高考数学复习第9章概率第2讲古典概型文北师大版14
高考数学统考一轮复习 第九章 概率、统计与统计案例 第二节 古典概型(教师文档)教案 文 北师大版
学习资料第二节 古典概型授课提示:对应学生用书第172页[基础梳理]1.基本事件的特点(1)任何两个基本事件是互斥的. (2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型(1)定义:具有以下两个特点的概率模型称为古典概率模型,简称为古典概型. ①试验中所有可能出现的基本事件只有有限个.②每个基本事件出现的可能性相等.(2)计算公式:P (A )=错误!.(3)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是错误!;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=错误!。
[四基自测]1.(基础点:与数字有关的古典概型)一个盒子里装有标号为1,2,3,4的4张卡片,随机地抽取2张,则取出的2张卡片上的数字之和为奇数的概率是( )A.错误! B 。
错误!C 。
错误! D.错误!答案:D2.(基础点:与数字有关的古典概型)从1,2,3,4这四个数字中任取两个数,这两个数恰为一奇一偶的概率是( )A.错误!B.错误!C.错误! D 。
错误!答案:D3.(基础点:与所取元素有关的古典概型)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.答案:错误!4.(基础点:与分配有关的古典概型)现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为________.答案:错误!授课提示:对应学生用书第172页考点一 古典概型的简单应用挖掘 基本事件的确定/ 自主练透[例] (1)(2019·高考全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B 。
错误!C 。
错误! D.错误![解析] 记5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为错误!=错误!.故选B.[答案] B(2)(2019·高考全国卷Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )A 。
高考数学大一轮复习 第九章 概率 第2课时 古典概型课件 文 北师大版
2.(2016·武汉市适应性训练)编号为A1,A2,…,A10的10名 学生参加投篮比赛,每人投20个球,各人投中球的个数记录如 下:
学生编号 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 投中个数 4 13 11 17 10 6 9 15 11 12 (1)将投中个数在对应区间内的人数填入表的空格内;
主干回顾 夯基固源 考点研析 题组冲关 素能提升 学科培优
课时规范训练
第 2 课时 古典概型
1.理解古典概型及其概率计算公式. 2.会计算一些随机事件所含的基本事件数及事件发生的概 率.
1.基本事件的特点 (1)任何两个基本事件是 互斥 的. (2)任何事件(除不可能事件)都可以表示成 基本事件 的和. 2.古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典 概型. (1)试验中所有可能出现的基本事件 只有有限个 . (2)每个基本事件出现的可能性 相等 .
记事件A表示“两人的视力差的绝对值低于0.5”,则事件A 包含的可能的结果有:(a,b),(a,c),(b,c),(d,e),共4种.
所以P(A)=140=25. 故两人的视力差的绝对值低于0.5的概率为25.
根据公式 P(A)=mn 进行概率计算时,关键是求出 n,m 的值, 在求 n 值时应注意这 n 种结果必须是等可能的,对一些比较简单 的概率问题,求 m,n 的值只需列举即可.
出现的可能性相等;③每个基本事件出现的可能性相等;④基本
事件总数为n,随机事件A若包含k个基本事件,则P(A)=nk.
A.②④
B.①③④
C.①④
D.③④
解析:②中所说的事件不一定是基本事件,所以②不正确; 根据古典概型的特点及计算公式可知①③④正确.
高考总复习北师大版数学文第九章 第二节古典概型
第二节古典概型错误!古典概型(1)特点:1试验中所有可能出现的结果个数只有有限个,即有限性.2每个结果发生的可能性相等,即等可能性.(2)概率公式:P(A)=错误!=错误!.1.在计算古典概型中试验的所有可能结果数和事件发生结果数时,易忽视他们是否是等可能的.2.概率的一般加法公式P(A+B)=P(A)+P(B)—P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A+B)=P(A)+P(B),此时P(A∩B)=0.[试一试]1.从3台甲型彩电和2台乙型彩电中任选两台,其中两种品牌的彩电齐全的概率是()A.错误!B.错误!C.错误!D.错误!解析:选B P=错误!=错误!.2.从1,2,3,4,5,6六个数中任取3个数,则取出的3个数是连续自然数的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D 取出的三个数是连续自然数有4种情况,则取出的三个数是连续自然数的概率P=错误!=错误!.古典概型中试验发生结果个数的探求方法(1)枚举法:适合给定的试验结果个数较少且易一一列举出的.(2)树状图法:适合于较为复杂的问题的试验结果数的探求,注意在确定结果数时(x,y)可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2)(2,1)相同.[练一练]从集合A={2,3,—4}中随机选取一个数记为k,从集合B={—2,—3,4}中随机选取一个数记为b,则直线y=kx+b不经过第二象限的概率为()A.错误!B.错误!C.错误!D.错误!解析:选C 依题意k和b的所有可能的取法一共有3×3=9种,其中当直线y=kx+b不经过第二象限时应有k>0,b<0,一共有2×2=4种,所以所求概率为错误!.错误!考点一古典概型1.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()A.错误!B.错误!C.错误!D.错误!解析:选D 试验所有结果为(1,1),(1,2),…,(1,8),(2,1),(2,2),…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),∴所求概率为错误!.2.(2013·温州调研)一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是()A.错误!B.错误!C.错误!D.错误!解析:选C 共有(黑1,黑2)、(黑1,黑3)、(黑1,红1)、(黑1,红2)、(黑2,黑3)、(黑2,红1)、(黑2,红2)、(黑3,红1)、(黑3,红2)、(红1,红2)10个结果,同色球为(黑1,黑2)、(黑1,黑3)、(黑2,黑3)、(红1,红2)共4个结果,∴P=错误!=错误!.3.(2013·深圳第一次调研)一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个.(1)求连续取两次都是白球的概率;(2)假设取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的概率是多少?解:(1)连续取两次的结果有:(红,红),(红,白1),(红,白2),(红,黑);(白1,红),(白1,白1),(白1,白2),(白1,黑);(白2,红),(白2,白1),(白2,白2),(白2,黑);(黑,红),(黑,白1),(黑,白2),(黑,黑),共16个.