新沂市第三中学2018-2019学年高三上学期第三次月考试卷数学含答案

合集下载

新沂市第三中学校2018-2019学年上学期高二数学12月月考试题含解析

新沂市第三中学校2018-2019学年上学期高二数学12月月考试题含解析

新沂市第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()A. B.8 C. D.2.点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是()A.B.C.D.3.抛物线y2=8x的焦点到双曲线的渐近线的距离为()A.1 B.C.D.4.平面α与平面β平行的条件可以是()A.α内有无穷多条直线与β平行B.直线a∥α,a∥βC.直线a⊂α,直线b⊂β,且a∥β,b∥αD.α内的任何直线都与β平行5.下列式子中成立的是()A.log0.44<log0.46 B.1.013.4>1.013.5C.3.50.3<3.40.3D.log76<log676.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()cm3A .πB .2πC .3πD .4π7. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}8. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .109. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,]6πB .[,)6ππ C. (0,]3π D .[,)3ππ 10.若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 211.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A+cos2A=0,a=7,c=6,则b=( ) A .10B .9C .8D .512.直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .3二、填空题13.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.14.若函数y=f (x )的定义域是[,2],则函数y=f (log 2x )的定义域为 .15.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .16.已知双曲线x 2﹣y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为 . 17.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系 是 .18.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .三、解答题19.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.20.(本小题满分10分)已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θθ=⎧⎨=⎩,(α为参数),经过伸缩变换32x xy y '=⎧⎨'=⎩后得到曲线2C .(1)求曲线2C 的参数方程;(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.21.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;0.0050.02频率组距O千克(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.22.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2ABD π∠=,AD =22AB DC ==,F为PA 的中点.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PB PD ===P BDF -的体积.23.(选做题)已知f (x )=|x+1|+|x ﹣1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a+b|<|4+ab|.ACDPF24.(本小题满分12分)某市拟定2016年城市建设,,A B C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C三项重点工程竞标成功的概率分别为a,b,14()a b,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34.(1)求a与b的值;(2)公司准备对该公司参加,,A B C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.新沂市第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值.【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为:=4,另一个侧面的面积为:=4,四个面中面积的最大值为4;故选C.2.【答案】A【解析】解:点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示.由图可得面积S==+=+2.故选:A.【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.3.【答案】A【解析】解:因为抛物线y2=8x,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y=有点到直线距离公式可得:d==1.故选A.【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.4.【答案】D【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.当直线a⊂α,直线b⊂β,且a∥β时,直线a 和直线b可能平行,也可能是异面直线,故不选C.当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,故选D.【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.5.【答案】D【解析】解:对于A:设函数y=log0.4x,则此函数单调递减∴log0.44>log0.46∴A选项不成立对于B:设函数y=1.01x,则此函数单调递增∴1.013.4<1.013.5 ∴B选项不成立对于C:设函数y=x0.3,则此函数单调递增∴3.50.3>3.40.3 ∴C选项不成立对于D:设函数f(x)=log7x,g(x)=log6x,则这两个函数都单调递增∴log76<log77=1<log67∴D选项成立故选D6.【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,∴此几何体的体积==2π.故选:B.7.【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则∁U B={x|x≥1},则A∩(∁U B)={x|1≤x<2}.故选:B.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.8.【答案】【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p2=2,∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,由⎩⎪⎨⎪⎧y 2=8x y =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.9. 【答案】C 【解析】考点:三角形中正余弦定理的运用. 10.【答案】A 【解析】解:∵a <b <0,∴﹣a >﹣b >0,∴|a|>|b|,a 2>b 2,即,可知:B ,C ,D 都正确, 因此A 不正确. 故选:A .【点评】本题考查了不等式的基本性质,属于基础题.11.【答案】D【解析】解:∵23cos 2A+cos2A=23cos 2A+2cos 2A ﹣1=0,即cos 2A=,A 为锐角,∴cosA=, 又a=7,c=6,根据余弦定理得:a 2=b 2+c 2﹣2bc •cosA ,即49=b 2+36﹣b ,解得:b=5或b=﹣(舍去),则b=5. 故选D12.【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .二、填空题13.【答案】6【解析】解析:曲线2C 的解析式为2sin[()]2sin()6446y x x ππππωωω=-+=+-,由1C 与2C 关于x 轴对称知sin()sin()464x x πππωωω+-=-+,即1c o s ()s i n ()s i n ()c o s ()06464x x ππππωωωω⎡⎤++-+=⎢⎥⎣⎦对一切x R ∈恒成立,∴1cos()06sin()06πωπω⎧+=⎪⎪⎨⎪=⎪⎩∴(21)6k πωπ=+,∴6(21),k k Z ω=+∈,由0ω>得ω的最小值为6.14.【答案】[,4] .【解析】解:由题意知≤log 2x ≤2,即log2≤log 2x ≤log 24,∴≤x ≤4.故答案为:[,4].【点评】本题考查函数的定义域及其求法,正确理解“函数y=f (x )的定义域是[,2],得到≤log 2x ≤2”是关键,考查理解与运算能力,属于中档题.15.【答案】 14 .【解析】解:有框图知S=a ⊗b=∴5⊗3+2⊗4=5×(3﹣1)+4×(2﹣1)=14 故答案为14【点评】新定义题是近几年常考的题型,要重视.解决新定义题关键是理解题中给的新定义.16.【答案】 .【解析】解:∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2.∵双曲线方程为x 2﹣y 2=1,∴a 2=b 2=1,c 2=a 2+b 2=2,可得F 1F 2=2∴|PF 1|2+|PF 2|2=|F 1F 2|2=8又∵P 为双曲线x 2﹣y 2=1上一点, ∴|PF 1|﹣|PF 2|=±2a=±2,(|PF 1|﹣|PF 2|)2=4因此(|PF 1|+|PF 2|)2=2(|PF 1|2+|PF 2|2)﹣(|PF 1|﹣|PF 2|)2=12∴|PF 1|+|PF 2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.17.【答案】12()()f x f x ]【解析】考点:不等式,比较大小.【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等.18.【答案】 2 .【解析】解:设等比数列的公比为q ,由S 3=a 1+3a 2,当q=1时,上式显然不成立;当q ≠1时,得,即q 2﹣3q+2=0,解得:q=2. 故答案为:2.【点评】本题考查了等比数列的前n 项和,考查了等比数列的通项公式,是基础的计算题.三、解答题19.【答案】(1)(8π+;(2)203π. 【解析】考点:旋转体的概念;旋转体的表面积、体积.20.【答案】(1)3cos 2sin x y θθ=⎧⎨=⎩(为参数);(2【解析】试题解析:(1)将曲线1cos :sin xC y αα=⎧⎨=⎩(α为参数),化为221x y +=,由伸缩变换32x xy y '=⎧⎨'=⎩化为1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩,代入圆的方程211132x y ⎛⎫⎛⎫''+= ⎪ ⎪⎝⎭⎝⎭,得到()()222:194x y C ''+=,可得参数方程为3cos 2sin x y αα=⎧⎨=⎩;考点:坐标系与参数方程.21.【答案】(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数.(Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)每天销售量的中位数为0.15701074.30.35+⨯=千克 (6分)(Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元;若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元;若当天的销售量为[70,100),则超市获利754300⨯=元, (10分)∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分)22.【答案】(本小题满分13分)解:(Ⅰ)当E 为PB 的中点时,//CE 平面PAD . (1分)连结EF 、EC ,那么//EF AB ,12EF AB =. ∵//DC AB ,12DC AB =,∴//EF DC ,EF DC =,∴//EC FD . (3分) 又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分)(Ⅱ)设O 为AD 的中点,连结OP 、OB ,∵PA PD =,∴OP AD ⊥,在直角三角形ABD 中,12OB AD OA ==, 又∵PA PB =,∴PAO PBO ∆≅∆,∴POA POB ∠=∠,∴OP OB ⊥,∴OP ⊥平面ABD . (10分)2PO ===,2BD ==∴三棱锥P BDF -的体积1112222233P BDF P ABD V V --==⨯⨯⨯=. (13分)23.【答案】【解析】(Ⅰ)解:f (x )=|x+1|+|x ﹣1|=当x <﹣1时,由﹣2x <4,得﹣2<x <﹣1;当﹣1≤x ≤1时,f (x )=2<4;当x >1时,由2x <4,得1<x <2.所以M=(﹣2,2).… A BCD POEF(Ⅱ)证明:当a ,b ∈M ,即﹣2<a ,b <2,∵4(a+b )2﹣(4+ab )2=4(a 2+2ab+b 2)﹣(16+8ab+a 2b 2)=(a 2﹣4)(4﹣b 2)<0,∴4(a+b )2<(4+ab )2,∴2|a+b|<|4+ab|.…【点评】本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.24.【答案】【解析】(1)由题意,得11424131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=⎪⎩.…………………4分 (Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X ,则X 的值可以为0,2,4,6,8,10,12.…………5分 而41433221)0(=⨯⨯==X P ;1231(2)2344P X ==⨯⨯=; 1131(4)2348P X ==⨯⨯=; 1211135(6)23423424P X ==⨯⨯+⨯⨯=; 1211(8)23412P X ==⨯⨯=; 1111(10)23424P X ==⨯⨯=; 1111(12)23424P X ==⨯⨯=.…………………9分 所以X 的分布列为:于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12=.……………12分。

