圆_阴影部分面积(含答案)
小学六年级圆-阴影部分面积(含答案)
求阴影部分面积例 2. 正方形面积是 7 平方厘米,求阴影部分的面积。
设圆的半径为 r ,因为正方形的面积为 7平方厘米,所以=7,=平方厘米解:这是一个用最常用的方法解 最常见的题,为方便起见,我们把阴影部分的每一个小 部分称为 “叶形 ”,是用两个圆减π -π( )=平方厘米所以阴影部分的面积为:7- ×7=平方厘例 3.求图中阴影部分的面积。
(单位:厘米 )例 4.求阴影部分的面积。
(单位 :圆组成一个圆, 去圆的面积, 所以阴影部分的面积:解:最基本的方法之一。
用四个 面积,厘米)解:同上,正方形面积减去圆 =平方厘米。
16-π()=16-4π例 5.求阴影部分的面积。
(单位 : 厘米 )例 6. 如图:已知小圆半径为 2 厘米,大圆半径是小圆的 3 倍,问:空白部分甲比乙的面积多多少厘米?去一个正方形,例 1.求阴影部分的面积。
(单位 : 厘米 )(单位 :厘米)解:这也是一种最基本的方法用正方形的面积减去 圆的面积。
解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)另外:此题还可以看成是 1 题中阴影部分的 8 关) 倍。
厘米(注 :以上几个题都可以直接用图形的差来求,无需割、补、增、减变形 )例 9.求阴影部分的面积。
(单位 : 厘米 ) 例 10.求阴影部分的面积。
(单位 : 厘米 )2× 1=2平方厘米(注: 8、9、10 三题是简单割、补或平移 )×21-6=8π-16=平方厘米注:这和两个圆是否相交、交的情况如何无例 7.求阴影部分的面积。
(单位 : 厘米 ) 长 ÷2,求 ) 正方形面积为: 解:正方形面积可用 所以阴影面积为:π ÷=平方解:右面正方形上部阴 影部分的面积,等于左面正方形下部空白部分面积,割补以后为 圆,例 8.求阴影部分的面积。
(单位:厘米 ) 解:把右面的正方形平移至左 边的正方形部分,则阴影部分 合成一个长方形, 解:同上,平移左右两部分至中间部分,则合成一 个长方形,所以阴影部分面积为所以阴影部分面积为: 2×3=6平方厘米例 11.求阴影部分的面积。
圆-阴影部分面积(附答案)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
圆_阴影部分面积(答案)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米) 解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米) 解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
小学六年级圆-阴影部分面积(含答案)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=平方厘米例3.求图中阴影部分的面积。
(单位:厘米) 解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2= 所以阴影面积为:π÷=平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米) 解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=平方厘米例9.求阴影部分的面积。
(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。
小学六年级数学之圆_阴影部分面积(含答案)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
小学六年级圆_阴影部分面积(含答案)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米) 解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
小学六年级圆_阴影部分面积(含答案)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米) 解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘形的差来求,无需割、补、增、减变形) 米例9.求阴影部分的面积。
圆阴影部分面积含答案
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例 3.求图中阴影部分的面积。
(单位:厘米) 解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5 所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米) 解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
圆_阴影部分面积(含答案)
