常州工学院概率统计考试试题GL试卷4

合集下载

概率统计考试题及答案(精编文档).doc

概率统计考试题及答案(精编文档).doc

【最新整理,下载后即可编辑】湖北汽车工业学院概率论与数理统计考试试卷(2015~2016~1)一、(本题满分24,每小题4分)单项选择题(请把所选答案填在答题卡指定位置上): 【C 】1.已知A 与B 相互独立,且0)(>A P ,0)(>B P .则下列命题不正确的是)(A )()|(A P B A P =. )(B )()|(B P A B P =.)(C )(1)(B P A P -=. )(D )()()(B P A P AB P =. 【B 】2.已知随机变量X 的分布律为则)35(+X E 等于)(A 8. )(B 2. )(C 5-. )(D 1-.【A 】3.设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ,而 }5{},4{21+≥=-≤=μμY P p X P p ,则)(A 对任何实数μ,都有21p p =. )(B 对任何实数μ,都有21p p <.)(C 只对μ的个别值,才有21p p =. )(D 对任何实数μ,都有21p p >.【C 】4.在总体X 中抽取样本,,,321X X X 则下列统计量为总体均值μ的无偏估计量的是)(A 3213211X X X ++=μ. )(B2223212X X X ++=μ.)(C 3333213X X X ++=μ.)(D 4443214X X X ++=μ.【D 】5. 设)(~n t X ,则~2X)(A )(2n χ.)(B )1(2χ. )(C )1,(n F . )(D ),1(n F .【B 】6.随机变量)1,0(~N X ,对于给定的()10<<αα,数αu 满足αα=>)(u u P ,若α=<)(c X P ,则c 等于)(A 2αu . )(B 2)1(α-u . )(C α-1u . )(D 21α-u . 二、(本题满分24,每小题4分)填空题(请把你认为正确的答案填在答题卡指定位置上): 1. 设样本空间{},2,3,4,5,61=Ω,{},21=A ,{},32=B ,{},54=C ,则=)(C B A {},3,4,5,61.2. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门都不及格的占3%。

2024年概率论与数理统计试卷参考答案与评分标准

2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。

《概率论与数理统计》考试试卷

《概率论与数理统计》考试试卷

填空题(每空2分, 2×12=24分)1、 设 A.B.C 为三事件, 事件 A.B.C 恰好有两个事件发生可表示为__________________。

2、 已知 =0.5, =0.3, =0.6, 则 =__________________。

3、 设 , 则 的密度函数为____________________。

4、 设 服从区间 上的均匀分布, 则 ______________, _______________。

5、 设 是X 的一个随机样本, 则样本均值 _______________, 且 服从的分布为_____________________。

6、 若二维连续型随机变量密度函数为 , 则 。

7、 总体 且 已知, 用样本检验假设 时, 采用统计量_________________________。

8、 评选估计量的标准有_______________、_____________和一致性。

9、 切贝雪夫不等式应叙述为_______________判断题(每小题2分, 2×8=16分)1、 互不相容的随机事件一定相互独立。

( )2、 若连续型随机变量 的概率密度为 , 则 。

( )3、 二维随机变量的边缘分布可以确定联合分布。

( )4、 对于任意随机变量 , 有 。

( )5、 不相关的两个随机变量一定是相互独立的。

( )6、 对任意随机变量 , 若 存在, 则 。

( )7、 若 , 则 。

( )若 , , 密度函数分别为 及 , 则 。

( )概率计算题(每题10分, 4×10=40分)在1-2000的整数中随机地取一个数, 问取到的整数即不能被4整除又不能被6整除的概率是多少? (10分)设两台车床加工同样的零件, 第一台车床的优质品率为0.6, 第二台车床的优质品率为0.9, 现把加工的零件放在一起, 且已知第一台加工的零件比第二台加工的零件多一倍, 求: (1)从产品中任取一件是优质品的概率。

(完整版)概率论与数理统计试卷与答案

(完整版)概率论与数理统计试卷与答案

《概率论与数理统计》课程期中试卷班级 姓名 学号____________ 得分注意:答案写在答题纸上,标注题号,做在试卷上无效。

考试不需要计算器。

一、选择题(每题3分,共30分)1. 以A 表示事件“泰州地区下雨或扬州地区不下雨”,则其对立事件A :( ) A .“泰州地区不下雨” B .“泰州地区不下雨或扬州地区下雨” C .“泰州地区不下雨,扬州地区下雨” D .“泰州、扬州地区都下雨”2. 在区间(0,1)中任取两个数,则事件{两数之和小于25}的概率为( ) A .225 B .425 C .2125 D .23253. 已知()0.7P A =,()0.5P B =,()0.3P A B -=,则(|)P A B =( ) A .0.5 B . 0.6 C .0.7 D . 0.84. 设()F x 和()f x 分别是某随机变量的分布函数和概率密度,则下列说法正确的是( ) A .()F x 单调不增 B . ()()xF x f t dt -∞=⎰C .0()1f x ≤≤D .() 1 F x dx +∞-∞=⎰.5. 设二维随机变量(,)X Y 的概率分布为已知随机事件{X = A . a=0.2,b=0.3 B . a=0.4,b=0.1 C . a=0.3,b=0.2 D . a=0.1,b=0.4 6. 已知()0.7P A =,()0.5P B =,(|)0.8P A B =,则()P A B -=( ) A .0.1 B . 0.2 C .0.3 D . 0.47. 设两个随机变量X 和Y 相互独立且同分布:{}{}1112P X P Y =-==-=,{}{}1112P X P Y ====,则下列各式成立的是( ) A .{}12P X Y ==B {}1P X Y ==C .{}104P X Y +==D .{}114P XY == 8. 设随机变量~(2,),~(3,),X B p Y B p 若19{1}27P Y ≥=,则{1}P X ≥= ( ) A .13 B .23 C .49D .599. 连续随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,)(x x x x x f ,则随机变量X 落在区间 (0.4, 1.2) 内的概率为( )A .0.42B .0.5C .0.6D .0.64 10. 将3粒红豆随机地放入4个杯子,则杯子中盛红豆最多为一粒的概率为( ) A .332B .38C .116D .18二、填空题(每题4分,共20分)11. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = . 12. 设随机变量X 服从参数为1的泊松分布,则{3}P X == . 13. 某大楼有4部独立运行的电梯,在某时刻T ,各电梯正在运行的概率均为43,则在此时刻恰好有1个电梯在运行的概率为 .14. 某种型号的电子的寿命X (以小时计)的概率密度210001000()0x f x x ⎧>⎪=⎨⎪⎩其它任取1只,其寿命大于2500小时的概率为 .15. 设随机变量X 的分布函数为:0(1),0.2(12),()0.5(23),1(3).x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≤⎩当时当时当时当时则 X 的分布律为 . 三、解答题(每题10分,共50分)16. 已知0.30.40.5+P A P B P AB P A A B ===()()()(|),,,求17. 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i i X i ⎧=⎨⎩第次取出红球第次取出白球,1,2i =. 在不放回模式下求12,X X 的联合分布律, 并考虑独立性(要说明原因).18. 某工厂有两个车间生产同型号家用电器,第1车间的次品率为0.15,第2车间的次品率为0.12.两个车间生产的成品都混合堆放在一个仓库中,假设1、2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提台产品,求该产品合格的概率.19. 设某城市成年男子的身高()2~170,6X N (单位:cm )(1)问应如何设计公交车车门高度,使得男子与车门碰头的概率小于0.01? (2)若车门高为182cm ,求100个成年男子中没有人与车门顶碰头的概率. ( 2.330.9920.9772Φ=Φ=(),())20. 已知随机变量(,)X Y 的分布律为问:(1)当,αβ为何值时,X 和Y 相互独立;(2)在上述条件下。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