高三年级第一学期第三次月考数学试题

高三年级第一学期第三次月考数学试题

高三年级第一学期第三次月考数学试题高三年级第一学期第三次月考数学试题总分150分第一卷(客观题)一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的):1.已知等差数列的公差为2,若成等比数列,则 ( ) A. B.C. D.2.设函数的最小值,最大值,记则是( )A.公差不为0的等差数列 B.公比不为1的等比数列C.常数列 D.不是等差也不是等比数列3.在各项为正数的等比数列中,,则= ( )A.33 B.72 C.84 D.1894.若数列的前n项和,则( )A. B. C.D.5.在数列中,,且则数列的第10项为 ( ) A.B. C.D.6.已知,则数列的通项公式( )A. B. C. D.1000807.等差数列是5,中,第n项到n+6项的和为,则当最小时,n的值为( )A.6 B.4 C.5 D.38.已知等比数列中,则 ( )A.-2 B.-5 C.2或-5 D.29.设Sn是等差数列的前n项和,则 ( )A.21 B.16 C.9 D.810.已知数列的通项公式,设前n项和为Sn,则使成立的自然数n( )A.有最大值63 B.有最小值63 C.有最小值31 D.有最大值3111.数列Sn是满足,若,则的值为 ( )A. B. C.D.12.若等比数列的各项均为正数,前n项和为S,前n项积为P,前n项的倒数和为M,则( )A.B.C. D.二.填空题(本大题共4小题,每小题4分,共16分,把答案填在横线上):13.在数列中,且则.14.数列满足则的通项公式是.15.已知等比数列中,且则的取值范围是.16.设等比数列的公比为q,前n项和为Sn,若成等差数列,则q的值为.第二卷(主观题)三.解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤):17.(12分)在等比数列中,且公比q是整数.求的值18.(12分)从1,2,3,4,5,6这6个数中任取两个不同的数作差 100080(理)设差的绝对值为,求的分布列及期望.(文)(1)记〝事件A〞=差的绝对值等于1,求P(A);(2)记〝事件B〞=差的绝对值不小于3,求P(B).19.(12分)有个正数排成n行n列方陈()如图: …………其中每行数成等差数列,第一列数成等比数列且公比都等于q,设(1)求公比q;(2)求;(3)求10008020.(12分)定义在R上的函数的图象关于对称,且满足又求.21.(12分)(理)已知数列相邻两项是方程的两根且,求与. (文)已知又是一个递增等差数列的前3项(1)求此数列的通项公式;(2)求的值.22.(14分)已知数列中,且在直线上,(1)求数列的通项公式;(2)若,求Tn的最小值;(3)若是的前n项和,问:是否存在关于n的整式使得对一切的自然n恒成立说明理由.参考答案第一卷(客观题)一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的):题号123456789101112答案BACDDDCDABCC二.填空题(本大题共4小题,每小题4分,共16分,把答案填在横线上):13.260014.15.16.三.解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤):17.18.12100080345P1/34/153/152/151/15(文)P(A)=1/3,P(B)=2/5 19.(1)(2)(3)20.为偶数为奇数21.(理)(文) 22.(1)(2)的最小值为(3)存在,。

新沂市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案

新沂市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案

新沂市第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .2. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80 D .S 21=843. 设为全集,是集合,则“存在集合使得是“”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分也不必要条件4. 两个随机变量x ,y 的取值表为x 0 1 3 4 y2.24.34.86.7若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.655. 已知函数()f x 的定义域为[],a b ,函数()y f x =的图象如图甲所示,则函数(||)f x 的图象是 图乙中的( )6. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 7. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .π B .2πC .4πD .π8. 在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=9. 已知复数z 满足(3+4i )z=25,则=( ) A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i10.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣311.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( )A .4B .5C .6D .712.直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .14.已知函数f (x )=sinx ﹣cosx ,则= .15.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 . 16.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .三、解答题(本大共6小题,共70分。

2019届高三数学上学期第三次月考试题理(3)

2019届高三数学上学期第三次月考试题理(3)

2018-2019学年第一学期第三次月考试卷高三理科数学一、选择题:本大题共12道小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的。

1.已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =()A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3} 2.若a 为实数,且2+ai1+i=3+i ,则a =()A .-4B .-3C .3D .43.下列函数中,定义域是R 且为增函数的是()A .x e y -=B .x y =C .x yln =D .3x y =4.函数xxx f +-=22lg )(的图象()A .关于x 轴对称B .关于原点对称C .关于直线y =x 对称D .关于y 轴对称5.已知54)cos(=-απ,且α为第三象限角,则α2tan 的值等于()A. 34 B .-34 C -247D ..2476.要得到函数⎪⎭⎫ ⎝⎛-=34sin πx y 的图象,只需将函数x y 4sin =的图象()A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位7. 已知向量a =(1,m ),向量b =(m,2),若a ∥b ,则实数m 等于()A .-2B. 2 C .-2或2D .08. 等差数列{a n }的首项为1,公差不为0.若632,,a a a 成等比数列,则{a n }前6项的和为()A .-24B .-3C .3D .89.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢()A .8日B .9日C .12日D .16日 10.若函数)0(6sin )(>⎪⎭⎫ ⎝⎛-=ωπωx x f 的图象相邻两个对称中心之间的距离为π2,则)(x f 的一个单调递增区间为()A. ⎪⎭⎫ ⎝⎛-3,6ππ B.⎪⎭⎫⎝⎛-6,3ππ C. ⎪⎭⎫ ⎝⎛32,6ππ D.⎪⎭⎫ ⎝⎛65,3ππ11.若直线ax y=是曲线1ln 2+=x y 的一条切线,则实数a =()A .e1B .e2C .21e D .212e 12.已知函数)(xf 是定义在R 上的奇函数,)(/x f y =是)(x f y =的导函数,且当)0,(-∞∈x 时,0)()(/<+x xf x f成立.若2log )2(log 33f a =,2log )2(log 55f b =,)2(2f c =,则c b a ,,的大小关系是()A .c a b>>B .c b a >>C .b a c >> D .a b c >>二、填空题:本大题共4小题,每小题5分,共20分.13.已知m ∈R ,向量a =(m ,7),b =(14,-2),且a ⊥b ,则|a |=________. .14.若==αα2cos ,3tan 则________.15.⎪⎩⎪⎨⎧>≤⎪⎭⎫ ⎝⎛=,0,log ,0,31)(3x x x x f x则=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛91f f ________.16.数列{}na 满足,2)12(53321n a n a a an =-+∙∙∙+++则9a = ________.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.(本题满分12分)已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x . (1)求f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,求函数f (x )的值域.18. (本题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c . ①求C ;②若c =7,△ABC 的面积为332,求△ABC 的周长..19.(本题满分12分)已知数列{a n }满足11=a ,且.22)1(21n n a n na n n +=+-+.(1)求32,a a ;(2)证明数列⎩⎨⎧⎭⎬⎫an n 是等差数列,并求{a n }的通项公式.20.(本题满分12分)已知数列{a n }的前n 项和为S n ,且S n =2n-1(n ∈N *). (1)求数列{a n }的通项公式; (2)设1log 4+=n n a b ,求{b n}的前n 项和T n..21. (本题满分12分)已知常数0≠a,x x a x f 2ln )(+=.(1)当a =-4时,求)(x f 的极值;(2)当)(x f 的最小值不小于a -时,求实数a 的取值范围.22.(本题满分10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =22t ,y =3+22t (t 为参数),在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为θθρcos 2sin 4-=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与y 轴的交点为P ,直线l 与曲线C 的交点为A ,B ,求|PA |·|PB |的值.高三理科数学答案一、选择题(本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20分) 13. 2514. 54-15. 9 16. 172三、解答题(本大题共6小题,共70分) 17.(本题满分12分)解:(1)f (x )=32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎝⎛⎭⎪⎫2x +π3.所以f (x )的最小正周期T =2π2=π .....................6分 (2)证明:设,32π+=x t因为-π4≤x ≤π4,所以-π6≤t ≤5π6. 所以1)32sin(21≤+≤-πx f (x )的值域为⎥⎦⎤⎢⎣⎡-1,21………………….12分18.(本题满分12分)[解]①由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C , 即2cos C sin(A +B )=sin C , 故2sin C cos C =sin C .可得cos C =12,所以C =π3. ..............................................6分②由已知得12ab sin C =332. 又C =π3,所以ab =6.由已知及余弦定理得a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25.所以△AB C 的周长为5+7.……………………..12分 19.(本题满分12分)解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.……………………..6分 (2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得nan +1-++=2,即an +1n +1-ann=2,所以数列⎩⎨⎧⎭⎬⎫an n 是首项a11=1,公差d =2的等差数列.则an n=1+2(n -1)=2n -1,所以a n =2n 2-n ....................12分 20.(本题满分12分)解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *).…………..6分(2)由(1)得,b n =log 4a n +1=n +12,则b n +1-b n =n +22-n +12=12,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+-2d =n2+3n4.………………12分。

