已知比例尺求图上距离
点考题比和比例:比和比例的应用
答:这批树苗一共有108棵。
例9(武汉市,2001)
一台收割机6天收割小麦114公顷。照这样计算,收割133公顷小麦,需要多少天?(用比例解)
分析 这是一道正比例应用题,主要考查用正比例知识解答应用题的能力。“照这样计算”就是说每台收割机每天收割的公顷数一定,即 =每天收割小麦的公顷数(一定),所以收割小麦的总公顷数与收割小麦的天数成正比例。
例7(重庆市,2001)
建筑工地上用的混凝土是用水泥、砂子和石子拌制而成的。水泥、砂子和石子的比是2∶3∶5。要拌制120吨这样的混凝土,需要水泥、砂子、石子各多少吨?
分析一 此题是典型的按比例分配的应用题。根据题意可以这样想:水泥、砂子和石子的比是2∶3∶5,也就是说120吨混凝土中,水泥占2份,砂子点3份,石子占5份,一共是(2+3+5)份,也就是说水泥占120吨混凝土的 ,砂子占120吨混凝土的 ,石子占120吨混凝土的 。由此,就可以求出水泥、砂子和石子的重量各是多少吨。
热点考题比和比例:比和比例的应用
例1(烟台市,2001)
在比例尺是1∶30000000的地图上,量得广州到北京的距离是6.1厘米,广州到北京的实际距离大约是多少千米?
分析一 根据“图上距离÷实际距离=比例尺”知道,实际距离=图上距离÷比例尺。
【解】 6.1÷ =183000000(厘米)
【解】设石子的重量是x吨,则水泥的重量是 x吨,砂子的重量是 x吨
x+ x+x=120
2x=120
x=120÷2
x=60
x= ×60=24
x= ×60=36
答:需要水泥24吨,砂子36吨,石子60吨。
【说明】此题主要是考查能否正确解答按比例分配的应用题。按比例分配应用题有多种解法,可以按整数问题解,可以按分数问题解,还可以用方程解,一般是用第一种方法解答。
第36讲 比例尺问题
第36讲 比例尺问题【探究必备】1. 一幅图的图上距离与实际距离的比叫做这幅图的比例尺。
2. 比例尺=图上距离:实际距离图上距离=实际距离×比例尺实际距离=图上距离÷比例尺【王牌例题】例1、 甲城到乙城相距60千米,在一幅地图上量得两城之间的图上距离是12厘米,求这幅地图的比例尺?分析与解答:求比例尺时,要先把实际距离和图上距离的单位名称统一,由于甲城到乙城相距60千米,也就是甲、乙两城的实际距离是60千米,即6000000厘米,在一幅地图上量得两城之间的图上距离是12厘米,根据比例尺的意义,算出图上距离和实际距离的比,就是这幅的比例尺,即这幅地图的比例尺是12:6000000=1:500000。
例2、 在一幅比例尺为1:2000000的地图上,量得京杭大运河的全长是8.55厘米。
京杭大运河实际的全长约是多少千米?分析与解答:已知图上距离和比例尺,求实际距离,可以用图上距离除以比例尺。
或者根据比例尺是1:2000000,可知实际距离是图上距离的2000000倍,用图上距离乘2000000,即求得实际距离是多少厘米,因此京杭大运河实际的全长约是8.55×2000000=17100000厘米=1710(千米)。
例3、某建筑工地挖一个长方形的地基,把它画在比例尺是1:4000的平面图上,长是5厘米,宽是3.5厘米。
这块地基的面积是多少平方米?分析与解答:解决这道题的关键是,先求出长方形的长和宽。
由于比例尺是1:4000,因此根据公式“实际距离=图上距离÷比例尺” 。
求出长方形的长和宽,即长方形的长为5÷40001=5×4000=20000(厘米)=200(米),宽为 3.5÷40001=3.5×4000=14000(厘米)=140(米),再根据长方形的面积计算公式,可算出这块地基的面积是200×140=28000(平方米)。
已知比例尺和图上讲义距离求实际距离
4、图上1厘米表示实际距离5千米。 5 × 10= 50(千米) 答:地铁1号线的实际长度是50千米。
先把图中的线段比例尺改写成数值比 例尺,再用直尺量出图中河西村与汽车站 的距离是多少厘米,并计算出两地的实际 距离大约是多少?
1、图上距离与实际距离的比是1:500000 1
2、图上距离是实际距离的500000
3、实际距离是图上距离的500000倍。
4、图上1厘米表示实际距离5千米。
1、图上距离与实际距离的比是1:500000 图上距离:实际距离=1:500000
解:设地铁1号线的实际长度是x厘米
10 = 1 x 500000
x = 10 × 500000
x = 5000000
5000000厘米 = 50千米
1 2、图上距离是实际距离的500000
10 ÷ 1
500000
用到了那条关系式?
