湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题含答案

合集下载

湖南省长沙市长郡中学2024届高三月考试卷(二)数学试题+答案解析

湖南省长沙市长郡中学2024届高三月考试卷(二)数学试题+答案解析

长郡中学2024届高三月考试卷(二)数学得分:____________本试卷共8页。

时量120分钟。

满分150分。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设{}|21A x x =-≤,(){}|ln 321B x x =-<,则A B =I ()A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤⎥⎝⎦2.若复数z 满足()21811z i i -=+,则4z i -=()A .13B .15C .13D .153.我国古代数学著作《九章算术》中记述道:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢.问:几日相逢?结合二马相逢的问题设计了一个程序框图如图所示.已知a 为良马第n 天行驶的路程,b 为驽马第n 天行驶的路程,S 为良马、驽马n 天行驶的路程和,若执行该程序框图后输出的结果为9n =,则实数m 的取值范围为()A .51252250,2⎡⎫⎪⎢⎣⎭B .51252250,2⎡⎤⎢⎥⎣⎦C .(]1950,2250D .[]1950,22504.已知函数()f x 的定义域为R .当0x <时,()31f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()6f =()A .-2B .-1C .0D .25.等差数列{}n a 的前n 项和为n S ,已知261116203a a a a a ---+=,则21S 的值为()A .63B .-21C .-63D .216.设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的()A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件7.若命题“[]1,2x ∀∈,2210x ax -+>”是真命题,则实数a 的取值范围为()A .5,4⎛⎫-∞ ⎪⎝⎭B .5,4⎛⎫+∞⎪⎝⎭C .(),1-∞D .()1,+∞8.将函数()cos 26f x x π⎛⎫=- ⎪⎝⎭的图象向左平移3π个单位,得到函数()y g x =的图象,那么下列说法正确的是()A .函数()g x 的最小正周期为2πB .函数()g x 是奇函数C .函数()g x 的图象关于点,012π⎛⎫⎪⎝⎭对称D .函数()g x 的图象关于直线3x π=对称9.已知x ,y 满足约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数()0,0z ax by a b =+>>在该约束条件下取到最小值25时,22a b +的最小值为()A .5B .4C .5D .210.已知函数()f x 是定义域为R 的奇函数,且满足()()22f x f x -=+,当()0,2x ∈时,()()2ln 1f x x x =-+,则方程()0f x =在区间[]0,8上的解的个数是()A .3B .5C .7D .911.已知a r ,b r ,e r 是平面向量,e r 是单位向量,若非零向量a r 与e r 的夹角为3π,向量b r 满足2430b e b -⋅+=r r r,则a b -r r 的最小值是()A .31-B .31+C .2D .23-12.已知函数()2,0,0x x x f x e x >⎧=⎨≤⎩,()xg x e =(e 是自然对数的底数),若关于x 的方程()()0g f x m -=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为()A .()11ln 22-B .1ln 22+C .1ln 2-D .()11ln 22+二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a r ,b r 的夹角为120o,且2a =r ,227a b -=r r ,则b =r ______.14.正项等比数列{}n a 中,存在两项()*,,m n a a m n N ∈使得2116m na aa =,且7652a a a =+,则125m n+的最小值为______.15.在研究函数()()120xf x x =≠的单调区间时,有如下解法:设()()ln 2ln g x f x x==,()g x 在区间(),0-∞和区间()0,+∞上是减函数,因为()g x 与()f x 有相同的单调区间,所以()f x 在区间(),0-∞和区间()0,+∞上是减函数.类比上述作法,研究函数()0xy xx =>的单调区间,其单调增区间为______.16.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,()1sin cos sin 2B BC C =+,当角B 取最大值时,ABC ∆的周长为233+,则a =______.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知向量()sin ,cos a x x =r ,()sin ,sin b x x =r ,函数()f x a b =⋅r r.(1)求()f x 的对称轴方程;(2)若对任意实数,63x ππ⎡⎤∈⎢⎥⎣⎦,不等式()2f x m -<恒成立,求实数m 的取值范围.18.如图,在ABC ∆中,点P 在BC 边上,60PAC ∠=o,2PC =,4AP AC +=.(1)求边AC 的长;(2)若APB ∆的面积是23,求sin BAP ∠的值.19.已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式.(2)若对任意的t R ∈,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.20.已知数列{}n a 的首项135a =,1321n n n a a a +=+,*n N ∈.(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)记12111n nS a a a =++⋅⋅⋅+,若100n S <,求最大正整数n ;(3)是否存在互不相等的正整数m ,s ,n ,使m ,s ,n 成等差数列,且1m a -,1s a -,1n a -成等比数列?如果存在,请给以证明;如果不存在,请说明理由.21.已知函数()()ln af x x x a R x=++∈.(1)若函数()f x 在[)1,+∞上为增函数,求a 的取值范围;(2)若函数()()()21g x xf x a x x =-+-有两个不同的极值点,记作1x ,2x ,且12x x <,证明:2312x x e ⋅>(e 为自然对数的底数).22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2324x ty t=-⎧⎨=-+⎩(t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为cos tan ρθθ=.(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)若1C 与2C 交于A 、B 两点,点P 的极坐标为22,4π⎛⎫-⎪⎝⎭,求11PA PB+的值.长郡中学2024届高三月考试卷(二)数学参考答案一、选择题1-5:BCCDC6-10:CCBBD11-12:AD1.B 【解析】∵{}{}|21|13A x x x x =-≤=≤≤,(){}33|ln 32122eB x x x -⎧⎫=-<=<<⎨⎬⎩⎭,∴33|11,22A B x x ⎧⎫⎡⎫=≤<=⎨⎬⎪⎢⎩⎭⎣⎭I .故选B .3.C 【解析】由题意,得良马n 天的行程为()1311032n n n -+,驽马n 天的行程为()1974n n n --,所以良马、驽马n 天的总路程为()2520014S n n n =+-,当8n =时,1950S =;当9n =时,2250S =.因为输出9n =,所以19502250m <≤.故选C .4.D 【解析】当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以当12x >时,函数()f x 是周期为1的周期函数,所以()()61f f =,又由题知()f x 在区间[]1,1-上是奇函数,所以()()()311112f f ⎡⎤=--=---=⎣⎦,故选D .5.C 【解析】∵261116203a a a a a ---+=,∴()()220616113a a a a a +-+-=,∴113a =-,∴21112163S a ==-,故选C .6.C 【解析】由题意得,()2221212100n n n n a a a q q ---+<⇔+<()()()2110,1n qq q -⇔+<⇔∈-∞-,故是必要不充分条件,故选C .7.C【解析】若命题“[]1,2x ∀∈,2210x ax -+>”是真命题,则[]1,2x ∀∈,212x ax +>,即211122x a x x x +⎛⎫<=+ ⎪⎝⎭恒成立,∵11112x x x x⎛⎫+≥⋅= ⎪⎝⎭,当且仅当1x =时等号成立,∴1a <,即实数a 的取值范围是(),1-∞,故选C .8.B【解析】将函数()cos 26f x x π⎛⎫=-⎪⎝⎭的图象向左平移3π个单位,得到函数()2cos 2sin 236y g x x x ππ⎛⎫==+-=- ⎪⎝⎭的图象,故()g x 为奇函数,且最小正周期为22ππ=,故A 错误,B 正确;当12x π=时,1sin 062y π=-=-≠,故C 错误;当3x π=时,23sin132y π=-=-≠±,故D 错误,故选B .10.D【解析】由()()22f x f x -=+得,()()4f x f x =+,∵()f x 的周期为4,∵()0,2x ∈时,()()2ln 1f x x x =-+,()f x 为奇函数,当0x =时,()00f =,当20x -<<时,()()2ln 1f x x x =-++,∴当22x -<<时,()()()22ln 1,02ln 1,20x x x f x x x x ⎧-+<<⎪=⎨-++-<≤⎪⎩,当22x -<<时,令()0f x =,则0x =,或1x =±,又()()()222f f f -==-,故()20f =,则()60f =.∴当[]0,8x ∈时,()f x 的零点为:0,1,3,4,5,7,8,2,6共9个,故选D .11.A 【解析】设()1,0e =r ,(),b x y =r ,则222430430b e b x y x -⋅+=⇒+-+=r r r ()2221x y ⇒-+=.如图所示,a OA =r uu r ,b OB =r uu u r (其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=),∴min131a b CD -=-=-r r (其中CD OA ⊥).12.D【解析】∵()2,0,0xx x f x e x >⎧=⎨≤⎩,∴()0f x >恒成立,∴()()f xg f x em ==⎡⎤⎣⎦,∴()ln f x m =.作函数()f x ,ln y m =的图象如下,结合图象可知,存在实数()ln 01t m t =<≤,使得122x x e t ==,故211ln 2x x t t -=-,令()1ln 2h t t t =-,则()1'12h t t=-,故()h t 在10,2⎛⎤ ⎥⎝⎦递减,在1,12⎛⎤ ⎥⎝⎦递增,∴()111ln 2222h t h ⎛⎫≥=+ ⎪⎝⎭,故选D.二、填空题13.214.615.1,e⎛⎫+∞ ⎪⎝⎭16.313.2【解析】∵227a b -=r r,∴()2228a b -=r r ,即224428a a b b -⋅+=r r r r ,∴2442cos120428b b -⨯⨯⨯+=or r ,解得2b =r ,故答案为2.14.6【解析】先由已知求出公比2q =,再得出6m n +=,于是()125112566m n m n m n ⎛⎫+=++≥ ⎪⎝⎭,所以所求最小值为6.15.1,e⎛⎫+∞ ⎪⎝⎭【解析】设()()ln ln g x f x x x ==,则()'ln 1g x x =+,令()'0g x >,则1x e>,即()g x 在1,e⎛⎫+∞ ⎪⎝⎭上为增函数,又由复合函数单调性同增异减的原则,()0xy xx =>的单调增区间为1,e ⎛⎫+∞⎪⎝⎭,故答案为1,e⎛⎫+∞ ⎪⎝⎭.16.3【解析】ABC ∆中,()1sin cos sin 2B B C C =+,∴()1cos 2b B C c =+⋅,即cos 02bA c=-<,∴A 为钝角,∴cos cos 0A C ≠;由()sin sin sin cos cos sin B A C A C A C =+=+2cos sin A C =-,可得tan 3tan A C =-,且tan 0C >,∴()tan tan tan tan 1tan tan A C B A C A C +=-+=--22tan 223113tan 3233tan tan CCC C==≤=++,当且仅当3tan 3C =时取等号,∴B 取得最大值6π时,6c =,6C B π==,∴23A π=,由2222cos a b c bc A =+-,可得:3a b =.∵三角形的周长为3233a b c b b b ++=++=+.解得:233332b +==+,∴33a b ==.故答案为3.三、解答题17.【解析】(1)()2sin sin cos f x a b x x x =⋅=+⋅r r 1cos 2121sin 2sin 222242x x x π-⎛⎫=+=-+ ⎪⎝⎭,令242x k πππ-=+,k Z ∈,解得328k x ππ=+,k Z ∈.∴()f x 的对称轴方程为328k x ππ=+,k Z ∈.(2)∵,63x ππ⎡⎤∈⎢⎥⎣⎦,∴5212412x πππ≤-≤,又∵sin y x =在0,2π⎡⎤⎢⎥⎣⎦上是增函数,∴5sin sin 2sin 12412x πππ⎛⎫≤-≤ ⎪⎝⎭,又562sinsin 12644πππ+⎛⎫=+=⎪⎝⎭,∴()f x 在,63x ππ⎡⎤∈⎢⎥⎣⎦上的最大值是()max 2621332424f x ++=⨯+=,∵()2f x m -<恒成立,∴()max 2m f x >-,即354m ->,∴实数m 的取值范围是35,4⎛⎫-+∞⎪ ⎪⎝⎭.18.【解析】(1)在ABC ∆中,点P 在BC 边上,60PAC ∠=o,2PC =,4AP AC +=.则:设AC x =,利用余弦定理得:2222cos PC AP AC AP AC PAC =+-⋅⋅∠,则:()()22144242x x x x =+---⋅,整理得:2312120x x -+=,解得:2x =,故:2AC =.(2)由于2AC =,4AP AC +=,所以:2AP =,所以APC ∆为等边三角形.由于APB ∆的面积是23,则1sin 232AP BP BPA ⋅⋅∠=,解得4BP =.在APB ∆中,利用余弦定理:2222cos AB BP AP BP AP BPA =+-⋅⋅⋅∠,解得:27AB =,在APB ∆中,利用正弦定理得:sin sin BP ABBAP BPA=∠∠,所以:427sin 32BAP =∠,解得:21sin 7BAP ∠=.19.【解析】(1)当0x <时,0x ->,∴()23x xf x ---=-,又函数()f x 是奇函数,∴()()f x f x -=-,∴()23xx f x -=+.又()00f =.综上所述()2,030,02,03xx x x f x x xx -⎧->⎪⎪==⎨⎪⎪+<⎩.(2)()f x 为R 上的单调函数,且()()51003f f -=>=,∴函数()f x 在R 上单调递减.∵()()22220f t t f t k -+-<,∴()()2222f t t f t k -<--,∵函数()f x 是奇函数,∴()()2222f t t f k t -<-.又()f x 在R 上单调递减,∴2222t t k t ->-对任意t R ∈恒成立,∴2320t t k -->对任意t R ∈恒成立,∴4120k ∆=+<,解得13k <-.∴实数k 的取值范围为1,3⎛⎫-∞- ⎪⎝⎭.20.【解析】(1)因为112133n n a a +=+,所以1111133n n a a +-=-.又因为1110a -≠,所以()*110n n N a -≠∈.所以数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列.(2)由(1)可得1121133n n a -⎛⎫-=⋅ ⎪⎝⎭,所以11213nn a ⎛⎫=⋅+ ⎪⎝⎭.2121111112333n n n S n a a a ⎛⎫=++⋅⋅⋅+=+++⋅⋅⋅+ ⎪⎝⎭111133211313n n n n +-=+⨯=+--,若100n S <,则111003n n +-<,所以最大正整数n 的值为99.(3)假设存在,则2m n s +=,()()()2111m n s a a a --=-,因为332n n n a =+,所以2333111323232n m s n m s ⎛⎫⎛⎫⎛⎫--=- ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭,化简得3323m n s +=⨯.因为332323m n m n s ++≥⨯=⨯,当且仅当m n =时等号成立,又m ,s ,n 互不相等,所以不存在.21.【解析】(1)由题可知,函数()f x 的定义域为()0,+∞,()22'x x a f x x +-=,因为函数()f x 在区间[)1,+∞上为增函数,所以()'0f x ≥在区间[)1,+∞上恒成立,等价于()2min a x x ≤+,即2a ≤,所以a 的取值范围是(],2-∞.(2)由题得,()2ln g x x x ax a x =-+-,则()'ln 2g x x ax =-,因为()g x 有两个极值点1x ,2x ,所以11ln 2x ax =,22ln 2x ax =,欲证2312x x e >等价于证()2312ln ln 3x x e ⋅>=,即12ln 2ln 3x x +>,所以12322ax ax +>,因为120x x <<,所以原不等式等价于12324a x x >+.由11ln 2x ax =,22ln 2x ax =,可得()2211ln 2x a x x x =-,则()2121ln 2x x a x x =-,由此可知,原不等式等价于212112ln 32x x x x x x >-+,即()2211221121313ln 221x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>=++.设21x t x =,则1t >,则上式等价于()()31ln 112t t t t ->>+.令()()()31ln 112t h t t t t -=->+,则()()()()2141'12t t h t t t --=+,因为1t >,所以()'0h t >,所以()h t 在区间()1,+∞上单调递增,所以当1t >时,()()10h t h >=,即()31ln 12t t t ->+,所以原不等式成立,即2312x x e ⋅>.22.【解析】(1)曲线1C 的普通方程为4320x y +-=;曲线2C 的直角坐标方程为:2y x =.(2)1C 的参数方程转化为标准形式为325425x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),代入2y x =得29801500t t -+=,点P 的直角坐标为()2,2-,设1t ,2t 是A 、B 对应的参数,则12809t t +=,12503t t =.∴121211815PA PB t t PA PB PA PB t t +++===⋅.23.【解析】(1)当2a =时,()21f x x x =-+-,()2f x ≤,即212x x -+-≤,故1212x x x ≤⎧⎨-+-≤⎩或12212x x x <<⎧⎨-+-≤⎩或2212x x x ≥⎧⎨-+-≤⎩,解得:112x ≤≤或12x <<或522x ≤≤,故不等式的解集是15|22x x ⎧⎫≤≤⎨⎬⎩⎭.(2)∵()1f x x ≤+的解集包含[]1,2,∴当[]1,2x ∈时,不等式()1f x x ≤+恒成立,即11x a x x -+-≤+在[]1,2x ∈上恒成立,∴11x a x x -+-≤+,即2x a -≤,∵22x a -≤-≤,∴22x a x -≤≤+在[]1,2x ∈上恒成立,∴()()max min 22x a x -≤≤+,∴03a ≤≤,∴a 的取值范围是[]0,3.。