高三第三次月考数学试卷文档

高三第三次月考数学试卷文档

一、单项选择题1、 指数函数y=5x 的底数是( ) A .yB .xC .5D .152、 下列平面直角坐标系中的四个图形中,可以做为函数y =f (x )的图象的是( )3、若(a2-9)0=1,则a 必须满足( ) A .a ≠3B .a ≠-3C .a ≠3或a ≠-3D .a ≠3且a ≠-34、()21((2))f x x f f =-=已知函数,则( ) A. 3 B. 5 C . 2 D. 无法确定 5、 如果指数函数f (x )=(2a -3)x是R 上的减函数,则实数a 的取值范围是( )A .0<a <1B .32<a <2C .a >1D .a >326、 已知下列函数:①f(x)=2x 3; ②f(x)=-x ; ③f(x)=3x +5; ④f(x)=x 5+x 3+x . 其中,是奇函数的个数为( ) A .1 B .2 C .3 D .4A .B .C .D .7、log a 若3<1,则实数a 的取值范围是( )A . ∞(3,+)B . ∞(1,+)C . (0,1)D . ⋃∞(0,1)(3,+)8、 函数 y =(x -1)0x +1 的定义域是( )A .[-1,1]B .(-1,1)∪(1,+∞)C .(-1,1)D .(-1,+∞)9、 若0<a<1,则函数logy x =与函数y=x+a 的图像可能是( )10、在同一坐标系中,当a>1时函数xy a log = 与x a y -=的图像是( )二、填空题1、 函数y=x 2-2x-3的单调递增区间是 .2、 二次函数252++=bx x y 图像顶点在x 轴上,b =_______. 3、 (),(1)2xf x f x x =+=+已知则_______. A BCD4、 设log 34•log 48•log 8m =log 416,则m 的值为___________.5、 设3a =2, 3b =5,则32a-b =_____________.6、 函数y =log a x 在闭区间[1,4]上的最大值与最小值的和为2,则a 的值是__________.7、 已知函数xx f -=13)(,则=)2(log 3f .2203828.()()(lg5)275--+-= . 9、已知3a=4b=M ,且1a +1b =2,则M 的值为___________.10、(log 43+log 83)(log 35+log 95)(log 52+log 252)的值为________. 三解答题1、 判断函数f (x )=a x -1a x +1的奇偶性,并证明你的结论.2、 已知二次函数y =f (x )图象的对称轴是x =-2,它在x 轴上截得的线段长为6,且抛物线过点(-1,-4),求该二次函数的解析式.3、 已知函数f(x)=2121x-+, 试判断f (x )的奇偶性。

高三上学期第三次月考数学试题(含答案)

高三上学期第三次月考数学试题(含答案)

2019届高三上学期第三次月考数学试题(含答案)考生在复习中多做题是高考数学复习中最重要的部分了,为此查字典数学网整理了2019届高三上学期第三次月考数学试题,请考生及时进行练习。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.不等式(1+x)(1-|x|)0的解集是A. B. C. D.2.等差数列中,,,则此数列前20项和等于A.160B.180C.200D.2203.已知向量,, 则是与夹角为锐角的A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件4.对一切实数x,不等式恒成立,则实数a的取值范围是A.(-,-2)B.[-2,+)C.[-2,2]D.[0,+)5.命题,若是真命题,则实数的取值范围是A. B. C. D.6.设点是函数与的图象的一个交点,则的值为A. 2B. 2+C. 2+D. 因为不唯一,故不确定7.已知x、y为正实数,且x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是A.RB.C.D.8.已知圆C的半径为2,圆心在轴的正半轴上,直线与圆C相切,则圆C的方程为A.B.C.D.9.已知数列的通项公式为=,其中a、b、c均为正数,那么与的大小是A. B. C. = D. 与n的取值有关10.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是A.1B.2C.D.11. 函数在区间上的所有零点之和等于A. 2B. 6C. 8D. 1012.已知函数的周期为4,且当时,其中.若方程恰有5个实数解,则的取值范围为A. B. C. D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题:本大题共4小题,每小题5分。

13.直线ax+y+1=0与连结A(2,3),B(-3,2)的线段相交,则a的取值范围是_ _.14.过点的直线与圆交于、两点,为圆心,当最小时,直线的方程是.15.已知、满足约束条件,若目标函数的最大值为7,则的最小值为。

新沂市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

新沂市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

新沂市高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且•=4,则实数a 的值为( )A .或﹣B .或3C .或5D .3或52. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为()A .a <c <bB .b <a <cC .c <a <bD .c <b <a 3. 在三角形中,若,则的大小为( )A .B .C .D .4. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013 B .2014 C .2015 D .20161111]5. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为()A .4B .8C .10D .136. 有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( )A .0B .1C .2D .37. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .9.6B .7.68C .6.144D .4.91528. 在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1﹣x 2)sinC=0有两个不等的实根,则A 为( )A .锐角B .直角C .钝角D .不存在9. 一个骰子由六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( )1~6A .6B .3C .1D .210.已知均为正实数,且,,,则( ),,x y z 22log x x =-22log yy -=-22log z z -=A . B . C .D .x y z <<z x y <<z y z <<y x z<<11.二进制数化为十进制数的结果为()((210101A .B .C .D .1521334112.独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是()A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99%C .变量X 与变量Y 有关系的概率为99%D .变量X 与变量Y 没有关系的概率为99.9%二、填空题13.若等比数列{a n }的前n 项和为S n ,且,则= .14.椭圆+=1上的点到直线l:x﹣2y﹣12=0的最大距离为 .15.已知直线5x+12y+m=0与圆x2﹣2x+y2=0相切,则m= .16.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是 .17.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是 .18.已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)= .三、解答题19.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.统计局调查队随机抽取了甲、乙两单位中各5名职工的成绩,成绩如下表:甲单位8788919193乙单位8589919293(1)根据表中的数据,分别求出甲、乙两单位职工成绩的平均数和方差,并判断哪个单位对法律知识的掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.20.已知直角梯形ABCD中,AB∥CD,,过A作AE⊥CD,垂足为E,G 、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(1)求证:FG∥面BCD;(2)设四棱锥D﹣ABCE的体积为V,其外接球体积为V′,求V:V′的值.21.在直角坐标系xOy中,直线l的参数方程为(t为参数).再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy有相同的长度单位.在该极坐标系中圆C的方程为ρ=4sinθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点M的坐标为(﹣2,1),求|MA|+|MB|的值.22.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.23.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.24.已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b.(Ⅰ)求该椭圆的离心率;(Ⅱ)已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于△APQ,求该椭圆的方程.新沂市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C C ADCCCAAA题号1112答案C二、填空题13. .14. 4 .15.8或﹣1816. .17. . 18. .三、解答题19.(1),,,,甲单位对法律知识的掌握更稳定;(2).90=甲x 90=乙x 5242=甲s 82=乙s 2120. 21. 22..[]1,2-23. 24.。

