2016-2017四川省下学期七年级数学月考
2016-2017学年度初一第一学期第二次月考模拟试题(数学)
2016-2017学年度第一学期第二次月考模拟试题六年级数学(满分120分 考试时间90分钟)第一卷一、填空题(每题3分,共36分)1、在代数式中:7,,1,1,43,4,3,21232xyn x x ab xy a π---单项式的个数有( ) A 、3个 B 、4个 C 、5个 D 、6个 2、下列说法正确的是( ) A 、单项式43abc 的系数和次数都是3 B 、单项式334r π的系数是π34,次数是3 C 、单项式4322y x 的次数是9 D 、单项式z y x 225.0-的系数是-0.5,次数是4 3、下列说法正确的有( )①π的相反数是14.3-; ②符号相反的数互为相反数; ③()8.3--的相反数是3.8; ④一个数和它的相反数不可能相等; ⑤正数与负数互为相反数.4、点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论: 甲:0<-a b 乙:0>+b a 丙:b a < 丁:0>ab正确的是( )A 、甲乙B 、丙丁C 、甲丙D 、乙丁 5、方程1273422--=--x x 去分母得( ) A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7 C 、12-2(2x -4)=-(x -7) D 、12-4x +4=-x +7 6、若21=x 是方程x a x 33-=-的解,则a=( ) A 、2 B 、25C 、4D 、67、一个四次多项式与一个五次多项式的和一定是( )A 、九次多项式B 、五次多项式C 、四次多项式D 、无法确定 8、已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( ) A :a a b b >+>->-11 B :b b a a ->->>+11 C :b a b a ->>->+11 D :a b a b >->+>-11 9、若,0≠ab 则bba a +的取值不可能是( ) A 、0 B 、1 C 、2 D 、-210、某品牌商品,按标价九折出售,仍可获得20%的利润。
四川省成都市第四十六中学(四川师范大学附属中学外国语学校)2023-2024学年七年级下学期3月月考
四川省成都市第四十六中学(四川师范大学附属中学外国语学校)2023-2024学年七年级下学期3月月考数学试题一、单选题1.下列计算正确的是( )A .()222a b a b -=-B .()232622ab a b =C .235ab ab ab+= D .248a a a ⋅= 2.科学家在实验室中检测出某种病毒的直径的为0.000000103米,该直径用科学记数法表示为( )米.A .61.0310-⨯B .61.0310⨯C .71.0310-⨯D .71.0310⨯ 3.已知418,83x y ==,则265x y -的值为( )A .5B .10C .25D .504.若整式(2x+m )(x ﹣1)不含x 的一次项,则m 的值为( )A .﹣3B .﹣2C .﹣1D .25.下列四个说法:①两点确定一条直线;②过直线上一点有且只有一条直线垂直于已知直线;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④从直线外一点到这条直线的垂线段,叫做点到直线的距离,其中正确..的说法的个数是( ) A .1 B .2 C .3 D .46.如题图,现要从村庄A 修建一条连接公路CD 的最短小路,过点A 作AB CD ⊥于点B ,沿AB 修建公路,则这样做的理由是( )A .垂线段最短B .两点之间,线段最短C .过一点可以作无数条直线D .两点确定一条直线 7.下列不能用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y -+-C .()()x y x y -+--D .()()x y x y -++8.计算20220201133⎛⎫-⨯ ⎪⎝⎭的结果是( ).A .3-B .3C .13-D .13二、填空题9.已知223a -⎛⎫= ⎪⎝⎭,()22b =-,()02021c π=-,则a ,b ,c 的大小关系为. 10.已知21a b +=,则2244a b b -+的值为.11.已知13x x +=,则221x x+=. 12.如图,下列不正确的是(填序号)①如果ADE B ∠=∠,那么DE BC ∥;②如果AED C ∠=∠,那么DE BC ∥;③如果ADE C ∠=∠,那么DE BC ∥;④如果DFB C ∠=∠,那么DF EC ∥;⑤如果DFB AED ∠=∠,那么DF AC ∥.三、解答题13.计算 (1)()()33201(3)333π-⎛⎫-+-+-÷- ⎪⎝⎭; (2)223431()93a b ab a b -⋅÷;(3)()()2(2)13x x x ---+. (4)()()2328622a b ab ab ab ⎡⎤-+--÷-⎣⎦14.已知(4-2y)2+|x+3|=0,先化简再求值:(8x 3y-12x 4+4x 2) ÷(2x)2 15.已知()()279x m x n x x +-=+-,求代数式mn m n -+的值.16.已知232x x ++可以分解成()()21x x ++,对照模型将2x ax b ++分解时,甲看错了a 值,分解的结果是()()32x x -+,乙看错了b 值,分解的结是()()23x x --,求a b +的值. 17.已知:如图,DG BC ⊥,AC BC ⊥,EF AB ⊥,12∠=∠,求证:CD AB ⊥.证明:DG BC ⊥Q ,AC BC ⊥(已知)90DGB ACB ∴∠=∠=︒(垂直定义)DG AC ∴∥(______)2∴∠=______(______)12∠∠=Q (已知)1∴∠=∠______(等量代换) EF CD ∴P (______)AEF ∴∠=∠______(______)EF AB ⊥Q (已知))90AEF ∴∠=︒(______)90ADC ∴∠=︒(______)CD AB ∴⊥(______)18.如图,直线AB ,CD 相交于点O ,OD 平分EOB ∠,OF 平分AOE ∠,GH CD ⊥,垂足为H ,那么GH FO ∥,请说明理由.四、填空题19.若()331x x -+=,则x =。
人教版七年级数学下学期第一次月考试卷含答案详解
七年级(下)第一次月考数学试卷一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.5.下列图形不是由平移而得到的是()A.B.C.D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐13012.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角.14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移格,再向上平移格.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为度.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是度.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?-学年七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(注释)1.如图,以下条件能判定GE∥CH的是()A.∥FEB=∥ECD B.∥AEG=∥DCH C.∥GEC=∥HCF D.∥HCE=∥AEG【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:∥FEB=∥ECD,∥AEG=∥DCH,∥HCE=∥AEG错误,因为它们不是GE、CH被截得的同位角或内错角;∥GEC=∥HCF正确,因为它们是GE、CH被截得的内错角.故选C.2.如图,已知∥1=∥2=∥3=∥4,则图形中平行的是()A.AB∥CD∥EF B.CD∥EFC.AB∥EF D.AB∥CD∥EF,BC∥DE【考点】平行线的判定.【分析】根据内错角相等,两直线平行;以及平行线的传递性即可求解.【解答】解:∥∥1=∥2=∥3=∥4,∥AB∥CD,BC∥DE,CD∥EF,∥AB∥CD∥EF.故选:D.3.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对【考点】平行线的性质.【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.以上答案都不对.故选D.4.如图的图形中只能用其中一部分平移可以得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,对选项进行一一分析,排除错误答案.【解答】解:A、图形为轴对称所得到,不属于平移;B、图形的形状和大小没有变化,符合平移性质,是平移;C、图形为旋转所得到,不属于平移;D、最后一个图形形状不同,不属于平移.故选B.5.下列图形不是由平移而得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移定义:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移可得A、B、C都是平移得到的,选项D中的对应点的连线不平行,两个图形需要经过旋转才能得到.【解答】解:A、图形是由平移而得到的,故此选项错误;B、图形是由平移而得到的,故此选项错误;C、图形是由平移而得到的,故此选项错误;D、图形是由旋转而得到的,故此选项正确;故选:D.6.