2025届长郡中学高三上学期第一次调研考试数学试题+答案

2025届长郡中学高三上学期第一次调研考试数学试题+答案

长郡中学2025届高三第一次调研考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}320,20A xx x Bxx x =−==−−<∣∣,则A B ∩=( )A.{}0,1B.{}1,0−C.{}0,1,2D.{}1,0,1−2.已知,m n 是两条不同的直线,,αβ是两个不同的平面,则m ∥α的一个充分条件是( ) A.m ∥,n n ∥α B.m ∥,βα∥βC.,,m n n m αα⊥⊥⊄D.,m n A n ∩=∥,m αα⊄3.20252x 的展开式中的常数项是( )A.第673项B.第674项C.第675项D.第676项4.铜鼓是流行于中国古代南方一些少数民族地区的礼乐器物,已有数千年历史,是作为祭祀器具和打击乐器使用的.如图,用青铜打造的实心铜鼓可看作由两个具有公共底面的相同圆台构成,上下底面的半径均为25cm ,公共底面的半径为15cm ,铜鼓总高度为30cm.已知青铜的密度约为38g /cm ,现有青铜材料1000kg ,则最多可以打造这样的实心铜鼓的个数为( )(注:π 3.14≈)A.1B.2C.3D.45.已知定义在()0,∞+上的函数()f x 满足()()()1f x x f x <−′(()f x ′为()f x 的导函数),且()10f =,则( )A.()22f <B.()22f >C.()33f <D.()33f >6.已知过抛物线()2:20C y px p =>的焦点F 且倾斜角为π4的直线交C 于,A B 两点,M 是AB 的中点,点P 是C 上一点,若点M 的纵坐标为1,直线:3230l x y ++=,则P 到C 的准线的距离与P 到l 的距离之和的最小值为( )7.已知函数()()π2sin 0,2f x x ωϕωϕ=+><,对于任意的ππ,1212x f x f x ∈+=−R ,()π02f x f x+−=都恒成立,且函数()f x 在π,010 − 上单调递增,则ω的值为( )A.3B.9C.3或8.如图,已知长方体ABCD A B C D ′−′′′中,2,AB BC AA O ==′=为正方形ABCD 的中心点,将长方体ABCD A B C D ′−′′′绕直线OD ′进行旋转.若平面α满足直线OD ′与α所成的角为53 ,直线l α⊥,则旋转的过程中,直线AB 与l 夹角的正弦值的最小值为( )(参考数据:43sin53,cos5355≈≈)二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某机械制造装备设计研究所为推进对机床设备的优化,成立,A B 两个小组在原产品的基础上进行不同方向的研发,A 组偏向于智能自动化方向,B 组偏向于节能增效方向,一年后用简单随机抽样的方法各抽取6台进行性能指标测试(满分:100分),测得A 组性能得分为:91,81,82,96,89,73,B 组性能得分为:73,70,96,79,94,88,则( )A.A 组性能得分的平均数比B 组性能得分的平均数高B.A 组性能得分的中位数比B 组性能得分的中位数小C.A 组性能得分的极差比B 组性能得分的极差大D.B 组性能得分的第75百分位数比A 组性能得分的平均数大10.嫁接,是植物的人工繁殖方法之一,即把一株植物的枝或芽,嫁接到另一株植物的茎或根上,使接在一起的两个部分长成一个完整的植株.已知某段圆柱形的树枝通过利用刀具进行斜辟,形成两个椭圆形截面,如图所示,其中,AC BD 分别为两个截面椭圆的长轴,且,,,A C B D 都位于圆柱的同一个轴截面上,AD 是圆柱截面圆的一条直径,设上、下两个截面椭圆的离心率分别为12,e e ,则能够保证CD 12,e e 的值可以是( )A.12e e =121,2e e ==C.12e e =D.12e e = 11.对于任意实数,x y ,定义运算“⊕”x y x y x y ⊕=−++,则满足条件a b b c ⊕=⊕的实数,,a b c 的值可能为( )A.0.30.50.5log 0.3,0.4,log 0.4a b c =−== B.0.30.50.50.4,log 0.4,log 0.3a b c ===− C.0.10.1100.09,,ln e 9abc ==D.0.10.110,ln ,0.09e 9ab c == 三、填空题:本题共3小题,每小题5分,共15分.12.在复平面内,复数z 对应的点为()1,1,则21zz−=+__________. 13.写出一个同时满足下列条件①②③的数列{}n a 的通项公式n a =__________. ①m na a m n−−是常数,*,m n ∈N 且m n ≠;②652a a =;③{}n a 的前n 项和存在最小值.14.清代数学家明安图所著《割圆密率捷法》中比西方更早提到了“卡特兰数”(以比利时数学家欧仁・查理・卡特兰的名字命名).有如下问题:在n n ×的格子中,从左下角出发走到右上角,每一步只能往上或往右走一格,且走的过程中只能在左下角与右上角的连线的右下方(不能穿过,但可以到达该连线),则共有多少种不同的走法?此问题的结果即卡特兰数122C C nn n n −−.如图,现有34×的格子,每一步只能往上或往右走一格,则从左下角A 走到右上角B 共有__________种不同的走法;若要求从左下角A 走到右上角B 的过程中只能在直线AC 的右下方,但可以到达直线AC ,则有__________种不同的走法.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知M 为圆229x y +=上一个动点,MN 垂直x 轴,垂足为,N O 为坐标原点,OMN 的重心为G . (1)求点G 的轨迹方程;(2)记第(1)问中的轨迹为曲线C ,直线l 与曲线C 相交于A B 、两点,点()0,1Q ,若点)H 恰好是ABQ 的垂心,求直线l 的方程. 16.(本小题满分15分)如图,四边形ABCD 为圆台12O O 的轴截面,2AC BD =,圆台的母线与底面所成的角为45 ,母线长为E 是 BD的中点.(1)已知圆2O 内存在点G ,使得DE ⊥平面BEG ,作出点G 的轨迹(写出解题过程);(2)点K 是圆2O 上的一点(不同于,A C ),2CK AC =,求平面ABK 与平面CDK 所成角的正弦值. 17.(本小题满分15分)素质教育是当今教育改革的主旋律,音乐教育是素质教育的重要组成部分,对于陶冶学生的情操、增强学生的表现力和自信心、提高学生的综合素质等有重要意义.为推进音乐素养教育,培养学生的综合能力,某校开设了一年的音乐素养选修课,包括一个声乐班和一个器乐班,已知声乐班的学生有24名,器乐班的学生有28名,课程结束后两个班分别举行音乐素养过关测试,且每人是否通过测试是相互独立的. (1)声乐班的学生全部进行测试.若声乐班每名学生通过测试的概率都为(01)p p <<,设声乐班的学生中恰有3名通过测试的概率为()f p ,求()f p 的极大值点0p .(2)器乐班采用分层随机抽样的方法进行测试.若器乐班的学生中有4人学习钢琴,有8人学习小提琴,有16人学习电子琴,按学习的乐器利用分层随机抽样的方法从器乐班的学生中抽取7人,再从抽取的7人中随机抽取3人进行测试,设抽到学习电子琴的学生人数为ζ,求ζ的分布列及数学期望. 18.(本小题满分17分)已知数列{}n a 为等比数列,{}n b 为等差数列,且1185482,8,a b a a a b ====. (1)求{}{},n n a b 的通项公式;(2)数列1ππ12242(1)n n b −+−⋅的前n 项和为n S ,集合*422,n n n S b A nt n n a ++ ⋅ =≥∈ ⋅N 共有5个元素,求实数t 的取值范围;(3)若数列{}n c 中,()212log 1,2114nnn a c c n b ==≥−,求证:1121231232n c c c c c c c c c c +⋅+⋅⋅++⋅⋅<19.(本小题满分17分)设有n 维向量1122,n n a b a b ab a b=,称1122,n n a b a b a b a b =+++ 为向量a 和b 的内积, 当,0a b = ,称向量a 和b 正交.设n S 为全体由1−和1构成的n 元数组对应的向量的集合. (1)若1234a=,写出一个向量b ,使得,0a b =; (2)令[]{},,nBxy x y S =∈∣.若m B ∈,证明:m n +为偶数; (3)若()4,4n f =是从4S 中选出向量的个数的最大值,且选出的向量均满足,0a b =,猜测()4f 的值,并给出一个实例.长郡中学2025届高三第一次调研考试数学参考答案一、选择题:本题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 9 10 11 答案ACDCDDAAADADBD6.D 【解析】由题得C 的焦点为,02p F,设倾斜角为π4的直线AB 的方程为2p y x =−,与C 的方程22y px =(联立得2220y py p −−=,设()()1122,,,A x y B x y ,则1222,1y y p p +===,故C 的方程为212,,02y x F=.由抛物线定义可知点P 到准线的距离等于点P 到焦点F 的距离,联立抛物线2:2C y x =与直线:3230l xy ++=,化简得291090x x ++=,由Δ1004992240=−××=−<得C 与l 相离.,,Q S R 分别是过点P 向准线、直线:3230l x y ++=以及 过点F 向直线:3230l x y ++=引垂线的垂足,连接,FP FS , 所以点P 到C 的准线的距离与点P 到直线l 的距离之和PQ PS PF PS FS FR +=+≥≥, 等号成立当且仅当点P 为线段FR 与抛物线的交点, 所以P 到C 的准线的距离与P 到l 的距离之和的最小值为点1,02F到直线:3230l x y ++=. 故选:D.7.A 【解析】设函数()f x 的最小正周期为T ,因为函数()f x 在π,010−上单调递增, 所以π0102T −−≤,得2ππ5T ω=≥,因此010ω<≤. 由ππ1212f x f x+=−知()f x 的图象关于直线π12x =对称, 则11πππ,122k k ωϕ⋅+=+∈Z ①. 由()π02f x f x +−= 知()f x 的图象关于点π,04对称,则22ππ,4k k ωϕ⋅+=∈Z ②. ②-①得()2112πππ,,62k k k k ω⋅−−∈Z ,令21kk k =−,则63,k k ω=−∈Z , 结合010ω<≤可得3ω=或9.当3ω=时,代入(1)得11ππ,4k k ϕ=+∈Z ,又π2ϕ<,所以π4ϕ=, 此时()π2sin 34f x x=+,因为πππ32044x −<+<, 故()f x 在π,010−上单调递增,符合题意;当9ω=时,代入(1)得11π,k k ϕ∈Z ,又π2ϕ<,所以π4ϕ=−, 此时()π2sin 94f x x=−,因为23πππ92044x −<−<−, 故()f x 在π,010−上不是单调递增的,所以9ω=不符合题意,应舍去. 综上,ω的值为3. 故选:A.8.A 【解析】在长方体ABCD A B C D ′−′′′中,AB ∥C D ′′, 则直线AB 与l 的夹角等于直线C D ′′与l 的夹角.长方体ABCD A B C D ′−′′′中,2,AB BC AA O ==′=为正方形ABCD 的中心点,则2OD OC ==′′,又2C D ′′=, 所以OC D ′′ 是等边三角形,故直线OD ′与C D ′′的夹角为60 .则C D ′′绕直线OD ′旋转的轨迹为圆锥,如图所示,60C D O ∠=′′ .因为直线OD ′与α所成的角为53,l α⊥ ,所以直线OD ′与l 的夹角为37 . 在平面C D O ′′中,作,D E D F ′′,使得37OD EOD F ∠∠′==′ .结合图形可知,当l 与直线D E ′平行时,C D ′′与l 的夹角最小,为603723C D E ∠−′′== , 易知603797C D F ∠+′′== .设直线C D ′′与l 的夹角为ϕ,则2390ϕ≤≤ ,故当23ϕ= 时sin ϕ最小,而()sin23sin 6037sin60cos37cos60sin37=−=−sin60sin53cos60cos53=−≈故直线AB 与l . 故选:A二、多选题:本题共3小题,每小题6分,共18分.9.AD 10.AD11.BD 【解析】由a b b c ⊕=⊕,可得a b a b b c b c −++=−++,即a b b c c a −−−=−,若,a b c b ≤≤,可得a b b c c a −−−=−,符合题意,若,a b c b ≤>,可得2a b b c b a c −−−=−−,不符合题意, 若,a b c b >≤,可得a b b c a c −−−=−,不符合题意, 若,a b c b >>,可得2a b b c c a b −−−=+−,不符合题意, 综上所述0,0a b b c −≤−≥,可得,b a b c ≥≥, 故只需判断四个选项中的b 是否为最大值即可.对于A,B ,由题知0.50.50.510log 0.3log log 103−=<=,而0.3000.40.41<<=, 0.50.5log 0.4log 0.51>=,所以0.30.50.5log 0.30.4log 0.4−<<.(点拨:函数0.5log y x =为减函数,0.4x y =为减函数), 对于A ,a b c <<;对于B ,c a b <<,故A 错误,B 正确.对于C ,D 0.10.10.10.090.9e (10.1)e ,0.1e ==− (将0.9转化为10.1−,方便构造函数)构造函数()()[)1e ,0,1xf x x x =−∈, 则()e xf x x ′=−,因为[)0,1x ∈,所以()()0,f x f x ′≤单调递减,因为()01f =,所以()0.11f <, 即0.10.9e 1<,所以0.10.10.09e <. (若找选项中的最大值,下面只需判断0.10.1e与10ln 9的大小即可) ()10.10.10.10.10.1100.190.190.1ln ln ln ln 10.1e 9e 10e 10e −−=−=+=+−, 构造函数()()[)ln 1,0,1e x xh x x x =+−∈,则()()211(1)e e 1e 1x x x x x h x x x −−−=−=−−′, 因为[)0,1x ∈,所以()e 10xx −>,令()2(1)e xx x ω=−−,则()()21e xx x ω=−−−′, 当[)0,1x ∈时,()()0,x x ωω′<单调递减,因为()00ω=,所以()0x ω≤,即()()0,h x h x ′≤单调递减,又()00h =,所以()0.10h <, 即()0.10.1ln 10.10e +−<,所以0.10.110ln e 9<. 综上,0.10.1100.09lne 9<<.对于C ,a b c <<;对于D ,c a b <<,故C 错误,D 正确. (提醒:本题要比较0.09与10ln 9的大小关系的话可以利用作差法判断, 即()11090.09ln 0.10.9ln 10.90.9ln0.9910− −=×−=−×+, 构造函数()()(]1ln ,0,1g x x x x x =−+∈, 则()()()221112112x x x x g x x x x x′+−+−++=−+==,因为(]0,1x ∈,所以()()0,g x g x ′≥单调递增,因为()10g =,所以()0.90g <, 即100.09ln09−<,所以100.09ln 9<) 故选:BD. 三、填空题:本题共3小题,每小题5分,共15分. 12.13i 55− 【解析】由于复数z 对应的点为()1,1,所以1i z =+, 故()()()()1i 2i 21i 13i 13i 12i 2i 2i 555z z −−−−−====−+++−, 故答案为:13i 55− 13.4n −(答案不唯一)14.35;14四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.【解析】(1)设()()00,,,G x y M x y ,则()0,0N x ,因G 为OMN 的重心,故有:00233x x y y = =,解得003,32x x y y ==,代入22009x y +=,化简得2214x y +=, 又000x y ≠,故0xy ≠,所以G 的轨迹方程为()22104x y xy +=≠. (2)因H 为ABQ 的垂心,故有,AB HQ AH BQ ⊥⊥,又HQ k ==l k =,故设直线l 的方程为()1y m m +≠, 与2214x y +=联立消去y 得:2213440x m ++−=, 由2Δ208160m =−>得213m <,设()()1122,,,A x y B xy ,则212124413m x x x x −+=, 由AH BQ⊥2211y x −=−,所以()211210x x m m −+++−=,所以)()21212410x x m x x m m +−++−=, 所以()()()22444241130m m m m m −−−+−=,化简得2511160m m +−=,解得1m =(舍去)或165m =−(满足Δ0>),故直线l 的方程为165y =−.16.【解析】(1)E 是 BD的中点,DE BE ∴⊥. 要满足DE ⊥平面BEG ,需满足DE BG ⊥,又DE ⊂ 平面,BDE ∴平面BEG ⊥平面BDE如图,过B 作下底面的垂线交下底面于点G ,过G 作BE 的平行线,交圆2O 于2,G G ,则线段12G G 即点G 的轨迹.(2)易知可以2O 为坐标原点,221,O C O O 所在直线分别为y ,z 轴建立如图所示的空间直角坐标系2O xyz −,45,2AC BD = ,21122,1,1O A O B O O ∴===,取K 的位置如图所示,连接2O K ,22,60CK AC CO K ∠=∴= ,即230xO K ∠= ,则)()()()(),0,2,0,0,1,1,0,2,0,0,1,1K A B C D −−,则)))),2,1,1,0,1AK BK CK DK −−− . 设平面ABK 的法向量为()111,,n x y z =, 则00n AK n BK ⋅= ⋅=,即111113020y y z +=+−=,令1x =)111,1,1,1z y n ==−∴=− . 设平面CDK 的法向量为()222,,m x y z =, 则00m CK m DK ⋅= ⋅=,即222200y z −=−=,令2x =,则)223,3,z y m ==∴= . 设平面ABK 与平面CDK 所成的角为θ,则cos =sin θ∴17.【解析】(1)24名学生中恰有3名通过测试的概率()332124C (1)f p p p =⋅−, 则()()322132032202424C 3(1)21(1)C 3()8,01jf p p p p p p p p p =−−−=⋅⋅′−−<< , 令()0f p ′=,得18p =, 所以当108p <<时,()()0,f p f p ′>单调递增; 当118p <<时,()()0,f p f p ′<单调递减, 故()f p 的极大值点018p =. (2)利用分层随机抽样的方法从28名学生中抽取7名, 则7名学生中学习钢琴的有1名,学习小提琴的有2名,学习电子琴的有4名,所以ζ的所有可能取值为0,1,2,3,()()3213343377C C C 1120,1C 35C 35P P ζζ======, ()()1233443377C C C 1842,3C 35C 35P P ζζ======, 则随机变量ζ的分布列为()112184120123353535357E ζ=×+×+×+×=. 18.【解析】(1)设数列{}n a 公比的为q ,数列{}n b 公差的为d 则由318518,82,2n n n a a q q a a q −==∴=∴==,4816a b ==,即()827162,2122n b d d b n n =+=∴=∴=+−=. (2)设1ππ12242(1)n n n d b −+ =−⋅则22224414243441424312848n n n n n n n n d d d d b b b b n −−−−−−+++=+−−=− ()()412344342414n n n n n S d d d d d d d d −−−∴=++++++++()12848802n n −+= ()6416n n +()()()()4222641622328222n n n n n n n n n S b n a ++++⋅+++⋅∴==⋅ 令()()()32822nn n f n ++=, 则()()()()()()113240332824122n n n n n n f n f n +++++++−=− ()22144113288822n n n n n n +−−+−−+=, 可得()()()()()1234f f f f f n <>>>> ,故当2n =时,()f n 最大.且()()()147160,5,6254f f f ===, 147254t ∴<≤,即t 的取值范围为14725,4. (3)由()()()121,2111n n n c c n n n n ===≥−+−,则当2n ≥时, ()()()122311324113451n n n c c c n n n n =××××=⋅⋅−+×××××+ ()()()21111221!1!!1!n n n n n n +−==− +++当1n =时,11c =也满足上式()()*12112!1!n c c c n n n ∴=−∈ + N 112123123n c c c c c c c c c c ∴+⋅+⋅⋅++⋅⋅()1111221222!2!3!!1!n n =−+−++−=−< + 故原不等式成立.19.【解析】(1)由定义,只需满足12342340b b b b +++=,不妨取1110b= −(答案不唯一). (2)对于,1,2,,m B i n ∈=, 存在{}{}1122,1,1,,1,1,ii n n x y x y x x y y x y ∈−=∈− ……使得[],x y m = . 当i i x y =时,1i i x y =;当i i x y ≠时,1i i x y =−.令11,,0,ni i i i i ii x y k x y λλ== == ≠ ∑. 所以所以22m n k n n k +−+为偶数.(3)当4n =时,可猜测互相正交的4维向量最多有4个,即()44f =.不妨取123411111111,,,11111111a a a a −− −− ==== −−则有[][][][][][]121314232434,0,,0,,0,,0,,0,,0a a a a a a a a a a a a ======. 若存在5a ,使[]15,0a a = ,则51111a − = − 或1111 − − 或1111 − −. 当51111a − = −时,[]45,4a a =− ; 当51111a − = −时,[]25,4a a =− ; 当51111a = − −时,[]35,4a a =− , 故找不到第5个向量与已知的4个向量互相正交.。

湖南省长沙市长郡中学2023届高三二模数学试题

湖南省长沙市长郡中学2023届高三二模数学试题

x0 2.706 3.841 6.635 7.879 10.828
( ) 22.已知函数 f ( x) = (cos x -1) e-x , g ( x) = ax2 + 1- ex x (a Î R ) .
(1)当 x Î(0,π ) 时,求函数 f ( x) 的最小值;
(2)当
x Î éêë-
π 2
=
1
+ 3i 2
=
1 2
+
3 2
i


z
=
1 2
-
3 2
i
,虚部为
-
3 2

故选:C. 3.A 【分析】列出从 5 个点选 3 个点的所有情况,再列出 3 点共线的情况,用古典概型的概率 计算公式运算即可.
【详解】如图,从 O, A, B, C, D 5 个点中任取 3 个有 {O, A, B},{O, A,C},{O, A, D},{O, B,C} {O, B, D},{O, C, D},{A, B,C},{A, B, D}
C
相交于点
H
æ çè
-
2 3
,
4 3
ö ÷ø
,与
y
轴相交于点
S
,过点
S
的另一
条直线 l 与 C 相交于 M , N 两点,且△ASM 的面积是△HSN 面积的 3 倍,求直线 l 的方 2
程. 21.人工智能(AI)是一门极富挑战性的科学,自诞生以来,理论和技术日益成熟.某
校成立了 A, B 两个研究性小组,分别设计和开发不同的 AI 软件用于识别音乐的类别.
【详解】
取 BP 的中点为 O ,连接 OA,OC , 因为 PA ^ 平面 ABC ,而 AB Ì 平面 ABC ,故 PA ^ AB , 故OP = OA = OB . 同理 PA ^ BC ,而 CA ^ BC , CA I PA = A,CA, PA Ì 平面 PAC , 故 BC ^ 平面 PAC ,而 PC Ì 平面 PAC ,故 BC ^ PC , 故 OP = OC = OB ,

长郡中学高三数学模拟试卷

长郡中学高三数学模拟试卷

一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 02. 在等差数列{an}中,若a1 = 3,d = -2,则第10项an的值为()A. -13B. -17C. -19D. -213. 已知复数z = 2 + 3i,若z在复平面上对应的点为P,则|OP|的值为()A. 5B. 7C. 9D. 114. 下列函数中,在定义域内为奇函数的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = 1/xD. f(x) = x^35. 已知三角形ABC的三个内角A、B、C的正弦值分别为sinA = 1/2,sinB = 3/5,sinC = 4/5,则cosA的值为()B. 3/5C. 4/5D. 5/56. 若向量a = (2, 3),向量b = (1, 2),则向量a与向量b的夹角θ的余弦值为()A. 1/5B. 2/5C. 3/5D. 4/57. 下列不等式中,恒成立的是()A. x^2 + 1 > 0B. x^2 - 1 > 0C. x^2 + 1 < 0D. x^2 - 1 < 08. 若等比数列{an}的公比q > 1,首项a1 = 1,则第n项an的值为()A. 2n - 1B. 2nC. 2n + 1D. 2n/29. 已知函数f(x) = log2(x + 1),则f(-1)的值为()A. 0B. 1C. 210. 下列各式中,正确的是()A. a^2 = b^2,则a = bB. a^2 = b^2,则a = ±bC. a^2 = b^2,则a = ±cD. a^2 = b^2,则a = ±c,b = ±c二、填空题(每题5分,共50分)11. 已知等差数列{an}的公差d = 2,且a1 + a3 + a5 = 24,则第10项an的值为______。

湖南省长沙市长郡中学2025届高三上学期月考 化学试卷(含答案)

湖南省长沙市长郡中学2025届高三上学期月考 化学试卷(含答案)

炎德·英才大联考长郡中学2025届高三月考试卷(二)化学得分:__________本试题卷分选择题和非选择题两部分,共8页。

时量75分钟,满分100分。

可能用到的相对原子质量:H~1 C~12 O~16 Na~23 Al~27 S~32一、选择题(本题共14小题,每小题3分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.在巴黎奥运会舞台上,科技与体育双向奔赴,释放更加迷人的魅力。