概率论与数理统计试卷及参考答案

概率论与数理统计试卷及参考答案

概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。

2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。

3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。

4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。

5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。

二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。

做不放回抽取,每次取一只,求第三次才取到次品的概率。

解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。

解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。

概率统计模仿试题1-4解答

概率统计模仿试题1-4解答

模拟试题(一)参考答案一.单项选择题(每小题2分,共16分)1.设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立(C) 0)(0)(==B P A P 或(D) AB 未必是不可能事件解 若AB 为零概率事件,其未必为不可能事件.本题应选D.2.设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( )(A) )1(3p - (B) 3)1(p - (C) 31p - (D) 213)1(p p C -解 所求事件的对立事件为“3次都不成功”,其概率为3p ,故所求概率为31p -.若直接从正面去求较为麻烦.本题应选C.3.若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续解 由连续型随机变量概率密度的定义可知,)(x f 是定义在),(+∞-∞上的非负函数,且满足⎰∞+∞-=1d )(x x f ,所以A 一定成立.而其它选项不一定成立.例如服从]21,31[上的均匀分布的随机变量的概率密度⎪⎩⎪⎨⎧≤≤=其他,0,2131,6)(x x f在31=x 与21=x 处不连续,且在这两点的函数值大于1.因而本题应选A. 4.若随机变量X 的概率密度为)( 21)(4)3(2+∞<<-∞=+-x ex f x π,则=Y ( ))1,0(~N(A)23+X (B)23+X (C)23-X (D)23-X 解 X 的数学期望3-=EX ,方差2=DX ,令23+=X Y ,则其服从标准正态分布.故本题应选A.5.若随机变量Y X ,不相关,则下列等式中不成立的是( ) (A) 0),cov(=Y X (B) DY DX Y X D +=+)((C) DY DX DXY ⋅=(D) EY EX EXY ⋅=解 因为0=ρ,故0),cov(=⋅=DY DX Y X ρ,DY DX Y X DY DX Y X D +=++=+),cov(2)(, 但无论如何,都不成立DY DX DXY ⋅=.故本题应选C.6.设样本n X X X ,,,21⋅⋅⋅取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( ) (A) )1,0(~N X(B) )1,0(~N Xn(C))(~212n X ni i χ∑=(D))1(~-n t SX解 )1,0(~nN X ,),0(~n N X n ,)1(~-⋅n t S X n ,只有C 选项成立.本题应选C. 7.样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量(A)∑=ni iX1(B) X(C) )46(1.01n X X +(D) 321X X X -+解 由无偏估计量的定义计算可知,∑=ni iX1不是无偏估计量,本题应选A.8.在假设检验中,记0H 为待检假设,则犯第一类错误指的是( ) (A) 0H 成立,经检验接受0H (B) 0H 成立,经检验拒绝0H (C) 0H 不成立,经检验接受0H (D) 0H 不成立,经检验拒绝0H解 弃真错误为第一类错误,本题应选B.二.填空题(每空2分,共14分)1.同时掷三个均匀的硬币,出现三个正面的概率是________,恰好出现一个正面的概率是________. 解81;83. 2.设随机变量X 服从一区间上的均匀分布,且31,3==DX EX ,则X 的概率密度为________. 解 设],[~b a X ,则,3112)( ,322=-==+=a b DX b a EX 解得2=a , 4=b , 所以X 的概率密度为⎪⎩⎪⎨⎧≤≤=.0,42,21)(其他x x f3.设随机变量X 服从参数为2的指数分布,Y 服从参数为4的指数分布,则=+)32(2Y X E ________.解 472])([232)32(222=++=+=+EY EX DX EY EX Y X E . 4.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式,有≤≥+}6|{|Y X P ________.解 根据切比雪夫不等式,12136),(26)(}6|{|2=++=+≤≥+Y X Cov DY DX Y X D Y X P .5.假设随机变量X 服从分布)(n t ,则21X服从分布________(并写出其参数). 解 设)(~n t nZY X =,其中)1,0(~N Y ,)(~2n Z χ,且)1(~22χY ,从而)1,(~122n F Y n ZX =. 6.设n X X X ,,,21 )1(>n 为来自总体X 的一个样本,对总体方差DX 进行估计时,常用的无偏估计量是________.解 ∑=--=ni i X X n S 122)(11. 三.(本题6分)设1.0)(=A P ,9.0)|(=A B P ,2.0)|(=A B P ,求)|(B A P . 解 由全概率公式可得27.02.09.09.01.0)|()()|()()(=⋅+⋅=+=A B P A P A B P A P B P .31)()|()()()()|(===B P A B P A P B P AB P B A P .四.(本题8分)两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02.加工出来的零件放在一起.又知第一台加工的零件数是第二台加工的零件数的2倍.求:(1) 任取一个零件是合格品的概率,(2) 若任取一个零件是废品,它为第二台车床加工的概率.解 设21,A A 分别表示第一台,第二台车床加工的零件的事件.B 表示产品是合格品的事件. (1) 由全概率公式可得973.098.03197.032)|()()|()()(2211≈⋅+⋅=+=A B P A P A B P A P B P . (2) 247.0973.0102.031)()|()()()()|(2222≈-⋅===B P A B P A P B P B A P B A P . 五.(本题14分)袋中有4个球分别标有数字1,2,2,3,从袋中任取一球后,不放回再取一球,分别以Y X ,记第一次,第二次取得球上标有的数字,求:(1) ) ,(Y X 的联合分布; (2) Y X ,的边缘分布; (3) Y X ,是否独立;(4) )(XY E .解 (1) YX 1 2 3 1 061 121 2 61 61 613121 610 (2)41)1(==X P ,21)2(==X P ,41)3(==X P .41)1(==Y P ,21)2(==Y P ,41)3(==Y P .(3)因为)1()1(1610)1,1(===≠===Y P X P Y X P ,故Y X ,不独立.(4)613261226112121316121)(⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=XY E 612312113⋅⋅+⋅⋅+623=. 六.(本题12分)设随机变量X 的密度函数为)( e )(||2+∞<<-∞=-x Ax x f x ,试求:(1) A 的值; (2) )21(≤<-X P ; (3) 2X Y =的密度函数. 解 (1) 因⎰∞+∞-x x f d )(⎰∞+-===0214d e 2A x x A x ,从而41=A ; (2) ⎰⎰⎰---+==≤<-20201221d e 41d e 41d )()21(x x x x x x f X P xx 12e 45e 251----=;(3) 当0≤y 时,0)(=y F Y ;当0≤y 时,)()()()(2y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,所以,两边关于y 求导可得,.4121412141)(y yy Y e y ye y y e y yf ---⋅=-⋅⋅-⋅⋅= 故Y 的密度函数为⎪⎩⎪⎨⎧>⋅≤=-.0,41,0,0)(y e y y y f yY 七.(本题6分)某商店负责供应某地区1000人商品,某种产品在一段时间内每人需用一件的概率为0.6.假定在这段时间,各人购买与否彼此无关,问商店应预备多少件这种商品,才能以%7.99的概率保证不会脱销?(假定该商品在某一段时间内每人最多买一件).解 设⎩⎨⎧=人购买该种商品第人不购买该种商品第i i X i ,1,,0(1000,,2,1 =i ),X 表示购买该种商品的人数,则)6.0,1000(~B X .又设商品预备n 件该种商品,依题意,由中心极限定理可得)240600240600()()(-≤-=-≤-=≤n X P DXEX n DX EX X P n X P997.0)240600(=-Φ≈n .查正态分布表得75.2240600=-n ,解得6436.642≈=n 件.八.(本题10分)一个罐内装有黑球和白球,黑球数与白球数之比为R . (1) 从罐内任取一球,取得黑球的个数X 为总体,即⎩⎨⎧=白球,,黑球,,01X 求总体X 的分布;(2) 从罐内有放回的抽取一个容量为n 的样本n X X X ,,,21 ,其中有m 个白球,求比数R 的最大似然估计值.