新沂市高中2018-2019学年上学期高三数学期末模拟试卷含答案

新沂市高中2018-2019学年上学期高三数学期末模拟试卷含答案

新沂市高中2018-2019学年上学期高三数学期末模拟试卷含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.函数f(x)=xsinx的图象大致是()A.B.C.D.2.设集合M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k的取值范围是()A.(﹣∞,﹣1]B.[﹣1,+∞)C.(﹣1,+∞)D.(﹣∞,﹣1)3.袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为()A.B.C.D.4.已知一组函数f n(x)=sin n x+cos n x,x∈[0,],n∈N*,则下列说法正确的个数是()①∀n∈N*,f n(x)≤恒成立②若f n(x)为常数函数,则n=2③f4(x)在[0,]上单调递减,在[,]上单调递增.A.0B.1C.2D.35.函数y=2|x|的图象是()A.B.C.D.6.一个椭圆的半焦距为2,离心率e=,则它的短轴长是()A .3B .C .2D .67. 若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是()A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题8. 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A .程序流程图B .工序流程图C .知识结构图D .组织结构图9. 在下面程序框图中,输入,则输出的的值是()44N S A .B .C .D .251253255260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.10.用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不能被5整除D .a ,b 有1个不能被5整除11.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A .2160B .2880C .4320D .864012.圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( )12A.缩小到原来的一半B.扩大到原来的倍C.不变D.缩小到原来的16二、填空题13.已知数列中,,函数在处取得极值,则{}n a 11a =3212()3432n n a f x x x a x -=-+-+1x =_________.n a =14.已知f (x )=x (e x +a e -x )为偶函数,则a =________.15.若函数在区间上单调递增,则实数的取值范围是__________.()ln f x a x x =-(1,2)16.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形PACB 的周长最小时,△ABC 的面积为________.17.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .18.在直角梯形分别为的中点,,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===,AB AC 点在以为圆心,为半径的圆弧上变动(如图所示).若,其中,P A AD DE AP ED AF λμ=+,R λμ∈则的取值范围是___________.2λμ-三、解答题19.(本题满分12分)已知数列的前项和为,且,().}{n a n n S 332-=n n a S +∈N n (1)求数列的通项公式;}{n a (2)记,是数列的前项和,求.nn a n b 14+=n T }{n b n n T 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前项和.重点突出对运算及化归能n 力的考查,属于中档难度.20.如图所示,已知+=1(a >>0)点A (1,)是离心率为的椭圆C :上的一点,斜率为的直线BD 交椭圆C 于B 、D 两点,且A 、B 、D 三点不重合.(Ⅰ)求椭圆C 的方程;(Ⅱ)求△ABD 面积的最大值;(Ⅲ)设直线AB 、AD 的斜率分别为k 1,k 2,试问:是否存在实数λ,使得k 1+λk 2=0成立?若存在,求出λ的值;否则说明理由.21.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.22.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.23.已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是.(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标.24.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0(1)求实数m的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.新沂市高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:函数f(x)=xsinx满足f(﹣x)=﹣xsin(﹣x)=xsinx=f(x),函数的偶函数,排除B、C,因为x∈(π,2π)时,sinx<0,此时f(x)<0,所以排除D,故选:A.【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.2.【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B.【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.3.【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P==,故选:B.【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.4.【答案】D【解析】解:①∵x∈[0,],∴f n(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.5.【答案】B【解析】解:∵f(﹣x)=2|﹣x|=2|x|=f(x)∴y=2|x|是偶函数,又∵函数y=2|x|在[0,+∞)上单调递增,故C错误.且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.6.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.【点评】本题主要考查了椭圆的简单性质.属基础题.7.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p ∨q ,p ∧q ,¬q 的真假和p ,q 真假的关系. 8. 【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.故选D .【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答. 9. 【答案】B10.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”的否定是“a ,b 都不能被5整除”.故应选B .【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧. 11.【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15,又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320.故选C 12.【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来2113V r h π=的倍,底面半径缩短到原来的,则体积为,所以,故选A.12222111(2)326V r h r h ππ=⨯=122V V =考点:圆锥的体积公式.1二、填空题13.【答案】1231n --A 【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如的递推数列求通项往往用1(0,1)n n a qa p p q -=+≠≠构造法,利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得1()n n a m q a m -+=+{}n a m +出的通项公式.{}n a 14.【答案】【解析】解析:∵f (x )是偶函数,∴f (-x )=f (x )恒成立,即(-x )(e -x +a e x )=x (e x +a e -x ),∴a (e x +e -x )=-(e x +e -x ),∴a =-1.答案:-115.【答案】2a ≥【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即()ln f x a x x =-(1,2)(1,2)x ∈()'10a f x x=-≥恒成立,可得,故答案为.1a x ≥2a ≥2a ≥考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.16.【答案】【解析】解析:圆x 2+y 2-2x +4y -4=0的标准方程为(x -1)2+(y +2)2=9.圆心C (1,-2),半径为3,连接PC ,∴四边形PACB 的周长为2(PA +AC )=2+2AC =2+6.PC 2-AC 2PC 2-9当PC 最小时,四边形PACB 的周长最小.此时PC ⊥l .∴直线PC 的斜率为1,即x -y -3=0,由,解得点P 的坐标为(4,1),{x +y -5=0x -y -3=0)由于圆C 的圆心为(1,-2),半径为3,所以两切线PA ,PB 分别与x 轴平行和y 轴平行,即∠ACB =90°,∴S △ABC =AC ·BC =×3×3=.121292即△ABC 的面积为.92答案:9217.【答案】 .【解析】解:根据点A ,B 的极坐标分别是(2,),(3,),可得A 、B 的直角坐标分别是(3,)、(﹣,),故AB 的斜率为﹣,故直线AB 的方程为 y ﹣=﹣(x ﹣3),即x+3y ﹣12=0,所以O 点到直线AB 的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题. 18.【答案】[]1,1-【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.三、解答题19.【答案】【解析】(1)当时,;………………1分1=n 323321111=⇒=-=a a a S 当时,,2≥n 332,33211-=-=--n n n n a S a S ∴当时,,整理得.………………3分2≥n n n n n n a a a S S 2)(32211=-=---13-=n n a a ∴数列是以3为首项,公比为3的等比数列.}{n a ∴数列的通项公式为.………………5分}{n a nn a 3=20.【答案】【解析】解:(Ⅰ)∵,∴a=c,∴b2=c2∴椭圆方程为+=1又点A(1,)在椭圆上,∴=1,∴c2=2∴a=2,b=,∴椭圆方程为=1 …(Ⅱ)设直线BD方程为y=x+b,D(x1,y1),B(x2,y2),与椭圆方程联立,可得4x2+2bx+b2﹣4=0△=﹣8b 2+64>0,∴﹣2<b <2x 1+x 2=﹣b ,x 1x 2=∴|BD|==,设d 为点A 到直线y=x+b 的距离,∴d=∴△ABD 面积S=≤=当且仅当b=±2时,△ABD 的面积最大,最大值为 …(Ⅲ)当直线BD 过椭圆左顶点(﹣,0)时,k 1==2﹣,k 2==﹣2此时k 1+k 2=0,猜想λ=1时成立.证明如下:k 1+k 2=+=2+m =2﹣2=0当λ=1,k 1+k 2=0,故当且仅当λ=1时满足条件…【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.21.【答案】(1);(2).3,2,1710【解析】111]试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有种情况,10其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为710.考点:1、分层抽样的应用;2、古典概型概率公式.22.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin(B+C),∴sinBcosC+sinCcosB﹣sinCcosB﹣sinBsinC=0,…(2分)即sinB(cosC﹣sinC)=0,∵sinB≠0,∴tanC=,故C=.…(6分)(2)∵ab×=,∴ab=4,①又c=2,…(8分)∴a2+b2﹣2ab×=4,∴a2+b2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.23.【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,…1分c=e•a=×=,故b===,…4分所以,椭圆E的方程为,即x2+3y2=5…6分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k2﹣5=0;…7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=﹣,x1x2=;…8分∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣﹣,要使上式与k无关,则有6m+14=0,解得m=﹣;∴存在点M(﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.24.【答案】【解析】解:(1)∵f(4)=0,∴4|4﹣m|=0∴m=4,(2)f(x)=x|x﹣4|=图象如图所示:由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k∈(0,4).。