连续取两次都是白球的结果有:(白1,白1),(白1,白2),(白2,白1),(白2,白2),共4个,故所求概率为错误!=错误!.(2)连续取三次的结果有:(红,红,红),(红,红,白1),(红,红,白2),(红,红,黑);(红,白1,红),(红,白1,白1),(红,白1,白2),(红,白1,黑),…,共64个.因为取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的结果如下:(红,白1,白1),(红,白1,白2),(红,白2,白1),(红,白2,白2),(白1,红,白1),(白1,红,白2),(白2,红,白1),(白2,红,白2),(白1,白1,红),(白1,白2,红),(白2,白1,红),(白2,白2,红),(红,红,黑),(红,黑,红),(黑,红,红),共15个.故所求概率为错误!.[类题通法]计算古典概型事件的概率三步法第一步:算出试验可能结果的总个数n;第二步:求出事件A所包含的结果个数m;第三步:代入公式求出概率P.考点二古典概型的交汇命题问题古典概型在高考中常与平面向量、集合、函数、解析几何、统计等知识交汇命题,命题的角度新颖,考查知识面全,能力要求较高,归纳起来常见的交汇命题角度有:1古典概型与平面向量相结合;2古典概型与直线、圆相结合;3古典概型与函数相结合.角度一古典概型与平面向量相结合1.(2013·济南模拟)设连续掷两次骰子得到的点数分别为m,n,令平面向量a=(m,n),b =(1,—3).(1)求使得事件“a⊥b”发生的概率;(2)求使得事件“|a|≤|b|”发生的概率.解:(1)由题意知,m∈{1,2,3,4,5,6},n∈{1,2,3,4,5,6},故(m,n)所有可能的取法共36种.使得a⊥b,即m—3n=0,即m=3n,共有2种:(3,1)、(6,2),所以事件a⊥b的概率为错误!=错误!.(2)|a|≤|b|,即m2+n2≤10,共有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)6种使得|a|≤|b|,其概率为错误!=错误!.角度二古典概型与直线、圆相结合2.连掷骰子两次得到的点数分别记为a和b,则使直线3x—4y=0与圆(x—a)2—(y—b)2=4相切的概率为()A.错误!B.错误!C.错误!D.错误!解析:选B 连掷骰子两次总的试验结果有36种,要使直线3x—4y=0与圆(x—a)2+(y—b)2=4相切,则错误!=2,即满足|3a—4b|=10,符合题意的(a,b)有(6,2),(2,4),共2种,由古典概型的概率计算公式可得所求概率为P=错误!.角度三古典概型与函数相结合3.(2014·安徽省级示范高中一模)设a∈{2,4},b∈{1,3},函数f(x)=错误!ax2+bx+1.(1)求f(x)在区间(—∞,—1]上是减函数的概率;(2)从f(x)中随机抽取两个,求它们在(1,f(1))处的切线互相平行的概率.解:(1)f′(x)=ax+b,由题意f′(—1)≤0,即b≤a,而(a,b)共有(2,1),(2,3)(4,1),(4,3)四种,满足b≤a的有3种,故概率为错误!.(2)由(1)可知,函数f(x)共有4种可能,从中随机抽取两个,有6种抽法.∵函数f(x)在(1,f(1))处的切线的斜率为f′(1)=a+b,∴这两个函数中的a与b之和应该相等,而只有(2,3),(4,1)这1组满足,∴概率为错误!.[类题通法]解决与古典概型交汇命题的问题时,把相关的知识转化为试验结果个数,求出m、n的值.然后利用古典概型的概率计算公式进行计算.错误![课堂练通考点]1.(2013·江南十校联考)第亚运会于11月12日在中国广州举行,运动会期间从来自A大学的2名志愿者和来自B大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A大学志愿者的概率是()A.错误!B.错误!C.错误!D.错误!解析:选C 记2名来自A大学的志愿者为A1,A2,4名来自B大学的志愿者为B1,B2,B3,B4.从这6名志愿者中选出2名的结果有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,2B4),(B3,B4),共15种.其中至少有一名A大学志愿者的事件有9种.故所求概率P=错误!=错误!.故选C.2.(2014·亳州高三质检)已知集合M={1,2,3,4},N={(a,b)|a∈M,b∈M},A是集合N中任意一点,O为坐标原点,则直线OA与y=x2+1有交点的概率是()A.错误!B.错误!C.错误! D.错误!解析:选C 易知过点(0,0)与y =x 2+1相切的直线为y =2x (斜率小于0的无需考虑),集合N 中共有16个元素,其中使OA 斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,由古典概型知概率为错误!=错误!.3.我们把日均收看体育节目的时间超过50分钟的观众称为“超级体育迷”.已知5名“超级体育迷”中有2名女性,若从中任选2名,则至少有1名女性的概率为( )A.错误! B.错误! C.错误!D.错误!解析:选A 用a i 表示男性,其中i =1,2,3,b j 表示女性,其中j =1,2.记“选出的2名全都是男性”为事件A ,“选出的2名有1名男性1名女性”为事件B ,“选出的2名全都是女性”为事件C ,则事件A 包含(a 1,a 2),(a 1,a 3),(a 2,a 3),共3个结果,事件B 包含(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6个结果,事件C 包含(b 1,b 2),共1个结果.事件A ,B ,C 彼此互斥,事件至少有1名女性包含事件B 和C ,所以所求事件的概率为错误!=错误!.4.(2013·南京模拟)在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.解析:点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为错误!=错误!.答案:错误!5.(2013·江西高考)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若X >0就去打球,若X =0就去唱歌,若X <0就去下棋.(1)写出数量积X 的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率. 解:(1)X 的所有可能取值为—2,—1,0,1. (2)数量积为—2的有2OA ·5OA ,共1种;数量积为—1的有1OA ·5OA ,1OA ·6OA ,2OA ·4OA ,2OA ·6OA ,3OA ·4OA ,3OA ·5OA ,共6种;数量积为0的有1OA ·3OA ,1OA ·4OA ,3OA ·6OA ,4OA ·6OA ,共4种; 数量积为1的有1OA ·2OA ,2OA ·3OA ,4OA ·5OA ,5OA ·6OA ,共4种. 故所有可能的情况共有15种. 所以小波去下棋的概率为P 1=错误!;因为去唱歌的概率为P 2=错误!,所以小波不去唱歌的概率P =1—P 2=1—错误!=错误!.[课下提升考能]第Ⅰ卷:夯基保分卷1.(2013·惠州模拟)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.错误! B.错误! C.错误!D.错误!解析:选D 从{1,2,3,4,5}中选取一个数a 有5种取法,从{1,2,3}中选取一个数b 有3种取法.所以选取两个数a ,b 共有5×3=15种取法.满足b >a 的取法共有3个.因此b >a 的概率P =错误!=错误!.2.高三(4)班有4个学习小组,从中抽出2个小组进行作业检查.在这个试验中,所有可能结果个数为( )A.2 B.4 C.6D.8解析:选C 设这4个学习小组为A ,B ,C ,D ,“从中任抽取两个小组”的所有可能结果有AB ,AC ,AD ,BC ,BD ,CD ,共6个.3.