下列说法不正确的是 A.奥运火炬燃料中的丙烷、丁烷属于烃B.生产橡胶弹性地板的原料天然橡胶是异戊二烯的聚合物C.中国队领奖服采用的环保再生纤维材料为有机高分子材料D.比赛乒乓球台可变灯光系统的控制芯片的主要成分为2SiO 2.下列化学用语表示正确的是 A.NH 4Cl 的电子式:B.铜的基态原子的简化电子排布式:92[Ar]3d 4sC.23SO -的VSEPR 模型:D.HCl 中σ键的电子云轮廓图:3.实验室在进行“电解CuCl 2溶液”实验时,与该实验无关..的安全注意事项是4.下列有关物质结构与性质的说法错误的是A.酸性强弱:氯乙酸>乙酸>丙酸B.邻羟甲基苯甲醛的沸点低于对羟甲基苯甲醛C.O 3是含有极性键的强极性分子,它在四氯化碳中的溶解度低于在水中的溶解度D.由4R N +与6PF -。

构成的离子液体常温下呈液态,与其离子的体积较大有关5.原儿茶酸(Z )具有抗菌、抗氧化作用,常用于治疗烧伤、小儿肺炎等疾病,可采用如图所示路线合成。

下列说法正确的是A.Y 存在二元芳香酸的同分异构体B.可用酸性KMnO 4溶液鉴别X 和ZC.X 分子中所有原子可能共平面D.Z 与足量的溴水反应消耗23molBr 6.下列过程中,对应反应方程式正确的是A.用氢氟酸刻蚀玻璃:2342SiO 4F 6H SiF 3H O --+++=↑+B.AgCl 溶于浓氨水:()32322Ag 2NH H O Ag NH 2H O ++⎡⎤+⋅=+⎣⎦C.酸性K 2Cr 2O 7溶液氧化2322222227H O :Cr O 8H 5H O 9H O 2Cr 4O -++++=++↑D.四氯化钛水解:4222TiCl (2)H O TiO H O 4HClx x ++⋅↓+ △7.化学是一门以实验为基础的学科。

湖南省长沙市长郡中学2022-2023学年高三上学期月考 数学

湖南省长沙市长郡中学2022-2023学年高三上学期月考 数学

长郡中学2023届高三月考试卷数 学本试卷共8页。

时量120分钟,满分150分。

一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合||1|1,{} ==--∈A y y x x R ,{}3|log 1,=≥B x x ,则A∩=RBA .{|1}≥-x xB .{}|3<x xC .}{|13-≤≤x xD .{}|13-≤<x x2.若复数z 满足||2,3-=⋅=z z z z ,则2z 的实部为A -2B .-1C .1D . 2★3.函数()()241--=-x x x e e f x x 的部分图象大致是★4.如图,在边长为2的正方形ABCD 中,其对称中心O 平分线段MN ,且2MN BC =,点E 为DC 的中点,则⋅=EM ENA . 12-B .32-C . -2D .-3★5.随着北京冬奥会的举办,中国冰雪运动的参与人数有了突飞猛进的提升。

某校为提升学生的综合素养、大力推广冰雪运动,号召青少年成为“三亿人参与冰雪运动的主力军”,开设了“陆地冰壶”“陆地冰球”“滑冰”“模拟滑雪”四类冰雪运动体验课程,甲、乙两名同学各自从中任意挑选两门课程学习,设事件A=“甲乙两人所选课程恰有一门相同”事件B=“甲乙两人所选课程完全不同”,事件C=“甲乙两人均未选择陆地冰壶课程”,则 A . A 与B 为对立事件 B .A 与C 互斥 C . B 与C 相互独立D . A 与C 相互独立★6.已知三棱锥P-ABC 中,PA ⊥平面ABC ,底面△ABC 是以B 为直角顶点的直角三角形,且23,π=∠=BC BCA ,三棱锥P-ABC的体积为3,过点A 作⊥AM PB 于M ,过M 作MN ⊥PC 于N ,则三棱锥P-AMN 外接球的体积为A .323π B.3C.3D .43π 7.若sin 2sin ,sin()tan()1αβαβαβ=+⋅-=,则tan tan αβ=A .2B .32C . 1D .128.已知函数f (x ),g (x )的定义域为R 。

湖南省长沙市长郡中学2023届高三上学期第三次月考数学试题

湖南省长沙市长郡中学2023届高三上学期第三次月考数学试题
又 ,故 ,即 ,故D正确;
又 , , … ,累加可得 ,故 正确,故B正确;
故选:ABD
12.已知 ,则()
A. B.
C. D.
【答案】AD
【解析】
【分析】A.先构造函数 ,通过函数的单调性确定 的大致范围,再构造
,通过函数 的单调性确定 与 的大小关系,进而得到A选项.
B.先构造函数 ,通过函数的单调性确定 的大致范围,再构造
有图可得出 ,由 可得 计算即可.
【详解】由题图可知, ,由 ,得 .
故答案为: .
【点睛】本题考查复数的代数表示法及其几何意义,考查复数的运算法则,属于常考题.
14.已知等边三角形 的边长为6,点P满足 ,则 _________.
【答案】
【解析】
【分析】
以BC所在的边为x轴,垂直平分线为y轴建立坐标系,用坐标表示 可求得P点坐标求得答案.
A. B.
C. 或 D. 或
4.已知平面 ,直线 、 ,若 ,则“ ”是“ ”的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
5.如图,边长为2 正方形ABCD中,点E,F分别是边AB,BC的中点,将△AED,△EBF,△FCD分别沿DE,EF,FD折起,使A,B,C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为()
A. B.
C. D.
【答案】ABD
【解析】
【分析】观察图形,分析剪掉的半圆的变化,纸板 相较于纸板 剪掉了半径为 的半圆,再分别写出 和 的递推公式,从而累加得到通项公式再逐个判断即可
【详解】根据题意可得纸板 相较于纸板 剪掉了半径为 的半圆,故 ,即 ,故 , , , … ,累加可得 ,所以 ,故A正确,C错误;

2024-2025学年湖南省长沙市长郡中学大联考高三(上)月考数学试卷(二)(含答案)

2024-2025学年湖南省长沙市长郡中学大联考高三(上)月考数学试卷(二)(含答案)

2024-2025学年湖南省长沙市长郡中学大联考高三(上)月考数学试卷(二)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x||x|⩽2},B ={t|1⩽2t ⩽8(t ∈Z)},则A ∩B =( )A. [−1,3]B. {0,1}C. [0,2]D. {0,1,2}2.已知复数z 满足|z−i|=1,则|z|的取值范围是( )A. [0,1]B. [0,1)C. [0,2)D. [0,2]3.已知p :f(x)=ln(21−x +a)(−1<x <1)是奇函数,q :a =−1,则p 是q 成立的( )A. 充要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4.若锐角α满足sinα−cosα=55,则sin (2α+π2)=( )A. 45B. −35 C. −35或35D. −45或455.某大学在校学生中,理科生多于文科生,女生多于男生,则下述关于该大学在校学生的结论中,一定成立的是( )A. 理科男生多于文科女生B. 文科女生多于文科男生C. 理科女生多于文科男生D. 理科女生多于理科男生6.如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且AP =BP ,O 为上底面圆的圆心,则OP 与平面ABC 所成的角的正切值为( )A. 2B. 12C.5D.557.在平面直角坐标系xOy 中,已知直线l :y =kx +12与圆C :x 2+y 2=1交于A ,B 两点,则△AOB 的面积的最大值为( )A. 1B. 12C.32D.348.设函数f(x)=(x 2+ax +b)lnx ,若f(x)≥0,则a 的最小值为( )A. −2B. −1C. 2D. 1二、多选题:本题共3小题,共18分。

湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题及答案

湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题及答案

长郡中学2023届高三月考试卷(二)数学本试卷共8页。

时量120分钟。

满分150分。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

已知全集U =R ,集合{}2,3,4A =,结合{}02,45B =,,,则图中阴影部分表示的集合为A. {}2,4B. {}0C. {}5D. {}0,52.若1a iz i+=-(i 为虚数单位)是纯虚数,则a =A. -1B. 0C. 1D. 23.已知函数()y f x =的图象在点(3,(3))P f 处的切线方程式27y x =-+,则'(3)(3)f f -=A. -2B. 2C. -3D. 34.命题p :“2,240x ax ax ∃∈+≥R ”为假命题的一个充分不必要条件是A.40a -<≤ B. 40a -≤< C. 30a -≤≤ D. 40a -≤≤5. 当102x ……时,4log x a x <, 则a 的取值范围是A. ⎛ ⎝B. ⎫⎪⎪⎭C. D. 2)6. 已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在,3ππ⎡⎤⎢⎥⎣⎦上恰有 3 个零点, 则ω的取值范围是A. 81114,4,333⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭ B. 111417,4,333⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ C. 111417,5,333⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭D. 141720,5,333⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭7.南宋数学家杨辉在《详解九章算术法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.现有高阶等差数列,其前7项分别为1,4, 8,14, 23,36,54,则该数列的第19项为(注:222(1)(21)126n n n n ++++=……)A. 1624 B. 1024 C. 1198 D. 15608. 已知函数312(),,.,(,)f x x ax b a b x x m n =++∈∈R 且满足()()12(),()f x f n f x f m ==, 对任意的[,]x m n ∈恒有()()()f m f x f n ……, 则当,a b 取不同的值时A. 12n x +与22m x -均为定值B. 12n x -与22m x +均为定值C. 12n x -与22m x -均为定值D. 12n x +与22m x +均为定值二、选择题: 本题共 4 小题, 每小题 5 分, 共 20 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得 5 分, 部分选对的得 2 分, 有选错的得 0 分.9.已知奇函数())cos()(0,0)f x x x ωϕωϕωϕπ=+-+><<的最小正周期为π,将函数()f x 的图象向右平移6π个单位长度,可的导函数()y g x =的图象,则下列结论正确的是A. 函数()2sin(23g x x π=-B. 函数()g x的图象关于点⎛⎫⎪⎝⎭对称C. 函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增D. 当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()g x10.正四棱锥P ABCD -的所有棱长为2,用垂直于侧棱PC 的平面α截该四棱锥,则A. PC BD⊥B. 四棱锥外接球的表面积为8πC. PA 与底面ABCD 所成的角为60︒D. 当平面α经过侧棱PC 中点时,截面分四棱锥得到的上、下两部分几何体体积之比为3: 111.已知数列{}n a 满足1222,8,1,,n n n n a n a a a T a n +--⎧===⎨⎩为偶数,为奇数为数列{}n a 的前n 项和,则下列说法正确的有A. n 为偶数时, 22(1)n n a -=- B. 229n T n n =-+C. 992049T =- D. n T 的最大值为 2012.设定义在R 上的函数()f x 与()g x 的导函数分别为'()f x 和'()g x ,若(2)(1)2f x g x +--=,''()(1)f x g x =+,且(1)g x +为奇函数,则下列说法中一定正确的是A.(1)0g =B.函数'()g x 的图象关于2x =对称C.20221()0k g k ==∑ D. 20211()()0k f k g k ==∑三、填空题:本题共4小题,每小题5分,共20分.13. 若22log log 6a b +=, 则a b +的最小值为_____.14. 已知边长为 2 的菱形ABCD 中, 点F 为BD 上一动点, 点E 满足22,3BE EC AE BD =⋅=- , 则AF EF ⋅的最小值为_____.15. 已知等差数列{}n a 和正项等比数列{}n b 满足117332,2a b a b a ====,则数列{}2(2)nn a b -的前n 项和为_____.16. 已知函数ln (),()e x x xf xg x x==, 若存在120,x x >∈R , 使得()()120f x g x =<成立,则12x x 的最小值为_____.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤。

长郡中学2025届高三上学期月考(二)数学试卷(解析版)

长郡中学2025届高三上学期月考(二)数学试卷(解析版)

