不同长度的细纸条.
动手:能否用这两根细纸条在平面上摆出平行四边形?试试看吧!
思考:你能说明你们摆出的四边形是平行四边形吗?
已知:四边形F中,AC与BD交于点O,OA=OC,OB=OD.
试说明四边形ABCD是平行四边形.
说明 1学生会想到用三角形全等的判定定理来证明两个三角形全等2课本是运用中心对称的性质得三角形全等
以上活动事实,能用文字语言表达吗?
两条对角线互相平分的四边形是平行四边形。

判定一个四边形是平行四边形的方法:
1、两组对边分别平行的四边形是平行四边形.
2、两组对边分别相等的四边形是平行四边形.
3、一组对边平行且相等的四边形是平行四边形.
4、两条对角线互相平分的四边形是平行四边形。

练一练:1.P 111 第2题
2. 对于四边形ABCD,如果从条件①AB∥CD②AD∥BC③AB=CD④BC=AD中选出
2个,那么能说明四边形ABCD是平行四边形的有_______(填序号,填出符合条件
的一种情况即可)
3.判断
(1)一组对边平行且另一组对边相等的四边形是平行四边形;
(2)两组对角都相等的四边形是平行四边形
(3)一组对边平行且一组对角相等的四边形是平行边形;
(4)一组对边平行,一组邻角互补的四边形是平行四边形;
(5)两组邻角互补的四边形是平行四边形.
例1、如图:在四边形ABCD中∠BAC=∠ACD,
∠BCA=∠DAC,四边形ABCD是平行四边形吗?为什么?
例2、AD是ΔABC的边BC边上的中线.(学生自己画图)
(1)画图:延长AD到点E, 使DE=AD,连接BE,CE;
(2)判断四边形ABEC的形状,并说明理由.
㈤小结:
1学习了四边形是平行四边形的条件,会运用判别四边形是平行四边形的条件解决
问题;
2经历了探索四边形是平行四边形的条件的过程。

相关文档
最新文档