解(1) X 1 0 PR R +1 R+11即R R R R R x X P xxx+=⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛+==-1111)(1 )1,0(=x ; (2)nx ni i iR R x XP R L i)1()()(1+∑===∏=,两边取对数,)1ln()(ln R n x R R L i +-∑=,两边再关于R 求导,并令其为0,得011=+-∑R nx i , 从而∑∑-=ii x n xR ˆ,又由样本值知,m n x i-=∑,故估计值为1ˆ-=m n R . 九.(本题14分)对两批同类电子元件的电阻进行测试,各抽6件,测得结果如下(单位:Ω):批:0.140,0.138,0.143,0.141,0.144,0.137;B 批:0.135,0.140,0.142,0.136,0.138,0.141.已知元件电阻服从正态分布,设05.0=α,问:(1) 两批电子元件的电阻的方差是否相等? (2) 两批电子元件的平均电阻是否有显著差异? (2281.2)10(025.0=t ,15.7)5,5(025.0=F )解 (1) 2221122210 σσσσ≠=:,:H H .检验统计量为2221S S F =)5 ,5(~F (在0H 成立时),由05.0=α,查得临界值15.7)5 ,5(025.02/==F F α,15.712/1=-αF . 由样本值算得962.00000078.00000075.0==F ,由于2/2/1ααF F F <<-,故不能拒绝10H ,即认为两批电子元件的电阻的方差相等.(2) 211210 μμμμ==:,:H H . 统计量62221SS YX T +-=)10(~t (在0H 成立时),查表得临界值228.2)10(025.02/==t t α.再由样本值算得148.160000078.00000075.0139.01405.0=+-=T ,因为2/||αt T <,故接收0H .即认为两批电子元件的平均电阻无显著差异.模拟试题(二)参考答案一.单项选择题(每小题2分,共16分)1.设C , ,B A 表示3个事件,则C B A 表示( ) (A) C , ,B A 中有一个发生(B) C , ,B A 中不多于一个发生(C) C , ,B A 都不发生 (D) C , ,B A 中恰有两个发生 解 本题应选C. 2.已知)(,61)|(,31)()(B A P B A P B P A P 则====( ). (A) 187 (B) 1811 (C) 31 (D) 41解 181)|()()(==A B P A P AB P ,187)()()(1)(1)()(=+--=-==AB P B P A P B A P B A P B A P . 故本题应选A.3.设两个相互独立的随机变量X 与Y 分别服从正态分布)1,0(N 和)1,1(N ,则( )(A) 21}0{=≤+Y X P (B) 21}1{=≤+Y X P (C) 21}0{=≤-Y X P (D) 21}1{=≤-Y X P解 )2,1(~N Y X +,)2,1(~--N Y X ,故本题应选B.4.设X 与Y 为两随机变量,且6.0,1,4===XY DY DX ρ,则=-)23(Y X D ( ) (A) 40 (B) 34 (C) 25.6 (D) 17.6解 2.1),cov(=⋅=DY DX Y X XY ρ,6.25),cov(1249)23(=-+=-Y X DY DX Y X D .故本题应选C.5.若随机变量X 服从参数为λ的泊松分布,则2X 的数学期望是( )(A) λ(B)λ1 (C) 2λ (D) λλ+2 解 222)(λλ+=+=EX DX EX ,本题应选D.6.设n X X X ,,,21 是来自于正态总体),(2σμN 的简单随机样本,X 为样本方差,记∑=--=n i i X X n S 122)(111 ∑=-=n i i X X n S 1222)(1 ∑=--=n i i X n S 1223)(11μ ∑=-=n i i X n S 1224)(1μ 则服从自由度为1-n 的t 分布的随机变量是( )(A) 1/1--=n S X t μ(B) 1/2--=n S X t μ(C) 1/3--=n S X t μ(D) 1/4--=n S X t μ解 ),(~2nN X σμ,)1(~)(1122--∑=n t X Xni iσ,再由t 分布的定义知,本题应选B.7.设总体X 均值μ与方差2σ都存在,且均为未知参数,而,,,21 X X n X 是该总体的一个样本,X 为样本方差,则总体方差2σ的矩估计量是( )(A) X (B) ∑=-n i i X n 12)(1μ(C) ∑=--n i i X X n 12)(11 (D) ∑=-n i i X X n 12)(1 解 本题应选D.8.在假设检验时,若增大样本容量,则犯两类错误的概率( ) (A) 都增大 (B) 都减小(C) 都不变 (D) 一个增大一个减小 解 本题应选B.二.填空题(每空2分,共14分)1.设10件产品中有4件不合格品,从中任取2件,已知所取2件中有1件是不合格品,则另外1件也是不合格品的概率为________.解 设A 表示两件中有一件不合格品,B 表示两件都是不合格品.则所求的极限为51)()()()()|(===A PB P A P AB P A B P2.设随机变量X 服从)8.0 ,1(B 分布,则X 的分布函数为________.解 X 服从0-1分布,其分布函数为⎪⎩⎪⎨⎧≥<≤<=.11,10,2.0,0,0)(x x x x f3.若随机变量X 服从均值为2,方差为2σ的正态分布,且6.0}40{=<<X P ,则}0{<X P =________.解 2=μ,即其密度函数关于2=x 对称.由对称性知2.026.01}0{=-=<X P . 4.设总体X 服从参数为p 的0-1分布,其中)10(<<p p 未知.现得一样本容量为8的样本值:0,1,0,1,1,0,1,1,则样本均值是________,样本方差是________.解 由定义计算知85=X ;56152=S . 5.设总体X 服从参数为λ的指数分布,现从X 中随机抽取10个样本,根据测得的结果计算知27101=∑=i ix,那么λ的矩估计值为________.解 27101ˆ==Xλ.6.设总体) ,(~2σμN X ,且2σ未知,用样本检验假设00μμ=:H 时,采用的统计量是________. 解 )1(~0--=n t nSX T μ (0H 为真时).三.(本题8分)设有三只外形完全相同的盒子,Ⅰ号盒中装有14个黑球,6个白球;Ⅱ号盒中装有5个黑球,25个白球;Ⅲ号盒中装有8个黑球,42个白球.现在从三个盒子中任取一盒,再从中任取一球,求:(1)取到的球是黑球的概率;(2)若取到的是黑球,它是取自Ⅰ号盒中的概率.解 设321,,A A A 分别表示从第Ⅰ,Ⅱ,Ⅲ号盒中取球,B 表示取到黑球. (1) 由全概公式可得≈⋅+⋅+⋅==∑=5083130531201431)|()()(31i i i A B P A P B P 0.342; (2) 由贝叶斯公式得≈=)()|()()|(111B P A B P A P B A P 0.682.四.(本题6分)设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,,,,002cos 21)(πx x x f , 对X 独立地重复观察4次,用Y 表示观察值大于3π地次数,求2Y 的数学期望. 解 21d 2c o s 21)3(3==>⎰πππx x X P ,)21,4(~B Y ,从而 5)(22=+=EY DY EY .五.(本题12分) 设),(Y X 的联合分布律为YX 0 1 2 1 0.1 0.05 0.35 2 0.3 0.1 0.1 问:(1) Y X ,是否独立;(2) 计算)(Y X P =的值;(3) 在2=Y 的条件下X 的条件分布律. 解 (1) 因为)0()1(4.05.02.01.0)0,1(===⋅=≠===Y P X P Y X P , 所以Y X ,不独立; (2) 15.01.005.0)2,2()1,1()(=+===+====Y X P Y X P Y X P ;(3) 9745.035.0)2()2,1()2|1(========Y P Y X P Y X P ,92971)2|2(=-===Y X P .六.(本题12分)设二维随机变量) ,(Y X 的概率密度为⎩⎨⎧≤≤≤=,,0,10,12),(2其他x y y y x f 求:(1) X 的边缘密度函数)(x f X ;(2) )(XY E ; (3) )1(>+Y X P . 解 (1)⎩⎨⎧≤≤⎪⎩⎪⎨⎧=≤≤==⎰⎰∞+∞-.,0,104,0,10,d 12d ),()(302其他其他x xx y y y y x f x f x X(2) 21d 12d )(0310==⎰⎰y xy x XY E x ;(3) ==>+⎰⎰-y y x Y X P x x d 12d )1(1212187.七.(本题6分)一部件包括10部分,每部分的长度是一个随机变量,它们相互独立,且服从同一均匀分布,其数学期望为2mm,均方差为0.05,规定总长度为)1.020(±mm 时产品合格,试求产品合格的概率.解 设i X 表示第i 部分的长度,10,,2,1 =i ,X 表示部件的长度.由题意知2=i EX ,0025.0=i DX ,且∑==101i i X X ,20=EX ,025.0=DX .由独立同分布的中心极限定理知,产品为合格品的概率为)025.01.0|025.020(|)1.0|20(|≤-=≤-X P X P4714.01)025.01.0(2=-Φ=. 八.(本题7分)设总体X 具有概率密度为⎪⎩⎪⎨⎧>-=--,,0,0,e )!1()(1其他x x k x f x k k θθ 其中k 为已知正整数,求θ的极大似然估计.解 设n X X X ,,,21 是来自总体X 的样本,当0,,,21>n x x x 时,似然函数∑-===-=-=∑∏ni ix ni k innkni i xk x f L 1e])!1[()()(111θθθ,两边取对数,∑-+--===-∑ni i ni k ix x k n nk L 111ln )!1ln(ln )(ln θθθ,关于θ求导,并令其为0,得0)(ln 1=∑-==ni i x nkL θθ,从而解得θ的极大似然估计为XkX nkni i=∑==1ˆθ. 九.