= 10 × 500000 = 5000000(厘米)
图上距离÷比例 尺=实际距离
= 50(千米)
3、实际距离是图上距离的500000倍。
16、在比例尺是6:1的图纸上理得一种精密零件长是3厘 米,这个零件的实际长是多少毫米?
谢 谢 各 位 聆 听
此处加标题
已知比例尺和图上距 离求实际距离
眼镜小生制作
精品jing
例2下面是北京市地铁规划图.地铁1号线在图中的长度大约是 10cm,它的实际长度大约是多少?
例2下面是北京市地铁规划图.地铁1号线在图中的长度大约是 10cm,它的实际长度大约是多少?
例2下面是北京市地铁规划图.地铁1号线在图中的长度大约是 10cm,它的实际长度大约是多少?
求比值、化简比、解比例、求图上(实际)距离
求比值、化简比、解比例、求图上(实际)距离教学内容:青岛版六年级下册96-97页“比和比例”整理复习第2课时教学目标:1.继续回顾整理“比和比例”的知识,进一步构建比和比例的知识体系,掌握整理知识的方法。
2. 通过讨论和交流、应用和反思,熟练掌握解比例、求比值、化简比的方法,灵活运用正反比例的知识解决问题,根据比例尺求图上距离或实际距离。
3.在运应比和比例的知识解决问题的过程中,让学生感受数学与生活的密切联系。
4.引导学生积极“观察、比较、归纳、概括”等,熟练运用转化、数形结合等方法,形成知识技能,掌握学习方法。
教学重点:整理比和比例、熟练掌握求比值及图上(实际)距离的方法。
教学难点:帮助学生构建知识网络,教会学生整理和复习的方法教具学具:教师准备:课件学生准备:课前整理有关比和比例的的知识。
教学过程:一、梳一梳1.板题示标师:上节课我们对正反比例、比例尺的意义及性质的相关知识进行了整理和复习,今天这节课我们继续对“比和比例”的知识进行回顾和整理。
课前,大家自主对这部分知识进行了整理,下面我们先在小组内进行交流,看看大家都是用什么方式进行整理的。
学习目标:熟练掌握解比例、求比值、化简比的方法,灵活运用正反比例的知识解决问题,根据比例尺求图上距离或实际距离。
2.出示练习解比例 12:24 = 3:x3.复习指导认知读书整理并思考,(1)如何求比值、化简比?(2)求比值和化简比有什么区别?(3)根据比例尺的意义怎样求图上距离和实际距离?要注意哪些问题?4.知识梳理同学们汇报的既准确又条理,很了不起!其实求比值、化简比、解比例、求图上(实际)距离的的知识在生活中有着很广泛的应用,今天我们就用所复习的知识解决一些实际问题。
(板书课题)求比值、化简比、解比例、求图上(实际)距离图上距离=实际距离×比例尺实际距离=图上距离÷比例尺解题时一定要注意两个统一:单位的统一、等号两边比的统一。
二、练一练(一)基本练习1.求比值和化简比:让学生先思考一下这两道不同类的比,如何求比值?如何化简?与同桌讲一讲你的方法,最后前后4人组交流计算方法。
比例尺的应用(求图上距离)
作业
按8:1的比例尺画在图纸上,长和宽各
应画多长?
练1
小军量得公园一个圆形花坛的周长是
157米,他想把它画在平面图上,请你
帮帮画一画。(比例尺根据纸的大小和 圆规的大小确定)
练2
一幅图的线段比例尺是:0
80 160 240 千米
甲乙两城在这幅地图上相距15厘米,两 城间的实际距离是多少千米?如果把甲 乙两城画在另一幅比例尺是 1 ︰10000000的地图上,应画 多少厘米?
答:应画40厘米。
一张地图的比例尺是1︰200000, 从甲地到乙地的距离是60千米,求
图上距离是多少厘米。
试1
英华小学有一块长120米、宽80米 的长方形操场,画在比例尺为1 : 4000的平面图上,长和宽各应画多 少厘米?图上面积是多少平方厘米?