与圆相关求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)例3.求图中阴影部分的面积。
(单位:厘米)例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
(单位:厘米)例8.求阴影部分的面积。
(单位:厘米)例9.求阴影部分的面积。
(单位:厘米)例10.求阴影部分的面积。
(单位:厘米)例11.求阴影部分的面积。
(单位:厘米)例12.求阴影部分的面积。
(单位:厘米)例13.求阴影部分的面积。
(单位:厘米) 例14.求阴影部分的面积。
(单位:厘米).例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。
例16.求阴影部分的面积。
(单位:厘米)例17.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米) 例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
例19.正方形边长为2厘米,求阴影部分的面积。
例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
例21.图中四个圆的半径都是1厘米,求阴影部分的面积。
例22.如图,正方形边长为8厘米,求阴影部分的面积。
例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?例25.如图,四个扇形的半径相等,求阴影部分的面积。
(单位:厘米)例26.如图,等腰直角三角形ABC 和四分之一圆DEB ,AB=5厘米,BE=2厘米,求图中阴影部分的面积。
例27.如图,正方形ABCD 的对角线AC=2厘米,扇形ACB 是以AC 为直径的半圆,扇形DAC 是以D 为圆心,AD 为半径的圆的一部分,求阴影部分的面积。
小学六年级数学之圆_阴影部分面积(含答案)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
圆 阴影部分面积(含答案)
圆阴影部分面积(含答案)求一个图形的阴影部分面积是一个基本的几何问题。
下面给出一些例子:例1:求一个圆形和一个等腰直角三角形组成的阴影部分的面积。
首先计算圆的面积,假设半径为r,则圆面积为πr²。
然后计算三角形的面积,假设直角边长为a,则三角形面积为a²/2.最终阴影部分的面积为πr²-a²/2.例2:求一个正方形中的阴影部分面积。
假设正方形面积为7平方厘米,则阴影部分可以用正方形的面积减去圆的面积来计算。
如果圆的半径为r,则圆的面积为πr²,阴影部分面积为7-πr²。
例3:求一个由四个圆和一个正方形组成的阴影部分的面积。
首先将四个圆组成一个大圆,然后用正方形的面积减去这个大圆的面积。
假设正方形边长为2,则大圆的半径为1,面积为π,阴影部分面积为2²-π=0.86平方厘米。
例4:求一个正方形中的阴影部分面积。
同样可以用正方形的面积减去圆的面积来计算。
假设正方形面积为16平方厘米,则阴影部分面积为16-πr²=3.44平方厘米。
例5:求一个由两个圆和一个正方形组成的阴影部分的面积。
将阴影部分分成两个“叶形”,每个“叶形”由两个圆和一个正方形组成。
假设圆的半径为r,则每个“叶形”的面积为2πr²-4,阴影部分的面积为2(2πr²-4)=4πr²-8.例6:已知一个小圆的半径为2厘米,大圆的半径是小圆的3倍,求空白部分甲比乙的面积多多少厘米?两个空白部分面积之差就是两圆面积之差。
假设小圆的半径为2,则小圆面积为4π,大圆面积为36π,空白部分的面积为32π-4π=28π=100.48平方厘米。
例7:求一个正方形中的阴影部分面积。
首先计算正方形的面积,假设对角线长为5,则正方形面积为25/2.然后计算圆的面积,假设圆的半径为r,则圆的面积为πr²,阴影部分的面积为πr²/4-25/2=7.125平方厘米。
圆 阴影部分面积(含答案)
北京坤宏远泰教育科技有限公司
例 1.求阴影部分的面积。(单位:厘米)
例 2.正方形面积是 7 平方厘米,求阴影部分的面积。 (单位:厘米)
解:这是最基本的方法: 圆 面积减去等腰直角三角形的面积,
× -2×1=1.14(平方厘 米)
解:这也是一种最基本的方法用正方
形的面积减去 圆的面积。 设圆的半径为 r,因为正方形的 面积为 7 平方厘米,所以 =7,
例 17.图中圆的半径为 5 厘米,求阴影部分的面积。 例 18.如图,在边长为 6 厘米的等边三角形中挖去
(单位:厘米)
三个同样的扇形,求阴影部分的周长。
解:上面的阴影部分 以 AB 为轴翻转后, 整个阴影部分成为梯 形减去直角三角形, 或两个小直角三角形 AED、BCD 面积和。 所以阴影部分面积为:5×5÷2+5×10÷2=37.5 平方厘米
解: 连对角线后将"叶形"剪开移 到右上面的空白部分,凑成正方 形的一半. 所以阴影部分面积为: 8×8÷2=32 平方厘米
例 14.求阴影部分的面积。(单位:厘米)
解:梯形面积减去 圆 面积,
(4+10)×4π =28-4π=15.44
平方厘米 .