如图,哪一个选项的右边图形可由左边图形平移得到()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的性质作答.【解答】解:观察图形可知C中的图形是平移得到的.故选C.7.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直【考点】平行线的性质;同位角、内错角、同旁内角.【分析】根据平行线的性质,结合各选项进行判断即可.【解答】解:A、两平行线被第三条直线所截得的同位角相等,原说法错误,故本选项错误;B、两平行线被第三条直线所截得的同旁内角互补,原说法错误,故本选项错误;C、两平行线被第三条直线所截得的同位角的平分线互相平行,原说法错误,故本选项错误;D、两平行线被第三条直线所截得的同旁内角的平分线互相垂直,说法正确,故本选项正确;故选D.8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线【考点】平行线.【分析】根据平行线的定义,即可解答.【解答】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.9.已知,如图,AB∥CD,则∥α、∥β、∥γ之间的关系为()A.∥α+∥β+∥γ=360°B.∥α﹣∥β+∥γ=180°C.∥α+∥β﹣∥γ=180°D.∥α+∥β+∥γ=180°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补以及内错角相等即可解答,此题在解答过程中,需添加辅助线.【解答】解:过点E作EF∥AB,则EF∥CD.∥EF∥AB∥CD,∥∥α+∥AEF=180°,∥FED=∥γ,∥∥α+∥β=180°+∥γ,即∥α+∥β﹣∥γ=180°.故选C.10.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行【考点】平行线的判定.【分析】判定两直线平行,我们学习了两种方法:①平行公理的推论,②平行线的判定公理和两个平行线的判定定理判断.【解答】解:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,内错角相等;和第三条直线平行的和两直线平行.故选C.11.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130【考点】平行线的性质.【分析】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.【解答】解:如图:故选:A.12.如图,CD∥AB,垂足为D,AC∥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条【考点】点到直线的距离.【分析】本题图形中共有6条线段,即:AC、BC、CD、AD、BD、AB,其中线段AB的两个端点处没有垂足,不能表示点到直线的距离,其它都可以.【解答】解:表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故选C.二、填空题(注释)13.如图,设AB∥CD,截线EF与AB、CD分别相交于M、N两点.请你从中选出两个你认为相等的角∥1=∥5.【考点】平行线的性质.【分析】AB∥CD,则这两条平行线被直线EF所截;形成的同位角相等,内错角相等.【解答】解:∥AB∥CD,∥∥1=∥5(答案不唯一).14.如图,为了把∥ABC平移得到∥A′B′C′,可以先将∥ABC向右平移5格,再向上平移3格.【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:从点A看,向右移动5格,向上移动3格即可得到A′.那么整个图形也是如此移动得到.故两空分别填:5、3.15.如图,AE∥BD,∥1=120°,∥2=40°,则∥C的度数是20°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等的性质求出∥AEC的度数,再根据三角形的内角和等于180°列式进行计算即可得解.【解答】解:∥AE∥BD,∥2=40°,∥∥AEC=∥2=40°,∥∥1=120°,∥∥C=180°﹣∥1﹣∥AEC=180°﹣120°﹣40°=20°.故答案为:20°.16.如图,已知AB∥CD,则∥1与∥2,∥3的关系是∥1=∥2+∥3.【考点】平行线的判定;三角形内角和定理.【分析】根据三角形的内角和等于180°,两直线平行同旁内角互补可得.【解答】解:∥AB∥CD,∥∥1+∥C=180°,又∥∥C+∥2+∥3=180°,∥∥1=∥+∥3.17.如图,AB∥CD,∥B=68°,∥E=20°,则∥D的度数为48度.【考点】三角形的外角性质;平行线的性质.【分析】根据平行线的性质得∥BFD=∥B=68°,再根据三角形的一个外角等于与它不相邻的两个内角和,得∥D=∥BFD﹣∥E,由此即可求∥D.【解答】解:∥AB∥CD,∥B=68°,∥∥BFD=∥B=68°,而∥D=∥BFD﹣∥E=68°﹣20°=48°.故答案为:48.18.如图,直线DE交∥ABC的边BA于点D,若DE∥BC,∥B=70°,则∥ADE的度数是70度.【考点】平行线的性质.【分析】根据两直线平行,同位角相等解答.【解答】解:∥DE∥BC,∥B=70°,∥∥ADE=∥B=70°.故答案为:70.三、解答题(注释)19.如图,AB∥DE∥GF,∥1:∥D:∥B=2:3:4,求∥1的度数?【考点】平行线的性质.【分析】首先设∥1=2x°,∥D=3x°,∥B=4x°,根据两直线平行,同旁内角互补即可表示出∥GCB、∥FCD的度数,再根据∥GCB、∥1、∥FCD的为180°即可求得x的值,进而可得∥1的度数.【解答】解:∥∥1:∥D:∥B=2:3:4,∥设∥1=2x°,∥D=3x°,∥B=4x°,∥AB∥DE,∥∥GCB=°,∥DE∥GF,∥∥FCD=°,∥∥1+∥GCB+∥FCD=180°,∥180﹣4x+x+180﹣3x=180,解得x=30,∥∥1=60°.20.已知:如图所示,∥1=∥2,∥3=∥B,AC∥DE,且B,C,D在一条直线上.求证:AE∥BD.【分析】根据平行线的性质求出∥2=∥4.求出∥1=∥4,根据平行线的判定得出AB∥CE,根据平行线的性质得出∥B+∥BCE=180°,求出∥3+∥BCE=180°,根据平行线的判定得出即可.【解答】证明:∥AC∥DE,∥∥2=∥4.∥∥1=∥2,∥∥1=∥4,∥AB∥CE,∥∥B+∥BCE=180°,∥∥B=∥3,∥∥3+∥BCE=180°,∥AE∥BD.21.如图,已知DE∥BC,EF平分∥AED,EF∥AB,CD∥AB,试说明CD平分∥ACB.【考点】平行线的判定与性质.【分析】求出EF∥CD,根据平行线的性质得出∥AEF=∥ACD,∥EDC=∥BCD,根据角平分线定义得出∥AEF=∥FED,推出∥ACD=∥BCD,即可得出答案.【解答】解:∥DE∥BC,∥∥EDC=∥BCD,∥EF平分∥AED,∥∥AEF=∥FED,∥EF∥AB,CD∥AB,∥EF∥CD,∥∥AEF=∥ACD,∥∥ACD=∥BCD,∥CD平分∥ACB.22.如图,已知∥DAB+∥D=180°,AC平分∥DAB,且∥CAD=25°,∥B=95°(1)求∥DCA的度数;(2)求∥DCE的度数.【分析】(1)利用角平分线的定义可以求得∥DAB的度数,再依据∥DAB+∥D=180°求得∥D 的度数,在∥ACD中利用三角形的内角和定理.即可求得∥DCA的度数;(2)根据(1)可以证得:AB∥DC,利用平行线的性质定理即可求解.【解答】解:(1)∥AC平分∥DAB,∥∥CAB=∥DAC=25°,∥∥DAB=50°,∥∥DAB+∥D=180°,∥∥D=180°﹣50°=130°,∥∥ACD中,∥D+∥DAC+∥DCA=180°,∥∥DCA=180°﹣130°﹣25°=25°.(2)∥∥DAC=25°,∥DCA=25°,∥∥DAC=∥DCA,∥AB∥DC,∥∥DCE=∥B=95°.23.如图,已知∥1+∥2=180°,∥3=∥B,试说明∥AED=∥ACB.【考点】平行线的判定与性质.【分析】首先判断∥AED与∥ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【解答】证明:∥∥1+∥4=180°(平角定义),∥1+∥2=180°(已知),∥∥2=∥4,∥EF∥AB(内错角相等,两直线平行),∥∥3=∥ADE(两直线平行,内错角相等),∥∥3=∥B(已知),∥∥B=∥ADE(等量代换),∥DE∥BC(同位角相等,两直线平行),∥∥AED=∥ACB(两直线平行,同位角相等).24.如图所示,已知∥1=∥2,AC平分∥DAB,试说明DC∥AB.【考点】平行线的判定.【分析】根据角平分线的性质可得∥1=∥CAB,再加上条件∥1=∥2,可得∥2=∥CAB,再根据内错角相等两直线平行可得CD∥AB.【解答】证明:∥AC平分∥DAB,∥∥1=∥CAB,∥∥1=∥2,∥∥2=∥CAB,∥CD∥AB.25.已知∥AGE=∥DHF,∥1=∥2,则图中的平行线有几对?分别是?为什么?【考点】平行线的判定.【分析】先由∥AGE=∥DHF根据同位角相等,两直线平行,得到AB∥CD,再根据两直线平行,同位角相等,可得∥AGF=∥CHF,再由∥1=∥2,根据平角的定义可得∥MGF=∥NHF,根据同位角相等,两直线平可得GM∥HN.【解答】解:图中的平行线有2对,分别是AB∥CD,GM∥HN,∥∥AGE=∥DHF,∥AB∥CD,∥∥AGF=∥CHF,∥∥MGF+∥AGF+∥1=180°∥NHF+∥CHF+∥2=180°,又∥∥1=∥2,∥∥MGF=∥NHF,∥GM∥HN.26.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?【考点】平行公理及推论.【分析】由平行线的传递性容易得出结论.【解答】解:a与d平行,理由如下:因为a∥b,b∥c,所以a∥c,因为c∥d,所以a∥d,即平行具有传递性.。