长郡中学2025届高三月考试卷(二)数学得分__________.本试卷共8页.时量120分钟.满分150分.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合{}(){}2,128tAxx B t t ==∈Z ∣∣ ,则A B = ( )A. []1,3−B. {}0,1C. []0,2D. {}0,1,2【答案】D 【解析】【分析】解绝对值不等式与指数不等式可化简集合,A B ,再利用交集的定义求解即可.【详解】{}{}|2=22A x x xx =≤−≤≤∣, 由指数函数的性质可得(){}{}1280,1,2,3tB t t =≤≤∈=Z ∣,所以{}{}{}220,1,2,30,1,2A B xx ∩−≤≤∩∣. 故选:D.2. 已知复数z 满足i 1z −=,则z 的取值范围是( ) A. []0,1 B. [)0,1C. [)0,2D. []0,2【答案】D 【解析】【分析】利用i 1z −=表示以(0,1)为圆心,1为半径的圆,z 表示圆上的点到原点的距离可得答案. 【详解】因为在复平面内,i 1z −=表示到点(0,1)距离为1的所有复数对应的点, 即i 1z −=表示以(0,1)为圆心,1为半径的圆, z 表示圆上的点到原点的距离,所以最短距离为0,最长距离为112+=,则z 的取值范围是[0,2]. 故选:D3. 已知()2:ln (11)1p f x a x x=+−<< −是奇函数,:1q a =−,则p 是q 成立的( ) A. 充要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】当p 成立,判断q 是否成立,再由q 成立时,判断p 是否成立,即可知p 是q 成立何种条件.【详解】由()f x 奇函数,则()00f =,即()ln 20a +=,解得1a =−, 所以p q ⇒,当1a =−时,()21ln 1ln 11x f x x x +=−=−−,11x −<<, ()()1111ln ln ln 111x x x f x f x x x x −−++∴−===−=− +−−,所以()f x 是奇函数, 所以p q ⇐, 所以p 是q 的充要条件. 故选:A.4. 若锐角α满足sin cos αα−sin 22πα+=( ) A.35B. 35C. 35 或35D. 45−或45【答案】B 【解析】【分析】先利用辅助角公式求出πsin 4α−,再利用角的变换ππsin 2sin 2π24αα+=−+,结合诱导公式和二倍角公式求解即可.【详解】由题意可得πsin cos 4ααα−=−=πsin 4α−.是因为α是锐角,所以πππ,444α −∈−,πcos 4α −所以πππππsin 2sin 2πsin 22sin cos 24444ααααα+=−+=−−=−−−325=−=−. 故选:B.5. 某大学在校学生中,理科生多于文科生,女生多于男生,则下述关于该大学在校学生的结论中,一定成立的是( )A. 理科男生多于文科女生B. 文科女生多于文科男生C. 理科女生多于文科男生D. 理科女生多于理科男生【答案】C 【解析】【分析】将问题转化不等式问题,利用不等式性质求解. 【详解】根据已知条件设理科女生有1x 人,理科男生有2x 人, 文科女生有1y 人,文科男生有2y 人;根据题意可知1212x x y y +>+,2211x y x y +<+,根据异向不等式可减的性质有()()()()12221211x x x y y y x y +−+>+−+, 即有12x y >,所以理科女生多于文科男生,C 正确.其他选项没有足够证据论证. 故选:C.6. 如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且,AP BP O =为上底面圆的圆心,则OP 与平面ABC所成的角的正切值为( )为A. 2B.12C.D.【答案】A 【解析】【分析】作出直线OP 与平面ABC 所成的角,通过解直角三角形来求得直线OP 与平面ABC 所成的角的正切值.【详解】设O ′为下底面圆的圆心,连接,OO CO ′′和CO , 因为AP BP =,所以AB OP ⊥,又因为,,AB OO OP OO O OP OO ′′⊥=⊂′ 、平面OO P ′,所以AB ⊥平面OO P ′, 因为PC 是该圆台的一条母线,所以,,,O O C P ′四点共面,且//O C OP ′, 又AB ⊂平面ABC ,所以平面ABC ⊥平面POC ,又因为平面ABC 平面POC OC =,所以点P 在平面ABC 的射影在直线OC 上, 则OP 与平面ABC 所成的角即为POC OCO ∠=∠′,过点C 作CD OP ⊥于点D ,因为4cm,2cm OP O C ′==, 所以tan tan 2OO POC OCO O C∠=′′∠==′. 故选:A7. 在平面直角坐标系xOy 中,已知直线1:2l y kx =+与圆22:1C x y +=交于,A B 两点,则AOB 的面积的最大值为( )A. 1B.12C.D.【答案】D 【解析】【分析】求得直线过定点以及圆心到直线的距离的取值范围,得出AOB 的面积的表达式利用三角函数单调性即可得出结论.【详解】根据题意可得直线1:2l y kx =+恒过点10,2E,该点在已知园内, 圆22:1C x y +=的圆心为()0,0C ,半径1r =,作CD l ⊥于点D ,如下图所示:易知圆心C 到直线l 的距离为12CD CE ≤=,所以1cos 2CD DCB CB ∠=≤, 又π0,2DCB∠∈,可得ππ,32DCB∠∈; 因此可得2π2,π3ACB DCB∠=∠∈,所以AOB 的面积为112πsin 11sin 223AOB S CA CB ACB =∠≤×××= 故选:D 8. 设函数()()2ln f x xax b x =++,若()0f x ≥,则a 的最小值为( )A. 2−B. 1−C. 2D. 1【答案】B 【解析】【分析】根据对数函数性质判断ln x 在不同区间的符号,在结合二次函数性质得1x =为该二次函数的一个零点,结合恒成立列不等式求参数最值.【详解】函数()f x 定义域为(0,)+∞,而01ln 0x x <<⇒<,1ln 0x x =⇒=,1ln 0x x >⇒>, 要使()0f x ≥,则二次函数2y x ax b =++,在01x <<上0y <,在1x >上0y >, 所以1x =为该二次函数的一个零点,易得1b a =−−, 则2(1)(1)[(1)]y x ax a x x a =+−+=−++,且开口向上, 所以,只需(1)0101a a a −+≤⇒+≥⇒≥−,故a 的最小值为1−.故选:B二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知2n >,且*n ∈N ,下列关于二项分布与超几何分布的说法中,错误的有( ) A. 若1(,)3X B n ,则()22113E X n ++ B. 若1(,)3X B n ,则()4219D X n += C. 若1(,)3X B n ,则()()11P X P X n ===−D. 当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布 【答案】BC 【解析】【分析】利用二项分布的期望、方差公式及期望、方差的性质计算判断AB ;利用二项分布的概率公式计算判断C ;利用二项分布与超几何分布的关系判断D.【详解】对于A ,由1(,)3X B n ,得()13E X n =,则()22113E X n ++,A 正确; 对于B ,由1(,)3X B n ,得()122339D X n n =×=,则()()82149D X D X n +==,B 错误; 对于C ,由1(,)3X B n ,得11111221(1)C (),(1)C ()3333n n n n n P X P X n −−−==××=−=××,故(1)(1)P X P X n =≠=−,C 错误;对于D ,当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布,D 正确. 故选:BC10. 已知函数()sin cos (,0)f x x a x x ωωω=+∈>R 的最大值为2,其部分图象如图所示,则( )A. 0a >B. 函数π6f x−为偶函数 C. 满足条件的正实数ω存在且唯一 D. ()f x 是周期函数,且最小正周期为π 【答案】ACD 【解析】【分析】根据题意,求得函数π()2sin(2)3f x x =+,结合三角函数的图象与性质,逐项判定,即可求解.【详解】由函数()sin cos )f x x a x x ωωωϕ=++,且tan a ϕ=,因为函数()f x 的最大值为22=,解得a =,又因为(0)0f a =>,所以a =A 正确; ()πsin 2sin 3f x x x x ωωω ==+因为πππ2sin 1443f ω=+= ,且函数()f x 在π4的附近单调递减,所以ππ5π2π,Z 436k k ω++∈,所以28,Z k k ω=+∈,又因为π24T >,可得π2T >π2>,解得04ω<<,所以2ω=, 此时π()2sin(2)3f x x =+,其最小正周期为πT =,所以C 、D 正确; 设()πππ2sin 22sin 2663F x f x x x=−=−+=,()()2sin[2()]2sin 2F x x x F x −=−=−=−,所以FF (xx )为奇函数,即函数π()6f x −为奇函数,所以B 不正确. 故选:ACD.11. 已知抛物线2:2(0)C y px p =>的焦点为F ,准线交x 轴于点D ,直线l 经过F 且与C 交于,A B 两点,其中点A 在第一象限,线段AF 的中点M 在y 轴上的射影为点N .若MN NF =,则( )A. lB. ABD △是锐角三角形C. 四边形MNDF2 D. 2||BF FA FD ⋅> 【答案】ABD 【解析】【分析】根据题意分析可知MNF 为等边三角形,即可得直线l 的倾斜角和斜率,进而判断A ;可知直线l 的方程,联立方程求点,A B 的坐标,求相应长度,结合长度判断BD ;根据面积关系判断C.【详解】由题意可知:抛物线的焦点为,02p F,准线为2px =−,即,02p D −,设()()112212,,,,0,0A x y B x y y y ><, 则111,,0,2422x y y p M N+,可得, 因为MN NF =,即MN NF MF ==,可知MNF 为等边三角形,即60NMF ∠=°,且MN ∥x 轴,可知直线l 的倾斜角为60°,斜率为tan 60k =°=,故A 正确;则直线:2p l y x =− ,联立方程222p yx y px=− =,解得32p x y ==或6p x y p= =,即32p A,,6p B p,则,M p p N p,可得28,,,2,,33DFp AD p BDp FA p FB p AB p ======,在ABD △中,BD AD AB <<,且2220BD AD AB +−<, 可知ADB ∠为最大角,且为锐角,所以ABD △是锐角三角形,故B 正确;四边形MNDF 的面积为21122MNDF BDF MNF S S S p p p p p =+=×+×=△△,故C 错误; 因为224,3FB FA p FD p ⋅==,所以2||BF FA FD ⋅>,故D 正确; 故选:ABD.【点睛】方法点睛:有关圆锥曲线弦长、面积问题的求解方法(1)涉及弦长的问题中,应熟练地利用根与系数的关系、设而不求计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解; (2)面积问题常采用12S =× 底×高,其中底往往是弦长,而高用点到直线距离求解即可,选择底很重要,选择容易坐标化的弦长为底.有时根据所研究三角形的位置,灵活选择其面积表达形式,若求多边形的面积问题,常转化为三角形的面积后进行求解;(3)在求解有关直线与圆锥曲线的问题时,应注意数形结合、分类与整合、转化与化归及函数与方程思想的应用.三、填空题(本大题共3小题,每小题5分,共15分.) 12. 在ABC 中,AD 是边BC 上的高,若()()1,3,6,3AB BC==,则AD =______.【解析】【分析】设()6,3BD mBC m m == ,表达出()61,33AD m m =++ ,根据垂直关系得到方程,求出13m =−,进而得到答案.【详解】设()6,3BD mBC m m == ,则()()()1,36,361,33AD AB BD m m m m =+=+=++,由0AD BC = 得6(61)3(33)366990AD BC m m m m =+++=+++=,解得13m =−,故()()12,311,2AD =−−=− ,所以||AD ..13. 已知定义在RR 上的函数()f x 满足()()23e xf x f x =−+,则曲线yy =ff (xx )在点()()0,0f 处的切线方程为_____________. 【答案】3y x =+ 【解析】【分析】利用方程组法求出函数解析式,然后利用导数求切线斜率,由点斜式可得切线方程. 【详解】因为()()23e xf x f x =−+,所以()()23e x f x f x −−=+,联立可解得()=e 2e xx f x −+,所以()03f =,所以()()e2e ,01xx f x f −=′−+=′. 所以曲线()y f x =在点()()0,0f 处的切线方程为3y x −=, 故所求的切线方程为3y x . 故答案为:3y x .14. 小澄玩一个游戏:一开始她在2个盒子,A B 中分别放入3颗糖,然后在游戏的每一轮她投掷一个质地均匀的骰子,如果结果小于3她就将B 中的1颗糖放入A 中,否则将A 中的1颗糖放入B 中,直到无法继续游戏.那么游戏结束时B 中没有糖的概率是__________. 【答案】117【解析】【分析】设最初在A 中有k 颗糖,B 中有6k −颗糖时,游戏结束时B 中没有糖的概率为()0,1,,6k a k = ,归纳找出递推关系,利用方程得出0a ,再由递推关系求3a .【详解】设A 中有k 颗糖,B 中有6k −颗糖,游戏结束时B 中没有糖的概率为()0,1,,6k a k = . 显然0113a a =,()65112112,153333k k k a a a a a k +−=+=+≤≤,可得()112k k k k a a a a +−−=−,则()566510022a a a a a −=−=,()65626765040010002222221a a a a a a a a a a ∴=+=++=+++=− ,同理()256510002221a a a a a =+++=− ,()()760021212133a a ∴−=−+,解得011385255a ==× ()430112115.25517a a ∴=−=×=故答案为:117【点睛】关键点点睛:本题的关键在于建立统一的一个6颗糖果放入2个盒子不同情况的模型,找到统一的递推关系,利用递推关系建立方程求出0a ,即可得出这一统一模型的答案.四、解答题(本大题共5小题,共77分,解签应写出文字说明、证明过程或演算步骤.) 15. 已知数列{}n a 中,11a =,且0,n n a S ≠为数列{}n a 的前nn a =.(1)求数列{}n a 的通项公式;(2)若1(1)n n n n n c a a +−=,求数列{}n c 的前n 项和. 【答案】(1)21na n =− (2)421,42n n n n T n n n − += + − + ,为偶数为奇数 【解析】【分析】(1)1={aa nn }的通项公式; (2) 求出(1)1142121n n c n n − =+ −+,再讨论n 为奇、偶数,利用裂项相消法即可求数列{}n c 的前n 项和. 【小问1详解】 根据题意知1,2n n n a S S n −=−≥0n a +≠=②,1,2n =≥,所以可得1=为首项,1为公差的等差数列,11n n =+−=,所以2n S n =,121,2n n n a n S S n −−==−≥,当1n =时11a =也满足该式,所以21na n =−. 【小问2详解】由(1)结论可知21n a n =−,所以()()1(1)(1)(1)11212142121n n n n n n n n c a a n n n n +−−− ===+ −+−+, 设{}n c 的前n 项和为n T ,则当n 为偶数时,111111111111433557212142142n n T n n n n =−+++−++++=−+=− −+++则当n 为奇数时,1111111111111433557212142142n n T n n n n + =−+++−++−+=−−=− −+++所以421,42n n n n T n n n − += + − + ,为偶数为奇数.16. 如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形CDEF 均为等腰梯形,AB∥,CD EF ∥,224CD CD AB EF ===,AD DE AE ===.(1)证明:平面ABCD ⊥平面CDEF ;(2)若M 为线段CD 1=,求二面角A EM B −−的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)通过勾股定理及全等得出线线垂直,应用线面垂直判定定理得出OE ⊥平面ABCD ,由OE ⊂平面CDEF 进而得出面面垂直;(2)由面面垂直建立空间直角坐标系,分别求出法向量再应用向量夹角公式计算二面角余弦值.【小问1详解】证明:在平面CDEF 内,过E 做EO 垂直于CD 交CD 于点O ,由CDEF 为等腰梯形,且24CD EF ==,则1,DO =又OE =,所以2OE ,连接AO ,由ADO EDO ≅ ,可知AO CD ⊥且2AO =,所以在三角形OAE 中,222AE OE OA =+,从而OE OA ⊥,又,,,OE CD OA CD O OA CD ⊥∩=⊂平面ABCD ,,所以OE ⊥平面ABCD , 又OE ⊂平面CDEF ,所以平面ABCD ⊥平面CDEF【小问2详解】由(1)知,,,OE OC OA 两两垂直,以O 为坐标原点,建立如图所示的空间直角坐标系,则()()()()0,0,2,2,0,0,0,2,0,0,2,2A E M B ,()()()2,0,2,2,2,0,0,0,2AE EM MB =−=−= ,设平面AEM 的一个法向量为(),,n x y z =, 则00n AE n EM ⋅= ⋅=,即220220x z x y −= −+= , 取1z =,则()1,1,1n = ,设平面BEM 的一个法向量为()111,,m x y z =, 则00m MB m EM ⋅= ⋅=,即11120220z x y = −+= , 取11y =,则()1,1,0m = ,所以cos,m nm nm n⋅==⋅由图可以看出二面角A EM B−−为锐角,故二面角A EM B−−.17. 已知函数2()e2,Rxf x ax a=−∈.(1)求函数()f x的单调区间;(2)若对于任意的0x>,都有()1f x≥恒成立,求a的取值范围.【答案】(1)答案见解析(2)(],1−∞【解析】【分析】(1)对2()e2xf x ax=−求导,可得2()2e2xf x a′=−,再分类讨论a的取值,得出导数的正负即可得出单调区间;(2)对a进行分类讨论,根据导数正负求得()f x的最小值,判断是否满足()1f x≥,即可求解.【小问1详解】对2()e2xf x ax=−求导,可得2()2e2xf x a′=−,令()0f x′=,即22e20x a−=,即2e x a=,当0a≤时,ff′(xx)>0恒成立,()f x在R上单调递增;当0a>时,21e,2ln,ln2x a x a x a===,当1ln2x a<时,()()0,f x f x′<在1,ln2a∞−上单调递减;当1ln2x a>时,ff′(xx)>0,()f x在1ln,2a∞+上单调递增;综上,当0a≤时,()f x单调递增区间为R;当0a>时,()f x的单调递减区间为1,ln2a∞−,单调递增区间为1ln,2a∞+.【小问2详解】因为对于任意的0x>,都有()1f x≥恒成立,的的对2()e 2x f x ax =−求导,可得2()2e 2x f x a ′=−,令()0f x ′=,即22e 20x a −=,即2e x a =,①当0a ≤时,ff ′(xx )>0,则()f x 在(0,+∞)单调递增,()()01f x f >=,符合题意; ②当01a <≤时,2e x a =,则1ln 02x a ≤, 则()0f x ′>,()f x 在(0,+∞)单调递增,()()01f x f >=,符合题意; ③当1a >时,2e x a =,则1ln 02xa >, 当10,ln 2x a∈ 时,()0f x ′<,则()f x 在10,ln 2a单调递减, 当1ln ,2x a ∞ ∈+ 时,()0f x ′>,则()f x 在1ln ,2a ∞ +单调递增, 所以()ln 11ln e 2ln ln 22a f x f a a a a a a ≥=−⋅=−, 令()ln ,1g a a a a a =−>,则()ln 0g a a ′=−<, 所以()g a 在(1,+∞)上单调递减,所以()()11g a g <=,不合题意; 综上所述,(],1a ∞∈−.18. 已知双曲线()2222:10,0x y E a b a b−=>>的左、右焦点分别为12,,F F E 的一条渐近线方程为y =,过1F 且与x 轴垂直的直线与E 交于P ,Q 两点,且2PQF 的周长为16.(1)求E 的方程;(2),A B 为双曲线E 右支上两个不同的点,线段AB 的中垂线过点()0,4C ,求ACB ∠的取值范围.【答案】(1)22:13y E x −=; (2)2π0,3. 【解析】 【分析】(1)将x c =−代入曲线E 得2b y a =±,故得211b PF QF a==,从而结合双曲线定义以及题意得24416b a b a a = +=,解出,a b 即可得解. (2)设:AB y kx m =+,联立双曲线方程求得中点坐标,再结合弦长公式求得ACM ∠的正切值,进而得ACM ∠范围,从而由2ACB ACM ∠=∠即可得解.【小问1详解】将x c =−代入2222:1(0,0)x y E a b a b −=>>,得2b y a=±, 所以211b PF QF a==,所以2222b PF QF a a ==+,所以由题得24416b a b a a= +=,1a b = ⇒ = 所以双曲线E 的方程为22:13y E x −=. 【小问2详解】由题意可知直线AB斜率存在且k ≠,设:AB y kx m =+,AA (xx 1,yy 1),BB (xx 2,yy 2),设AB 的中点为M . 由2233y kx m x y =+ −=消去y 并整理得222(3)230k x kmx m −−−−=,230k −≠, 则22222(2)4(3)(3)12(3)0km k m m k ∆=+−+=+−>,即223m k >−, 12223km x x k+=−,212233m x x k +=−−,12122226()2233km m y y k x x m k m k k +=++=⋅+=−−,于是M 点为2(3km k −,23)3m k −,2223431243M C MC M m y y m k k k km x kmx k −−−+−===−. 由中垂线知1A MC B k k ⋅=−,所以231241m k km k−+=−,解得:23m k =−. 所以由,A B 在双曲线的右支上可得:22221220333033m m x x m k k k m+−<+=−=>⇒⇒=−>−, 且12222003km x x k k k+>⇒>−, 且()()()()()22222222Δ43390333403m k k k k k k =−+>⇒−+−=−−>⇒<或24k >, 综上24k >即2k >,又CM =, 所以tan AM ACM CM ∠===因为24k >,所以213m k =−<−,故2333k 0−−<<(, 所以π0,3ACM∠∈. 所以2π20,3ACB ACM∠=∠∈ . 19. 对于集合,A B ,定义运算符“Δ”:Δ{,A B x x A x B =∈∈∣两式恰有一式成立},A 表示集合A 中元素的个数.(1)设][1,1,0,2A B =−= ,求ΔA B ;(2)对于有限集,,A B C ,证明ΔΔΔA B B C A C +≥,并求出固定,A C 后使该式取等号的B 的数量;(用含,A C 的式子表示)(3)若有限集,,A B C 满足ΔΔΔA B B C A C +=,则称有序三元组(),,A B C 为“联合对”,定义{}*1,2,,,I n n ∈N ,(){},,,,u A B C A B C I ⊆∣. ①设m I ∈,求满足ΔA C m =的“联合对”(),,A B C u ⊆的数量;(用含m 的式子表示) ②根据(2)及(3)①的结果,求u 中“联合对”的数量.【答案】(1)[1,0)(1,2]−∪(2)||2A C ∆(3)①C 2m n m n +⋅②6n【解析】【分析】(1)根据新定义,对区间逐一分析即可得解;(2)利用韦恩图及新定义,求出不等式等号成立的条件,利用集合的性质转化为求子集个数; (3)①分别求出(),A C ,B 取法的种数,再由分步乘法计数原理得解②结合(2)及(3)①的结果,利用二项式定理求解.【小问1详解】对于,,[1),0x x A x B −∈∈∉,故x A B ∈∆;对于,,[0,1]x x A x B ∈∈∈,故x A B ∉∆;对于,,(1,2]x x A x B ∉∈∈,故x A B ∈∆;对于,,[1],2x x A x B ∉−∉∉,故x A B ∉∆,即[10)(12],,A B −∆ .【小问2详解】画出Venn 图,如图,将A B C 划分成7个集合17,,S S ,则14562547||||||||||,||||||||||A B S S S S B C S S S S ∆=+++∆=+++,1267||||||||||A C S S S S ∆=+++,故45||||||2||2||0A B B C A C S S ∆+∆−∆=+≥不等式成立,当且仅当45S S ==∅时取等号, 4S =∅等价于()A C B ∩⊆,5S =∅等价于()B A C ⊆∪,故当且仅当()()A C B A C ∩⊆⊆∪取等号. 设()B A C D =∩∪,其中集合D 与A C 无交集,由于()\()A C A C A C ∆= ,故有()()\ΔD A C A C A C ∅⊆⊆∪∩=,即D 为A C ∆的某一子集,有||2A C ∆种,从而使上式取等的B 有||2A C ∆个.【小问3详解】①设X A C u =∆⊆,有||X m =,故X 有C m n 种取法,对于每一个x ,知X 中每一个元素x 有两种情形:,x A x C ∈∉或,x A x C ∉∈,且/I X 中每一个元素x 有两种情形:,x A x C ∈∉或,x A x C ∉∈,故,x I x ∀∈共有两种选择,也就是这样的(),A C 有||22I n =种,对于每一个(),A C ,由(2)知B 有||22A C m ∆=种取法.故由乘法原理,这样的“联合对(),,A B C 有C 2m n m n +⋅个.②由①知,u 中“联合对”的数量为()00C 22C 212216n n n m n m n m m n m n n nnm m +−===⋅=+=∑∑(二项式定理), 故u 中“联合对”(),,A B C 的数量为6n .【点睛】关键点点睛:集合新定义问题的关键在于理解所给新定义,会抽象的利用集合的知识,分步乘法计数原理,二项式定理推理运算,此类问题难度大.。

长沙市一中2025届高三月考试卷(二)数学

长沙市一中2025届高三月考试卷(二)数学

长沙市一中2025届高三月考试卷(二)数学时量:120分钟满分:150分一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}|2ln 2A x x =-<≤,{}2,1,0,1,2,3B =--,则A B = ()A .{1,0}-B .{1,2}C .{1,0,1}-D .{1,2,3}2.已知i 为虚数单位,12ii z-=-,则z 的共轭复数z =()A .2i-B .2i +C .2i--D .2i-+3.已知曲线()2ln f x ax x =+在点()()1,1f 处的切线与x 轴相交于点1,03⎛⎫ ⎪⎝⎭,则实数a =()A .-2B .-1C .1D .24.已知向量(1,)OA k =- ,(1,2)OB =,(2,0)OC k =+ 且实数0k ≥,若A ,B ,C 三点共线.则k =()A .0B .1C .2D .35.已知过坐标原点O 的直线PO 与焦点为F 的抛物线2:2(0)C y px p =>在第一象限交于点P ,与C 的准线l 交于点Q ,若4PO OQ =,则直线PF 的斜率为()A .43B .23C .1D .136.已知函数()sin f x x x =-与直线(02)y a a =<<在第一象限的交点横坐标从小到大依次分别为12,,,,n x x x ,则()12323f x x x --=()A .1-B .0C .1D7.定义:min{,}x y 为实数x ,y 中较小的数,已知22min ,9b h a a b ⎧⎫=⎨⎬+⎩⎭,其中a ,b 均为正实数,则h 的最大值是()A .16B .13C D8.若不等式ln 0a x x -≥有且仅有三个整数解,则实数a 的取值范围是()A .25,ln 2ln5⎡⎫⎪⎢⎣⎭B .25,ln 2ln5⎛⎤⎝⎦C .35,ln 3ln5⎡⎫⎪⎢⎣⎭D .35,ln 3ln 5⎛⎤⎥⎝⎦二、选择题(本题共3小题,每小题6分,共18分在每小题给出的选项中,至少有两项是符合题目要求,若全部选对得6分,部分选对得部分分,选错或不选得0分)9.记等差数列{}n a 的前n 项和为n S ,公差为d ,若109a =,20200S =,则()A .2=d B .n S 的最小值为5S C .19a =D .使0n S >的n 的最小值为1110.若随机变量()2~0,X N σ,()()f x P X x =≤,则()A .()()1f x f x -=-B .()()22f x f x =C .()()()210P X x f x x <=->D .若()121x f f x +⎛⎫> ⎪-⎝⎭,则113x <<11.如图,在锐二面角AB αβ--的半平面β内有一个四边形MENF ,点M 在AB 上,EF =2MN =,MEF 和NEF 的面积均为12,点N 到平面α的距离为2,点E 到平面α)A .EF AB∥B .直线MN 与AB 所成的角为45︒C .直线MN 与平面α所成的角为30︒D .二面角AB αβ--的大小为60︒三、填空题(本大题共3个小题,每小题5分,共15分)12.设双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线的倾斜角分别为,αβ,若5αβ=,则C 的离心率为.13.已知正三棱柱111ABC A B C -中,12AC CC =,动点P 在侧面11ACC A 内,且10PC PB ⋅=.若点P ,则该正三棱柱的体积为.14.记不超过x 的最大整数为[]x .若函数()|2[2]|f x x x t =-+既有最大值也有最小值,则实数t 的取值范围是.四、解答题(本大题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.现有一种不断分裂的细胞X ,每个时间周期内分裂一次,一个X 细胞每次分裂能生成一个或两个新的X 细胞,每次分裂后原X 细胞消失.设每次分裂成一个新X 细胞的概率为p ,分裂成两个新X 细胞的概率为1p -;新细胞在下一个周期内可以继续分裂,每个细胞分裂相互独立.设有一个初始的X 细胞,从第一个周期开始分裂.(1)当34p =时,求3个周期结束后X 细胞数量为2个的概率;(2)设2个周期结束后,X 细胞的数量为ξ,求ξ的分布列和数学期望.16.如图,AB 是半球O 的直径,4,,AB M N =是底面半圆弧 AB 上的两个三等分点,P 是半球面上一点,且60PON ∠=︒.(1)证明:PB ⊥平面PAM :(2)若点P 在底面圆内的射影恰在ON 上,求直线PM 与平面PAB 所成角的正弦值.17.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥,求a 的取值范围.18.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为4,离心率为122,,F F 分别为C 的左、右焦点,两点()()1122,,,A x y B x y 都在C 上.(1)求C 的方程;(2)若222AF F B =,求直线AB 的方程;(3)若1AF ∥2BF 且12120,0x x y y <>,求四个点12,,,A B F F 所构成的四边形的面积的取值范围.19.已知数列{}n a 满足:13a =,m ∀,*n ∈N ,当n m >时,2n m n m a a a -+=+.(1)求数列{}n a 的通项公式;(2)当6n ≥时,求证:11112nn a ⎛⎫-< ⎪+⎝⎭;(3)求解方程:1231n n n n nn n a a a a a +++++= .。

【数学】湖南省长郡十五校2021届高三第二次联考试卷(解析版)