例 15.已知直角三角形面积是 12 平方厘米,求阴影 例 16.求阴影部分的面积。(单位:厘米) 部分的面积。
解: 甲、乙两个部分同补 上空白部分的三角形后合 成一个扇形 BCD,一个 成为三角形 ABC, 此两部分差即为:π
例 30.如图,三角形 ABC 是直角三角形,阴影部分 甲比阴影部分乙面积大 28 平方厘米,AB=40 厘米。 求 BC 的长度。 解:两部分同补上空白部分后为直角三角形 ABC, 一个为半圆,设 BC 长为 X,则
小学六年级数学之圆-阴影部分面积(含答案)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)例3.求图中阴影部分的面积。
(单位:厘米)例4.直角三角形的面积是12平方厘米,求阴影部分的面积。
(单位:厘米)例7.求阴影部分的面积。
(单位:厘米)例8.求阴影部分的面积。
(单位:厘米)例9.求阴影部分的面积。
(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。
(单位:厘米)解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米(注: 8、9、10三题是简单割、补或平移)例11.求阴影部分的面积。
(单位:厘米)解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求。
(π-π)×=×3.14=3.66平方厘米例12.求阴影部分的面积。
(单位:厘米)解:三个部分拼成一个半圆面积.π()÷2=14.13平方厘米例13.求阴影部分的面积。
(单位:厘米)解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.所以阴影部分面积为:8×8÷2=32平方厘米例14.求阴影部分的面积。
(单位:厘米)解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米.例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。
例16.求阴影部分的面积。
(单位:厘米)解:[π+π-π]=π(116-36)=40π=125.6平方厘米例17.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米)解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和。
所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
圆阴影部分面积(含答案)
求阴影部分面积求阴影部分面积例1.求阴影部分的面积。
(单位:厘米) 解:解:这是最基本的方法:这是最基本的方法: 圆面积减去等腰直角三角形的面积,×-2×-2×1=1.141=1.14(平方厘米)米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米) 解:这也是一种最基本的方法用正方形的面积减去形的面积减去 圆的面积。
圆的面积。
设圆的半径为设圆的半径为 r ,因为正方形的面积为7平方厘米,所以平方厘米,所以 =7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米平方厘米例3.求图中阴影部分的面积。
(单位:厘米) 解:最基本的方法之一。
用四个 圆组成一个圆,用正方形的面积减去圆的面积,去圆的面积,所以阴影部分的面积:2×2×2-2-2-ππ=0.86平方厘米。
平方厘米。
例4.求阴影部分的面积。
(单位:厘米) 解:同上,正方形面积减去圆面积,面积, 16-16-π(π()=16-)=16-4π4π=3.44平方厘米平方厘米例5.求阴影部分的面积。
(单位:厘米) 解:这是一个用最常用的方法解最常见的题,为方便起见,最常见的题,为方便起见, 我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,去一个正方形,π()×)×2-2-2-16=8π16=8π16=8π-16=9.12-16=9.12平方厘米方厘米另外:此题还可以看成是1题中阴影部分的8倍。
倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)部分)π-π()=100.48平方厘米厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求) 正方形面积为:5×5×5÷5÷5÷2=12.5 2=12.5 所以阴影面积为:π÷4-12.5=7.125平方厘米平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
圆_阴影部分面积(含答案)