2016--2017第二次月考年级综合排名
班级 考号 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 90101 90110 90118 90212 90130 90125 90217 90122 90316 90209 90117 90225 90417 90404 90327 90407 90221 90203 90128 90202 90409 90306 90528 90208 90602 90421 90517 90325 90321 90205 90215 90708 90415 90420 90530 90218 90617 姓名 陈泽楷 陈嘉洋 陈卓 张杞 贺巧 裴天钰 程争争 王盼盼 闫冰 朱昊天 杨付航 周梦琦 张海鹏 岳恒彬 朱思思 尚珂 魏来 姬宇航 张海鑫 曹权宝 张硕 尹浩南 张文欣 郭志权 付鹏 彭柳 侯启文 刘宇腾 赵烨 陆欣妍 姚子拓 王艳芳 张子怡 王博雅 刘克 徐念念 王如春 总分 688.5 668.5 666.5 662 659 658 654 652.5 652 647.5 646.5 645 645 638.5 638 633.5 631.5 631.5 631 630 627.5 624.5 624 623.5 622.5 620 619.5 619 619 610 609.5 596 591.5 590.5 587 583 581 总分年次 2 9 12 14 17 19 21 22 23 7 30 32 32 42 43 49 50 50 52 55 60 67 68 71 73 74 75 77 77 97 99 125 130 131 137 146 149 总分班次 1 2 3 4 5 6 7 8 9 10 11 12 12 14 15 16 17 17 19 20 21 22 23 24 25 26 27 28 28 30 31 32 33 34 35 36 37 语文 132 131 117 122 130 130 125 129 128 117 129 128 125 120 128 129 119 124 117 122 109 118 126 133 114 120 116 113 125 125 123 122 127 123 115 121 126 语文年次 4 6 170 81 8 8 40 10 16 170 10 16 40 126 16 10 142 56 170 81 204 156 29 3 194 126 181 199 40 40 67 81 23 67 189 103 29 语文班次 2 3 36 24 4 4 16 6 9 36 6 9 16 32 9 6 34 21 36 24 48 35 14 1 44 32 41 46 16 16 22 24 12 22 43 29 14 数学 149 148 138 132 135 135 127 133 138 142 119 128 133 119 131 115 113 128 119 139 140 101 129 101 128 113 128 127 110 109 142 120 105 113 104 100 98 数学年次 1 3 24 59 43 43 86 53 24 13 128 80 53 128 63 143 147 80 128 23 21 183 76 183 80 147 80 86 158 160 13 121 172 147 175 185 188 数学班次 1 2 7 13 9 9 20 11 7 3 23 16 11 23 14 26 27 16 23 6 5 39 15 39 16 27 16 20 30 31 3 22 36 27 37 41 42 英语 134.5 129.5 131.5 135 126 124 131 122.5 124 120.5 134.5 126 127 133.5 119 130.5 136.5 115.5 124 111 116.5 126.5 129 116.5 137.5 128 108.5 121 128 126 86.5 121 116.5 115.5 117 126 106 英语年次 10 20 15 7 38 45 16 53 45 65 10 38 30 13 76 19 5 104 45 130 91 35 22 91 2 26 148 62 26 38 198 62 91 104 86 38 159 英语班次 4 10 7 3 17 21 8 25 21 30 4 17 15 6 31 9 2 36 21 41 33 16 12 33 1 13 43 28 13 17 48 28 33 36 32 17 45 政治 75 74 76 71 76 77 73 75 74 69 75 76 72 74 70 73 72 73 78 71 66 76 69 73 58 69 71 67 74 74 66 67 72 64 66 67 68 政治年次 19 30 10 74 10 6 43 19 30 101 19 10 61 30 89 43 61 43 4 74 135 10 101 43 192 101 74 123 30 30 135 123 61 158 135 123 118 政治班次 7 10 3 25 3 2 15 7 10 30 7 3 22 10 29 15 22 15 1 25 37 3 30 15 44 30 25 34 10 10 37 34 22 41 37 34 33 历史 63 61 59 61 58 54 65 62 56 64 56 59 60 58 58 63 57 62 63 58 57 68 54 68 49 58 61 55 59 65 58 54 53 60 59 60 59
七年级下册数学期末试卷人教版含答案免费
2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。
2016-2017-2七年级数学第一次月考试题
4、2016—2017学年第二学期七年级数学第一次检测考试试卷、选择题(每小题2分,共20 分) l .如图,Zl = 62°,若 m// n ,则Z2的度数为() A.1800 B.270 0C.360 0D.540 0DAC 第6题 D(A)l 2.如图, (A)3(B )28°(C )62已知AB 丄CD 垂足为O, EF 经过点O.(D)3 8如果Zl=30(B)4 5(C )6如图所示,下列推理及所注理由错误的是( A .因为Z 仁Z3,所以AB//CD (内错角相等,两直线平行) B .因为AB//CD 所以Z 仁Z3 (两直线平行,内错角相等) C .因为AD// BC ,所以Z 2=Z4 (两直线平行,内错角相等) D .因为Z 2=Z 4,所以AD// BC (两直线平行,内错角相等)3、(D)9 07、下面五幅图案中,⑵、⑶、⑷、⑸ 中哪一幅图案可以通过平移图案(1)得到.()8、下列命题:①不相交的两条直线平行;②梯形的两底互相平行;③垂直于一条直线的两直线平 行;④同旁内角相等,两直线平行. 其中真命题有()m nB第2题A.1个B.2 个C.3 个D.4 个9.如图,AD || BC ,点 则/ DBC 的度数为(A. 155°B. 210. (-0.7)的平方根是 E 在BD 的延长线上,若/ ADE=155 ,25° C . 4535°4、如图,下面推理中, (A) vZ A+ZD=180 , (C) vZ A+ZD=180 , 正确的是 .-0.7 C••• AD// BC (B) vZ C+Z D=180,二 AB// CD ••• AB// CD (D) vZ A+Z C=180° , • AB// CDA. - 0.7 B二、填空题(每小题2分,共20 分) 1 .v a// b,a // c (已知)••• b //c ( 2.v a 丄b,a 丄c (已知)• b //c ( .0.495、给出下列各数:49, ", 0, I 3丿—4, — —3, —(—3), —(―5)4,其中有平方根的数共有3. 当x _____ 时..x 有意义;当x 为何值时如果a 2=3,那么a= x - 3有意义. 如果腐=3,那么a= _______A. 3个B. 4个C. 5个D. 6个6、如图,AB// CC ,那么/ BAE y AEC # ECD =()把命题“对顶角相等”写成“如果……,那么 6•命题:“内错角相等,两直线平行”的题设是-。
七年级下第一次月考试卷--数学(解析版) (8)