【数学】湖南省长郡十五校2021届高三第二次联考试卷(解析版)
∴x1= ,x2= ,
∴由抛物线的定义知则 = =3+2 ,
如果x2>x1,
∴x2= ,x1= ,
∴由抛物线的定义知则 = =3﹣2 ,
故选:BC.
11.已知函数f(x)=﹣sin(2x+ ),g(x)=cos(2x﹣ ),则( )
【答案】B
【解析】根据题意,分2步进行分析:
①将6名教师分为5组,要求乙与丙不在同一组,有C62﹣1=14种分组方法,
②将甲所在的组分到A山区,剩下的4组安排到其他4个山区,有A44=24种情况,
则有14×24=336种安排方法,
故选:B.
8.当x∈R时,不等式 ≤ax﹣1恒成立,则实数a的取值范围为( )
A.a=2B.a=
C.a≥2D.e ≤a≤e
【答案】A
【解析】令f(x)= ,
∵x>1时,f(x)>0,∴a≤0时不合条件;
令h(x)= ,得h′(x)= ,
令g(x)=2﹣x﹣aex,知g(x)在R上单调递减,
∵h(0)=0,∴h(x)要在x=0处取得最大值,∴g(0)=2﹣a=0,即a=2.
故选:A.
由图可知电视动画节目播出时间的方差最小,故D正确,
故选:BD.
10.过抛物线C:y2=2px(p>0)的焦点F作斜率为1的直线交抛物线C于A,B两点,
则 =( )
A.5﹣2 B.3﹣2 C.3+2 D. Nhomakorabea+2
【答案】BC
【解析】设A(x1,y1)B(x2,y2)
由 可得x2﹣3px+ =0,
如果x1>x2,
∴B={0,2,4,6,8}.
故选:C.
2.已知复数z满足:z2= +6i(i为虚数单位),且z在复平面内对应的点位于第三象限,

湖南省名校2024届高三上学期月考数学题型分类汇编(单选题)第1辑PDF版含答案

湖南省名校2024届高三上学期月考数学题型分类汇编(单选题)第1辑PDF版含答案

湖南省名校2024届高三上学期月考数学题型分类汇编单选题(第1辑)目录湖南省长沙市长郡中学2024届高三上学期月考(一)数学(单选题)湖南省长沙市长郡中学2024届高三上学期月考(二)数学(单选题)湖南省长沙市长郡中学2024届高三上学期月考(三)数学(单选题)湖南省长沙市长郡中学2024届高三上学期月考(四)数学(单选题)湖南省长沙市长郡中学2024届高三上学期月考(五)数学(单选题)湖南省长沙市雅礼中学2024届高三上学期月考(一)数学(单选题)湖南省长沙市雅礼中学2024届高三上学期月考(二)数学(单选题)湖南省长沙市雅礼中学2024届高三上学期月考(三)数学(单选题)湖南省长沙市雅礼中学2024届高三上学期月考(四)数学(单选题)参考答案说明:本套资源是2024届高三上学期数学学科月考试卷题型分类汇编,本辑为单选题,试题来源于湖南省长郡中学和雅礼中学两所名校上学期月考试卷,可供高三学生上学期进行数学总复习时学习和参考。