供阳影部分里积之阳早格格创做例1.供阳影部分的里积.(单位:厘米)解:那是最基原的要领:圆里积减去等腰曲角三角形的里积,×-2×1=1.14(仄圆厘米)例2.正圆形里积是7仄圆厘米,供阳影部分的里积.(单位:厘米)解:那也是一种最基原的要领用正圆形的里积减去圆的里积.设圆的半径为r,果为正圆形的里积为7仄圆厘米,所以=7,所以阳影部分的里积为:7-=7-×7=1.505仄圆厘米例3.供图中阳影部分的里积.(单位:厘米) 解:最基原的要领之一.用四个圆组成一个圆,用正圆形的里积减去圆的里积,所以阳影部分的里积:2×2-π=0.86仄圆厘米. 例4.供阳影部分的里积.(单位:厘米)解:共上,正圆形里积减去圆里积,16-π()=16-4π=3.44仄圆厘米例5.供阳影部分的里积.(单位:厘米)解:那是一个用最时常使用的要领解最罕睹的题,为便当起睹,咱们把阳影部分的每一个小部分称为“叶形”,是用二个圆减去一个正圆形,π()×2-16=8π-16=9.12仄圆厘米其余:此题还不妨瞅成是1题中阳影部分的8倍. 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空黑部分甲比乙的里积多几厘米?解:二个空黑部分里积之好便是二圆里积之好(齐加上阳影部分)π-π()=100.48仄圆厘米(注:那战二个圆是可相接、接的情况怎么样无闭)例7.供阳影部分的里积.(单位:厘米) 解:正圆形里积可用(对于角线少×对于角线少÷2,供)正圆形里积为:5×5÷2=12.5所以阳影里积为:π÷4-12.5=7.125仄圆厘米(注:以上几个题皆不妨间接例8.供阳影部分的里积.(单位:厘米)解:左里正圆形上部阳影部分的里积,等于左里正圆形下部空黑部分里积,割补以去为圆,所以阳影部分用图形的好去供,无需割、补、删、减变形)里积为:π(例9.供阳影部分的里积.(单位:厘米)解:把左里的正圆形仄移至左边的正圆形部分,则阳影部分合成一个少圆形,所以阳影部分里积为:2×3=6仄圆厘米例10.供阳影部分的里积.(单位:厘米)解:共上,仄移安排二部分至中间部分,则合成一个少圆形,所以阳影部分里积为2×1=2仄圆厘米(注: 8、9、10三题是简朴割、补或者仄移)例11.供阳影部分的里积.(单位:厘米)解:那种图形称为环形,不妨用二个共心圆的里积好或者好的一部分去供.(π-π)×=×3.14=3.66仄圆厘米例12.供阳影部分的里积.(单位:厘米)解:三个部分拼成一个半圆里积.π()÷2=14.13仄圆厘米例13.供阳影部分的里积.(单位:厘米)解: 连对于角线后将"叶形"剪启移到左上头的空黑部分,凑成正圆形的一半.所以阳影部分里积为:8×8÷2=32仄圆厘米例14.供阳影部分的里积.(单位:厘米)解:梯形里积减去圆里积,(4+10)×4-π=28-4π=15.44仄圆厘米.例15.已知曲角三角形里积是12仄圆厘米,供阳影部分的里积.分解: 此题比上头的题有一定易度,那是"叶形"的一个半.解: 设三角形的曲角边少为r ,则=12,=6 例16.供阳影部分的里积.(单位:厘米)解:[π+π-π]=π(116-36)=40π=125.6仄圆厘米圆里积为:π÷2=3π.圆内三角形的里积为12÷2=6,阳影部分里积为:(3π-6)×=5.13仄圆厘米例17.图中圆的半径为5厘米,供阳影部分的里积.(单位:厘米)解:上头的阳影部分以AB为轴翻转后,所有阳影部分成为梯形减去曲角三角形,或者二个小曲角三角形AED、BCD里积战.所以阳影部分里积为:5×5÷2+5×10÷2=37.5仄圆厘米例18.如图,正在边少为6厘米的等边三角形中掘去三个共样的扇形,供阳影部分的周少.解:阳影部分的周少为三个扇形弧,拼正在所有为一个半圆弧,所以圆弧周少为:2×3.14×3÷2=9.42厘米例19.正圆形边少为2厘米,供阳影部分的里积.解:左半部分上头部分顺时针,底下部分顺时针转化到左半部分,组成一个矩形.所以里积为:1×2=2仄圆厘米例20.如图,正圆形ABCD的里积是36仄圆厘米,供阳影部分的里积.解:设小圆半径为r,4=36, r=3,大圆半径为R ,=2=18,将阳影部分通过转化移正在所有形成半个圆环,所以里积为:π(-)÷2=4.5π=14.13仄圆厘米例21.图中四个圆的半径皆是1厘米,供阳影部分的里积.解:把中间部分分成四仄分,分别搁正在上头圆的四个角上,补成一个正圆形,边少为2厘米,所以里积为:2×2=4仄圆厘米例22. 如图,正圆形边少为8厘米,供阳影部分的里积.解法一: 将左边上头一齐移至左边上头,补上空黑,则左边为一三角形,左边一个半圆.阳影部分为一个三角形战一个半圆里积之战.π()÷2+4×4=8π+16=41.12仄圆厘米解法二: 补上二个空黑为一个完备的圆.所以阳影部分里积为一个圆减去一个叶形,叶形里积为:π()÷2-4×4=8π-16所以阳影部分的里积为:π()-8π+16=41.12仄圆厘米例23.图中的4个圆的圆心是正圆形的4个顶面,,它们的大众面是该正圆形的核心,如果每个圆的半径皆是1厘米,那么阳影部分的里积是几?解:里积为4个圆减去8个叶形,叶形里积为:π-1×1=π-1所以阳影部分的里积为:4π-8(π-1)=8仄圆厘米例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的乌面是那些圆的圆心.如果圆周π率与3.1416,那么花瓣图形的的里积是几仄圆厘米?分解:对接角上四个小圆的圆心形成一个正圆形,各个小圆被切去个圆,那四个部分正佳合成3个整圆,而正圆形中的空黑部分合成二个小圆.解:阳影部分为大正圆形里积与一个小圆里积之战.为:4×4+π=19.1416仄圆厘米例25.如图,四个扇形的半径相等,供阳影部分的里积.