文科班某同学参加省学业水平测试,物理、化学、生物获得等级A 和获得等级不是A 的机会相等,物理、化学、生物获得等级A 的事件分别记为W 1,W 2,W 3,物理、化学、生物获得等级不是A 的事件分别记为错误!1,错误!2,错误!3.则该同学参加这次学业水平测试获得两个A 的概率为( )A.错误! B.错误! C.错误!D.错误!解析:选A 该同学这次学业水平测试中物理、化学、生物成绩所有可能的结果有8种,分别为(W,W2,W3),(错误!1,W2,W3),(W1,错误!2,W3),(W1,W2,错误!3),(错误!1,错误!1,W3),(错误!1,W2,错误!3),(W1,错误!2,错误!3),(错误!1,错误!2,错误!3).有两个A 2的情况为(错误!1,W2,W3),(W1,错误!2,W3),(W1,W2,错误!3),共3种,从而其概率为P=错误!.4.一块各面均涂有油漆的正方体被锯成1000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是()A.错误!B.错误!C.错误!D.错误!解析:选D 小正方体三面涂有油漆的有8种情况,故所求其概率为错误!=错误!.5.(2014·浙江联考)一个袋子中装有六个大小形状完全相同的小球,其中一个编号为1,两个编号为2,三个编号为3.现从中任取一球,记下编号后放回,再任取一球,则两次取出的球的编号之和等于4的概率是________.解析:列举可知,共有36种情况,和为4的情况有10种,所以所求概率P=错误!=错误!.122333123344423445552344555345566634556663455666答案:错误!6.(2014·宣武模拟)曲线C的方程为错误!+错误!=1,其中m,n是将一枚骰子先后投掷两次所得点数,事件A=“方程错误!+错误!=1表示焦点在x轴上的椭圆”,那么P(A)=________.解析:试验中所有可能结果个数为36;若想表示椭圆,则先后两次的骰子点数不能相同,则去掉6种可能,既然椭圆焦点在x轴上,则m>n,又只剩下一半情况,即有15种,因此P(A)=错误!=错误!.答案:错误!7.某种零件按质量标准分为1,2,3,4,5五个等级.现从一批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:(1)在抽取的20(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.解:(1)由频率分布表得0.05+m+0.15+0.35+n=1,即m+n=0.45.由抽取的20个零件中,等级为5的恰有2个,得n=错误!=0.1,所以m=0.45—0.1=0.35.(2)由(1)得,等级为3的零件有3个,记作x1,x2,x3;等级为5的零件有2个,记作y1,y2.从x1,x2,x3,y1,y2中任意抽取2个零件,所有可能的结果为(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2),共10种.记事件A为“从零件x1,x2,x3,y1,y2中任取2件,其等级相等”.则A包含的可能结果有(x1,x2),(x1,x3),(x2,x3),(y1,y2),共4种.故所求概率为P(A)=错误!=0.4.8.将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a,正四面体的三个侧面上的数字之和为b”.设复数为z=a+b i.(1)若集合A={z|z为纯虚数},用列举法表示集合A;(2)求事件“复数在复平面内对应的点(a,b)满足a2+(b—6)2≤9”的概率.解:(1)A={6i,7i,8i,9i}.(2)满足条件的所有可能结果的个数为24.设满足“复数在复平面内对应的点(a,b)满足a2+(b—6)2≤9”的事件为B.当a=0时,b=6,7,8,9满足a2+(b—6)2≤9;当a=1时,b=6,7,8满足a2+(b—6)2≤9;当a=2时,b=6,7,8满足a2+(b—6)2≤9;当a=3时,b=6满足a2+(b—6)2≤9.即B为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个结果.所以所求概率P=错误!.第Ⅱ卷:提能增分卷1.(2013·陕西高考)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:组别A B C D E人数50100151550(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表:组别A B C D E人数50100151550抽取人数6(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.解:(1)由题设知,分层抽样的抽取比例为6%,所以各组抽到的人数如下表:组别A B C D E人数50100151550抽取人数36993(2)记从A12312B组抽到的6个评委为b1,b2,b3,b4,b5,b6,其中b1,b2支持1号歌手.从{a1,a2,a3}和{b1,b2,b3,b4,b5,b6}中各抽取1人的所有结果为:由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a1b1,a1b2,a2b1,a2b2共4种,故所求概率p=错误!=错误!.2.已知集合P={x|x(x2+10x+24)=0},Q={y|y=2n—1,1≤n≤2,n∈N+},M=P∪Q.在平面直角坐标系中,点A的坐标为(x′,y′),且x′∈M,y′∈M,试计算:(1)点A正好在第三象限的概率;(2)点A不在y轴上的概率;(3)点A正好落在区域x2+y2≤10上的概率.解:由集合P={x|x(x2+10x+24)=0}可得P={—6,—4,0},由Q={y|y=2n—1,1≤n≤2,n∈N+}可得Q={1,3},则M=P∪Q={—6,—4,0,1,3},因为点A的坐标为(x′,y′),且x′∈M,y′∈M,所以满足条件的点A的所有情况为(—6,—6),(—6,—4),(—6,0),(—6,1),(—6,3),…,(3,3),共25种.(1)点A正好在第三象限的可能情况为(—6,—6),(—4,—6),(—6,—4),(—4,—4),共4种,故点A正好在第三象限的概率P1=错误!.(2)点A在y轴上的可能情况为(0,—6),(0,—4),(0,0),(0,1),(0,3),共5种,故点A不在y轴上的概率P2=1—错误!=错误!.(3)点A正好落在区域x2+y2≤10上的可能情况为(0,0),(1,0),(0,1),(3,1),(1,3),(3,0),(0,3),(1,1).共8种,故点A落在区域x2+y2≤10上的概率P3=错误!.3.(2014·莱芜模拟)中国共产党第十八次全国代表大会期间,某报刊媒体要选择两名记者去进行专题采访,现有记者编号分别为1,2,3,4,5的五名男记者和编号分别为6,7,8,9的四名女记者.要从这九名记者中一次随机选出两名,每名记者被选到的概率是相等的,用符号(x,y)表示事件“抽到的两名记者的编号分别为x,y,且x<y”.(1)共有多少个可能结果?并列举出来;(2)求所抽取的两名记者的编号之和小于17但不小于11或都是男记者的概率.解:(1)共有36个结果,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9),共36个.(2)记事件“所抽取的记者的编号之和小于17但不小于11”为事件A,即事件A为“x,y∈{1,2,3,4,5,6,7,8,9},且11≤x+y<17,其中x<y”,由(1)可知事件A共含有15个结果,列举如下:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),共15个.“都是男记者”记作事件B,则事件B为“x<y≤5”,包含:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个.故P(A)+P(B)=错误!+错误!=错误!.。