(本题14分)从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均数及样本方差如下:东支:230.01=x ,1337.021=n s , )9(1=n 西支:269.02=x ,1736.022=n s , )8(2=n 若东、西两支矿脉的含锌量都服从正态分布,问东、西两支矿脉含锌量的平均值是否可以看作一样?)05.0(=α53.4)7 ,8( (025.0=F ,90.4)8 ,7(025.0=F ,) 1315.2)15(0025.0=t解 本题是在未知方差,又没有说明方差是否相等的情况下,要求检验两总体均值是否相等的问题,故首先必须检验方差是否相等,在相等的条件下,检验总体均值是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,接受0H ,即可认为东、西两支矿脉含锌量的平均值相等.(请参见模拟试题(一)第九大题)十.(本题5分) 设总体X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,0,3)(23其它θθx x x f其中θ为未知参数,n X X X ,,,21 为来自总体X 的样本,证明:X 34是θ的无偏估计量.证明 ⎰∞+∞-===x x xf EX X E X E d )(343434)34(θθθ==⎰033d 334x x ,故X 34是 的无偏估计量.模拟试题(三)参考答案一.填空题(每小题2分,共14分)1.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8180,则该射手的命中率为 .解 设A 表示一次射击中击中目标,依题意,四次都没击中的概率为81801)(4-=A P ,解得31)(=A P ,从而射手的命中率为32)(=A P . 2.若事件A ,B 独立,且p A P =)(,q B P =)(则=+)(B A P . 解 pq p B P A P B P A P B A P +-=-+=1)()()()()( .3.设离散型随机变量X 服从参数为λ(0>λ)的泊松分布,已知==)1(X P )2(=X P ,则λ= .解 )2(e 2e)1(2=====--X P X P λλλλ,从而解得2=λ.4.设相互独立的两个随机变量X ,Y 具有同一分布律,且X 的分布律为:X 0 1P 21 21则随机变量},max{Y X Z =的分布律为 . 解 Z 的可能取值为0,1.412121)0()0()0,0()0(=⋅========Y P X P Y X P Z P .43411)1(=-==Z P .5.设随机变量X ,Y 的方差分别为25=DX ,36=DY ,相关系数4.0=XY ρ,则),(Y X Cov = .解 12),cov(=⋅=DY DX Y X XYρ.6.设总体X 的期望值μ和方差2σ都存在,总体方差2σ的无偏估计量是21)(∑=-n i i X X n k ,则=k .解 1-=n n k . 7.设总体),(~2σμN X ,μ未知,检验2020σσ=H :,应选用的统计量是 .解)1(~)(2212--∑=n X Xni iχσ (0H 为真时)二 .单项选择题(每小题2分,共16分)1.6本中文书和4本外文书任意往书架上摆放,则4本外文书放在一起的概率为( ) (A)!10!6!4 (B)107 (C)!10!7!4 (D)104 解 本题应选C.2.若事件B A ,相互独立,则下列正确的是( ) (A) =)|(A B P )|(B A P (B) =)|(A B P )(A P (C) )|(B A P )(B P =(D) =)|(B A P )(1A P -解 由独立性的定义知,==)()|(A P B A P )(1A P -,故本题应选D.3.设随机变量X 服从参数为n ,p 的二项分布,且6.1=EX ,28.1=DX ,则n ,p 的值为( ) (A) n =8,p =2.0 (B) n =4,p =4.0 (C) n =5,p =32.0(D) n =6,p =3.0解 由6.1=np ,28.1)1(=-p np ,解得n =8,p =2.0,本题应选A.4.设随机变量X 服从正态分布)1,2(N ,其概率密度函数为)(x f ,分布函数为)(x F ,则有( ) (A) =≥)0(X P =≤)0(X P5.0 (B) =≥)2(X P =≤)2(X P 5.0 (C) )(x f =)(x f -,),(∞+-∞∈x (D) =-)(x F -1)(x F , ),(∞+-∞∈x解 2=EX ,故其密度函数关于2=x 对称,故本题应选B.5.如果随机变量X 与Y 满足:)(Y X D +)(Y X D -=,则下列式子正确的是( ) (A) X 与Y 相互独立 (B) X 与Y 不相关 (C) 0=DY(D) 0=⋅DY DX解 由)(Y X D +)(Y X D -=,可得0),cov(=Y X ,从而可知X 与Y 不相关,故本题应选B.6.设n X X X ,,,21 是来自总体),(~2σμN X 的样本,X 为样本均值,令=Y 212)(σ∑=-ni iX X,则~Y ( )(A) )1(2-n χ (B) )(2n χ (C) ),(2σμN (D)),(2nN σμ解 本题应选A.7.设n X X X ,,,21 是取自总体),0(2σN 的样本,可以作为2σ的无偏估计量的统计量是( )(A) ∑=n i i X n 121 (B) ∑=-n i i X n 1211 (C) ∑=n i i X n 11 (D)∑=-ni i X n 111 解 由无偏估计的定义及期望的性质知,2221212)(1)1(σ==+===∑∑==DX EX DX EX EX n X n E ni i n i i ,故A 选择正确,同理验算其他选项,B,C,D 均不正确.故本题应选A.8.样本n X X X ,,,21 来自正态总体),(2σμN ,若进行假设检验,当( )时,一般采用统计量nS X t /0μ-=(A) μ未知,检验2σ=20σ (B) μ已知,检验2σ=20σ (C) 2σ未知,检验 μ=0μ(D) 2σ已知,检验μ=0μ解 本题应选C. 三.(本题8分)有两台车床生产同一型号螺杆,甲车床的产量是乙车床的5.1倍,甲车床的废品率为%2,乙车床的废品率为%1,现随机抽取一根螺杆检查,发现是废品,问该废品是由甲车床生产的概率是多少?解 设21,A A 分别表示螺杆由甲,乙车床生产的事件.B 表示螺杆是废品的事件.由贝叶斯公式可得)|()()|()()|()()|(2211111A B P A P A B P A P A B P A P B A P +=75.001.05202.05302.053=⋅+⋅⋅=. 四.(本题8分)假设一部机器在一天内发生故障的概率为2.0,机器发生故障时全天停止工作.若一周五个工作日里无故障,可获利润10万元,发生一次故障获利润5万元,发生两次故障获利润0万元,发生三次或三次以上故障就要亏损2万元,问一周内期望利润是多少?解 设X 表示一周中所获的利润,其分布律为:X 0 5 10 P 548.08.02.051-⋅⋅- 48.02.05⋅⋅ 58.0从而由期望的定义计算可得216.5=EX .五.(本题12分)1.设随机向量X ,Y 的联合分布为:X Y 1 2 31 0 61 1212 61 61 613 121 61(1) 求X ,Y 的边际分布;(2) 判断X ,Y 是否独立. 解 (1) X 的边际分布为: Y 的边际分布为:X 1 2 3 Y 1 2 3P 41 21 41 P 41 21 41(2) X 与Y 不相互独立.2.设随机变量),(Y X 的联合密度函数为:),(y x f =⎩⎨⎧<<-其他,,,,00e y x y求概率)1(≤+Y X P .解 ==≤+⎰⎰--y x Y X P x xy d e d )1(1210211e2e 1---+.六.(本题8分)设连续型随机变量X 的分布函数为:=)(x F ⎪⎩⎪⎨⎧≤>+-,,,,000e 22x x B A x 求: (1) 系数A 及B ;(2) 随机变量X 的概率密度; (3) )9ln 4ln (≤≤X P .解 (1) 由分布函数的性质知1)e(lim )(22==+=+∞-+∞→A B A F x x ,)0(0)e(lim )(lim 202F B A B A x F x x x ==+=+=-→→++,从而1-=B ;(2) 分布函数的导数即为其概率密度,即)(x f =⎪⎩⎪⎨⎧≤>-000e 22x x x x ,,,(3) 61)4ln ()9ln ()9ln 4ln (=-=≤≤F F X P . 七.(本题8分)设n X X X ,,,21 为总体X 的一个样本,X 的概率密度为:)(x f =⎪⎩⎪⎨⎧≤≤-其他,,,,0101x x θθ其中0>θ,求未知参数θ的矩估计量与极大似然估计量.解 令X x x EX =+==⎰1d 10θθθθ,从而解得θ的矩估计量为2)1(XX -=θ. 极大似然估计为:∑∑==+=ni ini iXX n 11ln ln θ.(具体做法类似与模拟试卷二第八题)八.(本题10分)设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为5.66分,标准差为15分,问在显著水平05.0下,是否可认为全体考生的平均成绩为70分?解 假设0H :70=μ,选取统计量ns X T /μ-=)1(~-n t , (0H 为真时)在05.0=α下,查t 分布的双侧临界值表知0301.2025.0=t . 另一方面,计算统计量的值0301.24.136/15705.66||<=-=T ,从而接受原假设,即可认为全体考生的平均成绩为70分.九.(本题12分)两家银行分别对21个储户和16个储户的年存款余额进行抽样调查,测得其平均年存款余额分别为x =2600元和y =2700元,样本标准差相应地为811=S 元和1052=S 元,假设年存款余额服从正态分布,试比较两家银行的储户的平均年存款余额有无显著差异?(10.0=α)解 此题要求检验21μμ=,由于t 检验必须在方差相等的条件下进行,因此必须先检验21σ与22σ是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,拒绝0H ,即两家银行的储户的平均年存款余额有显著差异.(请参见模拟试题(一)第九大题)十.