试2
一个长方形机件长4.5毫米,宽2.4毫米,
复
例
一条跑道长200米,如果用1:500的比例尺画 在图纸上,应画多长? 算术方法
200米=20000厘米 实际距离×比例尺=图上距离
1 20000× =40(厘米) 500
列方程法
解:设应画χ厘米。 200米=20000厘米 图上距离︰实际距离=比例尺 χ︰20000=1︰500 500χ=20000 ×1 χ=20000÷500 χ=40
( 图上距离 ) =比例尺 ( 实际距离 ) ( =实际距离 ( 图上距离)÷ 比例尺 ) ( =图上距离 实际距离)× 比例尺 ) (
在一幅地图上,测得甲、乙两地的图上距离是13厘米,已知甲 乙两地的实际距离是780千米。 (1)求这幅图的比例尺。 (2)在这幅地图上量得A、B两城的图上距离是5厘米,求A、 B两城的实际距离。 (1)比例尺: 13厘米︰780千米 =13厘米︰78000000厘米 =1 ︰6000000 (2)实际距离 解:设A、B两城的实际 距离是χ厘米。 5 ︰ χ=1 ︰6000000 1χ=5×6000000 (2)实际距离: 1 χ=30000000 5 ÷ 6000000 =30000000(厘米) 30000000厘米=300千米 =300千米 答:这幅图的比例尺是1 ︰6000000,A、B两城 的实际距离是300千米。
热点:关于比例尺及正反比例的实际应用问题-2024年小升初数学(解析版)
热点:关于比例尺及正反比例的实际应用问题1“朝辞白帝彩云间,千里江陵一日还”,这是唐朝著名诗人李白的诗。
在一幅比例尺是1∶3000000的地图上量得白帝城到江陵的距离是14cm。
王杰开车以60千米/时的速度从白帝城出发,行驶7时能否到达江陵?请计算说明。
【答案】能【分析】根据题意,结合图上距离÷比例尺=实际距离,求出实际距离,再换算成以“千米”作单位,根据速度×时间=路程,求出行驶7小时行驶的路程后与白帝城到江陵的距离比较后得出答案。
【详解】1∶3000000=1÷3000000=1300000014÷13000000=14×3000000=42000000(厘米)42000000厘米=420千米60×7=420(千米)答:行驶7时能到达江陵。
2在比例尺是1500的平面图上,量得一个正方形花圃的边长是14cm,这个花圃实际面积是多少公顷?【答案】0.49公顷【分析】比例尺是图上距离与实际距离的比值,已知正方形边长的图上距离是14cm,图上距离除以比例尺得到实际距离,再根据正方形的面积=边长×边长,求出花圃的实际面积。
【详解】14÷1500÷100=14×500÷100=7000÷100=70(米)70×70=4900(平方米)4900平方米=0.49公顷答:这个花圃实际面积是0.49公顷。
【点睛】本题考查比例尺的应用,本题注意要先求出花圃边长的实际距离后,最后求出花圃的实际面积。
3在比例尺为1∶5000000的地图上,量得杭州东站到上海虹桥站的长度是3.4厘米。
杭州东站到上海虹桥站的实际距离是多少千米?一列动车,从杭州东站到上海虹桥站,用时40分钟,那么这列动车平均每小时行多少千米?【答案】170千米;255千米/小时【分析】实际距离=图上距离÷比例尺,则用3.4÷15000000即可求出实际距离,1千米=100000厘米,将结果化成千米即可;速度=路程÷时间,代入数据计算即可。
比例尺求实际距离的三种方法
比例尺求实际距离的三种方法
嘿,朋友们!今天咱来聊聊比例尺求实际距离的三种超棒方法呀!
第一种,那就是直接用图上距离除以比例尺啦!就比如啊,你有张地图,图上两地之间是 5 厘米,比例尺是 1:10000,那实际距离不就是
5÷(1/10000)=50000 厘米,也就是 500 米嘛!
第二种呢,用比例关系来解决!就好像你做个数学题,知道图上距离和比例尺的比例,那实际距离不也就水到渠成能算出来啦!打个比方,地图上量得是 3 厘米,比例尺是 1:5000,那不就是设实际距离为 x 厘米,
3:x=1:5000,x 不就等于 15000 厘米,即 150 米嘛!
第三种,嘿嘿,那就是利用等量代换的思想哦!这就好比你玩拼图,换到对的位置就恍然大悟啦!好比有个图形,通过一些已知条件推出图上距离和比例尺的关系,那实际距离不就能轻松找到啦!比如说,已知一些相关信息推出图上距离是 4 厘米,比例尺是 1:8000,那实际距离自然就是
4÷(1/8000)=32000 厘米,也就是 320 米呀!