第2讲 古典概型
所以取出的 3 件产品中一等品件数多于二等品件数的概率为
3 7 1 31 P(A)=P(A1)+P(A2)+P(A3)= + + = . 40 40 120 120
1.甲、乙、丙三名同学站成一排,甲站在中间的概率是( C ). 1 1 1 2 A. B. C. D. 6 2 3 3 2. (2012· 安徽)袋中共有 6 个除了颜色外完全相同的球, 其中有 1 个红 球、2 个白球和 3 个黑球,从袋中任取两球,两球颜色为一白一黑 的概率等于( B ). 1 2 3 4 A. B. C. D. 5 5 5 5 3. (2013· 温州模拟)从数字 1,2,3,4,5 这 5 个数中, 随机抽取 2 个不同的 数,则这两个数的和为偶数的概率是( B ). 1 2 3 4 A. B. C. D. 5 5 5 5 4.(2011· 新课标全国)有 3 个兴趣小组,甲、乙两位同学各自参加其中 一个小组,每位同学参加各个小组的可能性相同,则这两位同学参 加同一个兴趣小组的概率为( A ). 1 1 2 3 A. B. C. D. 3 2 3 4
②“从一等品零件中,随机抽取 2 个,这 2 个零件直径相等”记 为事件 B,则其所有可能结果有{A1,A4},{A1,A6},{A4,A6}, 2 {A2,A3},{A2,A5},{A3,A5},共 6 种,所以 P(B)= . 5 变式训练 2 (2012· 上海)三位同学参加跳高、跳远、铅球项目的比
1 1 1 解 (1) 从 8 人中选出日语、俄语和韩语志愿者各 1 名,共有 C3 C3C2=18 种, 1 用 M 表示“A1 恰被选中”这一事件,则包含的结果共有 C1 3C2=6 种, 6 1 所以 P(M)= = . 18 3 (2) 用 N 表示“B1,C1 不全被选中”这一事件,则其对立事件 N 表示
新高考 核心考点与题型 概率 第2讲 古典概型 - 解析
第2讲 古典概型【考情考向分析】全国卷对古典概型每年都会考查,主要考查实际背景的可能事件,通常与互斥事件、对立事件一起考查.在高考中单独命题时,通常以选择题、填空题形式出现,属于中低档题;与统计等知识结合在一起考查时,以解答题形式出现,属中档题。
知 识 梳 理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特征(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.如从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率.(2)每一个试验结果出现的可能性相同.如向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=m n .4.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数.[微点提醒]概率的一般加法公式P (A ∪B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =∪, 即A ,B 互斥时,P (A ∪B )=P (A )+P (B ),此时P (A ∩B )=0.考点一 基本事件及古典概型的判断【例1】 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型? (2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型. (2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,故以颜色为划分基本事件的依据的概率模型不是古典概型. 规律方法 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.(3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.【变式】 甲、乙两人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽1张. (1)写出甲、乙抽到牌的所有情况.(2)甲、乙约定,若甲抽到的牌的数字比乙大,则甲胜,否则乙胜,你认为此游戏是否公平?为什么? 解 (1)设(i ,j )表示(甲抽到的牌的数字,乙抽到的牌的数字),则甲、乙二人抽到的牌的所有情况(方片4用4′表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种.(2)由(1)可知甲抽到的牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况,∪甲胜的概率p =512,∪512≠12,∪此游戏不公平.考点二 简单的古典概型的概率【例2】 (1)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( ) A.12B.14C.13D.16(2)设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为________.解析 (1)两名同学分3本不同的书,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∪一人没有分到书,另一人分得3本书的概率p =28=14.(2)袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n =6×6=36,取出此2球所得分数之和为3分,包含第一次抽到红球,第二次抽到黄球或者第一次抽到黄球,第二次抽到红球,基本事件个数m =2×3+3×2=12,所以取出此2球所得分数之和为3分的概率p =m n =1236=13.规律方法 计算古典概型事件的概率可分三步:(1)计算基本事件总个数n ;(2)计算事件A 所包含的基本事件的个数m ;(3)代入公式求出概率p .【变式1】 同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( ) A.13B.12C.23D.56【变式2】用1,2,3,4,5组成无重复数字的五位数, 若用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,则出现a 1<a 2<a 3>a 4>a 5的五位数的概率为________.解析 (1)从四首歌中任选两首共有C 24=6种选法,不选取《爱你一万年》的方法有C 23=3种,故所求的概率为p =36=12.(2)用1,2,3,4,5组成无重复数字的五位数,基本事件总数n =A 55,用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,出现a 1<a 2<a 3>a 4>a 5的五位数有:12543,13542,23541,34521,24531,14532,共6个,∪出现a 1<a 2<a 3>a 4>a 5的五位数的概率p =6A 55=120.考点三 古典概型的交汇问题多维探究角度1 古典概型与平面向量的交汇【例1】 设平面向量a =(m ,1),b =(2,n ),其中m ,n ∪{1,2,3,4},记“a ∪(a -b )”为事件A ,则事件A 发生的概率为( ) A.18B.14C.13D.12解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ∪(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∪{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.