湖南省长沙市长郡中学2024届高三上学期月考(一)数学(单选题)1.集合{}260A x x x =--<,集合{}2log 1B x x =<,则A B = ()A.()2,3- B.(),3-∞ C.()2,2- D.()0,22.已知λ∈R ,向量()3,a λ= ,()1,2b λ=- ,则“3λ=”是“a b ∥”的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件3.复数i z a b =+(,a b ∈R ,i 为虚数单位),z 表示z 的共轭复数,z 表示z 的模,则下列各式正确的是()A.z z =- B.z z z ⨯=C.22z z= D.1212z z z z +≤+4.若直线l :3sin 20x y θ⋅-=与圆C:2250x y +--=交于M ,N 两点,则MN的最小值为()A.B.C.D.5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2023a 等于()A.15B.25C.35D.456.现有长为89cm 的铁丝,要截成n 小段()2n >,每段的长度为不小于1cm 的整数,如果其中任意三小段都不能拼成三角形,则n 的最大值为()A.8B.9C.10D.117.已知函数()()211sinsin 0222x f x x ωωω=+->,x ∈R .若()f x 在区间(),2ππ内没有零点,则ω的取值范围是()A.10,8⎛⎤ ⎥⎝⎦B.150,,148⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭C.50,8⎛⎤ ⎥⎝⎦D.1150,,848⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦8.已知函数()2242af x x x x =---在区间(),2-∞-,)+∞上都单调递增,则实数a 的取值范围是()A.0a <≤B.04a <≤C.0a <≤D.0a <≤湖南省长沙市长郡中学2024届高三上学期月考(二)数学(单选题)1.若集合{}()(){}41,,190A x x k k B x x x ==-∈=+-≤N ,则A B ⋂的元素个数为()A.2B.3C.4D.52.设a ∈R ,若复数20231i ia -的虚部为3(其中i 为虚数单位),则=a ()A.13-B.3- C.13 D.33.已知非零向量a ,b满足)b =,π,3a b = ,若()a b a -⊥ ,则向量a 在向量b 方向上的投影向量为()A.14bB.12b C.D.b4.设抛物线C :22x py =的焦点为F ,(),4M x 在C 上,5MF =,则C 的方程为()A.24x y =B.24x y =-C.22x y =-D.22x y=5.若函数()1e x af x x -+=-在区间()0,∞+上单调递增,则实数a 的取值范围为()A.(],1-∞-B.(),1-∞C.[)0,∞+ D.(],1-∞6.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB 的面积为12”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件7.已知π0,2α⎛⎫∈ ⎪⎝⎭π2sin 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α=()A.34-B.34C.1-D.18.若实数a b c d ,,,满足2e 111a a cb d --==-,则22()()ac bd -+-的最小值是()A.8 B.9 C.10D.11湖南省长沙市长郡中学2024届高三上学期月考(三)数学(单选题)1.已知集合{}2430,{ln 1}A x x x B x x =-+<=≤∣∣,则A B = ()A .(1,e]B .[1,3]C .(0,e]D .(0,3]2.若i 是虚数单位,则复数23i1i ++的实部与虚部之积为()A .54-B .54C .5i 4D .5i4-3.函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之差为()A .2B .0C .2D .2+4.已知函数()2()lg 45f x x x =--在(,)a +∞上单调递增,则a 的取值范围是()A .[5,)+∞B .[2,)+∞C .(,2]-∞D .(,1]-∞-5.已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为()A B .132C .72D 6.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将一个正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”,则该多面体中具有公共顶点的两个正三角形所在平面的夹角的正切值为()A .22B .1C D .7.设正实数,,x y z 满足22430x xy y z -+-=,则xyz的最大值为()A .0B .1C .2D .38.已知函数3ln ()2xf x a ax x=+-,若存在唯一的整数0x ,使()00f x >,则实数a 的取值范围是()A .(ln 2,ln 3)B .ln 3ln 2,52⎛⎫⎪⎝⎭C .ln 3ln 2,52⎡⎫⎪⎢⎣⎭D .ln 2ln 3,23⎛⎫⎪⎝⎭湖南省长沙市长郡中学2024届高三上学期月考(四)数学(单选题)1.设集合{}{13},2,1,0,1M xx N =-<<=--∣,则M N ⋂=()A.{}1,0,1- B.{}0,1C.{11}x x -<<∣ D.{11}xx -<≤∣2.已知i 是虚数单位,若()()2i 1i 4i a ++=,则实数=a ()A.2B.0C.1- D.2-3.设随机变量2(,)X N μσ ,且()3()P X a P X a <=≥,则()P X a ≥=()A.0.75B.0.5C.0.3D.0.254.已知43log log 5,log 2a b c ===,则下列结论正确的是()A.<<b c aB.c b a <<C.b a c<< D.<<c a b5.已知圆锥的高为3,若该圆锥的内切球的半径为1,则该圆锥的表面积为()A.6πB. C.9πD.12π6.已知角π02α⎛⎫∈ ⎪⎝⎭,,且满足cos 4παα⎛⎫-= ⎪⎝⎭,则sin 2cos αα+=()A.2- B.2516 C.2516-D. 27.在等腰ABC 中,2,30,AC CB CAB ABC ∠===︒ 的外接圆圆心为O ,点P 在优弧AB 上运动,则2PA PB PO PC PA PB⎡⎤⎛⎫⎢⎥ ⎪-+⋅⎢⎥⎪⎝⎭⎣⎦的最小值为()A.4B.2C.-D.6-8.已知椭圆E :22221(0)x y a b a b +=>>的右焦点为()3,0F ,过点F 的直线交椭圆E 于,A B 两点,若AB 的中点坐标为()1,1-,则椭圆E 的方程为()A.221189x y += B.2212718x y +=C.2213627x y += D.2214536x y +=湖南省长沙市长郡中学2024届高三上学期月考(五)数学(单选题)1.若i 为虚数单位,则()()2i 1i +-的虚部为()A.iB.1C.i- D.-12.若集合{}2log 1,{1}A xx B x x =<=∣∣ ,则A B ⋃=R ð()A.{01}x x <<∣B.{12}xx -<<∣C.{10xx -<<∣或02}x << D.{2}xx <∣3.已知不共线的两个非零向量,a b ,则“a b + 与a b - 所成角为锐角”是“a b > ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.要得到函数()πcos 23g x x ⎛⎫=+⎪⎝⎭的图象,可以将函数()πsin 26f x x ⎛⎫=+ ⎪⎝⎭的图象()A.向右平移π3个单位长度 B.向左平移π3个单位长度C.向右平移π6个单位长度D.向左平移π6个单位长度5.已知()()4223,0,,0,x x x f x g x x ⎧-->⎪=⎨<⎪⎩若()f x 为()(),00,∞∞-⋃+上的奇函数,()0(0)g a a =<,则a =()A.2±B.32-C.2-D.-16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右顶点分别为12,,A A F 为C 的右焦点,C的离心率为2,若P 为C 右支上一点,2PF FA ⊥,记12π02A PA ∠θθ⎛⎫=<< ⎪⎝⎭,则tan θ=()A.12B.1D.27.已知二面角l αβ--的平面角为π0,,,,,,2A B C l D l AB l AB θθαβ⎛⎫<<∈∈∈∈⊥ ⎪⎝⎭与平面β所成角为π3.记ACD 的面积为1,S BCD 的面积为2S ,则12S S 的取值范围为()A.1,12⎡⎫⎪⎢⎣⎭B.12⎡⎢⎣C.32⎣D.3,12⎫⎪⎪⎣⎭8.在长郡中学文体活动时间,举办高三年级绳子打结计时赛,现有()*5n ∈N根绳子,共有10个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.则这5根绳子恰好能围成一个圈的概率为()A.64315B.256315C.32315D.128315湖南省长沙市雅礼中学2024届高三上学期月考(一)数学(单选题)1.若集合{}2|log 4M x x =<,{}|21N x x =≥,则M N ⋂=()A.{}08x x ≤< B.182x x ⎧⎫≤<⎨⎬⎩⎭C.{}216x x ≤< D.1162xx ⎧⎫≤<⎨⎬⎩⎭2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为()A.3B.2C.-2D.-33.已知1z ,2z 是关于x 的方程2220x x +=-的两个根.若11i z =+,则2z =()A.2B.1C.D.24.函数sin exx x y =的图象大致为()A. B.C. D.5.已知220x kx m +-<的解集为()(),11t t -<-,则k m +的值为()A.1B.2C.-1D.-26.古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为()(cos10°≈0.985)A.45.25mB.50.76mC.56.74mD.58.60m7.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =()A.1B.-1C.2D.-38.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π湖南省长沙市雅礼中学2024届高三上学期月考(二)数学(单选题)1.若12z i =+,则()1z z +⋅=()A.24i-- B.24i-+ C.62i- D.62i+2.全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,则阴影部分表示的集合是()A.{2,3,5,7,9}B.{2,3,4,5,6,7,8,9}C.{4,6,8}D.{5}3.函数()2log 22xxx x f x -=+的部分图象大致是()A.B.C.D.4.在边长为3的正方形ABCD 中,点E 满足2CE EB = ,则AC DE ⋅=()A.3B.3- C.4- D.45.某校科技社利用3D 打印技术制作实心模型.如图,该模型的上部分是半球,下部分是圆台.其中半球的体积为3144πcm ,圆台的上底面半径及高均是下底面半径的一半.打印所用原料密度为31.5g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为()(1.5 4.7π≈)A.3045.6gB.1565.1gC.972.9gD.296.1g6.已知数列{} n a 为等比数列,其前n 项和为n S ,10a >,则“公比0q >”是“对于任意*n ∈N ,0n S >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.若存在实数a ,对任意的x ∈[0,m ],都有(sin x -a )·(cos x -a )≤0恒成立,则实数m 的最大值为()A.4πB.2πC.34π D.54π8.已知函数()f x 的定义域为R ,()()()()2,24f x f x f f +=--=-,且()f x 在[)1,+∞上递增,则()10xf x ->的解集为()A.()()2,04,∞-⋃+ B.()(),15,∞∞--⋃+C.()(),24,-∞-+∞ D.()()1,05,∞-⋃+湖南省长沙市雅礼中学2024届高三上学期月考(三)数学(单选题)1.已知复数1i z =-(i 为虚数单位),z 是z 的共轭复数,则1z的值为A .1B .22C .12D2.设全集U R =,{A x y ==,{}2,x B y y x R ==∈,则()U A B =ðA .{}0x x <B .{}01x x <≤C .{}12x x <≤D .{}2x x >3.已知向量a ,b满足7a b += ,3a = ,4b = ,则a b -=A .5B .3C .2D .14.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先成果,哥德巴赫猜想如下:每个大于2的偶数都可以表示为两个素数(一个整数除了1和它本身没有其他约数的数称为素数)的和,如30723=+,633=+,在不超过25的素数中,随机选取2个不同的数,则这2个数恰好含有这组数的中位数的概率是A .14B .13C .29D .385.若函数()32132x a f x x x =-++在区间1,32⎛⎫⎪⎝⎭上有极值点,则实数a 的取值范围是A .52,2⎛⎫ ⎪⎝⎭B .52,2⎡⎫⎪⎢⎣⎭C .102,3⎛⎫⎪⎝⎭D .102,3⎡⎫⎪⎢⎣⎭6.已知3log 2a =,ln 3ln 4b =,23c =.则a ,b ,c 的大小关系是A .a b c <<B .a c b<<C .c a b<<D .b a c<<7.已知tan tan 3αβ+=,()sin 2sin sin αβαβ+=,则()tan αβ+=A .6-B .32-C .6D .48.已知函数()()32sin 4x f x x x x π=-+的零点分别为1x ,2x ,…,n x ,*n N ∈),则22212n x x x +++=A .12B .14C .0D .2湖南省长沙市雅礼中学2024届高三上学期月考(四)数学(单选题)1.已知集合{}2|1A x x =≤,{}|1B y y =≥-,则A B = ()A.∅B.[]1,1- C.[1,)-+∞ D.[1,1)-2.已知复数z 满足2(1i)z 24i -=-,其中i 为虚数单位,则复数z 的虚部为()A.1B.1- C.iD.i-3.如图所示,九连环是中国传统民间智力玩具,以金属丝制成9个圆环,解开九连环共需要256步,解下或套上一个环算一步,且九连环的解下和套上是一对逆过程.九连环把玩时按照一定的程序反复操作,可以将九个环全部从框架上解下或者全部套上.将第n 个圆环解下最少需要移动的次数记为n a (9n ≤,*n ∈N ),已知11a =,21a =,按规则有1221n n n a a a --++=(3n ≥,*n ∈N ),则解下第4个圆环最少需要移动的次数为()A.31B.16C.11D.74.二项式61x x ⎛⎫- ⎪⎝⎭的展开式中4x 的系数与6x 的系数之比为()A.6B.-6C.15D.-155.函数()()e e 2cos x x x f x x-+=+的部分图象大致为()A. B.C. D.6.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =()A.1B.-1C.2D.-37.若点G 是ABC 所在平面上一点,且0,AG BG CG H →++=是直线BG 上一点,AH xAB =+ y AC ,则224x y +的最小值是().A.2 B.1C.12D.148.已知0.05a e =,ln1.112b =+,c =)A.a b c >> B.c b a >>C.b a c>> D.a c b>>参考答案湖南省长沙市长郡中学2024届高三上学期月考(一)数学(单选题)参考答案1.A【解析】解不等式260x x --<,得23x -<<,则{}23A x x =-<<,解不等式2log 1x <,得02x <<,即{}02B x x =<<,所以()2,3A B =- ,故选A.2.B【解析】若向量a b ∥ ,则()3210λλ⨯--=,即260λλ--=,解得2λ=-或3λ=,所以“3λ=”是“a b ∥”的充分不必要条件,故选B.3.D【解析】因为i z a b =-,所以i z a b -=-+,故A 错误;()()22i i z z a b a b a b ⨯=+-=+,z =,故B 错误;2222i z a b ab =-+,222z a b =+,故C 错误;由复数的几何意义可知,()1212z z z z --≤+-,则1212z z z z +≤+,故D 正确.故选D.4.C【解析】依题意,圆C :(2218x y +-=,故圆心(C 到直线l :3sin 20x y θ⋅-=的距离d =,故MN =≥,当且仅当2sin 0θ=时等号成立,故min MN = C.5.C【解析】因为12152a =<,所以245a =,335a =,415a =,525a =,所以数列具有周期性,周期为4,所以202333$5a a ==.故选C.6.B【解析】截成的铁丝最小为1,因此第一段为1,因n 段之和为定值,欲n 尽可能的大,则必须每段的长度尽可能小,所以第二段为1,又因为任意三条线段都不能构成三角形,所以三条线段中较小两条之和不超过最长线段,又因为每段的长度尽可能小,所以第三段为2,为了使得n 最大,因此要使剩下的铁丝尽可能长,因此每一条线段总是前面的相邻两段之和,依次为:1,1,2,3,5,8,13,21,34,以上各数之和为88,与89相差1,因此可以取最后一段为35,这时n 达到最大为9.故选B.7.D【解析】由题设有()1cos 11sin 22224x f x x x ωπωω-⎛⎫=+-=- ⎪⎝⎭,令()0f x =,则有4x k πωπ-=,k ∈Z ,即4k x ππω+=,k ∈Z .因为()f x 在区间(),2ππ内没有零点,故存在整数k ,使得5442k k ππππππωω++≤<≤,即1,45,28k k ωω⎧≥+⎪⎪⎨⎪≤+⎪⎩因为0ω>,所以1k ≥-且15428k k +≤+,故1k =-或0k =,所以108ω<≤或1548ω≤≤,故选D.8.D【解析】设()242a g x x x =--,其判别式21604a =+>△,∴函数()g x 一定有两个零点,设()g x 的两个零点为1x ,2x 且12x x <,由2402a x x --=,得1x =2x =,∴()121224,,224,,24,.2ax x x a f x x x x x x ax x x ⎧+<⎪⎪⎪=--≤⎨⎪⎪+>⎪⎩≤①当0a ≤时,()f x 在()1,x -∞上单调递减或为常函数,从而()f x 在(),2-∞-不可能单调递增,故0a >;②当0a >时,()20g a -=>,故12x >-,则120x -<<,∵()f x 在()1,x -∞上单调递增,∴()f x 在(),2-∞-上也单调递增,102ga =--<2x <,由()f x 在2,8a x ⎡⎤⎢⎥⎣⎦和()2,x +∞上都单调递增,且函数的图象是连续的,∴()f x 在,8a ⎡⎫+∞⎪⎢⎣⎭上单调递增,欲使()f x在)+∞上单调递增,只需8a≤,得a ≤,综上,实数a的范围是0a <≤故选D.湖南省长沙市长郡中学2024届高三上学期月考(二)数学(单选题)参考答案1.B 【解析】集合{}19B x x =-≤≤,{}1,3,7,11,15,A =- ,则{}1,3,7A B ⋂=-,即元素个数为3.故选:B 2.A 【解析】复数()20231i i 1i 1i 1i 1i i i +-+-+====---a a a a a a,因为其虚部为3,所以13-=a ,可得13=-a .故选:A.3.A 【解析】因为()a b a -⊥ ,所以()20a b a a a b -⋅=-⋅=,∴2102a a b -=,又)b =,所以2b ==,∴1a =或0a = (舍去),所以21a b a ⋅== ,所以a 在b方向上的投影向量为14a b b b b b⋅⋅=⋅.故选:A.4.A 【解析】抛物线22x py =的开口向上,由于(),4M x 在C 上,且5MF =,根据抛物线的定义可知45,22pp +==,所以抛物线C 的方程为24x y =.故选:A 5.D 【解析】由()1ex a f x x -+=-,得()1e 1x a f x -+=-',因为函数()1e x af x x -+=-在区间()0,∞+上单调递增,所以()1e10x a f x -+'=-≥在区间()0,∞+恒成立,所以10x a -+≥在区间()0,∞+恒成立,即1a x ≤+在区间()0,∞+恒成立,所以1a ≤.故选:D 6.A 【解析】由1k =时,圆心到直线:1l y x =+的距离2d =..所以11222OAB S ∆==.所以充分性成立,由图形的对称性,当1k =-时,OAB 的面积为12.所以必要性不成立.故选A.7.B 【解析】π2sin()4αα=+Q ,)222(sin cos )2cos sin αααα=+-Q ,1(cos sin )(cos sin )02αααα∴+--=,又π0,2α⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0αα>>,即cos sin 0αα+>所以1cos sin 2αα-=,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以2(0,π)α∈,sin 20α>.由1cos sin 2αα-=平方可得11sin 24α-=,即3sin 24α=,符合题意.综上,3sin 24α=.故选:B.8.A 【解析】由2e 1a a b-=,得2e a b a =-,令()2e x f x x =-,则()'12e x f x =-,令()'0fx =得ln 2x =-,当ln 2x >-时,()()'0,f x f x <单调递减,当ln 2x <-时,()()'0,f x f x >单调递增;由111cd -=-,得2d c =-+,令()2g x x =-+,()(),f x g x 的图像如下图:则22()()a c b d -+-表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,显然,当过M 点的()f x 的切线与()g x 平行时,MN 最小,设()y f x =上与()y g x =平行的切线的切点为()000,M x y ,由()0'012e 1xf x =-=-,解得00x =,所以切点为()00,2M -,切点到()y g x =的距离的平方为28=,即22()()a c b d -+-的最小值为8;故选:A.湖南省长沙市长郡中学2024届高三上学期月考(三)数学(单选题)参考答案1.A【解析】{}2430(1,3),{ln 1}(0,e],(1,e]A x x x B x x A B =-+<==≤=∴= ∣∣,故选A .2.B 【解析】因为23i (23i)(1i)51i 1i (1i)(1i)22++-==+++-,所以实部为52,虚部为12,实部与虚部之积为54.故选B .3.D【解析】因为09x ≤≤,所以9066x ππ≤≤,所以73636x ππππ-≤-≤,所以当633x πππ-=-时,有最小值为2sin 3π⎛⎫-= ⎪⎝⎭,所以当632x πππ-=时,有最大值为2sin 22π=,所以最大值与最小值之差为2,故选D .4.A【解析】由于()2()lg 45f x x x =--在(,)a +∞上单调递增,而lg y x =在(0,)+∞上单调递增,所以2450,2,a a a ⎧--≥⎨≥⎩所以5a ≥,故a 的取值范围是[5,)+∞,故选A .5.C【解析】由双曲线的定义得,12||||||2PF PF a -=,又123PF PF =,所以21,3PF a PF a ==,所以在12F PF △中,有222121212122cos F F PF PF PF PF F PF =+-⋅∠,即2224923cos 60c a a a a =+-⋅⋅︒,化简得2247c a =,即2274c a =,所以离心率72c e a ===,故选C .6.D【解析】将该“阿基米德多面体”放入正方体中,如图,平面EFG 和平面GHK 为有公共顶点的两个正三角形所在平面,建立如图所示空间直角坐标系,设正方体的棱长为2,则(1,0,2),(2,1,2),(2,0,1),(2,1,0),(1,0,0)E F G H K ,设平面EFG 的法向量为(,,),(1,1,0),(1,0,1)m x y z EF EG ===-,所以0,0,EF m x y EG m x z ⎧⋅=+=⎪⎨⋅=-=⎪⎩令1,1,1x y z ==-=,所以(1,1,1)m =- ,设平面GHK 的法向量为(,,),(0,1,1),(1,0,1)n a b c GH GK ==-=--,所以0,0,GH n b c GK n a c ⎧⋅=-=⎪⎨⋅=--=⎪⎩令1,1,1a b c ==-=-,所以(1,1,1)n =-- ,设平面EFG 和平面GHK 的夹角为θ,则1cos ,3||||m n m n m n ⋅〈〉===⋅,因为平面EFG 和平面GHK 的夹角为锐角,所以1cos |cos ,|3m n θ=〈〉= ,所以22sin sin ,tan 3cos θθθθ====,故选D .7.B【解析】2243z x xy y =-+,则22114433xy xy x y z x xy y y x ==≤=-++-.8.C【解析】由()0f x >,得3ln 2x a ax x >-+,令3ln (),()2xg x h x a ax x==-+,则23(1ln )()x g x x -'=,则()g x 在(0,e)上单调递增,在(e,)+∞上单调递减,作出()g x 的大致图象如图所示,易知()h x 的图象是恒过,点1,02⎛⎫⎪⎝⎭的直线,若0a ≤,则显然不符合题意;若0a >,则(2)(2),(3)(3),g h g h >⎧⎨≤⎩即3ln 24,23ln 36,3a a a a ⎧>-+⎪⎪⎨⎪≤-+⎪⎩解得ln 3ln 252a ≤<.故选C .湖南省长沙市长郡中学2024届高三上学期月考(四)数学(单选题)参考答案1.B 【解析】由已知得{}0,1M N = .故选:B 2.A 【解析】因为R a ∈,()()()2i 1i 22i 4i a a a ++=-++=,所以2024a a -=⎧⎨+=⎩,解得2a =.故选:A 3.D 【解析】随机变量2(,)X N μσ ,显然()()1P X a P X a <+≥=,而()3()P X a P X a <=≥,所以()0.25P X a ≥=.故选:D 4.B 【解析】因为2234422log 62log log 21log 5log 6==log log 42c b a =<<=<=,即c b a <<.故选:B .5.C【解析】圆锥与其内切球的轴截面如下图所示,由已知111,2O D SO ==,可知130O SD ∠=,所以圆锥的轴截面为正三角形,因为3SO =,所以圆锥底面圆半径tan 30AO SO =⋅=cos 06AOSA ==o,则圆锥的表面积为2ππ9πS =⨯+=.故选:C .6.D 【解析】由已知得π4α⎛⎫-= ⎪⎝⎭3(sin cos )cos ααα-=,∴4tan 3α=,∵π(0,2α∈,∴43sin ,cos ,sin 2cos 255αααα==+=.故选:D.7.D 【解析】由已知2,30AC CB CAB ∠===︒,所以圆O 的外接圆直径为24sin BCR A==,因为30APC ABC BPC BAC ∠∠∠∠====︒,所以PA PB PA PB += ,所以2223112|2(2622PA PB PO PC PO PC PC PC PA PB PC ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ -+⋅=-⋅=-=--⎢⎥⎪ ⎪⎝⎭⎝⎭⎣⎦,因为2AC PC R <≤ ,即24PC <≤,所以PC = 时,取到最小值6-.故选:D .8.A 【解析】根据题意设()()1122,,,A x y B x y ,代入椭圆方程可得22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩;两式相减可得22221212220x x y y a b --+=,整理可得2221211122y y x x b a x x y y --++=-;又因为AB 的中点坐标为()1,1-,可得12122,2x x y y +=+=-;因此过,A B 两点的直线斜率为212212ABy y b k x x a -==-,又()3,0F 和AB 的中点()1,1-在直线上,所以101132AB k --==-,即2212b a =,可得222a b =;又易知3c =,且22229a b c b =+=+,计算可得2218,9a b ==;所以椭圆E 的方程为221189x y +=,代入AB 的中点坐标为()1,1-,得()22113118918-+=<,则其在椭圆内部,则此时直线AB 与椭圆相交两点.故选:A.湖南省长沙市长郡中学2024届高三上学期月考(五)数学(单选题)参考答案1.D【解析】因为()()2i 1i 22i i 13i +-=-++=-,故选D.2.B【解析】不等式2log 1x <解得02x <<,则{02}A xx =<<∣,{1},{1}{11},{12}B x x B x x x x A B x x ==<=-<<∴⋃=-<<R R∣∣∣∣ ,故选B.3.C【解析】因为,a b 不共线,可知a b + 与a b - 不共线,则a b + 与a b - 所成角为锐角等价于()()0a b a b +⋅-> ,即22a b > ,即a b > ,所以“a b + 与a b - 所成角为锐角”是“a b > ”的充分必要条件.故选C.4.B【解析】()()π5π5πsin2,sin 2sin212612f x x g x x x ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5πππ12123-=,故选B.5.C【解析】由题意可得当0a <时,()()0f a g a ==,因为()f x 为()(),00,∞∞-⋃+上的奇函数,所以()()f a f a =--,所以()()()()4222230,1230g a f a a a a a =--=-++=+-=,所以21a =-(舍去),或232a =,因为0a <,所以2a =-.故选C.6.A【解析】设C 的焦距为2c ,点()00,P x y ,由C 的离心率为2可知2,c a b ==,因为2PF FA ⊥,所以0x c =,将()0,P c y 代入C 的方程得220221y c a b-=,即0y =,所以()2133tan 3,tan 1PA F PA F c a c a ∠∠====---,故()21311tan tan 1312PA F PA F θ∠∠-=-==+⨯.故选A.7.C【解析】作AE CD ⊥,垂足为E ,连接BE ,因为AB l ⊥,即,,,AB CD AE AB A AE AB ⊥⋂=⊂平面AEB ,故CD ⊥平面,AEB BE ⊂平面AEB ,故CD BE ⊥,又CD ⊂平面β,故平面AEB ⊥平面β,平面AEB ⋂平面BE β=,则AB 在平面β内的射影在直线BE 上,则ABE ∠为AB 与平面β所成角,即π3ABE ∠=,由于,AE CD CD BE ⊥⊥,故AEB ∠为二面角l αβ--的平面角,即π02AEB ∠θθ⎛⎫=<< ⎪⎝⎭,121212AE CD S AE S BEBE CD ⨯==⨯,在ABE 中,sin sin sin AE BE ABABE BAE AEB∠∠∠==,则sin 1sin 2sin AE ABE BE BAE BAE∠∠∠==⋅,而π02θ<<,则π2ππ33BAE ∠θθ=--=-,则π2π1,,sin ,1632BAE BAE ∠∠⎛⎫⎛⎤∈∴∈⎪ ⎥⎝⎭⎝⎦,故sin 313sin 2sin 2AE ABE BE BAE BAE ∠∠∠==⋅∈⎣,故选C.8.D【解析】不妨令绳头编号为1,2,3,4,,2n ,可以与绳头1打结形成一个圆的绳头除了1,2外有22n -种可能,假设绳头1与绳头3打结,那么相当于对剩下1n -根绳子进行打结,令()*n n ∈N根绳子打结后可成圆的种数为na,那么经过一次打结后,剩下1n -根绳子打结后可成圆的种数为1n a -,由此可得,()122,2n n a n a n -=- ,所以()1212122,24,,2n n n n a a an n a a a ---=-=-= ,所以()()()112224221!n na n n n a -=-⨯-⨯⨯=⋅- ,显然11a =,故()121!n n a n -=⋅-;另一方面,对2n 个绳头进行任意2个绳头打结,总共有()()()222222224222122212!C C C C ;!2!2!n n n nn n n n n N n n n --⋅-⋅-⋅⋅⋅===⋅⋅ 所以()()()()12121!2!1!2!2!2!n n n n n n n a P n N n n --⋅-⋅-===⋅.所以当5n =时,128315P =,故选D .湖南省长沙市雅礼中学2024届高三上学期月考(一)数学(单选题)参考答案1.D 【解析】{}{}2|log 4|016M x x x x =<=<<,1|2N x x ⎧⎫=≥⎨⎩⎭,则1162M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:D.2.A 【解析】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7,设等差数列的公差为d ,所以11+27516a d a d =⎧⎨+=⎩,解之得3d =.故选:A.3.C 【解析】法一:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z +=,所以()21221i 1i z z =-=-+=-,所以21i z =-=法二:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z ⋅=,所以21221i z z ==+,所以2221i 1i z ====++.故选:C .4.D 【解析】令()sin exx x f x =,该函数的定义域为R ,()()()sin sin eexxx x x x f x f x ----===,所以,函数sin exx x y =为偶函数,排除AB 选项,当0πx <<时,sin 0x >,则sin 0exx x y =>,排除C 选项.故选:D.5.B 【解析】因为220x kx m +-<的解集为()(),11t t -<-,所以=1x -为方程220x kx m +-=的一个根,所以2k m +=.故选:B .6.B 【解析】设球的半径为R,,tan10R AB AC ==,100tan10RBC =-=- ,25250.760.985R R ==故选:B.7.B【解析】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x -,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-.故选:B .8.B 【解析】如图,取BC 的中点E ,连接DE ,AE ,则CE BE ==,AE DE ===,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF ==4AF ===,点O 为最大球的球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE ,设最大球的半径为R ,则OF OM R ==,因为Rt AOM △∽Rt AEF ,所以AO OMAE EF ==1R =,即1OM OF ==,则413AO =-=,故1sin 3OM EAF AO ∠==设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G ,连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =-=-,又JK a b =+,所以33b a a b -=+,解得2b a =,又33OK R b AO AK b =+=-=-,故432b R =-=,解得12b =,所以14a =,模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +⨯+⨯=++=.故选:B湖南省长沙市雅礼中学2024届高三上学期月考(二)数学(单选题)参考答案1.C 【解析】()()()122i 12i 244i 2i 62i z z +⋅=+-=+-+=-.故选:C .2.C 【解析】韦恩图的阴影部分表示的集合为()U A B ð,而全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,所以(){4,6,8}U A B ⋂=ð.故选:C 3.A 【解析】易知()2log 22xxx x f x -=+的定义域为{}0x x ≠,因为()()22log log 2222xxxxx x x f x x f x -----==-=-++,所以()f x 为奇函数,排除答案B ,D ;又()2202222f -=>+,排除选项C .故选:A .4.A【解析】以B 为原点,BC ,BA 所在直线分别为x ,y 轴,建立如图所示直角坐标系,由题意得()()()()0,3,1,0,3,0,3,3A E C D ,所以()3,3AC =- ,()2,3DE =-- ,所以()()()32333AC DE ⋅=⨯-+-⨯-= .故选:A.5.C【解析】设半球的半径为R ,因为332π144πcm 3V R ==半球,所以6R =,由题意圆台的上底面半径及高均是3,下底面半径为6,所以((223113π6π363πcm 33V S S h =+=⋅+⋅+⨯=下上圆台,所以该实心模型的体积为3144π63π207πcm V V V =+=+=半球圆台,所以制作该模型所需原料的质量为207π 1.5207 4.7972.9g⨯≈⨯=故选:C.6.A【解析】若10a >,且公比0q >,则110n n a a q -=>,所以对于任意*n ∈N ,0n S >成立,故充分性成立;若10a >,且12q =-,则()111112212111101323212n n n n n a S a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦==-=--⨯>⎢⎥⎢⎥ ⎪ ⎛⎫⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-- ⎪⎝⎭,所以由对于任意*n ∈N ,0n S >,推不出0q >,故必要性不成立;所以“公比0q >”是“对于任意*n ∈N ,0n S >”的充分不必要条件.故选:A.7.C【解析】在同一坐标系中,作出y =sin x 和y =cos x的图象,当m =4π时,要使不等式恒成立,只有a =22,当m >4π时,在x ∈[0,m ]上,必须要求y =sin x 和y =cos x 的图象不在y =a =22的同一侧.∴由图可知m 的最大值是34π.故选:C.8.D【解析】解:函数()f x ,满足()()2f x f x +=-,则()f x 关于直线1x =对称,所以()()()244f f f -==-,即()()240f f -==,又()f x 在[)1,+∞上递增,所以()f x 在(),1-∞上递减,则可得函数()f x的大致图象,如下图:所以由不等式()10xf x ->可得,20210x x -<<⎧⎨-<-<⎩或414x x >⎧⎨->⎩,解得10x -<<或5x >,故不等式()10xf x ->的解集为()()1,05,∞-⋃+.故选:D.湖南省长沙市雅礼中学2024届高三上学期月考(三)数学(单选题)参考答案1.B2.D【解析】易知{}02A x x =≤≤,{}0B y y =>,∴{}02U A x x x =<>或ð,故(){}2UA B x x => ð.故选D .3.D 【解析】由条件a b a b +=+ 知a ,b 同向共线,所以1a b a b -=-= ,故选D .4.C【解析】不超过25的素数有2,3,5,7,11,13,17,19,23共9个,中位数为11,任取两个数含有1l 的概率为182982369C p C ===,故选C .5.C【解析】由题意()2'1f x x ax =-+在区间1,32⎛⎫⎪⎝⎭上有零点,∴1a x x =+,1,32x ⎛⎫∈ ⎪⎝⎭,∴1023a <≤,又当2a =时,()()2'10f x x =-≥,()f x 单调,不符合,∴2a ≠,∴1023a <<,故选C .6.B【解析】∵2333332log 3log log log 23c a ===>=,∴c a >,又23442log 4log 3c ===44ln 3log log 3ln 4b ===,∴c b <,∴a c b <<.故选B .7.A【解析】由条件知cos cos 0αβ≠,sin cos cos sin 2sin sin αβαβαβ⇒+=,两边同除以cos cos αβ得:tan tan 2tan tan αβαβ+=,∴3tan tan 2αβ=,从而()tan tan tan 61tan tan αβαβαβ++==--,故选A .8.A 【解析】由()()210sin 04f x x x x x π⎡⎤=⇒-⋅+=⎢⎥⎣⎦,0x =为其中一个零点,令()()21sin 4g x x x x π=-+,∵()00g ≠,∴令()()2140sin x g x x x π+=⇒=,∵()1sin 1x π-≤≤∴2141x x +≤,∴214x x +≤,∴2102x ⎛⎫- ⎪⎝⎭≤,∴12x =±,所以()f x )共有三个零点12-,0,12,∴2221212n x x x +++= ,故选A .湖南省长沙市雅礼中学2024届高三上学期月考(四)数学(单选题)参考答案1.B【解析】因为21x ≤,所以11x -≤≤,即{}|11A x x =-≤≤,所以A B = {}|11x x -≤≤.故选:B.2.B【解析】由题意,化简得224i 24i 2i 42i (1i)2i 2z --+====+--,则2i z =-,所以复数z 的虚部为1-.故选:B3.D【解析】由题意,11a =,21a =,1221n n n a a a --++=(3n ≥,*n ∈N ),解下第4个圆环,则4n =,即43221a a a =++,而321211214a a a =++=++=,因此44217a =++=,所以解下第4个圆环最少需要移动的次数为7.故选:D.4.B【解析】由题设6621661C ()(1)C r r r r r r r T x x x--+=-=-,所以含4x 项为()1144261C 6T x x =-=-,含6x 项为()0066161C T x x =-=,,则系数之比为-6.故选:B.5.C【解析】解:根据题意,对于函数()()e e 2cos x xx f x x-+=+,有函数()()()()e e e e 2cos 2cos x xx xx x f x f x x x---++-==-=-++,即函数()f x 为奇函数,图象关于原点对称,故排除A 、B ;当0x >时,cos [1,1]x ∈-,则恒有()()e e 02cos x x x f x x -+=>+,排除D ;故选:C.6.B【解析】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x -,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-.故选:B .7.C【解析】设()G x y ,,112233(,),(,),(,)A x y B x y C x y ,因为0AG BG CG ++= ,所以1233x x x x ++=,1233y y y y ++=,所以点G 是ABC 的重心,设点D 是AC 的中点,则2AC AD =,B 、G 、D 共线,如图,又2AH x AB y AD =+ .因为B 、H 、D 三点共线,所以21x y +=,所以()()22222214222x y x y x y ++=+≥=,当且仅当2x y =,即12x =,14y =时取等号,即224x y +的最小值是12.故选:C .8.D【解析】令()()10x f x e x x =-->,则()10x f e x ='->,()f x \在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x >+,0.1 1.1e ∴>,0.05e ∴>,即a c >;令()ln 1g x x x =-+,则()111x g x x x-'=-=,∴当()0,1x ∈时,()0g x '>;当()1,x ∈+∞时,()0g x '<;()g x ∴在()0,1上单调递增,在()1,+∞上单调递减,()()10g x g ∴≤=,ln 1x x ∴≤-(当且仅当1x =时取等号),1∴≤-,即ln 12x +≤1x =时取等号),ln1.112∴+<,即b c <;综上所述:a c b >>.故选:D.。