哇塞,这三种方法是不是超赞的呀!大家可一定要学会哦,这样以后遇到比例尺求实际距离就再也不怕啦!。
初一地理地图计距离方法
初一地理地图计距离方法地理是关于地球的研究科学,而地图则是地理学中常用的工具。
通过地图,我们可以更好地理解和分析地球上的各种现象和关系。
而在地理学习的过程中,计算距离是一项非常重要的技巧。
本文将介绍初一地理学习中常用的几种计算距离的方法。
一、比例尺计算比例尺是地图上显示距离与实际距离之间的比例关系。
在地图上通常有一个比例尺尺度的指示,如1:10000。
这意味着地图上的1cm实际上相当于10000cm(或100m)的实际距离。
通过比例尺,我们可以简单地计算地图上两点之间的距离。
例如,如果地图上两点的距离为5cm,而比例尺为1:10000,则实际距离为5cm × 10000 = 50000cm = 500m。
因此,两点之间的实际距离是500m。
二、使用经纬度计算经纬度是地球表面上一个点的坐标。
经度表示东西方向的位置,以子午线为基准,最大值为180度,分别用E表示东经和W表示西经。
纬度表示南北方向的位置,以赤道为基准,最大值为90度,分别用N 表示北纬和S表示南纬。
通过经纬度,我们可以计算两个点之间的距离。
这种方法通常适用于全球范围内的距离计算。
常用的经纬度计算距离的公式有球面三角法和海卡公式。
通过这些公式,我们可以准确地计算两点之间的球面距离。
三、使用方位角和距离计算方位角和距离计算适用于地图上的直线距离。
方位角是从一个点指向另一个点的方向角度,通常以北为参考。
通过方位角和距离,我们可以计算直线距离。
首先,确定两点之间的方位角。
然后,使用三角关系计算直线距离。
这种方法适用于地图上近距离的两点计算。
四、使用网格计算网格是地图上的方格,用于帮助确定位置和测量距离。
通过网格计算,我们可以估算两点之间的距离。
首先,确定两点所在的方格。
然后,通过计算两点在方格中的行数和列数之差,以及每个方格的大小,可以估算出两点之间的距离。
总结:初一地理学习中,我们可以通过比例尺计算、使用经纬度计算、方位角和距离计算以及网格计算等方法来计算距离。
求比值、化简比、解比例、求图上(实际)距离
求比值、化简比、解比例、求图上(实际)距离教学内容:青岛版六年级数学下册97页第一个红点“比和比例”讨论交流。
教学目标1.通过复习比与比例的相关知识,熟练掌握求比值、化简比、解比例、求图上(实际)距离的方法,明确它们间的区别和联系。
2.构建知识网络,教会学生整理和复习的方法,在培养归纳、总结等自我复习能力的同时,提高学生利用比和比例的相关知识解决实际生活中的问题的能力。
3.在复习活动中体验数学与生活的密切联系,培养学生的数学应用意识,培养学生的数学应用意识,激发学生成功学习数学的自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。
4.在展示交流过程中体验解决策略的魅力,培养积极学习的态度和不断探索的热情。
教学重难点教学重点:熟练掌握解求比值、化简比、解比例、求图上(实际)距离的方法,解决实际生活中的问题。
教学难点:引导学生构建知识网络,并且学会自主整理和复习的方法。
教具学具教师准备:多媒体课件学生准备:自备一份课前整理好的有关“求比值、化简比、解比例、求图上(实际)距离”的知识整理表(图)。
教学过程一、问题回顾,再现新知1.谈话:上节课同学们通过自主归纳整理了有关比、比例、正反比例、比例尺的意义及性质的相关知识,大家表现的非常棒.知识的构建是循序渐进、相辅相成的。
利用比、比例、正反比例、比例尺的意义及性质的相关知识,我们可以进行求比值、化简比、解比例、求图上(实际)距离。
今天这节课我们就来整理复习“求比值、化简比、解比例、求图上(实际)距离”。
(板书课题)相信同学们通过这节课的学习,一定能构建出更完美的“比和比例“的知识宝塔,一定会有新的收获!2.组内交流,合作整理。
昨日老师让大家用自己喜欢的方式整理了求比值、化简比、解比例、求图上(实际)距离的有关知识,现在请同学们把你们的自学成果在小组内交流,下面让我们先来看看交流要求(课件出示):(1)向你的同位说说你整理了哪些内容。
(2)把你遗漏的地方补充完整。
利用比例尺和实际距离求图上距离邵波教案
利用比例尺和实际距离求图上距离一、教学目标1. 让学生理解比例尺的概念,知道比例尺的应用。
2. 让学生掌握利用比例尺和实际距离求图上距离的方法。
3. 培养学生的实际应用能力和解决问题的能力。
二、教学重点与难点1. 教学重点:比例尺的概念,利用比例尺和实际距离求图上距离的方法。
2. 教学难点:比例尺的应用,求图上距离的计算方法。
三、教学准备1. 教具准备:比例尺图例,实际距离与图上距离的对照图。
2. 学具准备:学生尺子,计算器。
四、教学过程1. 导入新课1.1 教师出示比例尺图例,引导学生观察并说出比例尺的含义。
1.2 学生分享观察到的比例尺信息,教师总结并讲解比例尺的概念。
2. 探究新知2.1 教师出示实际距离与图上距离的对照图,引导学生发现实际距离与图上距离的关系。
2.2 学生通过观察对照图,发现实际距离与图上距离的比例关系。
2.3 教师引导学生总结利用比例尺和实际距离求图上距离的方法。
3. 课堂练习3.1 教师出示练习题,学生独立完成,检验自己对利用比例尺和实际距离求图上距离方法的掌握。
3.2 教师选取部分学生的作业进行讲解和评价,指出作业中的优点和不足。
4. 拓展延伸4.1 教师出示一个实际问题,引导学生利用比例尺和实际距离求解图上距离。
4.2 学生分组讨论,共同解决问题,教师巡回指导。
5. 总结与反思5.1 教师引导学生总结本节课所学的知识点,巩固比例尺的概念和利用比例尺求图上距离的方法。
5.2 学生分享自己的学习收获,教师给予评价和鼓励。
五、课后作业1. 请学生运用比例尺和实际距离,求解家到学校的图上距离,并绘制出家到学校的路线图。
2. 学生家长协助检查作业完成情况,家长在作业本上签字确认。
教学反思:六、教学评价1. 评价目标:通过课后作业和课堂练习,评价学生对比例尺概念的理解和利用比例尺求图上距离的掌握程度。
2. 评价方法:教师对课后作业进行批改,观察学生的作业完成情况,对课堂练习的回答情况进行记录和评价。
比例尺(求图上距离)
你能在图中画出他们的位置吗?