七年级(下)第一次月考数学试卷一、选择题(每小题4分共32分)1.(4分)下列语句写成数学式子正确的是()A.9是81的算术平方根:B.5是(﹣5)2的算术平方根:C.±6是36的平方根:D.﹣2是4的负的平方根:2.(4分)如图,∠1=∠B,∠2=20°,则∠D=()A.20°B.22°C.30°D.45°3.(4分)下列计算正确的是()A.=±2 B.=﹣3 C.=﹣4 D.=34.(4分)如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γB.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°5.(4分)如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.B.﹣1+ C.﹣1D.16.(4分)下列实数中,﹣、、、﹣3.14,、0、、0.3232232223…(相邻两个3之间依次增加一个2),有理数的个数是()A.2个B.3个C.4个D.5个7.(4分)如图,已知∠1=∠2,则下列结论一定正确的是()A.∠3=∠4 B.AB∥CD C.AD∥BC D.∠B=∠D8.(4分)∠1与∠2是两条直线被第三条直线所截的同位角,若∠1=50°,则∠2为()A.50°B.130°C.50°或130°D.不能确定二、填空题(每小题3分共18分)9.(3分)“等角的补角相等”的条件是,结论是.10.(3分)|3.14﹣π|=,﹣8的立方根为.11.(3分)﹣1的相反数是,的平方根是.12.(3分)已知实数a在数轴上的位置如图,则化简|1﹣a|+的结果为.13.(3分)如图,将直角三角形ABC沿AB方向平移AD长的距离得到直角三角形DEF,已知BE=5,EF=8,CG=3.则图中阴影部分面积.14.(3分)如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2等于度.三、解答题(共70分15题:7分,16、17题:8分,18、19、21题9分20、22题:10分)15.(7分)根据下列证明过程填空:已知:如图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2.求证:AD平分∠BAC,填写证明中的空白.证明:∵AD⊥BC,EF⊥BC (已知),∴EF∥AD (),∴=(两直线平行,内错角相等),=∠CAD ().∵(已知),∴,即AD平分∠BAC ().16.(8分)求出下列x的值.(1)4x2﹣49=0;(2)27(x+1)3=﹣64.17.(8分)已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.18.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.19.(9分)如图:BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H.∠GFH+∠BHC=180°,求证:∠1=∠2.20.(10分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.21.(10分)已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠DOE=4:1.求∠AOF的度数.22.(10分)在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积.2016-2017学年云南省曲靖市宣威市七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分共32分)1.(4分)下列语句写成数学式子正确的是()A.9是81的算术平方根:B.5是(﹣5)2的算术平方根:C.±6是36的平方根:D.﹣2是4的负的平方根:【解答】解:A、9是81的算术平方根,即=9,错误;B、5是(﹣5)2的算术平方根,即=5,正确;C、±6是36的平方根,即±=±6,错误;D、﹣2是4的负平方根,即﹣=﹣2,错误,故选:B.2.(4分)如图,∠1=∠B,∠2=20°,则∠D=()A.20°B.22°C.30°D.45°【解答】解:∵∠1=∠B,∴AD∥BC,∴∠D=∠2=20°.故选:A.3.(4分)下列计算正确的是()A.=±2 B.=﹣3 C.=﹣4 D.=3【解答】解:A、原式=2,错误;B、原式=﹣3,正确;C、原式=|﹣4|=4,错误;D、原式为最简结果,错误,故选:B.4.(4分)如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γB.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选:D.5.(4分)如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.B.﹣1+ C.﹣1D.1【解答】解:数轴上正方形的对角线长为:=,由图中可知1和A之间的距离为.∴点A表示的数是1﹣.故选:D.6.(4分)下列实数中,﹣、、、﹣3.14,、0、、0.3232232223…(相邻两个3之间依次增加一个2),有理数的个数是()A.2个B.3个C.4个D.5个【解答】解:有理数有:﹣、﹣3.14,、0、,共5个,故选:D.7.(4分)如图,已知∠1=∠2,则下列结论一定正确的是()A.∠3=∠4 B.AB∥CD C.AD∥BC D.∠B=∠D【解答】解:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)故选:B.8.(4分)∠1与∠2是两条直线被第三条直线所截的同位角,若∠1=50°,则∠2为()A.50°B.130°C.50°或130°D.不能确定【解答】解:∵∠1与∠2是两条直线被第三条直线所截的同位角,两条直线不一定平行,∴∠2不能确定.故选:D.二、填空题(每小题3分共18分)9.(3分)“等角的补角相等”的条件是如果两个角都是某一个角的补角,结论是那么这两个角相等.【解答】解:等角的补角相等的条件是如果两个角都是某一个角的补角,结论是那么这两个角相等.故答案为如果两个角都是某一个角的补角,那么这两个角相等.10.(3分)|3.14﹣π|= π﹣3.14 ,﹣8的立方根为 ﹣2 . 【解答】解:|3.14﹣π|=π﹣3.14,﹣8的立方根为﹣2, 故答案为:π﹣3.14,﹣2.11.(3分)﹣1的相反数是 1﹣ ,的平方根是 ±2 . 【解答】解:﹣1的相反数是 1﹣,的平方根是±2,故答案为:1﹣,±2.12.(3分)已知实数a 在数轴上的位置如图,则化简|1﹣a |+的结果为 1﹣2a .【解答】解:由数轴可得出:﹣1<a <0, ∴|1﹣a |+=1﹣a ﹣a=1﹣2a .故答案为:1﹣2a .13.(3分)如图,将直角三角形ABC 沿AB 方向平移AD 长的距离得到直角三角形DEF ,已知BE=5,EF=8,CG=3.则图中阴影部分面积.【解答】解:∵RT △ABC 沿AB 的方向平移AD 距离得△DEF , ∴△DEF ≌△ABC , ∴EF=BC=8,S △DEF =S △ABC , ∴S △ABC ﹣S △DBG =S △DEF ﹣S △DBG , ∴S 四边形ACGD =S 梯形BEFG , ∵CG=3,∴BG=BC﹣CG=8﹣3=5,=(BG+EF)•BE=(5+8)×5=.∴S梯形BEFG故答案为:.14.(3分)如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2等于130度.【解答】解:∵m∥n,∠1=40°,∴∠3=∠1=40°.∵∠ACB=90°,∴∠4=∠ACB﹣∠3=90°﹣40°=50°,∴∠2=180°﹣∠4=180°﹣50°=130°.故答案为:130.三、解答题(共70分15题:7分,16、17题:8分,18、19、21题9分20、22题:10分)15.(7分)根据下列证明过程填空:已知:如图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2.求证:AD平分∠BAC,填写证明中的空白.证明:∵AD⊥BC,EF⊥BC (已知),∴EF∥AD (平面内,垂直于同一条直线的两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),∠E=∠CAD (两直线平行,同位角相等).∵∠1=∠2(已知),∴∠BAD=∠CAD,即AD平分∠BAC (角平分线定义).【解答】证明:∵AD⊥B C,EF⊥BC,∴∠ADC=∠EFC=90°,∴AD∥EF,(平面内,垂直于同一条直线的两直线平行)∴∠AGE=∠DAB,∠E=∠DAC,∵AE=AG,∴∠E=∠AGE,∴∠DAB=∠DAC,即AD平分∠BAC.故答案为:平面内,垂直于同一条直线的两直线平行,∠1,∠BAD,∠2,两直线平行,同位角相等,∠1=∠2,∠BAD=∠CAD,角平分线定义.16.(8分)求出下列x的值.(1)4x2﹣49=0;(2)27(x+1)3=﹣64.【解答】解:(1)4x2﹣49=0x2=,解得:x=±;(2)27(x+1)3=﹣64(x+1)3=﹣,x+1=﹣,解得:x=﹣17.(8分)已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.【解答】解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣7=﹣8,解得:b=﹣1;(2)a+b=0,0的算术平方根为0.18.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.19.(9分)如图:BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H.∠GFH+∠BHC=180°,求证:∠1=∠2.【解答】证明:∵∠BHC=∠FHD,∠GFH+∠BHC=180°,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠2=∠ABD,∴∠1=∠2.20.(10分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.【解答】证明:(1)∵AD∥BC,∴∠ABC+∠DAB=180°,∵∠DCB=∠DAB,∴∠ABC+∠DCB=180°,∴DC∥AB;(2)解:∵DC∥AB,∠DEA=30°,∴∠EAF=∠DEA=30°,∵AE⊥EF,∴∠AEF=90°,∴∠AFE=180°﹣∠AEF﹣∠EAF=60°.21.(10分)已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠DOE=4:1.求∠AOF的度数.【解答】解:∵OE平分∠BOD,∴∠DOE=∠EOB,又∵∠AOD:∠DOE=4:1,∴∠DOE=30°,∴∠COB=120°,又∵OF平分∠COB,∴∠COF=60°,又∵∠AOC=∠DOE+∠EOB=60°,∴∠AOF=∠COF+∠AOC,=60°+60°,=120°.22.(10分)在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积.【解答】解:(1)如图所示;=3×4﹣×2×4﹣×2×3﹣×2×1(2)由图可知,S△DEF=12﹣4﹣3﹣1=4.。