(本题4分)设总体X 服从参数为λ的泊松分布,λ为未知参数,⎩⎨⎧-=为偶数,,为奇数,,X X X T 11)(证明:)(X T 是λ2-e的一个无偏估计量.证明 ∑∞===0)()()]([x x X P x T TX T E∑∞=-=0!)(x xex x T λλ=-=∑∞=-0!)1(n nne n λλλ2-e ,所以)(X T 是λ2-e的一个无偏估计量.模拟试题(四)参考答案一.填空题(每小题2分,共20分)1.设)(A P =0.4,)(B P =0.5.若,7.0)(=B A P 则=+)(B A P . 解 55.0)|()()()()(=-+=+B A P B P B P A P B A P2.若随机变量X 服从二项分布,即)1.0,5(~B X ,则=-)21(X D .解 8.19.01.0544)21(=⋅⋅⋅==-DX X D . 3.三次独立重复射击中,若至少有一次击中的概率为6437,则每次击中的概率为 . 解43. 4.设随机变量X 的概率密度是:⎩⎨⎧<<=,,0,10,3)(2其他x x x f 且,784.0)(=≥a X P 则=a .解 由784.0)(=≥a X P 知,10<<α.故,784.01d 3)(132⎰=-==≥ααx x a X P 从而6.0=α. 5.利用正态分布的结论,有:=+-⎰∞+∞---x x x x d e )44(212)2(22π .解 令t x =-2,则原式1)(d e212222=+==⎰∞+∞--EX DX t t t π,这里)1,0(~N X .6.设总体X 的密度函数为:⎩⎨⎧<<=-,,0,10,)(1其他x x x f αα)0(>αα为参数其中,n x x x ,,,21 是来自总体X 的样本观测值,则样本的似然函数=);,,,(21αn x x x L .解 ∏=-ni i nx 11αα.7.设X ,Y 是二维随机向量,DX ,DY 都不为零,若有常数0>a 与b 使1)(=+-=b aX Y P ,这时X 与Y 是 关系.解 完全相关.8.若),(~2σμN X ,n X X X ,,,21 是来自总体X 的样本,2,S X 分别为样本均值和方差,则SnX )(μ-服从 分布.解 )1(-n t .9.设),(~211σμN X ,),(~222σμN Y ,X 与Y 相互独立.从X ,Y 中分别抽取容量为21,n n 的样本,样本均值分别为Y X ,,则Y X -服从分布 .解 ),(22212121n n N σσμμ+-.10.设随机变量X 和Y 的相关系数为0.9,若4.0-=X Z ,则Y 与Z 的相关系数为____________. 解 9.0),cov()4.0,cov(),cov(==-=X Y X Y Z Y . 二.单项选择题(每小题2分,共12分)1. 设随机变量X 的数学期望EX 与2σ=DX 均存在,由切比雪夫不等式估计概率}4{σ<-EX X P 为( )(A) 161≥(B) 161≤(C) 1615≥(D) 1615≤解 本题应选C.2.B A ,为随机随机事件,且A B ⊂,则下列式子正确的是( ). (A) )()(A P B A P =(B) )()()(A P B P A B P -=-(C) )()(A P AB P = (D) )()(B P A B P =解 本题应选A.3. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其他,,,,010)(x B Ax x f 且127=EX ,则( ).(A) 5.0,1-==B A(B) 1,5.0=-=B A(C) 1,5.0==B A (D) 5.0,1==B A 解 令1d )(10=+⎰x B Ax ,127d )(1=+⎰x x B Ax ,解得5.0,1==B A ,故本题应选D. 4.若随机变量X 与Y 不相关,则有( ). (A) )(9)()3(Y D X D Y X D -=- (B) )()()(Y D X D XY D ⨯= (C) 0)]}()][({[=--Y E Y X E X E(D) 1)(=+=b aX Y P 解 本题应选C.5.已知随机变量),(~21n n F F ,且αα=>)},({21n n F F P ,则=-),(211n n F α( ).(A) ),(121n n F α(B)),(1121n n F α-(C)),(112n n F α(D) ),(1211n n F α-解6.将一枚硬币独立地掷两次,记事件:=1A {掷第一次出现正面},=2A {掷第二次出现正面},=3A {正、反面各出现一次},=4A {正面出现两次},则事件( ).(A) 321,,A A A 相互独立 (B) 432,,A A A 相互独立 (C) 321,,A A A 两两独立(D) 432,,A A A 两两独立解 21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,再由事件独立的充分必要条件可知321,,A A A 两两独立,本题应选C.三.计算题(每小题8分,共48分)1.某厂由甲,乙,丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%,12%.现从该厂产品中任意抽取一件,求:(1) 取到不合格产品的概率;(2) 若取到的是不合格品,求它是由甲厂生产的概率. 解 (1) 运用全概率公式, 0.09;(2) 运用贝叶斯公式, 0.44.(具体做法参见模拟试卷(一)第四题)2.一实习生用一台机器接连独立地制造三个同样的零件,第i 个零件是不合格品的概率为)3,2,1(11=+=i ip i ,以X 表示三个零件中合格品的个数,求:(1) X 的概率分布; (2) X 的方差DX .解 (1)12234132411241=⋅+⋅+=EX , (2)2741924114412=⋅+⋅+=EX ,故521.0)(22=-=EX EX DX . 3.设总体X ),0(~2σN ,2σ为未知参数,n x x x ,,,21 是来自总体X 的一组样本值,求2σ的最大似然估计.解 似然函数21221222222e )21(e)21()(σσσπσπσ∑=∑===--ni i ni i x n x nL ,两边取对数212222ln 22ln 4)(ln σσπσ∑---==ni ix nn L ,关于2σ求导,并令其为零,得0)(21222122=∑+⋅-=σσni ix n , 从而解得极大似然估计量为∑==n i i x n 1221ˆσ. 4.二维随机变量(X ,Y )的联合概率密度:⎩⎨⎧>>=+-其它,,,,00,0e 2),()2(y x y x f y x求: (1) X 与Y 之间是否相互独立,判断X 与Y 是否线性相关;(2) )1(≤+X Y P . 解 (1) ⎪⎩⎪⎨⎧≤>==⎰⎰∞++-∞+∞-0,0,0,d e 2d ),()(0)2(x x y y y x f x f y x X341⎩⎨⎧≤>=-.0,0,0,e x x x 同理 ⎩⎨⎧≤>=-.0,0,0,e )(2y y y f y Y 从而)()(),(y f x f y x f Y X =, 故X 与Y 相互独立,因而X 与Y 一定不相关.(2) =≤+)1(X Y P =⎰⎰-+-y x x y x d 2e d 10)2(1021)e 1(--.5.某人乘车或步行上班,他等车的时间X (单位:分钟)服从参数为51的指数分布,如果等车时间超过10分钟他就步行上班.若此人一周上班5次,以Y 表示他一周步行上班的次数.求Y 的概率分布;并求他一周内至少有一次步行上班的概率.解 此人每天等车时间超过10分钟也即步行上班的概率为210e d e 51)10(--∞+==>⎰x X P s x. 故)e ,5(~2-B Y . 52)e 1(1)1(---=≥Y P .6.设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈⋅=其他,,,,0]8,1[31)(32x x x f )(x F 是X 的分布函数.求随机变量)(X F Y =的概率分布.解 ⎪⎪⎩⎪⎪⎨⎧>≤<-≤=.8,1,81,1,1,0)(31x x x x x F(3) 当0<y 时,0)()(=≤=y Y P y F Y ;当10<≤y 时, ))1(()1()()(331+≤=≤-=≤=y X P y X P y Y P y F Yy y F X =+=))1((3;当1≥y 时,1)()(=≤=y Y P y F Y .故对)(y F Y 求导可得Y 的概率密度,⎩⎨⎧<<=其它,,,,0101)(y y f Y 即]10[~,U Y 四.应用题(第1题7分、第2题8分,共15分)1.假设对目标独立地发射400发炮弹,已知每一发炮弹的命中率等于0.2,用中心极限定理计算命中60发到100发之间的概率.解 设⎩⎨⎧=发炮弹命中第发炮弹没有命中第i i X i ,1,,0 (400,,2,1 =i ),则 ∑==4001i i X X )2.0,400(~B表示400发炮弹命中的发数,且80=EX ,64=DX ,故由中心极限定理知,)6420|6480(|)20|80(|)10060(<-=<-=<<X P X P X P9876.01)820(2=-Φ=. 2.某厂生产铜丝,生产一向稳定.现从该厂产品中随机抽出10段检查其折断力,测后经计算:5.160)(,5.28712=-=∑=n i i x x x .假定铜丝折断力服从正态分布,问是否可以相信该厂生产的铜丝的折断力方差为16?(1.0=α)解 16162120≠=σσ:,:H H .采用统计量 2221S n σχ-=,在0H 成立时,)9(~22χχ.由1.0=α,查得临界值 325.3)9(295.022/1==-χχα, 919.16)9(205.022/==χχα, 由样本值算得03.10165.1602≈=χ,由于22/222/1ααχχχ<<-,所以不拒绝0H ,即该厂生产的铜丝的折断力方差为16. 五.证明题(5分)若随机变量X 的密度函数)(x f ,对任意的R x ∈,满足:)()(x f x f -=,)(x F 是其分布函数.证明:对任意实数a ,有⎰-=-a x x f a F 0d )(21)(. 证明 ⎰⎰⎰-∞--∞-+==-a ax x f x x f x x f a F 00d )(d )(d )()(⎰-+=a x x f 0d )(21 (令x t -=) ⎰⎰⎰-=-=--=a a a x x f t t f t t f 000d )(21d )(21d )(21.。