小红家
小明家
小亮家
100
1.填空。 (1) A、B两地相距34 km,在比例尺为1∶500000
的地图上,A、B两地间的距离是( 6.8 )cm。 (2) 一个零件实际长度是3.1 mm,将它画在比例尺
为15∶1的图纸上,图上零件长( 46.5 ) mm。
2.填表。 图上距离 实际距离 比例尺 6 cm 1.8 km 1∶30000 5 cm 900 m 1∶18000 3.4 cm 27.2 km 1∶800000
第8课时 比例尺(求图上距离)
综合运用比例尺、位置与方向的有关知识解决问题
小明家在学校正西方向,距学校200m,小亮家在小 明家正东方向,距小明家400m,小红家在学校正北 方向,距学校250m。在下图中画出他们三家和学校 的位置平面图(比例尺1∶10000)。
想: 1. 应该首先干什么,再干什么? 2. 需要什么条件才能画图? 3.你有几种解决问题的方法?
3.兰州到乌鲁木齐的铁路线大 约长1900km。地图上两地 之间的长度是多少厘米? (选题源于教材P57第7题)
1900km=190000000cm 1 图上距离:190000000×40000000 =4.75 (cm答):地图上两地之间的长度是4.75 cm。
4.学校要建一个长80m、宽60m的
首先先算出图上距离,再根据方向画出位置。
图上距离 根据“ 实际距离
=比例尺
”,
推出:“图上距离=实际距离×比例尺”
200 m=20000 cm 400 m=40000 cm 250 m=25000 cm
1
小明家到学校的图上距离:20000× 10000 =2(cm)
图上距离和实际距离的比
地图制作者需要根据实际需求选 择合适的比例尺,以满足不同用 户对地图精度和详细程度的需求。
导航系统
导航系统是现代生活中不可或缺的一 部分,它可以帮助我们找到目的地并 规划最佳路线。
通过使用图上距离和实际距离的比,导航系 统可以提供准确的路线规划和行驶距离估算 ,帮助用户快速、准确地到达目的地。
01
02
03
04
军事
比例尺在军事上有着广泛的应 用,如作战计划、地形分析等
。
地理研究
地理学家使用比例尺来研究地 形、地貌和地球表面的其他特
征。
城市规划
城市规划师使用比例尺来规划 城市和地区的发展。
地图制作
地图制作者使用比例尺来制作 各种类型的地图,如交通图、
旅游图等。
计算图上距离和实际距离的比的步骤
在地理学、地图学、测量和军事等领域中,比例尺都是不可或缺的概念,对于空间 数据的表示、分析和应用具有重要意义。
02 图上距离和实际距离的定 义
图上距离的定义
图上距离
在地图或图纸上,两点之间的直线距 离。
测量方法
使用测量工具,如直尺、量角器等, 直接测量两点间的直线长度。
实际距离的定义
实际距离
在实际环境中,两点之间经过地形、地貌、建筑物等障碍物的实际行走或行驶 距离。
使用激光测距仪
激光测距仪具有高精度和高速度的优点,能够快速准确地测量实际距离。
选用高分辨率的GPS设备
高分辨率的GPS设备能够提供更精确的位置信息,从而减小测量误差。
优化地图制作流程
采集更多数据点
在地图制作过程中,增加更多的数据 点可以提高地图的精度,进而提高图 上距离和实际距离的比的精度。
图上距离应该等于什么
图上距离应该等于什么
实际距离=图上距离÷比例尺,图上距离=实际距离×比例尺。
在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。
这时,就要确定图上距离和相对应的实际距离的比。
扩展资料
比例尺公式
图上距离=实际距离×比例尺。
实际距离=图上距离÷比例尺。
比例尺=图上距离÷实际距离.(在比例尺计算中要注意单位间的`换算)。
(1公里=1千米=1×1000米=1×100000厘米)。
单位换算:图上用厘米,实地用千米,厘米换千米,去五个零;千米换厘米,在千的基础上再加两个零。
比例地图
国家测绘部门将1∶5000、1∶1万、1∶2.5万、1∶5万、1∶10万、1∶25万、1∶50万和1∶100万八种比例尺地形图规定为国家基本比例尺地形图,简称基本地形图,亦称国家基本图,以保证满足各部门的基本需要。
其中:
大比例尺地形图:1∶5000至1∶10万的地形图;
中比例尺地形图:1∶25万和1∶50万地形图;
小比例尺地形图:1∶100万地形图。
生活中的比例尺
如:地图,绘图、测量、田地、航空、公路、航海,建筑。
根据比例尺求图上距离
根据比例尺求图上距离教学内容:青岛版版小学数学六年级下册P60 信息窗3红点一。
教学目标1.在理解比例尺含义的基础上,结合具体情境,根据实际距离和比例尺求出图上距离。
2.运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题,进一步体会数学与日常生活的密切联系。