人教版七年级数学下学期第二次数学月考试卷【含答题卡】
人教版七年级数学下学期第二次数学月考试卷(总分:150分,考试时间:120分钟)一、精心选一选(每小题4分,共40分)1.下列方程中,是二元一次方程的是( )A. B.C. D . 02=-y x 21=-y x 12=-y x 01=-xy 2.“与3的和不大于6”用不等式表示为( )a A. B. C. D .63<+a 63≤+a 63>+a 63≥+a 3.若,则下列不等式不成立的是( )b a <A . B . C . D .11+<+b a b a 22<b a -<-33b a <4.已知单项式 与是同类项,那么的值分别是( )322y xm -m n y x -,m n A . B . C . D .⎩⎨⎧-==13n m ⎩⎨⎧==13n m ⎩⎨⎧=-=13n m ⎩⎨⎧-=-=13n m 5.若,则的值分别为( )0)3(12=--+-+y x y x y x ,A . B . C . D .⎩⎨⎧-==12y x ⎩⎨⎧==12y x ⎩⎨⎧==21y x ⎩⎨⎧==03y x 6.二元一次方程的正整数解有( )个72=+y x A .1 B .2 C .3 D .47.若关于的不等式的解集是,则的取值范围是( )x 1)1(->-a x a 1>x a A . B . C . D .0<a 0>a 1<a 1>a 8.不等式的非负整数解有( )个x x -≤-5)1(3A .1 B .2 C .3 D .49.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )支笔A .3B .4C .5D .610.已知三年前,A 的年龄是B 的年龄的5倍,现在A 的年龄是B 的年龄的4倍,则A 现在的年龄是( ) 岁.A .48B .45C .12D .9二、认真填一填(每小题4分,共24分)11.把方程化为用含的代数式来表示:= .42=-y x x y y 12.写出一个解为的二元一次方程组: .⎩⎨⎧=-=21y x13.若关于的方程的解为负数,则的取值范围是 .x 23+=+x mx m 14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对 道题.15.在实数范围内定义新运算“△”,其规则是:△=a b ba -2已知不等式△的解集为,则 .x 1≥m 1-≥x =m 16.已知为整数且关于、的二元一次方程组有整数解,m x y ⎩⎨⎧=+=-7422y x my x 则= .m 三、耐心做一做(共86分)17.(12分)解方程组:(1) (2)⎩⎨⎧=--=533y x x y 233511x y x y +=⎧⎨-=⎩18.(8分)解不等式并在数轴上表示出其解集:63)2(2<-+x x 19.(8分)已知:且当时,;当时,;b kx y +=1-=x 2=y 2=x 7-=y 求:当时,的值;2-=x y 20.(8分)甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?21.(8分)当为何正整数时代数式的值不小于的值?x 41+x 1312--x 22.(8分)某物流公司要将300吨货物运往某地,现有A 、B 两种型号的车可供调用,已知A型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨货物一次性装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?23.(10分)若关于、的二元一次方程组的解满足,x y ⎩⎨⎧=++=-my x m x y 52322>+y x 求的取值范围m 24.(10分)若关于、的二元一次方程组与有相同的解,x y ⎩⎨⎧=+=+822by ax y x ⎩⎨⎧-=-=-41023ay bx y x 求的值2017)2(b a +25.(14分)某商场销售A、B两种型号的计算器,A型的计算器进价为30元/台,B型的计算器进价为40元/台,商场销售3台A型的计算器和2台B型的计算器,可获利润68元;销售2台A型的计算器和3台B型的计算器,可获利润72元;(1)求A、B两种型号的计算器在该商场的售价分别是多少元/台?(2)某天商场只有2120元的进货资金,王经理又想购进这两种型号的计算器共70台,请问:①王经理有哪几种进货方案?②王经理怎样进货可使商场销售完这70台计算器获得的利润最大?最大利润为多少?并说明理由。
四川省-七年级数学第一次月考试题
1 / 3城市 北京 武汉 广州 武汉 平均气温(单位℃)-4.6 3.8 13.1 -19.4 袋号 ① ② ③ ④ ⑤ 质量 -5 +3 +9 -1 -6 武胜中学下期月考数学试题(100分钟120分)七年级( )班 姓名: 分数:一、选择题(3分×12分=36分)1A 、北京 B 、武汉 C 、广州 D 、哈尔滨 2、在有理数-21,+7,-5.3,10%,0,-32,10中自然数有m 个,分数有n 个,负有理数有p 个,比较m, n ,p 的大小得( ).A 、m 最小B 、n 最小C 、p 最小D 、m, n, p 三个一样大 3、有理数-3的倒数是( ).A 、-31 B 、31C 、-3D 、3 4、质量检测中抽取标准为100克的袋装牛奶,结果如下(超过标准的质量记为正数)其是最合乎标准的一袋是( ).A 、②B 、③C 、④D 、⑤5、在算式 1○(-3)<-2中的○中填入一种运算符号可使不等关系成立,则这个运算符号是( ). A 、+ B 、- C 、× D 、÷6、有理数a 、b 在数轴上的对应的位置如图所示: 则( )0-11abA .a + b <0B .a + b >0C .a -b = 0D .a -b >07、计算(1-2)(3-4)(5-6)……(9-10)的结果是( ). A 、-1 B 、1 C 、-5 D 、10 8、下列计算中正确的是( ).A 、-9÷2 ×21 =-9 B 、6÷(31-21)=-1C 、141-141÷65=0D 、-21÷41÷41=-89、国家游泳中心—“水立方”是北京奥运会场馆之一,它的外层膜的展开面积为260 000平方米,将260000用科学记数法表示为( ).A 、0.26×106B 、26×104C 、2.6×106D 、2.6×10510、按括号内的要求用四舍五入法对1022.0099的近似值,其中错误..的是 ( ). A 、1022.01(精确到0.01) B 、1.0×103(保留2个有效数字) C 、1020(精确到十位) D 、1022.010(精确到千分位)11、已知|ab |=-ab ≠0 且|a |=|b |,则下列式子中运算结果不正确...的是( ). A 、a+b=0 B 、011=+ba C 、022=+b a D 、033=+b a 12、形如a cb d 的式子叫二阶行列式,计算公式为:ac ad bc b d =-依据此法则计算2134-的结果为( )A 、11B 、-11C 、5D 、-2 二、填空题(3分×4=12分)13、35-的倒数的绝对值是___________.14、一列等式如下排列:-2+52=-4÷221,-3+103=-9÷331,-4+174=-16÷441,……,根据观察得到的规律,写出第五个等式: . 15、在数轴上与-3距离四个单位的点表示的数是__________.16、大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个.武胜中学下期月考数学答题卷一、选择题(3分×12=36分)1:______:2:_______3:_______4:_______5:_______6:_______ 7:_______8:_______9:_______10:_______11:_______12:_______ 二、填空题(3分×4=12分)13:_______14:_____________________15:_______16:_______17:_______三、计算题(共5小题,共32分) 17、(本题6分)-20+(-17)-(-18)-1118、(本题6分)32520.2524113⎡⎤⨯--÷-++-⎢⎥⎣⎦()(()2 / 3A B C D E F G -4 8 图2119、(本题6分)简便计算:(241-421-181)×(-98)20、(本题7分)-1+2|-8|÷(3-5)-(-2)321、(本题7分)如图21,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点B 表示8(1)点B 表示的有理数是 表示原点的是点 (2)图21中的数轴上另有点M 到点A ,G 距离之和为13,则这样的点M 表示的有理数是 。
七年级下学期第一次月考数学试卷(含答案)
七年级下学期第一次月考数学试卷一、选择题:(每小题2分,共24分)1. 下列方程中,属于一元一次方程的是( ) A .x =0 B .112-+xx C .x -3y =5 D .m 2+2m +3=0 2. 方程错误!未找到引用源。
有一组解是错误!未找到引用源。
,则错误!未找到引用源。