(单位:厘米)分解:四个空黑部分不妨拼成一个以2为半径的圆.所以阳影部分的里积为梯形里积减去圆的里积,4×(4+7)÷2-π=22-4π=9.44仄圆厘米例26.如图,等腰曲角三角形ABC战四分之一圆DEB,AB=5厘米,BE=2厘米,供图中阳影部分的里积.解: 将三角形CEB以B为圆心,顺时针转化90度,到三角形ABD位子,阳影部分成为三角形ACB 里积减去个小圆里积,为: 5×5÷2-π÷4=12.25-3.14=9.36仄圆厘米例27.如图,正圆形ABCD的对于角线AC=2厘米,扇形ACB是以AC为曲径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,供阳影部分的里积.解: 果为2==4,所以=2以AC为曲径的圆里积减去三角形ABC里积加上弓形AC里积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14仄圆厘米例28.供阳影部分的里积.(单位:厘米)解法一:设AC中面为B,阳影里积为三角形ABD里积加弓形BD的里积,三角形ABD的里积为:5×5÷2=12.5弓形里积为:[π÷2-5×5]÷2=7.125所以阳影里积为:12.5+7.125=19.625仄圆厘米解法二:左上头空黑部分为小正圆形里积减去小圆里积,其值为:5×5-π=25-π阳影里积为三角形ADC减去空黑部分里积,为:10×5÷2-(25-π)=π=19.625仄圆厘米例29.图中曲角三角形ABC的曲角三角形的曲角边AB=4厘米,BC=6厘米,扇形BCD 地圆圆是以B为圆心,半径为BC的圆,∠CBD=,问:阳影部分甲比乙里积小几?解: 甲、乙二个部分共补上空黑部分的三角形后合成一个扇形BCD,一个成为三角形ABC,此二部分好即为:π×-×4×6=5π-12=3.7仄圆厘米例30.如图,三角形ABC是曲角三角形,阳影部分甲比阳影部分乙里积大28仄圆厘米,AB=40厘米.供BC的少度.解:二部分共补上空黑部分后为曲角三角形ABC,一个为半圆,设BC少为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米例31.如图是一个正圆形战半圆所组成的图形,其中P为半圆周的中面,Q为正圆形一边上的中面,供阳影部分的里积.解:连PD、PC变换为二个三角形战二个弓形,二三角形里积为:△APD里积+△QPC里积=(5×10+5×5)=37.5二弓形PC、PD 里积为:π-5×5所以阳影部分的里积为:37.5+π-25=51.75仄圆厘米例32.如图,大正圆形的边少为6厘米,小正圆形的边少为4厘米.供阳影部分的里积.解:三角形DCE的里积为:×4×10=20仄圆厘米梯形ABCD的里积为:(4+6)×4=20仄圆厘米进而知讲它们里积相等,则三角形ADF 里积等于三角形EBF 里积,阳影部分可补成圆ABE的里积,其里积为:π÷4=9π=28.26仄圆厘米例33.供阳影部分的里积.(单位:厘米)解:用大圆的里积减去少圆形里积再加上一个以2为半径的圆ABE里积,为(π+π)-6=×13π-6=4.205仄圆厘米例34.供阳影部分的里积.(单位:厘米)解:二个弓形里积为:π-3×4÷2=π-6阳影部分为二个半圆里积减去二个弓形里积,截止为π+π-(π-6)=π(4+-)+6=6仄圆厘米例35.如图,三角形OAB是等腰三角形,OBC 是扇形,OB=5厘米,供阳影部分的里积.解:将二个共样的图形拼正在所有成为圆减等腰曲角三角形[π÷4-×5×5]÷2=(π-。
小学六年级圆_阴影部分面积(含答案)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为 r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=平方厘米例3.求图中阴影部分的面积。
(单位:厘米) 解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=平方厘米。
例 4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=平方厘米π()×2-16=8π-16=平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=所以阴影面积为:π÷=平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=平方厘米例9.求阴影部分的面积。
(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。
圆_阴影部分面积(含答案)