3.结合实际经历提出问题、分析问题、解决问题的过程,初步学会数学地思维,培养问题意识和解决问题的能力。
4.在自主探索解决现实问题的过程中,发展应用意识,体验成功的乐趣。
教学重点难点教学重点:利用比例尺和实际距离求图上距离的方法。
教学难点:在探究如何根据实际距离和比例尺求图上距离的过程中,感受数学的一题多解。
教具、学具:多媒体课件。
教学过程一. 创设情境,提出问题1. 回顾旧知:同学们,前面我们学习了比例尺的有关知识,请同学们回答下面的三个问题,好吗?〔多媒体出示〕(1)什么是比例尺?(2)如何根据图上距离和实际距离求比例尺?(3)如何根据图上距离和比例尺求实际距离?学生回答完之后,总结:同学们回答的非常好,我们知道了可以根据图上距离和实际距离求出这幅地图的比例尺,并且也能够根据图上距离和比例尺求出实际距离,那么根据实际距离和比例尺又如何求图上距离的呢?这就是我们今天所要探究的内容。
板书课题:利用比例尺和实际距离求图上距离2.课件出示足球场地图,学生观察图,老师讲解:这是一个长方形足球比赛场地。
质疑:关于“足球场”的知识,你都有哪些了解?学生根据自己的了解,自由回答,教师通过课件帮助学生了解足球场的相关知识。
下面我们就一起来看一下雏鹰队在足球场上的精彩回放。
(课件出示)3.师:根据上面的信息你能提出什么数学问题?(找学生说一说)引导学生提出下面两个问题:10号队员的起脚位置在哪里?4号队员的起脚位置在哪里?二.自主学习,小组探究我们先来解决第1个问题:怎样在图上标出10号队员起脚的位置?(学生独立思考)预设:(1)要先算出10号队员距离底线10米,右边线25米在图上的距离分别是多少?(2)求出图上距离后在图中量出两个距离确定位置同学们分析的很好,下面依据刚才说的方法小组合作完成,请同学们看探究提示:小组内讨论交流各自的算法,老师巡视并对学生出现的各种问题进行指导。
数学六年级下册-《比例尺》知识讲解 根据比例尺和实际距离求图上距离
六年级下册-打印版
根据比例尺和实际距离求图上距离
问题导入A城到B城的实际距离是120 km,画在比例尺为1 :1000000的图纸上,应画多少厘米?
过程讲解
1.理解题意
根据题意可知比例尺是1:1000000,实际距离是120 km,求图上距离。
2.探究解题方法
解法一
分析根据“=比例尺”可以列方程求解。
因为所设的图上距离的单位是厘米,所以要先把实际距离转化成以厘米为单位的数,再列方程。
解答解:设应画x厘米。
120 km=12000000 cm
=
1000000x=12000000
x=12
解法二
分析要求图上距离是多少厘米,可以把120 km转化成以厘米为单位的数,再利用“实际距离×比例尺”直接求出图上距离。
解答 120 km= 12000000 cm
12000000×=12( cm)
答:应画12 cm。
归纳总结
已知比例尺和实际距离,求图上距离的方法:可以根据“=比例尺”列方程解答,也可以利用“图上距离=实际距离×比例尺”直接列式计算。
图上距离和实际距离
BIG DATA EMPOWERS TO CREATE A NEW
ERA
• 引言 • 图上距离与实际距离的关系 • 地图投影 • 实际距离的测量方法 • 图上距离和实际距离的应用 • 总
引言
BIG DATA EMPOWERS TO CREATE A NEW
新的测量技术和数据处理方法可以进一步改进地 图制作和测量精度,未来研究可以探索这些新技 术的应用和潜力。
人工智能和机器学习技术在地图制作和导航领域 也有着广泛的应用前景,未来研究可以探索如何 利用这些技术提高地图的智能化水平和服务质量 。
THANKS
感谢观看
ERA
主题简介
图上距离
指在地图或图纸上两点之间的直线距 离。
实际距离
指在实际地理空间中两点之间的直线 距离。
主题重要性
01
在地理学、测量学、交通规划等 领域,图上距离和实际距离的转 换是重要的基础工作。
02
正确理解图上距离和实际距离的 关系,有助于提高地图的精度和 使用效果,为相关领域的研究和 实践提供支持。
03
地图投影
BIG DATA EMPOWERS TO CREATE A NEW
ERA
地图投影的种类
等角投影
保持角度不变,常用于航海图和航空 图。
等面积投影
等距离投影
保持两点间的距离不变,常用于制作 地形图。
保持面积不变,常用于制作世界地图。
地图投影的选择
根据用途选择
不同的地图用途需要选择不同的 投影方式,例如,航海图需要选 择等角投影,世界地图需要选择
等面积投影。
根据区域选择
不同地区的地球曲率不同,因此需 要根据区域选择合适的投影方式。
4.8 根据比例尺求图上距离或实际距离
项目
内容
1.下午2时,量得一根4米高的竹竿的影子长1.5米。一棵大树的影子长4.5米,这棵大树高多少米?