的值是( )A .1B .-1C .0D .2 3. 若x =2是关于x 的方程2x +a =3的解,则a 的值是( ) A .1 B .-1 C .5 D .7 4. 方程x+y =3的正整数解的个数是( )A .1B .2C .3D .4 5. 在以下各对数中,是方程⎩⎨⎧=+=-51y x y x 的解的是( )A .⎩⎨⎧==32y xB .⎩⎨⎧-==32y xC .⎩⎨⎧=-=23y xD .⎩⎨⎧==23y x6. 已知代数式ba ayx +3与235y x -是同类项,则b a -的值是( )A .1B .2C .3D .4 7. 下列方程中解是3=x 的方程是( )A .21=+xB .21=-xC .13=xD .63=x 8. 下列变形正确的是( )A .如果2x =5,那么52=x ; B .如果2x -3=7,那么2x =7+3; C .如果-3(x -2)=x +1,那么-3x -6=x +1; D .如果1612=--x x ,那么113=--x x . 9. 若方程a x 536+=与方程1152=+x 的解相同,则=a ( )A .2B .-2C .3D .-3 10.一个饲养场中,鸡与猪的头数和为90,鸡与猪的腿数和为320,设鸡为x 只,猪为y 头,则列方程组为( )A .⎩⎨⎧=+=+9024320y x y x B .⎩⎨⎧=+=+3204290y x y xC .⎩⎨⎧=+=+9042320y x y x D .⎩⎨⎧=+=+3202490y x y x11.如图,由8个大小一样的小长方形组成的大长方形的周长为46cm ,则大长方形的面积是( )A .120cm 2B .160cm 2C .180cm 2D .200cm 212.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是( )A .8B .7C .6D .5二、填空题:(每小题3分,共24分)13.请你构造一个解为2=x 的一元一次方程,可以是 . 14.方程1121=-x 的解是 . 15.当=m 时,代数式1-m 与42+m 互为相反数. 16.若0)3(2=-++y y x ,则=-y x . 17.代数式2-x 比3大5,则x 的值为________.18.某商品按定价的八折出售,售价为14.4元,则原定价为 元. 19.去年暑假,李老师一家三口人外出旅行一周,这一周各天的日期之和是91, 那么李老师是_________号回家的. 20.若方程组⎩⎨⎧=+=+122y x my x 的解满足x -y =5,则m 的值为 .三、解答题:21.解下列方程:(4×4分=16分)(1)x x -=-33 (2)5)2()1(2=---x x 解: 解: (3)x x =+132 (4)1322=--x x 解: 解:22.(2×5分)请用两种方法解方程组⎩⎨⎧=+=-425y x y x解: 解:23.(8分)如图,在3×3的方格内,填写了一些代数式和数.(1)在图(3)中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值; (2)把满足(1)的其它6个数填入图(4)中的方格内. 解:2-34y图(3)3 2xy 2 -3图(4)324.已知⎩⎨⎧-==23y x 是方程组⎩⎨⎧=-=+15by ax by ax 的解,求a 2014+b 2015的值.(6分)解:25.(6分)列方程(组)解应用题:七年级3班在召开期末总结表彰会前,班主任安排班长小颖去商店买奖品,下面是小颖与售货员的对话:小颖:阿姨,您好!售货员:同学,你好,想买点什么?小颖:我只有100元,请帮我安排买10支钢笔和15本笔记本. 售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见! 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗? 解:26.(6分)如图,在长方形ABCD 中,AB =12厘米,BC =6厘米.点P 沿AB 边从点A 开始向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开始向点A 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t(秒)表示移动的时间,那么: (1)如图1,当t 为何值时,△QAP 为等腰直角三角形? (2)如图2,当t 为何值时,△QAB 的面积等长方形ABCD 的面积的41? (3)如图3,P 、Q 到达B 、A 后继续运动,P 点到达C 点后都停止运动.当t 为何值时,线段AQ 的长等于线段CP 的长的一半. 解:(1)(2)(3)图1ABP图2ABP 图3ABP Q参 考 答 案一、选择题:(每小题2分,共24分)1~4题:AABB 5~8题: DDBB 9~12题: CBAD二、填空题:(每小题3分,共24分)13. 略 14. x =4 15. -1 16. -617. 10 18. 18 19. 16 20. -4三、解答题:21. (1) x =3 (2)x =3 (3) x =3 (4)x =2 22.⎩⎨⎧-==23y x23. ⎩⎨⎧=-=11y x24. ⎩⎨⎧-==11b a a 2014+b 2015=025. 解:设钢笔每支x 元,笔记本每支y 元,根据题意,得错误!未找到引用源。
华师版七年级下学期第一次月考数学试卷,初一数学下册测试题(含答案与解析)
D.20 道
8.(3 分)定义“*”运算为 a*b=ab+2a,若(3*x)+(x*3)=14,则 x=( )
A.﹣1
B.1
C.﹣2
D.2
二.填空题(每题 3 分,共 24 分)
9.(3 分)若代数式 m2n3x﹣5 与 n4x﹣3m2 的和为 m2n3x﹣5,则 x=
.
第 1页(共 11页)
10.(3 分)在方程 2x+4y=7,用含 x 的代数式表示 y,则可以表示为
就会迟到 5 分钟.问他家到学校的路程是多少 km?设他家到学校的路程是 xkm,则据题
意列出的方程是( )
A.
B.
C.
D.
7.(3 分)一份数学试卷,只有 25 个选择题,做对一题得 4 分,做错一题倒扣 1 分,某同
学做了全部试卷,得了 70 分,他一共做对了( )
A.17 道
B.18 道
C.19 道
∴某同学共做对了 25﹣6=19 道,
故选:C.
8.(3 分)定义“*”运算为 a*b=ab+2a,若(3*x)+(x*3)=14,则 x=( )
A.﹣1
B.1
C.﹣2
D.2
【解答】解:根据题意(3*x)+(x*3)=14,
可化为:(3x+6)+(3x+2x)=14,
解得 x=1.
故选:B.
二.填空题(每题 3 分,共 24 分)
19.(10 分)把 2005 个正整数 1,2,3,4,…,2005 按如图方式排列成一个表: (1)如图,用一正方形框在表中任意框住 4 个数,记左上角的一个数为 x,则另三个数 用含 x 的式子表示出来,从小到大依次是 x+1 , x+7 , x+8 ; (2)当(1)中被框住的 4 个数之和等于 416 时,x 的值为多少? (3)(1)中能否框住这样的 4 个数,它们的和等于 324?若能,则求出 x 的值;若不能, 则说明理由.
2023-2024学年四川省成都市天府七中七年级(下)月考数学试卷(4月份)+答案解析
2023-2024学年四川省成都市天府七中七年级(下)月考数学试卷(4月份)一、选择题:本题共8小题,每小题4分,共32分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各运算中,计算正确的是()A. B.C. D.2.芝麻被称为“八谷之冠”,是世界上最古老的油料作物之一,它作为食物和药物,得到广泛的使用.经测算,一粒芝麻的质量约为,将用科学记数法表示为()A. B. C. D.3.如图,从人行横道线上的点M处过马路,沿线路MC行走距离最短,其数学依据是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直4.若是关于x,y的二元一次方程的一组解,则a的值为()A.1B.2C.3D.45.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A. B.C. D.6.下列说法正确的是()A.过直线外一点有且只有一条直线与已知直线平行B.两条直线被第三条直线所截,形成的同位角相等C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D.两条不相交的线段叫平行线7.如图,点E在AC的延长线上,下列条件能判断的是()A.B.C.D.8.小明、小华两人练习跑步,如果小华先跑10m,则小明跑6s就可追上他;如果小华先跑2s,则小明跑4s就可追上他,若设小明的速度为,小华的速度为,则下列符合题意的方程组是()A. B. C. D.二、填空题:本题共10小题,每小题4分,共40分。
9.已知,,则______.10.已知,,则的值为______.11.如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示的点在直线a上,表示的点在直线b上,则______12.是完全平方式,则______.13.如图,点O在直线AB上,,,那么的度数是______14.已知方程组的解满足,则k的值为______.15.已知,则代数式的值为______.16.已知,则的值为______.17.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了为正整数的展开式按a的次数由大到小的顺序排列的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等.若的展开式中不含的项,则代数式的值为______.18.如图,已知,在内部且下列说法:①如果,则图中有两对互余的角;②如果作OE平分,则;③如果作OM平分,ON在内部,且,则OD平分④如果在外部分别作、的余角、,则;其中正确的有______.三、解答题:本题共8小题,共78分。