概率论与数理统计试卷标答(湖工工程)

概率论与数理统计试卷标答(湖工工程)

概率论与数理统计 课程( A 卷)(11gb 机制5,6,7,8)答案及评分标准一、 填空题:1. A B C2. 0.23. 24. 125. 2(1)χ 二、选择题:6.B7.C8.B9.A 10.C 三、计算题:11.记事件:i A 任取一件元件,来自第i 车间(1,2,3)i =; 事件:B 任取一件元件为次品. 由题意有1()0.35P A =,2()0.50P A =,3()0.15P A =;及1()0.03P B A =,2()0.04P B A =,3()0.05P B A =,……4分 (1) 由全概率公式得所求概率 31()()()0.038i i i P B P B A P A ===∑. …………..8分 (2) 由贝叶斯公式得 11131()()21()0.276376()()iii P B A P A P A B P B A P A ====∑ …………..11分12. (1) {2}(2)ln 2P X F <==; ………….3分{03}(3)(0)1P X F F <≤=-=; …………..6分(2) 1,1()()0,x ef x F x x ⎧<<⎪'==⎨⎪⎩其他 …..……11分 13. ()(2)0.400.320.30.2E X =-⨯+⨯+⨯=-; ………..3分2222()(2)0.400.320.3 2.8E X =-⨯+⨯+⨯=;………..6分[]22()()() 2.76D X E X E X =-=; ………..8分22(35)3()513.4E X E X +=+=; ………..11分 14.(1) 由(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰得 211214121x c dx cx ydy -==⎰⎰,故214c =;………..5分 (2) 2621(),11()(,)80,X x x x f x f x y dy +∞-∞⎧--<<⎪==⎨⎪⎩⎰其他;…..8分527,01()(,)20,Y y y f y f x y dx +∞-∞⎧<<⎪==⎨⎪⎩⎰其他; …..11分15.由题意有 ()1E X =,()4D X =;2)(=Y E ,9)(=Y D , 则 ()()()()123E Z E X Y E X E Y =+=+=+= …………3分()()()2(,)D Z D X D Y Cov X Y =++()()29D X D Y ρ=++= ……7分(,)(,)(,)(,)Cov X Z Cov X X Y Cov X X Cov X Y =+=+()2XY D X ρ=+= ……10分31)()(),(==Z D X D Z X Cov XZ ρ ………………….13分16. (1)令11μ=A ,其中X A =1,1101()(1)2E X x x dx θθμθθ+==+=+⎰, 代入得 12X θθ+=+ …………4分 得θ的矩估计为112ˆ+--=X X θ. …………6分 (2)设n x x x ,,,21 为一组样本观察值,则 似然函数为11()(,)(1)nni i i i L f x x θθθθ====+∏∏ …………9分取对数 1()(1)ln ni i LnL nLn x θθθ==++⋅∑令 1()ln 01ni i dLnL n x d θθθ==+=+∑ …………12分得θ的极大似然估计为1ˆ1ln nii nxθ==--∑ …………13分。

概率统计试题库及答案

概率统计试题库及答案
6、 ___________; _____________; ____________。( , , )
7、设事件A、B、C,将下列事件用A、B、C间的运算关系表示:(1)三个事件都发生表示为:_____________;(2)三个事件不都发生表示为:_____________;(3)三个事件中至少有一个事件发生表示为:___________。( , , )
54、5人排成一排照相,其中a.,b两人不能相邻照相的概率为_________。( )
55、4.3个人选等可能地选择五条不同的道路,则至少有两人选择同一条道路的概率为:_________。( )
56、两人在1到10个号码中允许重复地各选取一个,则最大号码为5的概率为_________。( )
57、甲乙两人赌博约定五局三胜,设两人每局的胜率相等.在甲已胜二场,乙已胜一场的情况下,乙最终获胜的概率为_________。( )
63、已知P(A)=0﹒6,P(B)=0﹒4,P(A︱B)=0﹒45,则P(A B)=。(0.82)
64、某车间有5台相互独立运行的设备,开工率均为p,若至少有3台设备同时开工生产才能正常进行,则生产能正常进行的概率为_________。(只写算式)( )
65、设试验 的样本空间为 , 为 的事件, 为 的一个划分,且 ,则 ____________。( )
28、已知 , , ,则 ____________。(0.60)
29、计算下列算式:(1) =_________;(2) =_________;(3)若A,B独立,P(A)=0.3, P(B)=0.2,则P(B-A)=_________。( , ,0.14)
30、设A、B是两个事件,若 ,则有 _______________。( )

大学概率统计试题及答案

大学概率统计试题及答案

大学概率统计试题及答案一、选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,即X~N(0,1),则P(X > 1)等于()。

A. 0.1587B. 0.8413C. 0.5000D. 0.34462. 设随机变量X服从区间[0,1]上的均匀分布,则E(X)等于()。

A. 0B. 0.5C. 1D. 0.253. 一组数据的方差是12,标准差是()。

A. 2B. 3.46C. 4D. 64. 两个独立的随机变量X和Y,如果P(X > 0) = 0.7,P(Y > 0) =0.5,则P(X > 0 且 Y > 0)等于()。

A. 0.35B. 0.5C. 0.7D. 0.25. 抛一枚均匀硬币两次,出现至少一次正面朝上的概率是()。

A. 0.5B. 0.75C. 1D. 0.256. 从1到10的整数中随机抽取一个数,抽到奇数的概率是()。

A. 0.5B. 0.4C. 0.6D. 0.37. 设随机变量X服从泊松分布,参数为λ=2,则P(X=1)等于()。

A. 0.2707B. 0.1353C. 0.5000D. 0.75008. 一组数据的平均数是5,中位数是4,则这组数据的众数可能是()。

A. 3B. 4C. 5D. 69. 随机变量X和Y相互独立,且都服从标准正态分布,则Z=X+Y服从()。

A. 正态分布B. 泊松分布C. 二项分布D. 均匀分布10. 随机变量X服从二项分布,参数为n=10,p=0.5,则P(X=5)等于()。

A. 0.246B. 0.176C. 0.121D. 0.061二、填空题(每题4分,共20分)1. 如果随机变量X服从二项分布B(n,p),那么其方差Var(X)=________。

2. 设随机变量X服从指数分布,参数为λ,则其概率密度函数为f(x)=________,x>0。

3. 一组数据的均值为50,标准差为10,则这组数据的变异系数CV=________。

《概率论与数理统计》期末考试试题及解答

《概率论与数理统计》期末考试试题及解答

P( X 2, Y 2) P(X 2)P(Y 2)
1
1
21
(
)( ) ( )
3
9
39
2
1

9
9
故应选( A ) .
5.设总体 X 的数学期望为
正确的是
, X1 , X 2 , , X n 为来自 X 的样本,则下列结论中
( A ) X1 是 的无偏估计量 .
( B) X1 是 的极大似然估计量 .
( C) X1 是 的相合(一致)估计量 . ( D) X1 不是 的估计量 . ( )
的指数分布, P( X 1) e 2 ,则
_________ , P{min( X ,Y ) 1} =_________.
答案:
2 , P{min( X ,Y ) 1} 1 e-4
解答:
P(X 1) 1 P( X 1) e e 2 ,故
2
P{min( X ,Y ) 1} 1 P{min( X ,Y ) 1}
事实上由图
S AB
C
可见 A 与 C 不独立 .
A ),( B),(C)
2.设随机变量 X ~ N (0,1), X 的分布函数为 ( x) ,则 P (| X | 2) 的值为
( A ) 2[1 (2)] .
( B) 2 (2) 1 .
( C) 2 (2) .
( D ) 1 2 (2) .
()
答案:( A )
( C) P( A) P( A1 A2 )
( D) P( A) P( A1 ) P( A2 ) 1
( 4)
设随机变量 X ~ N ( 3 , 1), Y ~ N ( 2, 1), 且 X 与 Y 相互独 立 , 令 Z X 2 Y 7 , 则 Z ~ ( ). (A) N (0, 5); (B) N ( 0, 3); (C) N ( 0 , 46 ); (D) N ( 0 , 54).