2.在一幅比例尺是1∶8000000的地图上,量出济南到青岛的距离是4厘米,济南到青岛的实际距离是多少?
分析与解答:
图上距离∶实际距离=比例尺。据此,设济南到青岛的实际距离为x,列比例式为(),然后求出两地的距离是()千米。
温馨
提示
知识准备:比例的意义和基本性质,运用比例关系解比例。
学具准备:直尺。
参考答案
1.12米
2.正比例 = 320
3.略
4.略
5Hale Waihona Puke 2000厘米=20米20×6×20×4=9600(平方米)
6.甲:40千米乙:60千米
3.根据比例尺求图上距离或实际距离的问题,实际上就是利用比例关系列方程解题。
4.解决问题过程中要注意单位转换和比例尺的前后项分别是哪个量。
5.某建筑工地挖一个长方形的地基,把它画在比例尺是1∶2000的平面图上,长是6厘米,宽是4厘米,这块地基的面积是多少?
6.在比例尺是1∶6000000的地图上,量得两地的距离是5厘米,甲、乙两车同时从两地相向而行,3小时后两车相遇。已知甲、乙两车的速度比是2∶3。甲、乙两车每小时各行驶多少千米?
比例尺的用法及表示方法
⽐例尺的⽤法及表⽰⽅法 ⽐例尺是表⽰图上⼀条线段的长度与地⾯相应线段的实际长度之⽐,其使⽤⽅法你了解多少呢?以下是由店铺整理关于⽐例尺的⽤法的内容,希望⼤家喜欢! ⽐例尺的使⽤⽅法 ⽅法1.根据地图上的⽐例尺,可以量算图上两地之间的实地距离;根据两地的实际距离和⽐例尺,可计算两地的图上距离;根据两地的图上距离和实际距离,可以计算⽐例尺。
根据地图的⽤途,所表⽰地区范围的⼤⼩、图幅的⼤⼩和表⽰内容的详略等不同情况,制图选⽤的⽐例尺有⼤有⼩。
地图⽐例尺中的分⼦通常为1,分母越⼤,⽐例尺就越⼩。
通常⽐例尺⼤于⼗万分之⼀的地图称为⼤⽐例尺地图;⽐例尺介于⼗万分之⼀⾄⼀百万分之⼀之间的地图,称为中⽐例尺地图;⽐例尺⼩于百万分之⼀的地图,称为⼩⽐例尺地图。
在同样图幅上,⽐例尺越⼤,地图所表⽰的范围越⼩,图内表⽰的内容越详细,精度越⾼;⽐例尺越⼩,地图上所表⽰的范围越⼤,反映的内容越简略,精确度越低。
(此可简记为“⼤⼩详、⼩⼤略”⽅便应⽤)地理课本和中学⽣使⽤的地图册中的地图,多数属于缩⼩⽐例尺地图。
⽅法2.⽤图上距离除以实际距离等于⽐例尺,公式是图上距离:实际距离=⽐例尺,例如:图上2厘⽶表⽰实际300千⽶,可以这样求⽐例尺——2cm:300km=2cm:30000000cm=1:15000000,这样就求出来了。
⽐例尺的表⽰⽅法 ⽤公式表⽰为:⽐例尺=图上距离/实际距离。
⽐例尺通常有三种表⽰⽅法。
(1)数字式,⽤数字的⽐例式或分数式表⽰⽐例尺的⼤⼩。
例如地图上1厘⽶代表实地距离500千⽶,可写成:1∶50,000,000或写成:1/50,000,000。
(2)线段式,在地图上画⼀条线段,并注明地图上1厘⽶所代表的实际距离。
(3)⽂字式,在地图上⽤⽂字直接写出地图上1厘⽶代表实地距离多少⽶,如:图上1厘⽶相当于地⾯距离500⽶,或五万分之⼀。
三种表⽰⽅法可以互换。
必须化单位。
在绘制地图和其他平⾯图的时候,需要把实际距离按⼀定的⽐缩⼩(或扩⼤),再画在图纸上。
比例尺怎么算
比例尺怎么算一1比例尺计算1.图上距离÷实际距离=比例尺2.图上距离÷比例尺=实际距离3.比例尺×实际距离=图上距离2比例尺三种形式1.数字式:用数字的比例式或分数式表示比例尺的大小。
例如地图上1厘米代表实地距离500千米,可写成1∶50000000或写成:五千万分之一。
2.线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
3.文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如图上1厘米相当于地面距离10千米。