十堰市XX中学七年级下第一次月考数学试卷(A)含答案解析
2016-2017学年湖北省十堰市XX中学七年级(下)第一次月考数学试卷(A卷)一、选择题(本大题共12小题,共36.0分)1.(3分)平方根等于本身的有()A.0 B.1 C.0,±1 D.0 和12.(3分)一副三角板按如图方式摆放,如果∠2=18°,则∠1=()A.18°B.54°C.72°D.70°3.(3分)下列命题中,是真命题的是()A.相等的角是对顶角B.两直线平行,内错角相等C.两个锐角的和是锐角D.互补的角是邻补角4.(3分)下列图形中,∠1与∠2是对顶角的是()A.B. C.D.5.(3分)如果=3,那么(m+n)2等于()A.3 B.9 C.27 D.816.(3分)若点P是直线m外一点,点A、B、C分别是直线m上不同的三点,且PA=5,PB=6,PC=7,则点P到直线m的距离不可能是()A.3 B.4 C.5 D.67.(3分)的算术平方根是()A.±9 B.±3 C.9 D.38.(3分)下列各数,﹣0.333…,3.14,,0.1010010001…中,无理数的个数有()个.A..1 个B.2 个C..3 个D..4 个9.(3分)如图所示的四个图形中,∠1和∠2不是同位角的是()A.B.C.D.10.(3分)若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7 B.﹣1,7 C.1,﹣7 D.﹣1,﹣711.(3分)在﹣2,﹣,﹣3,﹣π这四个数中,最大的数是()A.﹣2 B.﹣C.﹣3D.﹣π12.(3分)下列条件中,能说明AD∥BC的条件有()个①∠1=∠4 ②∠2=∠3 ③∠1+∠2=∠3+∠4④∠A+∠C=180°⑤∠A+∠ABC=180°⑥∠A+∠ADC=180°.A.1 B.2 C.3D.4二、填空题(本大题共8小题,共24.0分)13.(3分)如图,已知a∥b,∠1=45°,则∠2=.14.(3分)已知a、b为两个连续的整数,且a>>b,则a+b=.15.(3分)如图,已知FE⊥AB于E,CD是过E的直线,且∠AEC=120°,则∠DEF=度.16.(3分)如图,AB∥CD,AC平分∠DAB,∠2=25°,则∠D=.17.(3分)已知2x+1的平方根是±5,则x=.18.(3分)已知2a﹣1的立方根是3,则a=.19.(3分)如图所示,AB∥CD,若∠B=120°,∠C=35°,则∠E=.20.(3分)用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2=.四、解答题(本大题共4小题,共36分)21.(9分)如图,已知AD∥BC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,试说明AB∥DC,把下面的说理过程补充完整.∵AD∥BC(已知)∴∠2=∠E()∵AE平分∠BAD(已知)∴∠1=∠2()∴∠1=∠E()∵∠CFE=∠E(已知)∴∠1=∠∴AB∥CD()22.(9分)观察下列等式:①;②;③….(1)请写出第④个式子;(2)请将猜想到的规律用含n(n≥1)的式子表示出来.23.(9分)如图,在四边形ABCD中,∠A=104°﹣∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.24.(9分)数学老师在课堂上提出一个问题:“通过探究知道:≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是a,的整数部分是b,求a+b﹣的值.(2)已知8+=x+y,其中x是一个整数,0<y<1,求3x+(y﹣)2015的值.2016-2017学年湖北省十堰市XX中学七年级(下)第一次月考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共12小题,共36.0分)1.(3分)平方根等于本身的有()A.0 B.1 C.0,±1 D.0 和1【解答】解:0的平方根是0,1的平方根是±1,﹣1没有平方根,故选:A.2.(3分)一副三角板按如图方式摆放,如果∠2=18°,则∠1=()A.18°B.54°C.72°D.70°【解答】解:由题意得:∠1和∠2互为余角,又∵∠2=18°,∴∠1=90°﹣18°=72°.故选:C.3.(3分)下列命题中,是真命题的是()A.相等的角是对顶角B.两直线平行,内错角相等C.两个锐角的和是锐角D.互补的角是邻补角【解答】解:A、相等的角是对顶角,错误;B、两直线平行,内错角相等,故此选项正确;C、两个锐角的和不一定是锐角,故此选项错误;D、互补的角不一定是邻补角,故此选项错误.故选:B.4.(3分)下列图形中,∠1与∠2是对顶角的是()A.B. C.D.【解答】解:根据对顶角的定义可知,C选项∠1与∠2是对顶角,故选:C.5.(3分)如果=3,那么(m+n)2等于()A.3 B.9 C.27 D.81【解答】解:∵=3,∴m+n=32,即m+n=9,∴(m+n)2=81.故选:D.6.(3分)若点P是直线m外一点,点A、B、C分别是直线m上不同的三点,且PA=5,PB=6,PC=7,则点P到直线m的距离不可能是()A.3 B.4 C.5 D.6【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线a的距离≤PA,即点P到直线a的距离不大于5.故选:D.7.(3分)的算术平方根是()A.±9 B.±3 C.9 D.3【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故选:D.8.(3分)下列各数,﹣0.333…,3.14,,0.1010010001…中,无理数的个数有()个.A..1 个B.2 个C..3 个D..4 个【解答】解:∵在、﹣0.333…、3.14、、0.1010010001…中,无限循环小数有:、﹣0.333…;有限小数有:3.14;无限不循环小数有:、0.1010010001…,∴和010********…为无理数.故选:B.9.(3分)如图所示的四个图形中,∠1和∠2不是同位角的是()A.B.C.D.【解答】解:根据同位角定义可得A、B、D是同位角,故选:C.10.(3分)若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7 B.﹣1,7 C.1,﹣7 D.﹣1,﹣7【解答】解:∵|a|=4,,且a+b<0,∴a=﹣4,a=﹣3;a=﹣4,b=3,则a﹣b=﹣1或﹣7.故选:D.11.(3分)在﹣2,﹣,﹣3,﹣π这四个数中,最大的数是()A.﹣2 B.﹣C.﹣3D.﹣π【解答】解:∵|﹣2|=2,|﹣|=≈1.73,|﹣3|=3≈3.3,|﹣π|=π≈3.14,∴3.3>3.14>2>1.73,即3>π>2>,∴﹣3<﹣π<﹣2<﹣,则这四个数中,最大的是﹣.故选:B.12.(3分)下列条件中,能说明AD∥BC的条件有()个①∠1=∠4 ②∠2=∠3 ③∠1+∠2=∠3+∠4④∠A+∠C=180°⑤∠A+∠ABC=180°⑥∠A+∠ADC=180°.A.1 B.2 C.3 D.4【解答】解:①∠1=∠4,可得AB∥DC,错误;②∠2=∠3,可得AD∥BC,正确;③∠1+∠2=∠3+∠4,不能判断AD∥BC,错误;④∠A+∠C=180°,不能判断AD∥BC,错误;⑤∠A+∠ABC=180°,可得AD∥BC,正确;⑥∠A+∠ADC=180°,可得AB∥DC,错误;故选:B.二、填空题(本大题共8小题,共24.0分)13.(3分)如图,已知a∥b,∠1=45°,则∠2=45°.【解答】解:∵a∥b,∠1=45°,∴∠2=∠1=45°.故答案为:45°.14.(3分)已知a、b为两个连续的整数,且a>>b,则a+b=11.【解答】解:∵a、b为两个连续的整数,且a>>b,∴>>,∴a=6,b=5,∴a+b=11.故答案为:11.15.(3分)如图,已知FE⊥AB于E,CD是过E的直线,且∠AEC=120°,则∠DEF= 30度.【解答】解:∵∠AED与∠AEC是邻补角,∠AEC=120°,∴∠AED=180°﹣120°=60°,∵FE⊥AB,∴∠AEF=90°,∴∠DEF=90°﹣∠AED=30°.16.(3分)如图,AB∥CD,AC平分∠DAB,∠2=25°,则∠D=130°.【解答】解:如图,∵AB∥CD,∴∠3=∠2=25°.又∵AC平分∠DAB,∴∠1=∠3=25°.∵∠D+∠1+∠2=180°,∴∠D=130°.故答案是:130°.17.(3分)已知2x+1的平方根是±5,则x=12.【解答】解:∵2x+1的平方根是±5,∴2x+1=25.解得:x=12.故答案为:12.18.(3分)已知2a﹣1的立方根是3,则a=14.【解答】解:∵2a﹣1的立方根是3,∴2a﹣1=33,∴2a=28,解得a=14.故答案为:14.19.(3分)如图所示,AB∥CD,若∠B=120°,∠C=35°,则∠E=95°.【解答】解:过点E作EF∥AB,∵AB∥CD,EF∥AB,∴∠B+∠BEF=180°,∠FEC=∠C=35°,∵∠B=120°,∴∠BEF=60°,∴∠E=∠BEF+∠FEC=60°+35°=95°.故答案为:95°.20.(3分)用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2= 65°.【解答】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣130°=50°,由翻折的性质得,∠2=(180°﹣∠3)=(180°﹣50°)=65°.故答案为:65°.四、解答题(本大题共4小题,共36分)21.(9分)如图,已知AD∥BC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,试说明AB∥DC,把下面的说理过程补充完整.