角度2 古典概型与解析几何的交汇【例2】 将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.解析 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有6×6=36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b2≤2,即a ≤b 的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率为2136=712.角度3 古典概型与函数的交汇【例3】 已知函数f (x )=13x 3+ax 2+b 2x +1,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( ) A.79B.13C.59D.23解析 f ′(x )=x 2+2ax +b 2,由题意知f ′(x )=0有两个不等实根,即Δ=4(a 2-b 2)>0,∪a >b ,有序数对(a ,b )所有结果为3×3=9种,其中满足a >b 有(1,0),(2,0),(3,0),(2,1),(3,1),(3,2)共6种,故所求概率p =69=23.角度4 古典概型与统计的交汇【例4】某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解 (1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45. (2)因为样本容量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.则从5人中任意选取2人共有C 25=10种,抽取的2人中没有一名男生有C 23=3种,则至少有一名男生有C 25-C 23=7种.故至少有一名男生的概率为p =710,即选取的2人中至少有一名男生的概率为710. 规律方法 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【变式】 已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:若抽取学生n 人,成绩分为A (优秀),B (良好),C (及格)三个等级,设x ,y 分别表示数学成绩与物理成绩,例如:表中物理成绩为A 等级的共有14+40+10=64人,数学成绩为B 等级且物理成绩为C 等级的共有8人.已知x 与y 均为A 等级的概率是0.07.(1)设在该样本中,数学成绩的优秀率是30%,求a ,b 的值;(2)已知a ≥7,b ≥6,求数学成绩为A 等级的人数比C 等级的人数多的概率. (1)由题意知14n=0.07,解得n =200,∪14+a +28200×100%=30%,解得a =18,易知a +b =30,所以b =12.(2)由14+a +28>10+b +34得a >b +2,又a +b =30且a ≥7,b ≥6,则(a ,b )的所有可能结果为(7,23),(8,22),(9,21),…,(24,6),共18种,而a >b +2的可能结果为(17,13),(18,12),…,(24,6),共8种,则所求概率p =818=49.基础巩固题组 (建议用时:40分钟)一、选择题1.集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23B.12C.13D.16解析 从A ,B 中任意取一个数,共有C 12·C 13=6种情形,两数和等于4的情形只有(2,2),(3,1)两种,∪p =26=13. 2.设m ,n ∪{0,1,2,3,4},向量a =(-1,-2),b =(m ,n ),则a ∪b 的概率为( ) A.225B.325C.320D.15解析 a ∪b ∪-2m =-n ∪2m =n ,所以⎩⎪⎨⎪⎧m =0,n =0或⎩⎪⎨⎪⎧m =1,n =2或⎩⎪⎨⎪⎧m =2,n =4,因此概率为35×5=325.3.某同学先后投掷一枚骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在平面直角坐标系xOy 中,以(x ,y )为坐标的点在直线2x -y =1上的概率为( ) A.112B.19C.536D.16解析 先后投掷一枚骰子两次,共有6×6=36种结果,满足题意的结果有3种,即(1,1),(2,3),(3,5),所以所求概率为336=112.4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( ) A.13B.14C.15D.16解析 分别用A ,B ,C 表示齐王的上、中、下等马,用a ,b ,c 表示田忌的上、中、下等马,现从双方的马匹中随机选一匹进行一场比赛有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc 共9场比赛,其中田忌马获胜的有Ba ,Ca ,Cb 共3场比赛,所以田忌马获胜的概率为13.5.将一个骰子连续掷3次,它落地时向上的点数依次成等差数列的概率为( ) A.112B.19C.115D.118解析 一个骰子连续掷3次,落地时向上的点数可能出现的组合数为63=216种.落地时向上的点数依次成等差数列,当向上点数若不同,则为(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6),共有2×6=12种情况;当向上点数相同,共有6种情况.故落地时向上的点数依次成等差数列的概率为12+6216=112. 二、填空题6.小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.解析 小明输入密码后两位的所有情况有C 14·C 13=12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112. 7.若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________.解析 m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∪基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∪椭圆x 2m +y 22=1的焦距为整数的概率p =36=12.8.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为________.解析 甲同学从四种水果中选两种,选法种数有C 24,乙同学的选法种数为C 24,则两同学的选法种数为C 24·C 24,两同学各自所选水果相同的选法种数为C 24,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为p =C 24C 24C 24=16.三、解答题9.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. 解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x -=8+8+9+104=354,s 2=14×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116.(2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.10.某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.