3地图比例尺表示图上距离比实际距离缩小(或放大)的程度,因此也叫缩尺。
如1∶10万,即图上1厘米长度相当于实地1000米。
严格讲,只有在表示小范围的大比例尺地图上,由于不考虑地球的曲率,全图比例尺才是一致的。
通常绘注在地图上的比例尺称为主比例尺。
在地图上,只有某些线或点符合主比例尺。
比例尺与地图内容的详细程度和精度有关。
二比例尺=图上距离/实际距离。
比例尺的概念:比例尺是表示图上一条线段的长度与地面相应线段的实际长度之比。
按照比例尺概念,比例尺的算式为:比例尺=图上距离/实际距离。
比例尺的特点:比例尺实际上是一个“比”;比例尺是图上距离与实际距离的“比”;图上距离和实际距离的单位是统一的(即换算成相同单位再比),所以比例尺没有单位(单位统一被约分了);比例尺的前项一般为1。
比例尺的换算方法:(1)长度单位换算公式:1公里=1千米。
1000米=1千米。
1米=10分米=100厘米=1000毫米。
1分米=10厘米=100毫米。
1厘米=10毫米。
(2)比例尺的换算:举例说明:“图上一厘米代表实际1公里,比例尺是多少?”解析:长度单位换算公式是孩子原来就掌握的知识,因为比例尺必须统一单位,只需要按长度单位换算公式,将图上距离和实际距离的单位换算成相同单位,然后统一代入比例尺算式,比例尺=1厘米/1公里=1厘米/100000厘米=1/100000。
比例尺的三个公式题
比例尺的三个公式题
当涉及到比例尺的计算时,有三个常用的公式可以帮助我们求解。
下面我将分别介绍这三个公式,并给出具体的计算示例。
1. 比例尺的定义公式:
比例尺是地图上距离与实际距离之间的比例关系。
它可以用以下公式表示:
比例尺 = 地图上的距离 / 实际距离。
例如,如果一张地图上的距离是5厘米,而实际距离是10公里,那么比例尺可以计算为:
比例尺 = 5厘米 / 10公里 = 1:200,000。
2. 求实际距离的公式:
当我们知道比例尺和地图上的距离时,可以使用以下公式求解实际距离:
实际距离 = 比例尺× 地图上的距离。
例如,如果一张地图的比例尺是1:100,000,而地图上的距离是3厘米,那么实际距离可以计算为:
实际距离= 1:100,000 × 3厘米 = 3公里。
3. 求地图上的距离的公式:
当我们知道比例尺和实际距离时,可以使用以下公式求解地图上的距离:
地图上的距离 = 实际距离 / 比例尺。
例如,如果一张地图的比例尺是1:50,000,而实际距离是6公里,那么地图上的距离可以计算为:
地图上的距离 = 6公里 / 1:50,000 = 0.12厘米。
这些公式可以帮助我们在地图测量和规划中进行距离的计算和转换。
但需要注意的是,比例尺只是地图上距离与实际距离的比例
关系,不考虑地形的复杂性和变化。
因此,在实际使用中,需要结合其他因素进行综合考虑。
希望以上解答能够满足你的要求,如果还有其他问题,请随时提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自主预习1
认真看课本90页—91页,并思考第1个红点:
1.你从图中找到的比例尺是多少? 2.要想标出10号队员的起脚位置得 先算出什么? 3.你能根据比例尺的意义列式吗?
足起脚位置
2.5cm
比例尺1:1000
学以致用
要求: 1.独立完成。(每组3号到展示板做,做对得3分) 2.1号、2号看题。 3.小组代表汇报做法。
答:10号队员距底线的图上距离是1厘米。
学以致用
学以致用
要求: 1.独立完成。(每组4号到展示板做,做对得4分) 2.1号、2号看题。 3.小组代表汇报做法。
学以致用
学以致用
作业布置
乐园第20页—21页
板书设计
利用比例尺求图上距离 解:设10号队员距底线的图上距离是x厘米。
10米=1000厘米 x:1000=1:1000
1000x=1×1000 x=1