(完整版)概率论与数理统计试题及答案.doc

(完整版)概率论与数理统计试题及答案.doc

2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。

1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。

若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。

6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。

概率统计考试试卷

概率统计考试试卷

概率统计考试试卷一、选择题(每题2分,共20分)1. 某事件的概率为0.5,这意味着:A. 这个事件几乎不可能发生B. 这个事件一定会发生C. 这个事件发生的可能性是50%D. 这个事件是不可能事件2. 以下哪个不是随机变量的类型?A. 离散型B. 连续型C. 确定型D. 混合型3. 期望值E(X)表示:A. 随机变量X的众数B. 随机变量X的中位数C. 随机变量X的平均值D. 随机变量X的方差4. 方差是衡量随机变量的:A. 偏度B. 峰度C. 离散程度D. 相关性5. 以下哪个不是大数定律的内容?A. 随机变量的算术平均数趋近于期望值B. 随机变量的几何平均数趋近于期望值C. 随机变量的加权平均数趋近于期望值D. 随机变量的样本均值趋近于总体均值...二、填空题(每空2分,共20分)1. 如果随机变量X服从二项分布B(n, p),则其期望值E(X)等于______。

2. 标准正态分布的均值为______,方差为______。

3. 随机变量X和Y的协方差衡量了X和Y的______程度。

4. 事件A和B同时发生的概率记作______。

5. 随机变量X的方差公式为______。

...三、简答题(每题10分,共30分)1. 简述什么是条件概率,并给出一个条件概率的例子。

2. 解释什么是中心极限定理,并说明它在统计学中的重要性。

3. 描述什么是泊松分布,并给出其概率质量函数。

...四、计算题(每题15分,共30分)1. 已知随机变量X服从正态分布N(μ, σ²),其中μ=50,σ²=25。

求P(40 < X ≤ 60)。

2. 某工厂生产的零件长度服从均匀分布U(10, 20)。

求该零件长度超过15的概率。

3. 假设有5个独立同分布的随机变量X₁, X₂, ..., X₅,每个随机变量Xᵢ服从泊松分布P(λ)。

求这5个随机变量之和的期望值和方差。

...结束语:请同学们认真审题,仔细作答。

(完整版)大学概率统计试题及答案

(完整版)大学概率统计试题及答案

选择填空题(共80分, 其中第1-25小题每题2分,第26-353分) A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 相互独立, 则()P A B U = B ;(A) 0.7 (B) 0.58(C) 0.82(D) 0.12A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 互不相容,则()P A B =U D ;(A) 0 (B) 0.42(C) 0.88(D) 1已知B,C 是两个随机事件,P( B | C ) = 0.5,P( BC ) = 0.4,则P( C ) = C ; (A) 0.4 (B) 0.5(C) 0.8(D) 0.9袋中有6只白球,4只红球,从中抽取两只,如果作不放回抽样,则抽得的两个球颜色不同的概率为: A ;(A) 815 (B) 415(C) 1225(D) 625袋中有6只白球,4只红球,从中抽取两只,如果作放回抽样,则抽得的两个球颜色不同的概率为: C ;(A) 815 (B) 415(C) 1225(D) 625在区间[0,1]上任取两个数,则这两个数之和小于12的概率为 C ;(A) 1/2 (B) 1/4 (C) 1/8(D) 1/16在一次事故中,有一矿工被困井下,他可以等可能地选择三个通道之一逃生.1/2,通过第二个通道逃生成功的1/3,通过第三个通道逃生成功的可能性为1/6.请问:该矿工能成功逃生的可能性是 C .(A) 1 (B) 1/2(C) 1/3(D) 1/68.已知某对夫妇有四个小孩,但不知道他们的具体性别。

设他们有Y 个儿子,如果生男孩的概率为0.5,则Y 服从 B 分布. (A) (01)- 分布 (B) (4,0.5)B (C) (2,1)N(D)(2)π9.假设某市公安机关每天接到的110报警电话次数X 可以用泊松(Poisson)分布()πλ来描述.已知{99}{100}.P X P X ===则该市公安机关平均每天接到的110报警电话次数为 C 次. (A) 98 (B) 99(C) 100(D) 10110.指数分布又称为寿命分布,经常用来描述电子器件的寿命。

概率论与数理统计考试试题及答案

概率论与数理统计考试试题及答案

)0.6B =2.015.0121武汉理工大学教务处试题标准答案及评分标准用纸课程名称概率论与数理统计(A 卷)一、选择题(每小题3分,总计15分)1.D ;2.C ;3.C ;4.B ;5.B二、填空题(每小题3分,总计15分)6.;7.;8.;9.;10.三、计算题(共52分)11.解:设A i 分别表示所取产品是由甲、乙、丙车间生产(i=1,2,3);B 表示所取产品为不合格品.由题设有,%25)(,%35)(,%40)(321===A P A P A P.05.0)(,04.0)(,02.0)(321===A B P A B P A B P ---------4分1)由全概率公式,得345.0)|()()(31==∑=i i iA B P AP B P ---------3分2)4058.06928345.004.035.0)()()|()()()|(2222≈=⨯===B P A P A B P B P B A P B A P --------3分 12.解:1)1210)(02==+=⎰⎰⎰+∞∞-∞-+∞-A dx Ae dx dx x f x ,故A =2 --------- 3分2).3679.02)5.0(15.02≈==>-+∞-⎰e dx e X P x ----------- 3分3)对100,12<<>-=-y x e y x 时有当. 所以当0≤y 或1≥y 时,0)(=y f Y ; 当10<<y 时,分布函数{}⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=-)1ln(21)1ln(211)(2y F y X P y e P y F XX Y ; 11121)1ln(21)()(=⎪⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛--==∴y y f dy y dF y f X Y Y . ⎩⎨⎧<<=∴其他,,0101)(y y f Y . ―――― 6分 13.解:(,)X Y 的联合分布律和边缘分布律为————8分由上表可看到,j i ij p p p ..∙≠,所以X 和Y 不相互独立. --------2分14.解:设i X 表示第i 次射击时命中目标的炮弹数,则由题设有:)100,,2,1(5.1)(,2)(2 ===i X D X E i i 。

概率论与数理统计试题与答案

概率论与数理统计试题与答案

概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分 18分,每题3分)1、设P(A) 0.7,P(A B) 0.3,则P(AB)= ___________________________ 。

52、设随机变量X 〜B(2, p),Y 〜B(3, p),若p(X 1) ,则p(Y 1) _____93、设X 与Y 相互独立,DX 2, DY 1,贝U D(3X 4Y 5) _________________________ 。

4、设随机变量X的方差为2,则根据契比雪夫不等式有P{X -EX 2} _______________n5、设(X「X2, ,X n)为来自总体2(10)的样本,则统计量Y X i服从i 1_______________ 分布。

6、设正态总体N( , 2) , 2未知,贝U 的置信度为1 的置信区间的长度L __________________ 。

(按下侧分位数)二、选择题(本题满分 15分,每题3分)1、若A与自身独立,则( )(A) P(A) 0 ; (B) P(A) 1 ; (C) 0 P(A) 1 ; (D) P(A) 0或P(A) 12、下列数列中,是概率分布的是( )X 5 x2(A) p(x) ,x 0,1,2,3,4 ;(B) p(x) ,x 0,1,2,315 61 x 14 253、设X ~ B( n, p),则有( )(A) E(2X 1) 2np (B) D(2X 1) 4np (1 p)(C) E(2X 1) 4np 1 (D) D(2X 1) 4n p(1 p) 1本方差,则下列结果错误的是( )。

4、设随机变量X ~ N( , 2),则随着的增大,概率P X ()。

(A)单调增大 (B) 单调减小(C)保持不变(D) 增减不定5、设(X1,X2, ,X n)是来自总体X ~ N( , 2)的一个样本,X与S2分别为样本均值与样三、(本题满分12分) 试卷中有一道选择题,共有4个答案可供选择,其中只有1个答案是正确的。