湖南省长沙市长郡中学2023-2024学年高三下学期适应考试(二)数学试题含答案

湖南省长沙市长郡中学2023-2024学年高三下学期适应考试(二)数学试题含答案

长郡中学2024届高考适应性考试(二)数学命题人:__________审题人__________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2230,2,1xA xx x B y y x =--<==<∣∣,则A B ⋂=()A.(),3∞-B.()0,2C.()1,2-D.()2,32.已知数列{}n a 满足111n n a a +=-,若112a =,则2023a =()A.2B.-2C.-1D.123.已知样本数据12100,,,x x x 的平均数和标准差均为4,则数据121001,1,,1x x x ------ 的平均数与方差分别为()A.5,4- B.5,16- C.4,16D.4,44.蒙古包(Mongolianyurts )是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于牧业生产和游牧生活,蒙古包古代称作穹庐、毡包或毡帐.已知蒙古包的造型可近似的看作一个圆柱和圆锥的组合体,已知圆锥的高为2米,圆柱的高为3米,底面圆的面积为64π平方米,则该蒙古包(含底面)的表面积为()A.(112π+平方米B.(80π+平方米C.(112π+平方米D.(80π+平方米5.儿童玩具纸风车(图1)体现了数学的对称美.取一张正方形纸折出“十”字折痕,然后把四个角向中心点翻折,再展开,把正方形纸两条对边分别向中线对折,把长方形短的一边沿折痕向外侧翻折,然后把立起来的部分向下翻折压平,另一端折法相同,把右上角的角向上翻折,左下角的角向下翻折,纸风车的主体部分就完成了(图2).则()A.OC OE=B.0OA OB ⋅>C.2OA OD OE+=D.0OA OC OD ++=6.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A.()π5π2π,2π66k k k ⎛⎤-+∈ ⎥⎝⎦Z B.()5π2π2π,2π33k k k ⎛⎤--∈ ⎥⎝⎦Z C.()4ππ2π,2π33k k k ⎛⎤--∈ ⎥⎝⎦Z D.()π2π2π,2π33k k k ⎛⎤-+∈ ⎥⎝⎦Z 7.已知1sin cos ,0π5ααα-=≤≤,则πsin 24α⎛⎫-= ⎪⎝⎭()A.50-B.50 C.50-D.508.已知复数12,z z 满足112881i 1i z z z p p p p ⎛⎫+-+-+==+++ ⎪⎝⎭,(其中0,i p >是虚数单位),则12z z -的最小值为()A.2B.6C.2- D.2+二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列函数中最小值为2的是()A.223y x x =++ B.1sin sin y x x=+C.122x xy -=+ D.1ln ln y x x=+10.若,x y 满足28()23x y xy +-=,则()A.y x -≥B.2y x -<C.32xy >D.34xy ≥-11.在正方体1111ABCD A B C D -中,1,AB E =为11A D 的中点,F 是正方形11BB C C 内部一点(不含边界),则()A.平面1FBD ⊥平面11AC DB.平面11BB C C 内存在一条直线与直线EF 成30 角C.若F 到BC 边距离为d ,且221EF d -=,则点F 的轨迹为抛物线的一部分D.以11AA D 的边1AD 所在直线为旋转轴将11AA D 旋转一周,则在旋转过程中,1A 到平面1AB C 的距离的取值范围是3636,3535-+⎣⎦三、填空题:本题共3小题,每小题5分,共15分.12.已知6m x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为20,则实数m 的值为__________.13.已知定义在R 上的偶函数()f x 满足()()()1212f x f x f x x =,且当0x >时,()0f x >.若()()33f f a =',则()f x 在点11,33f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为__________.(用含a 的表达式表示)14.已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,右顶点为E ,过2F 的直线交双曲线C 的右支于,A B 两点(其中点A 在第一象限内),设,M N 分别为1212,AF F BF F 的内心,则当1F A AB ⊥时,1AF =__________;1ABF 内切圆的半径为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知在ABC 中,内角,,A B C 所对的边分别为,,a b c ,其中4,sin a C c A ==-.(1)求A ;(2)已知直线AM 为BAC ∠的平分线,且与BC 交于点M ,若223AM =,求ABC 的周长.16.(本小题满分15分)如图,已知ABCD 为等腰梯形,点E 为以BC 为直径的半圆弧上一点,平面ABCD ⊥平面,BCE M 为CE 的中点,2,4BE AB AD DC BC =====.(1)求证:DM ∥平面ABE ;(2)求平面ABE 与平面DCE 所成角的余弦值.17.(本小题满分15分)据统计,2024年元旦假期,哈尔滨市累计接待游客304.79万人次,实现旅游总收入59.14亿元,游客接待量与旅游总收入达到历史峰值.现对某一时间段冰雪大世界的部分游客做问卷调查,其中75%的游客计划只游览冰雪大世界,另外25%的游客计划既游览冰雪大世界又参观群力音乐公园大雪人.每位游客若只游览冰雪大世界,则得到1份文旅纪念品;若既游览冰雪大世界又参观群力音乐公园大雪人,则获得2份文旅纪念品.假设每位来冰雪大世界景区游览的游客与是否参观群力音乐公园大雪人是相互独立的,用频率估计概率.(1)从冰雪大世界的游客中随机抽取3人,记这3人获得文旅纪念品的总个数为X ,求X 的分布列及数学期望;(2)记n 个游客得到文旅纪念品的总个数恰为1n +个的概率为n a ,求{}n a 的前n 项和;n S (3)从冰雪大世界的游客中随机抽取100人,这些游客得到纪念品的总个数恰为n 个的概率为n b ,当n b 取最大值时,求n 的值.18.(本小题满分17分)在椭圆(双曲线)中,任意两条互相垂直的切线的交点都在同一个圆上,该圆的圆心是椭圆(双曲线)的中心,半径等于椭圆(双曲线)长半轴(实半轴)与短半轴(虚半轴)平方和(差)的算术平方根,则这个圆叫蒙日圆.已知椭圆2222:1(0)x y E a b a b+=>>的蒙日圆的面积为13π,该椭圆的上顶点和下顶点分别为12P P 、,且122PP =,设过点10,2Q ⎛⎫⎪⎝⎭的直线1l 与椭圆E 交于,A B 两点(不与12,PP 两点重合)且直线2:260l x y +-=.(1)证明:12,AP BP 的交点P 在直线2y =上;(2)求直线122,,AP BP l 围成的三角形面积的最小值.19.(本小题满分17分)帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法.给定两个正整数,m n ,函数()f x 在0x =处的[],m n 阶帕德近似定义为:()0111m m nn a a x a x R x b x b x +++=+++ ,且满足:()()()()()()()()()()00,00,00,,00m n m n f R f R f R f R ++''''='='== .(注:()()()()()()()()()()()()()''''454,,,,;n f x f x f x f x f x f x f x f x f x '''''⎦'''''⎡⎤====⋯⎡⎤⎡⎤⎡⎤⎣⎦⎣⎣⎦⎦'⎣为()()1n f x -的导数)已知()()ln 1f x x =+在0x =处的[]1,1阶帕德近似为()1axR x bx=+.(1)求实数,a b 的值;(2)比较()f x 与()R x 的大小;(3)若()()()()12f x h x m f x R x ⎛⎫=-- ⎪⎝⎭在()0,∞+上存在极值,求m 的取值范围.长郡中学2024届高考适应性考试(二)数学参考答案一、选择题:本题共8小题,每小题5分,共40分。

湖南省长沙市长郡中学、河南省郑州外国语学校、浙江省杭州第二中学2023届高三二模联考数学试题

湖南省长沙市长郡中学、河南省郑州外国语学校、浙江省杭州第二中学2023届高三二模联考数学试题

湖南省长沙市长郡中学、河南省郑州外国语学校 、浙江省杭州第二中学2023届高三二模联考数学试题学校:___________姓名:___________班级:___________考号:___________三、填空题四、双空题15.2023年2月22日,中国厦门市一名8岁男孩用时4.305秒单手完成4层汉诺塔游戏,成为新的世界纪录保持者.汉诺塔游戏源于1883年法国数学家卢卡斯提出的汉诺塔问题,有A ,B ,C 三根柱子,在A 柱上放着由下向上逐渐变小的n 个盘子,现要求把A 柱上的盘子全部移到C 柱上,且需遵循以下的移动规则:①每次只能移动一个盘子;②任何时候都不允许大盘子放在小盘子的上面;③移动过程中盘子可以放在A ,B ,C 中任意一个柱子上.若用()H n 表示n 个盘子时最小的移动次数,则()3H =______,()H n =______.六、解答题【点睛】本小题主要考查双曲线渐近线方程的求法,属于中档题.7.B【分析】由球与正六棱锥的性质建立六棱锥体积与球心与底面中心距离的函数关系计算即可求得最值.【详解】如图所示,设球半径为R,球心O到六棱锥底面中心o¢的距离为h,由题意易知正六棱锥顶点P与OO¢共线,由球的体积为36π,可得3R=,B 杆移到C 杆需要的最少次数为1次,所以()23H =;当3n =时,将第一层第二层(自上而下)金盘从、A 杆移到B 杆需要的最少次数为()23H =次,将第三层(自上而下)金盘从A 杆移到C 杆需要的最少次数为1次,再将已移动到B 杆上的金盘从B 杆移到C 杆需要的最少次数为()23H =次,所以()()32212317H H =+=´+=;则()11H =,()23H =,()37H =,猜想:()21n H n =-,*n ÎN ,证明如下:①当1n =时,()11H =成立.②假设当()*1,n k k k N =³Î时猜想成立,即()21k H k =-,即将k 个直径不同的盘子从A 杆移动到C 杆最少需要21k -次.则当1n k =+时,分三步进行:第一步,将上面k 个盘子从A 杆移动到B 杆;第二步,将第1k +个盘子从A 杆移动到C 杆;第三步,将上面k 个盘子从B 杆移动到C 杆.则最少需要()21H k +次,即()()()1121221121k k H k H k ++=+=-+=-,即1n k =+时,猜想也成立.综上,()21n H n =-.。

湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学试题-

湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学试题-

湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.如图,在平面直角坐标系中,以原点O 为圆心的圆与x 轴正半轴交于点()1,0A .已知点()11,B x y 在圆O 上,点T 的坐标是()00,sin x x ,则下列说法中正确的是( )四、解答题∴GA GC =,又∵GN 为公共边,∴Rt Rt GNA GNC V V ≌,∴AN CN =,N 为AC 的中点,又∵M 为BC 的中点,∴MN 为CBA △的中位线,MN P AB ,又∵MN Ë平面ABD ,AB Ì平面ABD ,∴MN P 平面ABD .又∵MN GN N =I ,MN Ì平面MNG ,GN Ì平面MNG ,∴平面MNG P 平面ABD ,又∵MG Ì平面MNG ,∴MG P 平面ABD .方法二:延长CG ,交AD 于点K ,连接AG ,BK ,∵BG ^平面ACD ,GA Ì平面ACD ,GC Ì平面ACD ,∴BG ^GA ,BG ^GC ,又∵BA BC =,BG 为公共边,∴Rt Rt BGA BGC V V ≌,∴GA GC =,又∵DA AC ^,∴ACK V 是KAC Ð为直角,CK 为斜边的直角三角形,∴GC GK =,即G 为CK 的中点,又∵M 为BC 的中点,∴MG 为CBK V 的中位线,MG P BK ,∵BK Ì平面ABD ,MG Ë平面ABD ,所以MG P 平面ABD .(2)过点A 作AF BG ∥,以A 为原点,AC ,AD ,AF 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.因此(0)0p =是()p x 的最小值,即()0p x ³,所以e 1x x ³+恒成立,所以()()e 11ax h x ax x g x -=³-+³-+³.综上,1a ³.【点睛】思路点睛:用导数研究不等式()0f x ³恒成立问题,常常是利用导数求得()f x 的最小值,再由最小值不小于0得参数范围,也可以利用特殊值求得参数的范围(必要条件),然后证明这个范围对所有自变量x 都成立(充分条件),从而得出结论.。

湖南省长沙市第一中学2022-2023学年高三上学期月考卷(二)-数学答案

湖南省长沙市第一中学2022-2023学年高三上学期月考卷(二)-数学答案

长沙市一中2023届高三月考试卷(二)数学参考答案一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 题号 1 2 3 4 5 6 7 8 答案 A C D B C B A B 二、选择题: 本题共 4 小题,每小题 5 分,共 20 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得 5 分, 部分选对的得 2 分, 有选错的得 0 分.题号 9 10 11 12 答案 ABD BC BCD AC 三、填空题 13. 54414. ()()22112x y -+-=15.ln 3e ln 2e126m <≤ 16. 2 四、解答题17.【解析】(1) 由正弦定理得a c a bb a c--=+, 整理得222a b c ab +-=, 由余弦定理得2221cos 22a b c C ab +-==, 又(0,)C π∈, 则3C π=;(2) 由面积公式得113sin 322ab C ab ==解得4ab =, 又CD 是ACB ∠的角平分线, 则 11sin sin 2626ACD BCDABCSSCA CD CB CD S ππ+=⋅⋅⋅+⋅⋅⋅=, 故121()3,63232a b a b ⋅⋅+⋅=+=2222()31081296c a b ab a b ab ∴=+-=+-=-=, 则46c =.18.【解析】 (1) 由已知得2122n n n a a a ++-+=, 即()()2112n n n n a a a a +++---=,{}2114,n n a a a a +-=∴-是以 4 为首项, 2 为公差的等差数列.14(1)222n n a a n n +∴-=+-⨯=+,当2n ≥时,1112221()()...()22(1)...222n n n n n a n a a a a a a n n a n ---=++++-+=+-++=-+⨯+ 当1n =时,12a =也满足上式,所以2n a n n =+ (2) ()2cos (1)(1)(1)n n n n b a n n n n n π==-+=-+. 当n 为偶数时,(2)12233445(1)(1)2(24)2n n n T n n n n n +=-⨯+⨯-⨯+⨯---++=+++=当n 为奇数时,12233445(1)(1)n T n n n n =-⨯+⨯-⨯+⨯-+--+21(1)(1)(1)(1)(1)22n n n n T n n n n --++=-+=-+=-所以2(2), , 2(1),. 2n n n n T n n +⎧⎪⎪=⎨+⎪-⎪⎩为偶数为奇数 19.【解析】(1)三棱柱111ABC A B C -为直棱柱,1BB ∴⊥平面1,ABC BB BC ∴⊥. 又1111,,BC BA BB BA B BB ⊥⋂=⊂平面111,ABB A BA ⊂平面11ABB A ,BC ∴⊥平面11ABB A , 所以BC AB ⊥.(2) 1,BC BA BB ⊥⊥平面BAC ,1,,BC BA BB ∴两两垂直,以B 为坐标原点,1,,BB BC BA 所在直线分别为x 轴,y 轴,z 轴, 建立如图所示空间直角坐标系, 设 BC a =.1111111111222232323A CEA A ABC ABC V V SAA a --⎛⎫==⨯⨯⨯=⨯⨯⨯⨯⨯= ⎪⎝⎭, 所以1a =.易知平面ABE 的一个法向量为 (0,1,0)BC =, 设平面ABP 的一个法向量为(,,)x y z =m ,(0,0,2),(0,0,0),(0,1,0),(1,0,1)A B C E , 所以(0,0,2)BA =, 设EPECλ=, (1,,1)BP BE EC λλλλ=+=--,则20,(1)(1)0,BA z BP x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩m m 令x λ=, 得1,0y z λ=-=, 所以(,1,0)λλ=-m , 二面角P AB E --的大小为30︒,则||cos30||||BC BC ︒⋅==m m ,所以12λ=(负值舍去),所以存在点P ,当EP EC =时, 二面角P AB E --的大小为30︒. 20【【解析】(1)①批次M 芯片的次品率为()()()12359585711111160595820M P P P P =----=-⨯⨯=⎡⎤⎣⎦ ②设批次M 的芯片智能自功检测合格为事件A , 人工抽检合格为事件B ,由已知得98119(),()111002020M P A P AB P ==-=-=, 则工人在流水线进行人工抽检时, 抽检一个芯片恰为合格品为事件BA ∣, ()1910095()()209898P AB P B A P A ==⨯=∣. (2) 零假设为0H : 芯片批次与用户对开机速度满意度无关联.根据列联表得222()100(1058230)10.677.879.()()()()40601288n ad bc a b c d a c b d χ-⨯⨯-⨯==≈>++++⨯⨯⨯因此,依据0.005α=的独立性检验,我们推断此推断0H 不成立,即认为芯片批次与用户对开机速度满意度有关联.此推断犯错误的概率不大于0.005.21.【解析】 (1) 由题意可知直线AM 的方程为:1)26y x -=-,即20x +=,当0y =时, 解得2x =-, 所以2a =,椭圆2222:1(0)x y C a b a b +=>>过点1,2M ⎛⎫ ⎪ ⎪⎝⎭, 可得213142b +=, 解得22b =, 所以C 的方程: 22142x y +=. (2) 证明: 设()()1122,,,P x y Q x y ,由题意得直线PQ 斜率不为零, 设:PQ l x my t =+, 代入到椭圆,由22142x my tx y =+⎧⎪⎨+=⎪⎩得22()240my t y ++-=,即222(2)240m y mty t +++-=所以12221222,24,2mt y y m t y y m -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩由16AP AQ k k =-, 得12121226y y x x ⋅=-++, 即()()12126220y y x x +++=,所以()()12126220y y my t my t +++++=, 所以()()2212126(2)(2)0m y y m t y y t ++++++=,所以()22222426(2)(2)022t mt m m t t m m --+++++=++, 化简得220t t +-=, 所以1t =或2t =-(舍去), 所以:1PQ l x my =+过定点()1,0S ,,MD PQ D ⊥为垂足,D ∴在以MS 为直径的圆上,MS的中点为T ⎛ ⎝⎭,又(2,0)A -,所以|||AT AD ==. 即||AD的最大值为2. 22.【解析】 (1)()f x 的定义域为1(,),()e x a f x a x a'-+∞=-+, 当0a 时,()0,()f x f x '<无极值. 故0a >.设()f x 的极值点为1x , 则111e 0x a x a-=+, 易知1x 为极小值点, 且()()111e ln 10x f x a x a =-+-=. 则()111ln 1x a x a-+=+, 令1t x a =+, 设1()ln 1t t tϕ=--, 则()t ϕ单调递减, 且(1)0ϕ=, 故111,e 1x x a a +==, 解得10,1x a ==. 经检验,1a =时满足题意, 即实数a 的值为1 . (2) ()f x 的定义域为1(,),()e x a f x a x a'-+∞=-+, 当1a =时,由(1)知00x =, 则()0020f x x +=, 当01a <<时,'()f x 单调递增,且''11(0)0,(ln )1ln f a f a a a a=-<-=--,设()ln h x x x =-,则'1()1h x x =-, 故()h x 在()0,1x ∈单调递减, 即()(1)1h x h ≥=, 所以1(ln )10ln f a a a '-=->-,根据零点存在性定理, 知()f x '存在唯一的0(0,ln )x a ∈-. 此时()()0000012ln 21f x x x a x x a+=-++-+, ()()000000011,2ln 1211x a x f x x x x x +<+∴+>-++-+, 设2111()ln(1)21(0),()20,()1(1)1g x x x x g x g x x x x'=-++->=--+>+++单调递增,()(0)0g x g >=, 则 ()0020f x x +> 当1a >时,()f x '单调递增, 且I 1(0)0,(1)e 10a f a f a a a''-=->-=-<, 根据零点存在性定理, 存在唯一的0(1,0)x a ∈-, 此时有()()000002e ln 21x f x x a x a x +=-+--,由()0001e 0xf x a x a'=-=+, 可得:()00ln ln x a a x +=--, 所以1a >时, ()00000002e ln 21e 10x x f x x a x x x +>++-->-->, 综上, 当0a >时,()f x 存在唯一极值点0x , 为极小值点, 且 ()0020f x x +.。