新沂市第三中学2018-2019学年高三上学期11月月考数学试卷含答案

新沂市第三中学2018-2019学年高三上学期11月月考数学试卷含答案

新沂市第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x2. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=()A .e x+1B .e x ﹣1C .e ﹣x+1D .e ﹣x ﹣13. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A .B .C .D .4. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()A .i ≥7?B .i >15?C .i ≥15?D .i >31?5. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >06. 在复平面上,复数z=a+bi (a ,b ∈R )与复数i (i ﹣2)关于实轴对称,则a+b 的值为( )A .1B .﹣3C .3D .27. “x >0”是“>0”成立的()A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件8. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .(2,4)B .(2,﹣4)C .(4,﹣2)D .(4,2)9. 设、是两个命题,若是真命题,p q ()p q ⌝∨那么()A .是真命题且是假命题 p q B .是真命题且是真命题 p q C .是假命题且是真命题 p q D .是假命题且是假命题p q 10.已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为()A .B .C .D .11.已知两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,则=( )A .﹣2B .2C .﹣D .12.在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于()A .B .5C .3D .二、填空题13.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .14.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 . 15.二面角α﹣l ﹣β内一点P 到平面α,β和棱l 的距离之比为1::2,则这个二面角的平面角是 度.16.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 . 17.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .18.设x∈(0,π),则f(x)=cos2x+sinx的最大值是 .三、解答题19.己知函数f(x)=|x﹣2|+a,g(x)=|x+4|,其中a∈R.(Ⅰ)解不等式f(x)<g(x)+a;(Ⅱ)任意x∈R,f(x)+g(x)>a2恒成立,求a的取值范围.20.已知函数,且.(Ⅰ)求的解析式;(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.21.已知,数列{a n}的首项(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为S n,求使S n>2012的最小正整数n. 22.(本题满分15分)已知抛物线的方程为,点在抛物线上.C 22(0)y px p =>(1,2)R C(1)求抛物线的方程;C (2)过点作直线交抛物线于不同于的两点,,若直线,分别交直线于(1,1)Q C R A B AR BR :22l y x =+,两点,求最小时直线的方程.M N MN AB 【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.23.已知椭圆E : =1(a >b >0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点P (﹣2,0)分别作斜率为k 1,k 2的两条直线,两直线分别与椭圆E 交于M ,N 两点,当直线MN 与y 轴垂直时,求k 1k 2的值.24.(本小题满分12分)已知椭圆,、分别为左、右顶点, 为其右焦点,是椭圆上异于、的C A B 2F P C A B 动点,且的最小值为-2.PA PB u u u r u u u r g (1)求椭圆的标准方程;C(2)若过左焦点的直线交椭圆于两点,求的取值范围.1F C M N 、22F M F N u u u u r u u u u rg新沂市第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.2.【答案】D【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.3.【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.4.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.5.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.6.【答案】A【解析】解:∵z=a+bi(a,b∈R)与复数i(i﹣2)=﹣1﹣2i关于实轴对称,∴,∴a+b=2﹣1=1,故选:A.【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.7.【答案】A【解析】解:当x>0时,x2>0,则>0∴“x>0”是“>0”成立的充分条件;但>0,x2>0,时x>0不一定成立∴“x>0”不是“>0”成立的必要条件;故“x>0”是“>0”成立的充分不必要条件;故选A【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p 为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.8.【答案】C【解析】解:复数z满足iz=2+4i,则有z===4﹣2i,故在复平面内,z对应的点的坐标是(4,﹣2),故选C.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.9.【答案】D10.【答案】A【解析】解:由(0,2)上的函数y=f(x)的图象可知f(x)=当0<2﹣x<1即1<x<2时,f(2﹣x)=2﹣x当1≤2﹣x<2即0<x≤1时,f(2﹣x)=1∴y=f(2﹣x)=,根据一次函数的性质,结合选项可知,选项A正确故选A.11.【答案】C【解析】解:两不共线的向量,,若对非零实数m,n有m+n与﹣2共线,∴存在非0实数k使得m+n=k(﹣2)=k﹣2k,或k(m+n)=﹣2,∴,或,则=﹣.故选:C.【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题. 12.【答案】D【解析】解:由题意可知三角形的面积为S===AC•BCsin60°,∴AC•BC=.由余弦定理AB2=AC2+BC2﹣2AC•BCcos60°=(AC+BC)2﹣3AC•BC,∴(AC+BC)2﹣3AC•BC=3,∴(AC+BC)2=11.∴AC+BC=故选:D【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题. 二、填空题13.【答案】 2 .【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,∴定义域关于原点对称,即﹣2a+3a﹣1=0,∴a=1,∵函数为奇函数,∴f(﹣x)==﹣,即b•2x﹣1=﹣b+2x,∴b=1.即a+b=2,故答案为:2.14.【答案】 [4,16] .【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanα•x+1;圆C的参数方程(θ为参数),化为普通方程是(x﹣2)2+(y﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.15.【答案】 75 度.【解析】解:点P可能在二面角α﹣l﹣β内部,也可能在外部,应区别处理.当点P在二面角α﹣l﹣β的内部时,如图,A、C、B、P四点共面,∠ACB为二面角的平面角,由题设条件,点P到α,β和棱l的距离之比为1::2可求∠ACP=30°,∠BCP=45°,∴∠ACB=75°.故答案为:75.【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键.16.【答案】 D .【解析】解:根据题意,质点运动的轨迹为:A→B→C→A→D→B→A→C→D→A接着是→B→C→A→D→B→A→C→D→A…周期为9.∵质点经过2015次运动,2015=223×9+8,∴质点到达点D.故答案为:D.【点评】本题考查了函数的周期性,本题难度不大,属于基础题.17.【答案】 A .【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.18.【答案】 .【解析】解:∵f(x)=cos2x+sinx=1﹣sin2x+sinx=﹣+,故当sinx=时,函数f(x)取得最大值为,故答案为:.【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题. 三、解答题19.【答案】【解析】解:(Ⅰ)不等式f(x)<g(x)+a即|x﹣2|<|x+4|,两边平方得:x2﹣4x+4<x2+8x+16,解得:x>﹣1,∴原不等式的解集是(﹣1,+∞);(Ⅱ)f(x)+g(x)>a2可化为a2﹣a<|x﹣2|+|x+4|,又|x﹣2|+|x+4|≥|(x﹣2)﹣(x+4)|=6,∴a2﹣a<6,解得:﹣2<a<3,∴a的范围是(﹣2,3).【点评】本题考察了解绝对值不等式问题,考察转化思想,是一道基础题. 20.【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】(Ⅰ)对求导,得,所以,解得,所以.(Ⅱ)由,得,因为,所以对于任意,都有.设,则.令,解得.当x变化时,与的变化情况如下表:所以当时,.因为对于任意,都有成立,所以.所以的最小值为.(Ⅲ)证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证.由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.设,所以,令,解得.由,得,所以在上为增函数.所以,即.所以.故函数的图象在直线的下方.21.【答案】 【解析】解:(Ⅰ),,.数列是以1为首项,4为公差的等差数列.…,则数列{a n }的通项公式为.…(Ⅱ).…①.…②②﹣①并化简得.…易见S n 为n 的增函数,S n >2012,即(4n ﹣7)•2n+1>1998.满足此式的最小正整数n=6.…【点评】本题考查数列与函数的综合运用,解题时要认真审题,仔细解答,注意错位相减求和法的合理运用. 22.【答案】(1);(2).24y x =20x y +-=【解析】(1)∵点在抛物线上,,…………2分(1,2)R C 22212p p =⨯⇒=即抛物线的方程为;…………5分C 24y x =23.【答案】【解析】解:(Ⅰ)由题意得,2c=2,=1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2≠k1矛盾.当k1≠0时,直线PM:y=k1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M (,),同理N (,),由直线MN 与y 轴垂直,则=;∴(k 2﹣k 1)(4k 2k 1﹣1)=0,∴k 2k 1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题. 24.【答案】(1);(2).22142x y +=22[2,7)F M F N ∈-u u u u r u u u u r g 【解析】试题解析:(1)根据题意知,即,c a =2212c a =∴,则,22212a b a -=222a b =设,(,)P x y ∵,(,)(,)PA PB a x y a x y =-----u u u r u u u r g g ,2222222221()222a x x a y x a x a =-+=-+-=-∵,∴当时,,a x a -≤≤0x =2min ()22a PA PB =-=-u u u r u u u r g∴,则.24a =22b =∴椭圆的方程为.C 22142x y +=1111]设,,则,,11(,)M x y 22(,)N x y 12x x +=21224(1)12k x x k -=+∵,,211()F M x y =u u u u r 222()F N x y =u u u u r∴222121212)2(F M F N x x x x k x x =-++++u u u u r u u u u r g2221212(1))22k x x x x k =++-+++222224(1)(1)1)2212k k k k k -=++-+++g .29712k =-+∵,∴.2121k +≥210112k<≤+∴.297[2,7)12k -∈-+综上知,.22[2,7)F M F N ∈-u u u u r u u u u r g 考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.。