解 (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)设“参赛的4人中女生不少于2人”为事件A ,记“参赛女生有2人”为事件B ,“参赛女生有3人”为事件C .则P (B )=C 23C 23C 46=35,P (C )=C 33C 13C 46=15.由互斥事件的概率加法公式,得P (A )=P (B )+P (C )=35+15=45,故所求事件的概率为45.能力提升题组 (建议用时:20分钟)11.已知函数f (x )=12ax 2+bx +1,其中a ∪{2,4},b ∪{1,3},从f (x )中随机抽取1个,则它在(-∞,-1]上是减函数的概率为( ) A.12B.34C.16D.0解析 f (x )共有四种等可能基本事件即(a ,b )取(2,1),(2,3),(4,1),(4,3),记事件A 为f (x )在(-∞,-1]上是减函数,由条件知f (x )是开口向上的函数,对称轴是x =-ba ≥-1,事件A 共有三种(2,1),(4,1),(4,3)等可能基本事件,所以P (A )=34.12.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是( ) A.34B.13C.310D.25解析 6元分成整数元有3份, 可能性有(1,1,4),(1,2,3),(2,2,2),第一个分法有3种,第二个分法有6种,第三个分法有1种,其中符合“最佳手气”的有4种,故概率为410=25.13.从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是__________.解析 从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换,基本事件总数为n =C 23·C 23=9,从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,第一次调换后,对调后的位置关系有三种:甲丙乙、乙甲丙、丙乙甲,第二次调换后甲在乙的左边对应的关系有:丙甲乙、甲乙丙;丙甲乙、甲乙丙;甲丙乙、丙甲乙,∪经过两次这样的调换后,甲在乙的左边包含的基本事件个数m =6,∪经过这样的调换后,甲在乙左边的概率:p =m n =69=23.14.某快递公司收取快递费用的标准如下:质量不超过1 kg 的包裹收费10元;质量超过1 kg 的包裹,除1 kg 收费10元之外,超过1 kg 的部分,每1 kg(不足1 kg ,按1 kg 计算)需再收5元. 该公司对近60天, 每天揽件数量统计如下表:(1)某人打算将A (0.3 kg),B (1.8 kg),C (1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利? 解 (1)由题意,寄出方式有以下三种可能:所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为13.(2)由题目中的天数得出频率,如下:若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:故公司每日利润为260×5-3×100=1 000(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:故公司每日利润为235×5-2×100=975(元).综上,公司将前台工作人员裁员1人对提高公司利润不利.。
第2讲 古典概型
第2讲 古典概型基础梳理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性相等. 3.古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.一条规律从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I ,基本事件的个数n 就是集合I 的元素个数,事件A 是集合I 的一个包含m 个元素的子集.故P (A )=card (A )card (I )=mn. 两种方法(1)列举法:适合于较简单的试验.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(x ,y )可以看成是有序的,如(1,2)与(2,1)不同;有时也可以看成是无序的,如(1,2)与(2,1)相同.双基自测1.(人教A 版教材习题改编)一枚硬币连掷2次,只有一次出现正面的概率为( ).A.23B.14C.13D.122.甲、乙、丙三名同学站成一排,甲站在中间的概率是( ). A.16 B.12 C.13 D.233.掷一颗骰子,观察掷出的点数,则掷得奇数点的概率为( ).A.13B.14C.12D.234.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( ).A.45B.35C.25D.155.(2012·泰州联考)三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________.考点一 基本事件数的探求6做抛掷两颗骰子的试验:用(x ,y )表示结果,其中x 表示第一颗骰子出现的点数,y 表示第二颗骰子出现的点数,写出: (1)试验的基本事件;(2)事件“出现点数之和大于8”; (3)事件“出现点数相等”; (4)事件“出现点数之和大于10”.7用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,写出:(1)试验的基本事件;(2)事件“3个矩形颜色都相同”; (3)事件“3个矩形颜色都不同”.考点二 古典概型8现有8名2012年伦敦奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.9(2011·全国新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ).A.13B.12C.23D.34考点三 古典概型的综合应用10(2011·广东)在某次测验中,有6位同学的平均成绩为75分.用x n 表示编号为n (n =1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5 成绩x n7076727072(1)求第6位同学的成绩x 6,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.11一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C 舒适型 100 150 z 标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆.(1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.12(2011·山东)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任取2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.13 从含有两件正品和一件次品的3件产品中每次任取一件.(1)每次取出后不放回,连续取两次;(2)每次取出后放回,连续取两次.试分别求取出的两件产品中恰有一件次品的概率.答案:1D2C3C4D51 36解(1)这个试验的基本事件为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)(2)事件“出现点数之和大于8”包含以下10个基本事件(3,6),(4,5),(4,6)(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(3)事件“出现点数相等”包含以下6个基本事件(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(4)事件“出现点数之和大于10”包含以下3个基本事件(5,6),(6,5),(6,6).7解(1)所有可能的基本事件共27个.