湖南省长沙市长郡中学2023届高三上学期第二次月考化学试题

湖南省长沙市长郡中学2023届高三上学期第二次月考化学试题

长郡中学2023届高三月考试卷(二)化学得分:___________本试题卷分选择题和非选择题两部分,共8页.时量75分钟,满分100分.可能用到的相对原子质量:H ~1 C ~12 O ~16 S ~32 Ag ~108 La ~139一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.北京冬奥会成功举办、神舟十三号顺利往返、“天宫课堂”精彩呈现均展示了我罔科技发展的巨大成就.下列相关叙述正确的是()A .冬奥会“飞扬”火炬所用的燃料2H 为氧化性气体B .体育馆建筑膜材料——乙烯与四氟乙烯的加聚产物属于有机高分子材料C .飞船返回舱表层材料中的玻璃纤维属于天然有机高分子D .乙酸纳过饱和溶液析出品体并放热的过程仅涉及化学变化2.下列化合物的性质与用途具有对应关系的是( )A .2SO 具有还原性,可用于葡萄酒的抗氧化剂B .23Al O 熔点很高,可用于冶炼金属铝C .3NH 具有还原性,可用作制冷剂D .2MnO 具有氧化性,可用于加快22H O 分解3.化学实验操作是进行科学实验的基础.下列操作能达到实验目的的是()A .除去2SO 中的少量HClB .蒸发结晶制胆矶C .熔融纯碱D .制备2Cl 4.固氮是将游离态的氮转变为氮的化合物,一种新型人工固氮的原理如图所示.下列叙述正确的是()A .转化过程中所涉及的元素均呈现了两种价态B .反应①②③均为氧化还原反应C .假设每一步均完全转化,每生成32molNH ,同时生成21.5molOD .参与反应的物质均只含离子键5.如图是某学校实验室从化学试剂商店买回的硫酸试剂标签上的部分内容.下列说法正确的是( )硫酸化学纯()()CP 500mL 品名:硫酸化学式:24H SO 相对分子质量:98密度:31.84g /cm 质量分数:98%A .该硫酸中溶质的物质的量浓度为9.2mol /LB .标准状况下,1.5molZn 与足量的该硫酸反应产生33.6L 氢气C .配制100mL4.6mol /L 的稀硫酸需取该硫酸25.0mLD .等质量的水与该硫酸混合后所得溶液中溶质的物质的量浓度大于9.2mol /L6.碳跟浓硫酸共热产生气体X ,铜跟浓硝酸反应产生气体Y ,将与Y 同时通入装有稀2BaCl 溶液的洗瓶中(如图装置).下列有关说法正确的是()A .洗气瓶中产生的沉淀可能含碳酸钡B .在Z 导管口处可收集到无色气体NOC .在Z 导管出来的气体中可能不含2COD .洗气瓶中产生的沉淀只有硫酸钡7.汉黄芩素是传统中草药黄芩的有效成分之一,对肿瘤细胞的杀伤有独特作用.下列有关汉黄芩素的叙述错误的是()A .汉黄芩素的分子式为16125C H OB .分子内共面的原子最多有30个C .该物质遇3FeCl 溶液显色D .1mol 该物质最多与28molH 反应8.下列各组物质相互混合反应后,最终有白色沉淀生成的是( )①2NaAlO 溶液与3AlCl 溶液混合 ②过量NaOH 溶液和明矾溶液混合③23Na CO 溶液滴入2NaAlO 溶液中 ④2NaAlO 溶液与3NaHCO 溶液混合⑤向饱和23Na CO 溶液中通入足量2CO A .①③④⑤B .②③④C .①③⑤D .①④⑤9.如图,在一个容积固定的恒温容器中,有两个可左右滑动的密封隔板,在A 、B 、C 内分别充入等质量的X 、2H 、Y 三种气体,当隔板静止时,A 中气体密度比C 中气体密度大.下列说法不正确的是()A .压强:()2p(X)p H p(Y)==B .气体的体积:V(X)V(Y)<C .摩尔质量:M(X)M(Y)<D .物质的量:n(X)n(Y)<l0.已知还原性:23SO I -->.某溶液中可能含有222434Na NH Fe K I SO SO ++++---、、、、、、,且所有离子物质的量浓度相等.向该无色溶液中滴加少量溴水,溶液仍呈无色.下列关于该溶液的判断正确的是()A .肯定不含24SO -B .肯定不含I -C .可能含有23SO -D .肯定含有Na+二、选择题(本题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有一个或两个选项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.)11.下列操作不能达到实验目的的是( )选项目的操作A测定氯水的pH用玻璃棒蘸取饱和氯水点在置于玻璃片的精密pH 试纸上,稍后与标准比色卡对照B检验某溶液中是否含2Fe +先向该溶液中滴加KSCN 溶液,再滴加少量氯水C验证非金属性:C Si>2SiO SO2与焦炭在高温条件反应,检验得到的黑色固体为硅,可燃性气体为COD验证2Fe +的还原性强于Br -向2FeBr 溶液中加入少量氣水,再加4CCl ,振荡A .AB .BC .CD .D12.下列离子方程式正确的是()A .少量2Cl 通入23Na SO 溶液中:222324Cl SO H O2Cl SO 2H---+++++B .2H S 气体通入2FeCl 溶液中:22H S Fe FeS 2H +++↓+C .()32Ba HCO 溶液与足量NaOH 溶液反应:223323Ba 2HCO 2OHBaCO 2H O CO +--++↓++D .44NH HSO 溶液与足量NaOH 溶液混合:432NH OH NH H O+-+⋅13.以废锌电池预处理物(主要成分为ZnO ,另含少量2332Fe O CuO SiO MnO 、、等)为原料可生产草酸锌晶体()24ZnC O ,生产工艺如下图所示.下列关于草酸锌晶体生产工艺,说法正确的是()A .“滤渣A ”主要成分为23H SiO B .“除锰”的离子方程式:22222Mn H O H OMnO(OH)2H ++++↓+C .“除锰”后的溶液中主要存在的阳离子有222Fe Cu Zn +++、、D .“除铁”过程中,可以用3ZnCO 代替ZnO14.中学化学常见物质之间,在一定条件下可以发生如图所示的转化关系(部分反应中的2H O 没有标明),其中A 、B 、C 中均含有同一种元素.下列说法错误的是()A .若①②③反应都是氧化还原反应,则A 不可能是氧气B .若A 是气体,D 是常见金属,则反应①②③都是化合反应C .若B 具有两性,A 、B 、C 、D 都是化合物,则C 溶液可能呈酸性,也可能呈碱性D .若①②③反应都是氧化还原反应,则A 、B 、C 中含有的同一种元素一定呈现三种不同化合价三、非选择题(本题共4道大题,共54分.)15.(12分)用如图方法回收废旧CPU 中的单质Au (金)、Ag 和Cu .已知:①浓硝酸不能单独将Au 溶解;②44HAuCl H AuCl +-+.(1)4HAuCl 中Au 元素的化合价为_______________.(2)浓、稀硝酸均可作酸溶试剂.溶解等量的Cu 消耗3HNO 的物质的量不同,写出消耗3HNO 物质的量多的反应的化学方程式:_________________________________.(3)3HNO NaCl -与王水[()(V :V 1:3)]=浓硝酸浓盐酸溶金原理相同,会生成一种无色气体,遇到空气变为红棕色.①写出3HNO NaCl -溶金反应的离子方程式:_______________.②关于溶金的下列说法正确的是__________(填标号).A .用到了3HNO 的氧化性B .用浓盐酸与3NaNO 也可使Au 溶解C .王水中浓盐酸的主要作用是增强溶液的酸性(4)若用足量Zn 粉将溶液中的41.5molHAuCl 完全还原,则参加反应的Zn 的物质的量是_______mol .(5)用适当浓度的盐酸、NaCl 溶液、氨水与铁粉,可按照如图方法从酸溶后的溶液中回收Cu 和Ag (图中标注的试剂和物质均不同).试剂1是________,试剂2是_________.16.(12分)某化工厂产生的废渣中含有4PbSO 和Ag ,为了回收这两种物质,某同学设计了如下流程:已知:“浸出"”过程发生可逆反应:()32332AgCl 2SO Ag SO Cl --++ .回答下列问题:(1)“氧化”阶段需在80℃条件下进行,最适合的加热方式为____________.将废渣“氧化”的化学方程式为_______________________.(2)其他条件不变,在敞口容器中进行“浸出”时,浸出时间过长会使银的浸出率(浸出液中银的质量占起始废渣中银的质量的百分比)降低,可能原因是____________________(用离子方程式表示).(3)研究发现:浸出液中含银化合物总浓度、含硫化合物总浓度与浸出液pH 的关系如下图所示:①pH 10=时,含银化合物总浓度随含硫化合物总浓度的变化趋势是_____________________.②pH 5=时含银化合物总浓度随含硫化合物总浓度的变化与pH 10=时不同,原因是____________________.(4)“还原”过程中还原剂与氧化剂物质的量之比为____________.(5)工业上,粗银电解精炼时,电流为5~10A ,若用8A 的电流电解60min 后,得到21.6gAg ,则该电解池的电解效率为______________.(保留小数点后一位.通过一定电荷量时阴极上实际沉积的金属质量与理论上应沉积的金属质量之比叫电解效率.法拉第常数为196500C mol -⋅)17.(15分)碳酸镧()()23r 3La CO M 458=为白色粉末,难溶于水,分解温度900℃,可用于治疗高磷酸盐血症.在溶液中制备时,生成不溶于水的水合碳酸镧()2323La CO xH O ⋅,如果溶液碱性太强,易生成受热分解的碱式碳酸镧3La(OH)CO .回答下列问题:(一)利用3LaCl 溶液制备水合碳酸澜(1)仪器B 的名称为________________.(2)装置接口的连接顺序为f →______________________.(3)Z 中应先通入___________________(填化学式),后通入过量的另一种气体,该气体需要过量的原因是______________________________.(4)该反应中生成副产物氯化铵,请写出Z 中生成水合碳酸镧的化学方程式:______________________.(二)()2323La CO xH O ⋅中x 值的测定将石英玻璃A 管称重,记为1m g ,将样品装入石英玻璃管中,再次将装置A 称重,记为2m g ,将装有试剂的装置C 称重,记为3m g .按图示连接好装置进行实验.(已知酒精喷灯温度可达1000℃)实验步骤如下:①打开12K K 、和3K ,缓缓通入2N ;②数分钟后关闭13K ,K ,打开4K ,点燃酒精喷灯,加热A 中样品;③一段时间后,熄灭酒精喷灯,打开1K ,通入2N 数分钟后关闭1K 和2K ,冷却到室温,称量A .重复上述操作步骤,直至A 恒重,记为4m g (此时装置A 中固体为23La O ).称重装置C ,记为5m g .(5)实验中第二次通入2N 的目的为____________________________.(6)根据实验记录,当5341m m 44m m 326-=-___________,说明制得的样品中不含3La(OH)CO .(7)水合碳酸镧的化学式中x =(用含124m m m 、、的代数式表示,可不化简).18.(15分)化合物H 是合成雌酮激素的中间体,科学家们采用如下合成路线:已知:回答下列问题:(1)B 的结构简式为_______________.(2)B C →,C D →的反应类型分别是______________,_____________.(3)F 中官能团的名称为___________________.(4)D 通过聚合反应可形成一种高分子,该反应的化学方程式为___________________.(5)E 的同分异构体中符合下列条件的有______________种(不考虑立体异构).①能发生银镜反应②苯环上有三个取代基且其中两个为酚羟基③分子中含有甲基其中核磁共振氢谱有5组峰,且峰面积之比为6:2:2:1:1的有机物的结构简式为______________.(6)写出以苯和为原料制备化合物的合成路线(参照以上合成路线,其他试剂任选).长郡中学2023届高三月考试卷(二)化学参考答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)题号12345678910答案BAACCDBDCA6.D 【解析】碳浓浓硫酸共热产生的气体X 为2CO 和2SO ,铜浓浓硝酸反应产生的气体Y 是2NO .2CO 与2BaCl 溶液不反应,无3BaCO 沉淀生成,A 项错误.2NO 溶于水生成的3HNO 将2SO 氧化为24H SO ,反应生成4BaSO 沉淀和NO 气体,NO 在常温下与2O 反应生成红棕色2NO ,故B 项和C 项均错误,D 项正确.9.C 【解析】当隔板静止时,代表隔板两侧气体的压强相等,容器恒温,所以处于同温同压的环境,A 项正确.同温同压下,气体的密度比等于其摩尔质量比;A 中气体密度比C 中气体密度大,所以气体的摩尔质量:X 大于Y ;通入的三种气体的质量相等,所以物质的量:X Y <;同温同压下,气体的体积:X Y <,所以B 项和D 项正确,C 项错误.10.A 【解析】由无色溶液可知一定不含2Fe +;向该无色溶液中滴加少量涣水,溶液仍呈无色,可知一定含还原性离子23SO -;由于所有离子物质的量浓度相等,结合电荷守恒可知一定无24SO -.若含I -,则阳离子为4Na NH K +++、、;若不含I -,则阳离子为4Na NH K +++、、中的两种,故选A .二、选择题(本题共4,J 、题,每小题4分,共16分.在每小题给出的四个选项中,有一个或两个选项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.)题号11121314答案ACCBDAD12.C 【解析】A 项,正确的离子方程式为22322433SO Cl H O 2Cl SO 2HSO ----++++;B 项,2H S 气体与2FeCl 溶液不反应;D 项,正确的离子方程式为4322NH H 2OH NH H O H O ++-++⋅+.14.AD 【解析】B 项,A 为2Cl ,D 为Fe ,符合题意,正确;C 项,B 为3Al(OH),C 可以是3AlCl 或2NaAlO ,正确;D 项,由B 项分析可知①②③反应都是氧化还原反应,A 、B 、C 中含有的同一种元素不一定主现三种不同化合价,错误.三、非选择题(本题共4道大题,共54分.)15.(12分)(1)3+(2分)(2)()33222Cu 4HNO Cu NO (2NO 2H )O ++↑+浓(3)①342Au NO 4Cl 4H AuCl NO 2H O --+-++++↑+ ②AB(4)3(2分)(5)NaCl 溶液 铁粉【解析】(4)用Zn 粉还原4HAuCl ,Zn 化合价由0升高为2Au +、化合价由3+降低为O ,H 化合价由1+降低为0,根据得失电子守恒,则参加反应的Zn 与4HAuCl .的物质的量之比为2:1.用足量Zn 粉将溶液中的41.5molHAuCl 完全还原,则参加反应的Zn 的物质的量是3mol .6.(12分)(1)水浴加热22Δ4Ag 4NaClO 2H O4AgCl 4NaOH O ++++↑(2)223242SO O 2SO --+(3)①含银化合物总浓度随含硫化合物总浓度的增大而增大(1分)②pH 较小时,23SO -与H +结合生成3HSO -或23H SO ,尽管含硫化合物总浓度增大,但()23c SO -均较小(4)1:4(5)67.0%【解析】(5)用8A 的电流电解60min ,则电子的物质的量为86060mol 0.298mol 96500⨯⨯≈,理论可得到32.23gAg ,实际得到21.6gAg ,剔该电解地的电解效车为21.6100%67.0%32.23⨯≈.17.(15分)(1)(球形)干燥管(2)b a d →→;e c←(3)3NH 控制溶液不能碱性太强,否则易生成副产物碱式碳酸镧3La(OH)CO (4)()3322232432LaCl 6NH 3CO (x 3)H O La CO xH O 6NH Cl++++⋅↓+(5)将装置中产生的气体全部吹入后续装置中被吸收,减少测定误差(6)3(7)()2141326m m 458m m 18---[或()()412141458m m m m 32618m m 326----或()()()214141326m m 458m m 18m m ----]【解析】(3)为增大2CO 溶解度,提高产率,Z 中应先通入3NH 再通入2CO ;根据题目信息可知,如果溶液碱性太强,易生成受热分解的碱式碳酸镧3La(OH)CO ,所以通入2CO 需要过量的原因是控制溶液不能碱性太强,否则易生成副产物碱式碳酸镧3La(OH)CO .(5)第二次通入2N ,将装置中残留的2CO 全部排入装置C 中被吸收,减小实验误差;D 中碱石灰的作用是防止空气中的2H O 和2CO 进入装置C 干扰实验.(6)如果制得的样品中不含有3La(OH)CO ,则由()2323La CO xH O ⋅化学式可知()()232n La O :n CO 1:3=,即5341m m 443m m 326-=-.(7)()()232323n La O n La CO xH O ⎡⎤=⋅⎣⎦,可求出水合碳酸镧化学式中结晶水数目:()()()()2223233n H O n H O x n La O n La CO ===⎡⎤⎣⎦()()412141458m m m m 32618m m 326----或()()()()2121414141326m m 458326m m 458m m m m 18m m 18------=-.18.(15分)(1)(2)取代反应还原反应(3)醚键、羧基(4)(5)24、(6)。

湖南省部分学校2023届高三下学期2月联考数学试题(含答案解析)

湖南省部分学校2023届高三下学期2月联考数学试题(含答案解析)

湖南省部分学校2023届高三下学期2月联考数学试题学校:___________姓名:___________班级:___________考号:___________A .83B .1169C .196327D .35227二、多选题9.将A ,B ,C ,D 这4张卡片分给甲、乙、丙、丁4人,每人分得一张卡片,A .“甲得到A 卡片”与“乙得到A 卡片”为对立事件B .“甲得到A 卡片”与“乙得到A 卡片”为互斥但不对立事件C .甲得到A 卡片的概率为14D .甲、乙2人中有人得到A 卡片的概率为1210.已知22:(1)4M x y +-=与圆222:()N x a y a -+=没有公共点,则a 的值可以是A .34-B .58-C .12D .111.已知函数()10(1)1x x f x x x =->-,()lg (1)1x g x x x x =->-的零点分别为x ()A .12lg x x =B .12111x x +=C .124x x +<D .10<12.已知F 是抛物线2:2(0)W y px p =>的焦点,点()1,2A 在抛物线W 上,过点条互相垂直的直线1l ,2l 分别与抛物线W 交于B ,C 和D ,E ,过点A 分别作垂线,垂足分别为M ,N ,则()A .四边形AMFN 面积的最大值为2B .四边形AMFN 周长的最大值为C .11BC DE+为定值12D .四边形BDCE 面积的最小值为三、填空题四、解答题17.已知正项数列{}n a 的前n 项和为n S ,且2n S =(1)求{}n a 的通项公式;(2)求数列1n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .18.在锐角ABC 中,内角,,A B C 所对的边分别为a (1)若22cos b ac B =,证明:112tan tan tan A C B+=;(2)若2sin a b C =,求tan tan tan A B C 的最小值.19.如图,正三棱锥-P ABC 的侧面是直角三角形,过点D ,过点D 作DE ⊥平面PAB ,垂足为E ,连接PE (1)证明:F 是AB 的中点;参考答案:则(0,0,0),(2,2,0),(0,2,0),D B C 对于A ,1(2,2,0),(0,0,DB DD == 而EF ⊄平面11BB D D ,所以EF 对于B ,11(2,0,2),(0,CB CD == 则11220220n CB x z n CD y z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩ ,令x 不平行,B 错误;(2,2,0)DB = ,而4FE DB ⋅=不垂直于平面1A BD ,C 错误;对于D ,由选项C 知,直线EF D 错误.故选:A 5.C【分析】由条件求出数列{}a设BC a =,则2332BE a =⋅=222OE OB BE =-,2()AE OA -=因为OA OB =,所以解得OB =sin sin BE AOB BOE OB ∴∠=∠==故答案为:223.不妨设2PA =,则(2,0,0A 因为DE ⊥平面PAB ,所以由正三棱锥的性质可知,点所以21CD DF =,故21PE EF =.则22,,033E ⎛⎫ ⎪⎝⎭,23EB ⎛=- ⎝设平面EBC 的法向量为m 则24033220x y y z ⎧-+=⎪⎨⎪-+=⎩,令y =由题意知,()2,0,0PA =为平面设平面EBC 与平面PBC 的夹角为故平面EBC 与平面PBC 夹角的余弦值为20.(1)①红球的个数为3;(2)最小值为8【分析】(1)设出红球的个数球的个数写出X 的所有可能取值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省长沙市长郡中学2023届高三月考试卷
(二)数学试题含答案
湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题含答案
第一部分:选择题(共计120分)
请将答案填写在答题卡上。

1. 已知函数$f(x) = 2^x + 4^{-x}$,则$f(1)+f(-1)$的值为()。

A. 3
B. 3/2
C. 1
D. 1/2
2. 已知集合$A=\{x | x\in\mathbb{R}, x^2-4x<0\}$,则$A$的解集为()。

A. $(-\infty, 0) \cup (4, +\infty)$
B. $(0, 4)$
C. $[0, 4]$
D. $(0, +\infty)$
3. 设等差数列$\{a_n\}$的公差为2,$a_1=3$,若$a_m+a_n=16$,
其中$m,n$为正整数,且满足$m\neq n$,则$m+n$的值为()。

A. 8
B. 9
C. 10
D. 11
4. 若$f(x) = \frac{1}{x}-\frac{1}{x+1}$,则$f(x+1)-f(x)$的值为()。

A. -1
B. 1
C. $\frac{1}{(x+1)^2}$
D. $\frac{1}{(x+1)(x+2)}$
5. 已知正方形$ABCD$的边长为1,点$E$为边$AB$上一点,$F$为边$BC$上一点,且满足$\angle EFD=90^\circ$,则$\triangle EFD$的面积为()。

A. $\frac{1}{8}$
B. $\frac{1}{6}$
C. $\frac{1}{4}$
D.
$\frac{1}{3}$
第二部分:填空题(共计60分)
请将答案填写在答题卡上。

1. 若$a, b$为实数,且满足$a^2+b^2=5$,则$a^3+b^3$的值为
__________。

2. 已知集合$A = \{x | x\in\mathbb{R}, x^2-4x\leq 0\}$,则集合$A$的元素个数为__________。

3. 设$n$为正整数,函数$f(x) = x^n-2x^{n-1}+x^{n-2}+1$,则
$f(2)$的值为__________。

4. 已知函数$f(x) = ax^2+bx+c$的图像开口向上,且经过点$(2,1)$和$(3,4)$,则$a+b+c$的值为__________。

5. 在平面直角坐标系中,点$A(2,1)$和点$B(4,3)$确定的线段
$AB$的中点坐标为__________。

第三部分:解答题(共计20分)
1. (6分)已知等差数列$\{a_n\}$的通项公式为$a_n = 2n+1$,求$\sum_{k=1}^{10}(a_k-a_{k-1})$的值。

2. (7分)已知函数$f(x) = \frac{1}{x^2+x+1}$,求
$f\left(\frac{1}{2}\right)+f\left(\frac{1}{3}\right)+f\left(\frac{1}{4}\right)+ ...+f\left(\frac{1}{100}\right)$的值。

3. (7分)已知函数$y=f(x)$的图像经过点$A(1,2)$,且$f'(x) =
3x^2-4x+1$,求曲线$y=f(x)$在点$A$处的切线方程。

参考答案:
第一部分:选择题
1. C
2. A
3. B
4. A
5. C
第二部分:填空题
1. 24
2. 5
3. 7
4. 9
5. (3,2)
第三部分:解答题
1. 55
2. 962/49
3. $y = x+1$
本试卷共计200分,其中选择题共计120分,填空题共计60分,解答题共计20分。

感谢参与本次考试,祝各位同学考试顺利!。

相关文档
最新文档