新沂市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

新沂市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

新沂市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 变量x 、y 满足条件,则(x ﹣2)2+y 2的最小值为()A .B .C .D .52. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为()A .1B .C .D .23. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )A .B .6C .D .34. 给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( )A .①对②错B .①错②对C .①②都对D .①②都错5. 执行如图所示的程序框图,则输出的S 等于()A .19B .42C .47D .896. 设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .7. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点8. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且•=4,则实数a 的值为( )A .或﹣B .或3C .或5D .3或59. α是第四象限角,,则sin α=()A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如由算得2()()()()()n ad bc K a b c d a c b d -=++++22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯附表:参照附表,则下列结论正确的是( )3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥①有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 99%②有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;99%③采用系统抽样方法比采用简单随机抽样方法更好;④采用分层抽样方法比采用简单随机抽样方法更好;A .①③B .①④C .②③D .②④11. 在区间上恒正,则的取值范围为()()()22f x ax a =-+[]0,1A . B . C .D .以上都不对0a >0a <<02a <<12.下列命题正确的是()A .已知实数,则“”是“”的必要不充分条件,a b a b >22a b >B .“存在,使得”的否定是“对任意,均有”0x R ∈2010x -<x R ∈210x ->C .函数的零点在区间内131()(2xf x x =-11(,32D .设是两条直线,是空间中两个平面,若,则,m n ,αβ,m n αβ⊂⊂m n ⊥αβ⊥二、填空题13.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .14.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .15.已知是等差数列,为其公差,是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________①②③④⑤16.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.17.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .18.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数;③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是 .(填上所有正确命题的编号) 三、解答题19.已知函数,,.()xf x e x a =-+21()x g x x a e=++a R ∈(1)求函数的单调区间;()f x (2)若存在,使得成立,求的取值范围;[]0,2x ∈()()f x g x <(3)设,是函数的两个不同零点,求证:.1x 2x ()f x 121x x e +<20.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线.(1)求证:AD =;122b 2+2c 2-a 2(2)若A =120°,AD =,=,求△ABC 的面积.192sin B sin C 3521.已知△ABC 的顶点A (3,1),B (﹣1,3)C (2,﹣1)求:(1)AB 边上的中线所在的直线方程;(2)AC 边上的高BH 所在的直线方程.22.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0.(1)求常数a,b的值;(2)求f(x)在[﹣2,﹣]的最值.23.根据下列条件,求圆的方程:(1)过点A(1,1),B(﹣1,3)且面积最小;(2)圆心在直线2x﹣y﹣7=0上且与y轴交于点A(0,﹣4),B(0,﹣2).24.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.新沂市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:作出不等式组对应的平面区域,设z=(x﹣2)2+y2,则z的几何意义为区域内的点到定点D(2,0)的距离的平方,由图象知CD的距离最小,此时z最小.由得,即C(0,1),此时z=(x﹣2)2+y2=4+1=5,故选:D.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及两点间的距离公式,利用数形结合是解决此类问题的基本方法.2.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),又P为C上一点,|PF|=4,可得y P=3,代入抛物线方程得:|x P|=2,∴S△POF=|0F|•|x P|=.故选:C.3.【答案】D【解析】解:由等差数列的性质可得:S15==15a8=45,则a8=3.故选:D.4.【答案】C【解析】解:①命题p是一个特称命题,它的否定是全称命题,¬p是全称命题,所以①正确.②根据逆否命题的定义可知②正确.故选C.【点评】考查特称命题,全称命题,和逆否命题的概念.5.【答案】B【解析】解:模拟执行程序框图,可得k=1S=1满足条件k<5,S=3,k=2满足条件k<5,S=8,k=3满足条件k<5,S=19,k=4满足条件k<5,S=42,k=5不满足条件k<5,退出循环,输出S的值为42.故选:B.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,k的值是解题的关键,属于基础题.6.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A7.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f(x)在(﹣1,0)上恰有一个零点;故选B.【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.8. 【答案】C【解析】解:圆x 2+y 2+2x ﹣4y+7=0,可化为(x+)2+(y ﹣2)2=8.∵•=4,∴2•2cos ∠ACB=4∴cos ∠ACB=,∴∠ACB=60°∴圆心到直线的距离为,∴=,∴a=或5.故选:C . 9. 【答案】B【解析】解:∵α是第四象限角,∴sin α=,故选B .【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论. 10.【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年9.967 6.635>人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D .11.【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则()()22f x ax a =-+[]0,1,即,解得,故选C.(0)0(1)0f f >⎧⎨>⎩2020a a a >⎧⎨-+>⎩02a <<考点:函数的单调性的应用.12.【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断的真假),,p q q p ⇒⇒最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.二、填空题13.【答案】 [﹣1,﹣) .【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础. 14.【答案】 6 .【解析】解:双曲线的方程为4x 2﹣9y 2=36,即为:﹣=1,可得a=3,则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题. 15.【答案】①②③④【解析】因为只有是中的最小项,所以,,所以,故①②③正确;,故④正确;,无法判断符号,故⑤错误,故正确答案①②③④答案:①②③④16.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。

新沂市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

新沂市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

新沂市高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B两点,且•=4,则实数a的值为( ) A.或﹣B.或3C.或5D .3或52. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a 3. 在三角形中,若,则的大小为( )A .B .C .D .4. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014C .2015 D .20161111] 5. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为()A .4B .8C .10D .136. 有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( )A .0B .1C .2D .37. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .9.6B .7.68C .6.144D .4.91528. 在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1﹣x 2)sinC=0有两个不等的实根,则A 为( ) A .锐角 B .直角 C .钝角 D .不存在9. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .210.已知,,x y z 均为正实数,且22log xx =-,22log y y -=-,22log z z -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z << 11.二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .4112.独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是( )A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99%C .变量X 与变量Y 有关系的概率为99%D .变量X 与变量Y 没有关系的概率为99.9%二、填空题13.若等比数列{a n }的前n 项和为S n ,且,则= .14.椭圆+=1上的点到直线l:x﹣2y﹣12=0的最大距离为.15.已知直线5x+12y+m=0与圆x2﹣2x+y2=0相切,则m=.16.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是.17.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.18.已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.三、解答题19.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.5名职工的成绩,成绩如下表:(1掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.20.已知直角梯形ABCD中,AB∥CD,,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(1)求证:FG∥面BCD;(2)设四棱锥D﹣ABCE的体积为V,其外接球体积为V′,求V:V′的值.21.在直角坐标系xOy中,直线l的参数方程为(t为参数).再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy有相同的长度单位.在该极坐标系中圆C的方程为ρ=4sinθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点M的坐标为(﹣2,1),求|MA|+|MB|的值.22.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.23.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.24.已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b.(Ⅰ)求该椭圆的离心率;(Ⅱ)已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于△APQ,求该椭圆的方程.新沂市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题13. .14. 4 .15.8或﹣1816. .17. .18. .三、解答题19.(1)90=甲x ,90=乙x ,5242=甲s ,82=乙s ,甲单位对法律知识的掌握更稳定;(2)21. 20.21.22.[]1,2-. 23. 24.。