(2)由图可知,事件“3个矩形都涂同一颜色”包含以下3个基本事件:红红红,黄黄黄,蓝蓝蓝.(3)由图可知,事件“3个矩形颜色都不同”包含以下6个基本事件:红黄蓝,红蓝黄,黄红蓝,黄蓝红,蓝红黄,蓝黄红.8解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件共有C 13C 13C 12=18个.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“A 1恰被选中”这一事件,事件M 由C 13C 12=6,因而P (M )=618=13.(2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N 包含(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)3个结果,事件N 有3个基本事件组成,所以P (N )=318=16,由对立事件的概率公式得P (N )=1-P (N )=1-16=56. 9A10解 (1)∵这6位同学的平均成绩为75分, ∴16(70+76+72+70+72+x 6)=75,解得x 6=90, 这6位同学成绩的方差s 2=16×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s =7.(2)从前5位同学中,随机地选出2位同学的成绩有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10种, 恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,所求的概率为410=0.4,即恰有1位同学成绩在区间(68,75)中的概率为0.4. 11解 (1)设该厂这个月共生产轿车n 辆, 由题意得50n =10100+300,所以n =2 000,则z =2 000-100-300-150-450-600=400.(2)设所抽样本中有a辆舒适型轿车,由题意得4001 000=a5,则a=2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A1,A2表示2辆舒适型轿车,用B1,B2,B3表示3辆标准型轿车,用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个.事件E包含的基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个.故P(E)=710,即所求概率为710.(3)样本平均数x=18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D包含的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P(D)=68=34,即所求概率为34.12正解(1)甲校两男教师分别用A、B表示,女教师用C表示;乙校男教师用D表示,两女教师分别用E、F表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种,从中选出2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,选出的2名教师性别相同的概率为P=4 9.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种,选出的2名教师来自同一学校的概率为P =615=25.13(1)用a 1,a 2和b 1表示两件正品和一件次品,则不放回地抽取两次,其一切可能的结果为:(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2). 其中小括号内左边的字母表示第一次取出的产品,右边的字母表示第二次取出的产品,用A 表示“取出的两件产品中,恰好有一件次品”这一事件,则A 所含的结果为(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2),即基本事件的总数n =6,事件A 包含的事件总数m =4.故P (A )=46=23.(2)若为有放回的抽取,其基本事件包含的结果共有(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1),用B 表示“恰有一件产品为次品”这一事件,则B 包含的结果为(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2),即基本事件的总数n =9,事件B 包含的事件总数m =4.故P (B )=49.。
高考数学一轮复习 必考部分 第十篇 概率 第2节 古典概型应用能力提升 文 北师大版
第2节古典概型【选题明细表】知识点、方法题号古典概型的判断与基本事件1,3简单古典概型的计算2,4,5,6,7,8综合应用9,10,11,12,13,141.下列事件属于古典概型的基本事件的是( D )(A)任意抛掷两枚骰子,所得点数之和作为基本事件(B)篮球运动员投篮,观察其是否投中(C)测量某天12时的教室内温度(D)一先一后掷两枚硬币,观察正反面出现的情况解析:A项任意抛掷两枚骰子,所得点数之和作为基本事件,但各点数之和不是等可能的,不是古典概型.B项显然事件“投中”和事件“未投中”发生的可能性不一定相等,所以它也不是古典概型.C项其基本事件空间包含无限个结果,所以不是古典概型.D项含有4个基本事件,每个基本事件出现的可能性相等,符合古典概型.2.(2015石家庄二模)投掷两枚骰子,则点数不同的概率为( C )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
解析:投掷两枚骰子总共的结果为36个,点数不同的结果为30个,所以不同的概率是错误!未找到引用源。
=错误!未找到引用源。
.3.某学校组织了4个学习小组.现从中抽出2个小组进行学习成果汇报,在这个试验中,基本事件的个数为( C )(A)2 (B)4 (C)6 (D)8解析:设4个学习小组为A,B,C,D,从中抽出2个的可能情况有(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6种.故选C.4.(2015兰州一模)从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率是( B )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
解析:试验发生包含的事件是从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,共有5×4=20(种)结果,满足条件的事件可以列举出有41,42,43,45,51,52,53,54共有8个,根据古典概型概率公式得到P=错误!未找到引用源。
高考总复习(北师大版)数学(文)【配套课件】第九章第二节 古典概型(28张PPT)
数学
首页
上一页
下一页
末页
第二节 古典概型 结束
(2)由(1)可知,函数f(x)共有4种可能,从中随机抽取两个,有6
种抽法.
∵函数f(x)在(1,f(1))处的切线的斜率为f′(1)=a+b,
∴这两个函数中的a与b之和应该相等,而只有(2,3),(4,1)这1组
满足,∴概率为16. [类题通法]
解决与古典概型交汇命题的问题时,把相关的知识转化为 试验结果个数,求出m、n的值.然后利用古典概型的概率计算 公式进行计算.
(1)古典概型与平面向量相结合; (2)古典概型与直线、圆相结合; (3)古典概型与函数相结合.