求暗影部分面积之杨若古兰创作例1.求暗影部分的面积.(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求暗影部分的面积.(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积.设圆的半径为r,由于正方形的面积为7平方厘米,所以=7,所以暗影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中暗影部分的面积.(单位:厘米) 解:最基本的方法之一.用四个圆构成一个圆,用正方形的面积减去圆的面积,所以暗影部分的面积:2×2-π=0.86平方厘米. 例4.求暗影部分的面积.(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求暗影部分的面积.(单位:厘米)解:这是一个用最经常使用的方法解最罕见的题,为方便起见,我们把暗影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中暗影部分的8倍. 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上暗影部分)π-π()=100.48平方厘米(注:这和两个圆是否订交、交的情况如何有关)例7.求暗影部分的面积.(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以暗影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接例8.求暗影部分的面积.(单位:厘米)解:左面正方形上部暗影部分的面积,等于左面正方形下部空白部分面积,割补当前为圆,所以暗影部分用图形的差来求,无需割、补、增、减变形)面积为:π(例9.求暗影部分的面积.(单位:厘米)解:把左面的正方形平移至右边的正方形部分,则暗影部分合成一个长方形,所以暗影部分面积为:2×3=6平方厘米例10.求暗影部分的面积.(单位:厘米)解:同上,平移摆布两部分至两头部分,则合成一个长方形,所以暗影部分面积为2×1=2平方厘米(注: 8、9、10三题是简单割、补或平移)例11.求暗影部分的面积.(单位:厘米)解:这类图形称为环形,可以用两个同心圆的面积差或差的一部分来求.(π-π)×=×3.14=3.66平方厘米例12.求暗影部分的面积.(单位:厘米)解:三个部分拼成一个半圆面积.π()÷2=14.13平方厘米例13.求暗影部分的面积.(单位:厘米)解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.所以暗影部分面积为:8×8÷2=32平方厘米例14.求暗影部分的面积.(单位:厘米)解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米.例15.已知直角三角形面积是12平方厘米,求暗影部分的面积.分析: 此题比上面的题有必定难度,这是"叶形"的一个半.解: 设三角形的直角边长为r ,则=12,=6 例16.求暗影部分的面积.(单位:厘米)解:[π+π-π]=π(116-36)=40π=125.6平方厘米圆面积为:π÷2=3π.圆内三角形的面积为12÷2=6,暗影部分面积为:(3π-6)×=5.13平方厘米例17.图中圆的半径为5厘米,求暗影部分的面积.(单位:厘米)解:上面的暗影部分以AB为轴翻转后,全部暗影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和.所以暗影部分面积为:5×5÷2+5×10÷2=37.5平方厘米例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求暗影部分的周长.解:暗影部分的周长为三个扇形弧,拼在一路为一个半圆弧,所以圆弧周长为:2×3.14×3÷2=9.42厘米例19.正方形边长为2厘米,求暗影部分的面积.解:右半部分上面部分逆时针,上面部分顺时针扭转到左半部分,构成一个矩形.所以面积为:1×2=2平方厘米例20.如图,正方形ABCD的面积是36平方厘米,求暗影部分的面积.解:设小圆半径为r,4=36, r=3,大圆半径为R ,=2=18,将暗影部分通过动弹移在一路构成半个圆环,所以面积为:π(-)÷2=4.5π=14.13平方厘米例21.图中四个圆的半径都是1厘米,求暗影部分的面积.解:把两头部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为2厘米,所以面积为:2×2=4平方厘米例22. 如图,正方形边长为8厘米,求暗影部分的面积.解法一: 将右边上面一块移至右侧上面,补上空白,则右边为一三角形,右侧一个半圆.暗影部分为一个三角形和一个半圆面积之和.π()÷2+4×4=8π+16=41.12平方厘米解法二: 补上两个空白为一个完好的圆.所以暗影部分面积为一个圆减去一个叶形,叶形面积为:π()÷2-4×4=8π-16所以暗影部分的面积为:π()-8π+16=41.12平方厘米例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中间,如果每个圆的半径都是1厘米,那么暗影部分的面积是多少?解:面积为4个圆减去8个叶形,叶形面积为:π-1×1=π-1所以暗影部分的面积为:4π-8(π-1)=8平方厘米例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆,这四个部分正好合成3个整圆,而正方形中的空白部分合成两个小圆.解:暗影部分为大正方形面积与一个小圆面积之和.为:4×4+π=19.1416平方厘米例25.如图,四个扇形的半径相等,求暗影部分的面积.(单位:厘米)分析:四个空白部分可以拼成一个以2为半径的圆.