新沂市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

新沂市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

新沂市实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知在平面直角坐标系中,点,().命题:若存在点在圆xOy ),0(n A -),0(n B 0>n p P 上,使得,则;命题:函数在区间1)1()3(22=-++y x 2π=∠APB 31≤≤n x xx f 3log 4)(-=内没有零点.下列命题为真命题的是( ))4,3(A . B .C .D .)(q p ⌝∧q p ∧q p ∧⌝)(qp ∨⌝)(2. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .3. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( )A .①④B .①⑤C .②⑤D .③⑤4. 已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为()A .B .﹣C .﹣1D .5. 已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围()A .[1,+∞)B .[0.2}C .[1,2]D .(﹣∞,2]6. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是()A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定7. 设变量x ,y 满足,则2x+3y 的最大值为( )A .20B .35C .45D .558. 下列命题中正确的是()A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .“”是“”的充分不必要条件D .命题“∀x ∈R ,2x >0”的否定是“”9. 在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )A .x=1B .x=C .x=﹣1D .x=﹣10.已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,)时,f (x )=e x +sinx ,则()A .B .C .D .11.函数y=2sin 2x+sin2x 的最小正周期( )A .B .C .πD .2π12.已知集合,且使中元素和中的元素{}{}421,2,3,,4,7,,3A k B a a a ==+*,,a N x A y B ∈∈∈B 31y x =+A 对应,则的值分别为( )x ,a k A . B . C . D .2,33,43,52,5二、填空题13.已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:1C x y 42=F P 3||=PF 2C 12222=-by a x (,)的渐近线恰好过点,则双曲线的离心率为 .0>a 0>b P 2C 【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.14.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .15.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 . 16.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .17.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π;②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题;④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.其中正确命题的序号是 . 18.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .三、解答题19.有一批同规格的钢条,每根钢条有两种切割方式,第一种方式可截成长度为a 的钢条2根,长度为b 的钢条1根;第二种方式可截成长度为a 的钢条1根,长度为b 的钢条3根.现长度为a 的钢条至少需要15根,长度为b 的钢条至少需要27根.问:如何切割可使钢条用量最省?20.(本小题满分12分)如图(1),在三角形中,为其中位线,且,若沿将三角形折起,使PCD AB 2BD PC =AB PAB ,构成四棱锥,且.PAD θ∠=P ABCD -2PC CDPF CE==(1)求证:平面 平面;BEF ⊥PAB (2)当 异面直线与所成的角为时,求折起的角度.BF PA 3π21.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<)图象如图,P是图象的最高点,Q为图象与x轴的交点,O为原点.且|OQ|=2,|OP|=,|PQ|=.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)将函数y=f(x)图象向右平移1个单位后得到函数y=g(x)的图象,当x∈[0,2]时,求函数h(x)=f (x)•g(x)的最大值.22.【南京市2018届高三数学上学期期初学情调研】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.23.已知函数f(x)=aln(x+1)+x2﹣x,其中a为非零实数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若y=f(x)有两个极值点α,β,且α<β,求证:<.(参考数据:ln2≈0.693)24.如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M 在PD上.(I)求证:AD⊥PB;(Ⅱ)若,则当λ为何值时,平面BEM⊥平面PAB?(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.新沂市实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以p 2π=∠APB AB ()()11322=-++y x ,解得,因此,命题是真命题.命题:函数,,121+≤≤-n n 31≤≤n p ()xxx f 3log 4-=()0log 1443<-=f ,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是()0log 34333>-=f ()x f []4,3()x f ()4,3假命题.因此只有为真命题.故选A .)(q p ⌝∧考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆P 2π=∠APB AB P 上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数1)1()3(22=-++y x P 是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.x xx f 3log 4)(-=2. 【答案】 D 【解析】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C 93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D .【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.3. 【答案】D【解析】解:当m ⊂α,α∥β时,根据线面平行的定义,m 与β没有公共点,有m ∥β,其他条件无法推出m ∥β,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用. 4. 【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.5.【答案】C【解析】解:f(x)=x2﹣2x+3=(x﹣1)2+2,对称轴为x=1.所以当x=1时,函数的最小值为2.当x=0时,f(0)=3.由f(x)=3得x2﹣2x+3=3,即x2﹣2x=0,解得x=0或x=2.∴要使函数f(x)=x2﹣2x+3在[0,a]上有最大值3,最小值2,则1≤a≤2.故选C.【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次函数的基本方法.6.【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)==86,则<,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.7.【答案】D【解析】解:满足约束条件的平面区域如下图所示:令z=2x+3y可得y=,则为直线2x+3y﹣z=0在y轴上的截距,截距越大,z越大作直线l:2x+3y=0把直线向上平移可得过点D时2x+3y最大,由可得x=5,y=15,此时z=55故选D【点评】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,找出目标函数的最优解点的坐标是解答本题的关键.8.【答案】D【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;“”⇒“+2kπ,或,k∈Z”,“”⇒“”,故“”是“”的必要不充分条件,故C不正确;命题“∀x∈R,2x>0”的否定是“”,故D正确.故选D.【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.9.【答案】C【解析】解:由题意可得抛物线y2=2px(p>0)开口向右,焦点坐标(,0),准线方程x=﹣,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4﹣(﹣)=5,解之可得p=2故抛物线的准线方程为x=﹣1.故选:C .【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题. 10.【答案】D【解析】解:由f (x )=f (π﹣x )知,∴f ()=f (π﹣)=f (),∵当x ∈(﹣,)时,f (x )=e x +sinx 为增函数∵<<<,∴f ()<f ()<f (),∴f ()<f ()<f (),故选:D 11.【答案】C【解析】解:函数y=2sin 2x+sin2x=2×+sin2x=sin (2x ﹣)+1,则函数的最小正周期为=π,故选:C .【点评】本题主要考查三角恒等变换,函数y=Asin (ωx+φ)的周期性,利用了函数y=Asin (ωx+φ)的周期为,属于基础题.12.【答案】D 【解析】试题分析:分析题意可知:对应法则为,则应有(1)或(2),31y x =+42331331a a a k ⎧=⨯+⎪⎨+=⋅+⎪⎩42313331a k a a ⎧=⋅+⎪⎨+=⨯+⎪⎩由于,所以(1)式无解,解(2)式得:。