数学
首页
上一页
下一页
末页
第二节 古典概型 结束
角度一 古典概型与平面向量相结合 1.(2013·济南模拟)设连续掷两次n),b=(1,-3). (1)求使得事件“a⊥b”发生的概率; (2)求使得事件“|a|≤|b|”发生的概率. 解:(1)由题意知,m∈{1,2,3,4,5,6},n∈{1,2,3,4,5,6},故(m,n)所有 可能的取法共 36 种. 使得 a⊥b,即 m-3n=0,即 m=3n,共有 2 种:(3,1)、(6,2),所 以事件 a⊥b 的概率为326=118. (2)|a|≤|b|,即 m2+n2≤10, 共有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)6 种使得|a|≤|b|,其概率为 366=16.
数学
首页
上一页
下一页
末页
第二节 古典概型 结束
连续取两次都是白球的结果有:(白1,白1),(白1,白2), (白2,白1),(白2,白2),共4个, 故所求概率为146=14. (2)连续取三次的结果有:(红,红,红),(红,红,白1), (红,红,白2),(红,红,黑);(红,白1,红),(红,白1, 白1),(红,白1,白2),(红,白1,黑),…,共64个. 因为取一个红球记2分,取一个白球记1分,取一个黑球记0 分,若连续取三次,则分数之和为4分的结果如下:
古典概型2 北师大版精品课件
我们每个人都有很多在选择,学业、事业、爱情……我们都有各种各样的选择,可以说生活中我们时刻面临着选择,选择不一样,结局也会不一样,只是你的选择是否真正发自内心还是出自于生活的无奈,已经无人理会。人生路需要走很久,我们总会遇到各种各样的人,各种各样的事,正如我们工作平台选择不一样,起点也会不一样,领导选择不一样,或许你的结局也会不一样,我们不能选择自己的出生,所以不要怨天尤人,更不要去指责,生活对谁都一样,选择永远在你手中,跟着心走,或许你就能找到一个真正的自己。
是的,折枝的命运阻挡不了。人世一生,不堪论,年华将晚易失去,听几首歌,描几次眉,便老去。无论天空怎样阴霾,总会有几缕阳光,总会有几丝暗香,温暖着身心,滋养着心灵。就让旧年花落深掩岁月,把心事写就在素笺,红尘一梦云烟过,把眉间清愁交付给流年散去的烟山寒色,当冰雪消融,自然春暖花开,拈一朵花浅笑嫣然。
听这位老友,絮絮叨叨地讲述老旧的故事,试图找回曾经的踪迹,却渐渐明白了流年,懂得了时光。过去的沟沟坎坎,风风雨雨,也装饰了我的梦,也算是一段好词,一幅美卷,我愿意去追忆一些旧的时光,有清风,有流云,有朝露晚霞,我确定明亮的东西始终在。静静感念,不着一言,百转千回后心灵又被唤醒,于一寸笑意中悄然绽放。
解(1)由图表可知同时掷两个骰子的结果共有36种
(2)在上面的所有结果中,向上的点数之和为5的 结果有
(1,4),(2,3)(3,2)(4,1)
(3)由于所有36种结果是等可能的,其中向上点 数之和为5的结果(记为事件A)有4种,因此,由 古典概型的概率计算公式可得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 古典概型
1.(2016·唐山统考)抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的概率是( )
A.19
B.16
C.118
D.112
解析:选B.抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的情况有:1,4;4,1;2,5;5,2;3,6;6,3,共6种情况,所以向上的点数之差的绝对值为3的概率为P =636=1
6
,故选B.
2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )
A.13
B.12
C.23
D.34
解析:选A.甲、乙两人都有3种选择,共有9种情况,甲、乙两人参加同一兴趣小组共有3种情况,所以甲、乙两人参加同一兴趣小组的概率P =39=13,
故选A.
3.从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生,星期日安排一名女生的概率为( )
A.13
B.512
C.12
D.712
解析:选A.将2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1,A 2A 1共12种情况,而星期六安排一名男生,星期日安排一名女
生共有A
1B
1
,A
1
B
2
,A
2
B
1
,A
2
B
2
这4种情况,则其发生的概率为
4
12
=
1
3
.
4.(2016·亳州高三质量检测)已知集合M={1,2,3,4},N={(a,b)|a∈M,b∈M},A是集合N中任意一点,O为坐标原点,则直线OA与y=x2+1有交点的概率是( )
A.1
2
B.
1
3
C.1
4
D.
1
8
解析:选C.易知过点(0,0)与y=x2+1相切的直线为y=2x(斜率小于0的无需考虑),集合N中共有16个元素,其中使OA斜率不小于2的有(1,2),(1,
3),(1,4),(2,4),共4个,由古典概型知概率为
4
16
=
1
4
.
5.(2016·商丘模拟)已知函数f(x)=1
3
x3+ax2+b2x+1,若a是从1,2,3
三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )
A.7
9
B.
1
3
C.5
9
D.
2
3
解析:选D.f′(x)=x2+2ax+b2,要使函数f(x)有两个极值点,则有Δ=(2a)2-4b2>0,即a2>b2.由题意知所有的基本事件有9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取值,第二个数表示b的取值.满足a2>b2的有6个基本事件,即(1,0),
(2,0),(2,1),(3,0),(3,1),(3,2),所以所求事件的概率为6
9
=
2
3
.
6.( 2016·上饶模拟)将1、2、3、4四个数字随机填入如图2×2
的方格中,每个方格中恰填一数字,但数字可重复使用.试问事件“A
方格的数字大于B方格的数字,且C方格的数字大于D方格的数字”的概率为( )。