所以暗影部分的面积为梯形面积减去圆的面积,4×(4+7)÷2-π=22-4π=9.44平方厘米例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中暗影部分的面积.解: 将三角形CEB以B为圆心,逆时针动弹90度,到三角形ABD地位,暗影部分成为三角形ACB 面积减去个小圆面积,为: 5×5÷2-π÷4=12.25-3.14=9.36平方厘米例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求暗影部分的面积.解: 由于2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14平方厘米例28.求暗影部分的面积.(单位:厘米)解法一:设AC中点为B,暗影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5弓形面积为:[π÷2-5×5]÷2=7.125所以暗影面积为:12.5+7.125=19.625平方厘米解法二:右上面空白部分为小正方形面积减去小圆面积,其值为:5×5-π=25-π暗影面积为三角形ADC减去空白部分面积,为:10×5÷2-(25-π)=π=19.625平方厘米例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD 所在圆是以B为圆心,半径为BC的圆,∠CBD=,问:暗影部分甲比乙面积小多少?解: 甲、乙两个部分同补上空白部分的三角形后合成一个扇形BCD,一个成为三角形ABC,此两部分差即为:π×-×4×6=5π-12=3.7平方厘米例30.如图,三角形ABC是直角三角形,暗影部分甲比暗影部分乙面积大28平方厘米,AB=40厘米.求BC的长度.解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米例31.如图是一个正方形和半圆所构成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求暗影部分的面积. 例32.如图,大正方形的边长为6厘米,小正方形的边长为4厘米.求暗影部分的面积.解:连PD、PC转换为两个三角形和两个弓形,两三角形面积为:△APD面积+△QPC面积=(5×10+5×5)=37.5 两弓形PC、PD 面积为:π-5×5所以暗影部分的面积为:37.5+π-25=51.75平方厘米解:三角形DCE的面积为:×4×10=20平方厘米梯形ABCD的面积为:(4+6)×4=20平方厘米从而晓得它们面积相等,则三角形ADF 面积等于三角形EBF 面积,暗影部分可补成圆ABE的面积,其面积为:π÷4=9π=28.26平方厘米例33.求暗影部分的面积.(单位:厘米)解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为(π+π)-6=×13π-6=4.205平方厘米例34.求暗影部分的面积.(单位:厘米)解:两个弓形面积为:π-3×4÷2=π-6暗影部分为两个半圆面积减去两个弓形面积,结果为π+π-(π-6)=π(4+-)+6=6平方厘米例35.如图,三角形OAB是等腰三角形,OBC 是扇形,OB=5厘米,求暗影部分的面积.解:将两个同样的图形拼在一路成为圆减等腰直角三角形[π÷4-×5×5]÷2 =(π-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求阴影部分面积
例1.求阴影部分的面积。
(单位:厘米)
解:这是最基本的方法: 圆面积减去等腰直角三角形的面积,
例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)
例3.求图中阴影部分的面积。
(单位:厘米)
例4.求阴影部分的面积。
(单位:厘米)
例5.求阴影部分的面积。
(单位:厘米)
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?
例7.求阴影部分的面积。
(单位:厘米)
例8.求阴影部分的面积。
(单位:厘米) 厘米
例9.求阴影部分的面积。
(单位:厘米)
例10.求阴影部分的面积。
(单位:厘米)
例11.求阴影部分的面积。
(单位:厘米) 例12.求阴影部分的面积。
(单位:厘米) 例13.求阴影部分的面积。
(单位:厘米) 例14.求阴影部分的面积。
(单位:厘米)
例15.已知直角三角形面积是12平方厘米,求阴影部分的面积。
例16.求阴影部分的面积。
(单位:厘米)
例17.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米) 例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
例19.正方形边长为2厘米,求阴影部分的面积。
米例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
例21.图中四个圆的半径都是1厘米,求阴影部分的面积。
例22. 如图,正方形边长为8厘米,求阴影部分的面积。
例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的面积是多少?