新沂市实验中学2018-2019学年上学期高三数学10月月考试题

新沂市实验中学2018-2019学年上学期高三数学10月月考试题

新沂市实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .2. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .3. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位 4. a=﹣1是直线4x ﹣(a+1)y+9=0与直线(a 2﹣1)x ﹣ay+6=0垂直的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±36. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )A .30°B .60°C .120°D .150° 7. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )8. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( )A .12B .8C .6D .49. 在复平面内,复数1zi+所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i --B .3i -+C .3i -D .3i +10.已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A .B .﹣C .D .﹣二、填空题11.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________. 12.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .13.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 . 14.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 . 15. 17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 三、解答题17.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,asinAsinB+bcos 2A=a .(Ⅰ)求;(Ⅱ)若c 2=b 2+a 2,求B .18.(本小题满分13分) 已知函数32()31f x ax x =-+, (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明:当2a <-时,()f x 有唯一的零点0x ,且01(0,)2x ∈.19.(本小题满分12分)已知平面向量(1,)a x = ,(23,)b x x =+-,()x R ∈.(1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.20.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BD CE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长21.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.22.如图,在四棱锥 P ABCD -中,底面ABCD 是平行四边形,45,1,ADC AD AC O ∠===为AC 的中点,PO ⊥平面ABCD ,2,PO M =为 BD 的中点. (1)证明: AD ⊥平面 PAC ;(2)求直线 AM 与平面ABCD 所成角的正切值.新沂市实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C2.【答案】D【解析】解:A、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,A不正确;B、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,B不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是减函数,D正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.3.【答案】C【解析】试题分析:()2222==+=+,故向上平移个单位.log2log2log1logg x x x x考点:图象平移.4.【答案】A【解析】解:当a=﹣1时,两条直线分别化为:4x+9=0,y+6=0,此时两条直线相互垂直;当a=0时,两条直线分别化为:4x﹣y+9=0,﹣x+6=0,此时两条直线不垂直;当a≠﹣1,0时,两条直线的斜率分别:,,∵两条直线相互垂直,∴=﹣1,解得a=.综上可得:a=﹣1是直线4x﹣(a+1)y+9=0与直线(a2﹣1)x﹣ay+6=0垂直的充分不必要条件.故选:A.【点评】本题考查了两条直线相互垂直的直线的充要条件,考查了分类讨论方法、推理能力与计算能力,属于中档题.5.【答案】B【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;当a2=9时,a=±3,若a=3,集合B违背互异性;∴a=﹣3.故选:B.【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.6.【答案】A【解析】解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.7.【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q≠1,则A=S n=,B=S2n=,C=S3n=,B(B﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A(C﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n);故B(B﹣A)=A(C﹣A);故选:C.【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.8. 【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r •x 3n ﹣4r ,则∵二项式(x 3﹣)n(n ∈N *)的展开式中,常数项为28,∴,∴n=8,r=6. 故选:B .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.9. 【答案】D【解析】解析:本题考查复数的点的表示与复数的乘法运算,21zi i=-+,(1)(2)3z i i i =+-=+,选D . 10.【答案】D 【解析】解:∵;∴在方向上的投影为==.故选D .【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.二、填空题11.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键.12.【答案】1ln 2【解析】试题分析:()()111ln 2ln 2f x k f x ''=∴== 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 13.【答案】 A <G .【解析】解:由题意可得A=,G=±,由基本不等式可得A ≥G ,当且仅当a=b 取等号,由题意a ,b 是互异的负数,故A <G .故答案是:A <G .【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.14.【答案】 ∃x 0∈R ,都有x 03<1 .【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x ∈R ,都有x 3≥1”的否定形式为:命题:“∃x 0∈R ,都有x 03<1”.故答案为:∃x 0∈R ,都有x 03<1.【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.15.【答案】【解析】解:∵f (x )=a xg (x )(a >0且a ≠1),∴=a x , 又∵f ′(x )g (x )>f (x )g ′(x ),∴()′=>0,∴=a x 是增函数,∴a >1,∵+=.∴a 1+a ﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n }.∵数列{}的前n 项和大于62,∴2+22+23+ (2)==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n >5.∴n 的最小值为6. 故答案为:6.【点评】本题考查等比数列的前n 项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.16.【答案】2【解析】三、解答题17.【答案】【解析】解:(Ⅰ)由正弦定理得,sin 2AsinB+sinBcos 2A=sinA ,即sinB (sin 2A+cos 2A )=sinA∴sinB=sinA , =(Ⅱ)由余弦定理和C 2=b 2+a 2,得cosB=由(Ⅰ)知b 2=2a 2,故c 2=(2+)a 2,可得cos 2B=,又cosB >0,故cosB=所以B=45° 【点评】本题主要考查了正弦定理和余弦定理的应用.解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化.18.【答案】(本小题满分13分) 解:(Ⅰ)2()363(2)f x ax x x ax '=-=-, (1分)①当0a >时,解()0f x '>得2x a >或0x <,解()0f x '<得20x a <<, ∴()f x 的递增区间为(,0)-∞和2(,)a+∞,()f x 的递减区间为2(0,)a . (4分)②当0a =时,()f x 的递增区间为(,0)-∞,递减区间为(0,)+∞. (5分)③当0a <时,解()0f x '>得20x a<<,解()0f x '<得0x >或2x a <∴()f x 的递增区间为2(,0)a ,()f x 的递减区间为2(,)a-∞和(0,)+∞. (7分)(Ⅱ)当2a <-时,由(Ⅰ)知2(,)a -∞上递减,在2(,0)a上递增,在(0,)+∞上递减.∵22240a f a a -⎛⎫=> ⎪⎝⎭,∴()f x 在(,0)-∞没有零点. (9分) ∵()010f =>,11(2)028f a ⎛⎫=+< ⎪⎝⎭,()f x 在(0,)+∞上递减,∴在(0,)+∞上,存在唯一的0x ,使得()00f x =.且01(0,)2x ∈ (12分)综上所述,当2a <-时,()f x 有唯一的零点0x ,且01(0,)2x ∈. (13分)19.【答案】(1)2或2)(1,0)(0,3)- .【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅> 且,a b不共线,由此可得范围.试题解析:(1)由//a b,得0x =或2x =-,当0x =时,(2,0)a b -=- ,||2a b -=,当2x =-时,(2,4)a b -=- ,||a b -=.(2)与夹角为锐角,0a b ∙> ,2230x x -++>,13x -<<,又因为0x =时,//a b,所以的取值范围是(1,0)(0,3)- .考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅> 且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅< 且,a b 不反向. 20.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴DE DC BC BA =BC AB=,则24BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,12BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒, ∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==. 21.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合 【试题解析】(Ⅰ)因为. 所以函数的最小正周期为.(Ⅱ)由(Ⅰ),得.因为,所以,所以.所以.且当时,取到最大值;当时,取到最小值..22.【答案】(1)证明见解析;(2)5【解析】111]考点:直线与平面垂直的判定;直线与平面所成的角.【方法点晴】本题主要考查了直线与平面垂直的判定、直线与平面所成角的求解,其中解答中涉及到直线与平面垂直的判定定理与性质定理、直线与平面所成角的求解等知识点综合考查,解答中熟记直线与平面垂直的判定定理和直线与平面所成角的定义,找出线面角是解答的关键,注重考查了学生的空间想象能力和推理与论证能力,属于中档试题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新沂市第三中学2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为()A.4 B.5 C.6 D.72.圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则圆锥的体积()A.缩小到原来的一半B.扩大到原来的倍C.不变D.缩小到原来的1 63.某几何体的三视图如图所示,则该几何体的表面积为()A.12π+15 B.13π+12 C.18π+12 D.21π+154. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.5. 已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.6. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.7. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =+的零点个数为( ) A .1 B .2 C .3 D .4 8. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( )A .﹣2B .±2C .0D .29. 为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象( )A .向左平移3π个单位 B .向左平移6π个单位 C.向右平移3π个单位D .向右平移23π个单位10.函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.11.如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 12.设x ∈R ,则x >2的一个必要不充分条件是( ) A .x >1 B .x <1 C .x >3 D .x <3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .14.若函数2(1)1f x x +=-,则(2)f = .15.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 16.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈, 则2λμ-的取值范围是___________.三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

)17.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =时,1||2MF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12123MF F NF F S S ∆∆=,求直线l 的方程.18.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知tanA=,c=.(Ⅰ)求;(Ⅱ)若三角形△ABC的面积为,求角C .19.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.20.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.21.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BDCE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长22.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.新沂市第三中学2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案) 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 【答案】A解析:模拟执行程序框图,可得 S=0,n=0满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5满足条件5≤k ,S=75,n=6 …若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4. 故选: 2. 【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2113V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为222111(2)326V r h r h ππ=⨯=,所以122V V =,故选A.考点:圆锥的体积公式.1 3. 【答案】C【解析】解:由三视图知几何体为半个圆锥,圆锥的底面圆半径为1,高为2, ∴圆锥的母线长为5,∴几何体的表面积S=×π×42+×π×4×5+×8×3=18π+12.故选:C .4. 【答案】A5. 【答案】C【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.6. 【答案】B7. 【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.8. 【答案】C【解析】解:∵复数(2+ai )2=4﹣a 2+4ai 是实数,∴4a=0, 解得a=0. 故选:C .【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.9. 【答案】C 【解析】试题分析:将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象向右平移3π个单位,得2sin 2sin 233y x x ππ⎛⎫=--=- ⎪⎝⎭的图象,故选C .考点:图象的平移. 10.【答案】C11.【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值.12.【答案】A【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,x<1是x>2的既不充分也不必要条件,x>3是x>2的充分条件,x<3是x>2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.【答案】90°.【解析】解:∵∴=∴∴α与β所成角的大小为90°故答案为90°【点评】本题用向量模的平方等于向量的平方来去掉绝对值.14.【答案】0【解析】111]考点:函数的解析式.15.【答案】2±【解析】-16.【答案】[]1,1【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.三、解答题(本大共6小题,共70分。

相关文档
最新文档