常州大学软件工程专业大二2020-2021学年第二学期概率论与数理统计期末测试试题

常州大学软件工程专业大二2020-2021学年第二学期概率论与数理统计期末测试试题

常州大学软件工程专业大二2020-2021学年第二学期概率论与数理统计期末测试试题1. [单选题] *A、0.1B、0.2(正确答案)C、0.3D、0.4答案解析:2. 设事件A,B相互独立,且P(A)=0.6,P(A∪B)=0.8,则P(B)= [单选题] *A、0.2B、0.4C、0.5(正确答案)D、0.6答案解析:P(A∪B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)=0.8,则P(B)=0.53. 甲袋中有3个红球和1个白球,乙袋中有 1 个红球 2 个白球,从两袋中分别取出一个球,则两个球颜色相同的概率的概率是 [单选题] *A、1/6B、1/4C、1/3D、5/12(正确答案)答案解析:红色:3/4*1/3=1/4白色:1/4*2/3=2/12两种情况相加等于5/124. 设随机变量 X 的分布律为则 P{X>0}=[单选题] *A、1/4B、1/2C、3/4(正确答案)D、1答案解析:由概率c+2c+1/4=1可解得c=1/4,P{X>0}=P{X=1}=P{X=2}=3/45. [单选题] *A、1/4(正确答案)B、1/2C、2/3D、3/4答案解析:6. 已知随机变量 X~N(-2,2),则下列随机变量中,服从 N(0,1)分布的是 [单选题] *A、1/2(x-2)B、1/2(x+2)C、1/√2(x-2)D、1/√2(x+2)(正确答案)答案解析:7. 设二维随机变量(X,Y)的分布律为[单选题] *A、0.1B、0.4C、0.5(正确答案)D、0.7答案解析:由图可知P{X+Y=1}=0.1+0.4=0.58. 设随机变量 X 与 Y 相互独立,且 D(X)=4,D(Y)=2,则 D(3X-2Y)= [单选题] *A、8B、16C、28D、44(正确答案)答案解析:D(3X-2Y)=9DX+4DY=449.[单选题] *A、1/6B、1/4(正确答案)C、1/3D、1/2答案解析:10.[单选题] *A、(正确答案)B、C、D、答案解析:方差未知,t检验11. 设 A,B,C 是随机事件,则“A,B,C至少有一个发生”可以表示为 [填空题] *和事件的定义_________________________________(答案:A∪B∪C)12. 设 P(A)=0.3,P(B)=0.6,P(A|B)=0.4,则 P(B|A)= [填空题] *_________________________________(答案:0.8)13. 袋中有 3 个黄球和 2 个白球,今有 2 人依次随机地从袋中各取一球,取后不放回,则第 2 个人取得黄球的概率为 [填空题] *由于不知道第一个人取什么颜色,第二个人取到黄球的概率为3/5_________________________________(答案:3/5)14. 已知随机变量 X 服从参数为的泊松分布,且 P{X=1}=P{X=2} ,则λ= [填空题] *_________________________________(答案:2)15. 设随机变量 X 服从参数为 1 的指数分布,则P{X≥1}= [填空题] *_________________________________(答案:e^-1)16. 设二维随机变量(X,Y)的分布律为则 P{X=Y}=[填空题] *由表可知P{X=Y}=0.4_________________________________(答案:0.4)17.则常数 c=[填空题] *对概率密度积分等于1,可求得参数c=1/2,或者利用均匀分布的几何意义亦可。

常州工学院概率统计考试试题GL试卷4

常州工学院概率统计考试试题GL试卷4
(1)求(X,Y)分别关于X和Y的边缘概率密度fx(x),fy(y);
(2)判断X与Y是否相互独立,并说明理由;


5.一个工人照看三台机床,在一小时内,甲、乙、丙三台机床需要人照看的概率分别是 ,求在一小时内没有一台机床需要照看的概率。
常州工学院试卷卷共3页第
6.设总体 具有分布律:
1
2
3
其中 为未知参数。已知取得了样本值 试求 的矩估计值和最大似然估计值。
4.已知随机变量
5.对于一个正态总体,当未知方差 ,检验假设 时所用的统计量是(),它服从()分布。
6.某班工人每天生产中出现次品数 的概率分布为
ξ
1
2
3
4
p
0.2
0.3
0.4
0.1
则平均每天为()
8.地铁火车运行间隔时间为12分钟,乘客在任意时刻进站台,乘客平均候车时间为()分钟。
试卷/学年第一学期考试类型(闭卷)课程编码










十一
十二
总分
一、填空题(每小题3分共30分)
1.设A、B、C为三个事件,则这三个事件都不发生为();三个事件至少有一个发生为()。
2.100件产品中有两件次品,任取三件至少有一件正品的事件是()事件,其发生的概率是()。
3.某人连续向一目标射击,每次命中目标的概率为3/4,他连续射击直到命中为止,则射击次数为3的概率是()
7、设某次考试的学生成绩服从正态分布,从中随机地抽取36位学生的成绩,算得平均成绩为66.5,标准差为15分。问在显著水平 下,是否可以认为这次考试考生成绩的方差为 ?
9.若 ~
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设 A、B、C 为三个事件,则这三个事件都不发生为( ) ;三个事件至少有一个发生为( ) 。 2.100 件产品中有两件次品,任取三件至少有一件正品的事件是( )事件,其发生的概率是( ) 。 3.某人连续向一目标射击,每次命中目标的概率为 3/4,他连续射击直到命中为止,则射击次数为 3 的概率是( 4.已知随机变量 X可取0,1,2三个值, 且P X 0 0.2, P X 1 0.5, 则P X 3 5.对于一个正态总体,当未知方差 ,检验假设 H 0 : 0 时所用的统计量是(
2 2


, D X
.
) 。
10.当未知方差 ,检验假设 H 0 : 0 时,拒绝域为( 二、解答题(每小题
10 分,共 70 分)
1.将一枚均匀的硬币连续掷三次,求至少出现一次正面的概率。
2.有甲乙两批种子,发芽率分为 0.8 和 0.7,在两批种子中各任取一粒,求: (1)两粒种子都不发芽的概率. (2)一粒发芽一粒不发芽的概率.

班级
姓名

学号
共3页 第1页
………………………………………………………………………….装
线………………………………………………………………………… 卷
常 州 工 学 院 试 卷
试卷
一 二 三
/
学年第一学期
考试类型(闭卷) 课程编码







十一 十二
总分
一、填空题(每小题 3 分共 30 分)
7、设某次考试的学生成绩服从正态分布,从中随机地抽取 36 位学生的成绩,算得平均成绩为 66.5,标准差为 15 分。 问在显著水平 0.05 下,是否可以认为这次考试考生成绩的方差为 16 ?
2
t
0.05
35 1.6896, t0.025 35 2.031, 02.025 35 53.15, 02.975 35 20.06
4.设二维随机向量(X,Y)的联合概率密度为 f x, y
e y , 0,
0x y 其它.
,
(1)求(X,Y)分别关于 X 和 Y 的边缘概率密度 fx(x),fy(y); (2)判断 X 与 Y 是否相互独立,并说明理由;
; 。
5.一个工人照看三台机床,在一小时内,甲、乙、丙三台机床需要人照看的概率分别是 0.8,0.9,0.85 ,求在一小时内没有 一台机床需要照看的概率。
班级
姓名

学号
……………………………………………………………………………………..装
线…………………………………………………………………… 卷 共3页 第2页
常 州 工 学 院 试 卷
3.有两批相同的产品,第一批 12 件,第二批 10 件,在每批中各有一件次品,任意地从第一批中抽取一件混入第二秕中,然后, 再从第二批中任意抽出一件产品。 (1) 试求从第二批产品中抽出次品的概率。 (2) 若从第二批产品中抽到的是次品,求从第一批产品中也抽到的是次品的概率。
2


.
) ,它服从( )
分布。 6.某班工人每天生产中出现次品数 的概率分布为 ξ p 1 0.2 2 0.3 3 0.4 )件。 ) )分钟。 4 0.1
则平均每天出次品(
7.已知随机变量 X 的概率密度为 f X x ,令 Y 2 X ,则 Y 的概率密度 f Y y 为( 8.地铁车运行间隔时间为 12 分钟,乘客在任意时刻进站台,乘客平均候车时间为( 9.若 X ~ N 10,5 , 则E X
班级
姓名

学号
……………………………………………………………………………………..装
线…………………………………………………………………… 卷 共3页 第
常 州 工 学 院 试 卷
6.设总体 X 具有分布律:
X pk
1
2
3
2
2 1
1 2
其中 0 1 为未知参数。已知取得了样本值 x1 1, x2 2, x3 3 试求 的矩估计值和最大似然估计值。
相关文档
最新文档