解:面积为4个圆减去8个叶形,叶形面积为:π
-1×1=π-1
所以阴影部分的面积为:4π
-8(π-1)=8平方厘米
例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?
分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切
去
个圆,
这四个部分正好合成3个整圆,而正方形中的空白部分合成两个小圆.
解:阴影部分为大正方形面积与一个小圆面积之和. 为:4×4+π=19.1416平方厘米
例25.如图,四个扇形的半径相等,求阴影部分的面积。
(单位:厘米)
分析:四个空白部分可以拼成一个以2为半径的圆. 所以阴影部分的面积为梯形面积减去圆的面积,
4×(4+7)÷2-
π
=22-4π=9.44平方厘米
例26.如图,等腰直角三角形ABC 和四分之一圆DEB ,AB=5厘米,BE=2厘米,求图中阴影部分的面积。
解: 将三角形CEB 以B 为圆心,逆时针转动90度,到三角形ABD 位置,阴影部分成
为三角形ACB 面积减去个小圆面积,
为: 5×5÷2-
π
÷4=12.25-3.14=9.36平方厘米
例27.如图,正方形ABCD 的对角线AC=2厘米,扇
例28.求阴影部分的面积。
(单位:厘米
)
形ACB是以AC为直径的半圆,扇形DAC是以D 为圆心,AD为半径的圆的一部分,求阴影部分的面积。
解: 因为
2
==4
,所以
=2
以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,
π-2×2÷4+[π÷4-2]
=π
-1+(π-1)
=π-2=1.14平方厘米解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,
三角形ABD的面积为:5×5÷2=12.5
弓形面积
为
:[π
÷2-5×5]÷2=7.125
所以阴影面积
为:12.5+7.125=19.
625平方厘米
解法二:右上面空
白部分为小正方形面积减去小圆面积,其值为:
5×5-π=25-π
阴影面积为三角形ADC减去空白部分面积,为:10×5÷2-(25-π)=π=19.625平方厘米
例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B 为圆心,半径为BC的圆,∠CBD=,问:阴影部分甲比乙面积小多少?
解: 甲、乙两个部分同补
上空白部分的三角形后合
成一个扇形BCD,一个成
为三角形ABC,
此两部分差即为:
π×
-×4×6=
5π-12=3.7平方厘米例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。
求BC的长度。
解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则
40X÷2-π÷2=28
所以40X-400π=56 则X=32.8厘米
例31.如图是一个正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积。
解:连PD、PC转换
为两个三角形和两个
弓形,
两三角形面积例32.如图,大正方形的边长为6厘米,小正方形的边长为4厘米。
求阴影部分的面积。
解:三角形DCE的面积为:×4×10=20平方厘米
梯形ABCD的面积为:(4+6)×4=20平方厘米从而知道它们面积相等,则三角形ADF面积等于三
角形EBF 面积,阴影部分可补成圆ABE
的面积,
为:△APD面积+△QPC面积=(5×10+5×5)=37.5 两弓形PC、PD 面积为:π-5×5
所以阴影部分的面积为:37.5+π-25=51.75平方厘米其面积为:
π÷4=9π=28.26平方厘米
例33.求阴影部分的面积。
(单位:厘米)
解:用大圆的面积减去长方形面
积再加上一个以2为半径的圆
ABE面积,为
(π
+π)-6
=×13π-6
=4.205平方厘米例34.求阴影部分的面积。
(单位:厘米)
解:两个弓形面积为:π-3×4÷2=π-6 阴影部分为两个半圆面积减去两个弓形面积,结果为
π+π-
(π-6)=π(4+-)+6=6平方厘米
例35.如图,三角形OAB是等腰三角形,OBC是扇形,OB=5厘米,求阴影部分的面积。
解:将两个同样的图形
拼在一起成为圆减等
腰直角三角形
[π÷4-×5×5]÷2
=(π-)÷2=3.5625平方厘米。