∵AD∥BC(已知)∴∠2=∠E(两直线平行,内错角相等)∵AE平分∠BAD(已知)∴∠1=∠2(角平分线的定义)∴∠1=∠E(等量代换)∵∠CFE=∠E(已知)∴∠1=∠CFE∴AB∥CD(同位角相等,两直线平行)【解答】证明:∵AD∥B C(已知),∴∠2=∠E(两直线平行,内错角相等),∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义),∴∠1=∠E(等量代换),∵∠CFE=∠E(已知),∴∠1=∠CFE,∴AB∥CD(同位角相等,两直线平行),故答案为:两直线平行,内错角相等,角平分线的定义,等量代换,CFE,同位角相等,两直线平行.22.(9分)观察下列等式:①;②;③….(1)请写出第④个式子;(2)请将猜想到的规律用含n(n≥1)的式子表示出来.【解答】解:(1)由规律可得,第④个式子为:=5;(2)由规律可得,第n个式子为:=(n+1).23.(9分)如图,在四边形ABCD中,∠A=104°﹣∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.【解答】答:能辨认∠1=∠2证明:∵∠A=104°﹣∠2,∠ABC=76°+∠2,∴∠A+∠ABC=104°﹣∠2+76°+∠2=180°,∴AD∥BC,∴∠1=∠DBC,∵BD⊥DC,EF⊥DC,∴BD∥EF,∴∠2=∠DBC,则∠1=∠2.24.(9分)数学老师在课堂上提出一个问题:“通过探究知道:≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是a,的整数部分是b,求a+b﹣的值.(2)已知8+=x+y,其中x是一个整数,0<y<1,求3x+(y﹣)2015的值.【解答】解:(1)∵4<5<9,36<37<49,∴2<<3,6<<7.∴a=﹣2,b=6.∴a+b﹣=﹣2+6﹣=4.(2)∵1<<2,∴9<8+<10,∴x=9.∵y=8+﹣x.∴y﹣=8﹣x=﹣1.∴原式=3×9﹣1=26.。
2016-2017学年四川省成都外国语学校高二上学期10月月考试题 数学(理)
成都外国语学校16-17学年上高二数学月考试题(理科)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每题5分,共60分)1. 已知直线l 的倾斜角是03:=+-'y x l 倾斜角的2倍,且原点到直线l 的距离等于2,则直线l 的方程为( )A.2=x 或2-=xB. 2=xC. 2-=xD.2+=x y2. 如图所示,已知),0,1(),0,1(-N M 直线02=-+b y x 与线段MN 相交,则b 的取值范围是( ) A.-2,2] B..-1,1] C.21,21-] D.0,2],12=+b a3. 在同一直角坐标系中,表示直线ax y =与a x y +=正确的是( )A B C D4. 若b a ,满足则直线03=++b y ax 必过定点( )A.)21,61(-B.)61,21(-C. )61,21(D. )21,61(- 5. 点(4,0)关于直线02145=++y x 的对称点是( )A.(-6,-8)B.(-8,6)C.(6,8)D.(-6,8)6. 设B A ,是x 轴上的两点,点P 的横坐标为2,且PB PA =,若直线PA 的方程,01=+-y x 则直线PB 的方程是( )A.05=-+y x C.012=--y x C.042=--x y D.072=-+y x7. 若直线l 与直线7,1==x y 分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.31 B.31- C.23- D.32 8. 设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 则目标函数y x z +=5的最大值为( )A.2 b.3 c.4 D.59. 直线1l 与直线01223:2=-+y x l 的交点在x 轴上,并且1l ⊥2l ,则1l 在y 轴上的截距是( )A.-4B.4C.38-D.3810. 两直线0)1(:,0:21=++-=+b y x a l by ax l ,若直线21l l 、同时平行于直线,032:=++y x l 则b a ,的值为( )A.3,23-==b a B.3,32-==b a C.3,23==b a D.3,32==b a 11. 如图,已知在ABC ∆中,BC=2,以BC 为直径的圆分别交AB 、AC 于点M ,N,MC 与NB 交于点G ,若,1,2-=⋅=⋅则BGC ∠的度数为( )A.135ºB.120ºC.150ºD.105º 12.已知数列{}n x 的首项,31=x 通项q p N n nq p x n n ,(,2,∙∈+=为常数),且541,,x x x 成等差数列,则p 之值为( ) A.1 B.-1 C.2 D.-2第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 把直线0323=++-y x 绕点(-1,2)顺时针旋转30º,所得到的直线方程是____________。
四川省巴中市南江县七年级数学下学期第一次月考试卷(含解析) 新人教版-新人教版初中七年级全册数学试题
2015-2016学年某某省某某市南江县七年级(下)第一次月考数学试卷一.选择题1.下列说法中,正确的是()A.代数式是方程 B.方程是代数式 C.等式是方程D.方程是等式2.下列方程中是一元一次方程的是()A.2x=3y B.7x+5=6(x﹣1)C.D.3.二元一次方程3x+2y=15在自然数X围内的解的个数是()A.1个B.2个C.3个D.4个4.已知方程组;则x﹣y的值是()A.1 B.﹣1 C.0 D.25.三个数的比是5:12:13,这三个数的和为180,则最大数比最小数大()A.48 B.42 C.36 D.306.如果a+1与互为相反数,那么a=()A.B.10 C.﹣ D.﹣107.当x=1时,代数式ax3+bx+1的值是2,则方程+=的解是()A.B.﹣ C.1 D.﹣18.一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了()A.17道B.18道C.19道D.20道9.某公路的干线上有相距108公里的A、B两个车站,某日16点整,甲、乙两车分别从A、B两站同时出发,相向而行,已知甲车的速度为45公里/时,乙车的速度为36公里/时,则两车相遇的时间是()A.16时20分B.17时20分C.17时40分D.16时40分10.右边给出的是2010年某月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69 B.42 C.27 D.41二.填空题11.如果x=2是方程x+a=﹣1的根,那么a的值是.12.已知a,b互为相反数,且ab≠0,则方程ax+b=0的解为.13.7与x的差比x的3倍小6的方程是.14.已知方程﹣(2﹣m)x|m|﹣1+4m=8是关于x的一元一次方程,那么x=.15.方程+=1与方程|x﹣1|=2的解一样,则m2﹣2m+1=.16.已知(x﹣y+9)2+|2x+y|=0,则x=,y=.17.在解方程﹣=2时,去分母得.18.某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打折出售此商品.19.首位数字是2的六位数,若把首位数字2移到末位,所得到的新的六位数恰好是原数的3倍,原来的六位数为.20.我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费.如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为立方米.三.解答题21.解下列方程.(1)﹣1=;(2)2(2x﹣1)=2(1+x)+3(x+3);(3)+=1;(4) [(x﹣2)﹣6]=﹣2;(5);(6).22.依据下列解方程x﹣=﹣的过程,补全解答步骤解:去分母,得6x﹣3(x﹣1)=4﹣2(x+2),()去括号,得,(括号前为负号,去括号时要变号)移项,得,()整理,得5x=﹣3,(合并同类项),得x=﹣.()23.列方程求解(1)m为何值时,关于x的一元一次方程4x﹣2m=3x﹣1的解是x=2x﹣3m的解的2倍.(2)已知|a﹣3|+(b+1)2=0,代数式的值比b﹣a+m多1,求m的值.四.列方程解应用题24.一件工作甲单干用20小时,乙单干用的时间比甲多4小时,丙单干用的时间是甲的还多2小时.若甲、乙合作先干10小时,丙再单干用几小时完成?25.用白铁皮做罐头盒,每X铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150X白铁皮,用多少X制盒身,多少X制盒底,可以正好制成整套罐头盒?26.在一条直的河流中有甲、乙两条船,现同时由A地顺流而下.乙船到B地时接到通知需立即返回到C地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都为每小时,水流速度为每小时,A、C两地间的距离为10km.如果乙船由A地经B地到达C共用了4h,问乙船从B地到达C 地时,甲船离B地多远?27.某种商品A的零售价为每件900元,为了适应市场竞争,商店按零售价的九折优惠后,再让利40元销售,仍可获利10%,①这种商品A的进价为多少元?②现有另一种商品B进价为600元,每件商品B也可获利10%.对商品A和B共进货100件,要使这100件商品共获纯利6670元,则需对商品A、B分别进货多少件?2015-2016学年某某省某某市南江县下两中学七年级(下)第一次月考数学试卷参考答案与试题解析一.选择题1.下列说法中,正确的是()A.代数式是方程 B.方程是代数式 C.等式是方程D.方程是等式【考点】方程的定义.【分析】含有未知数的等式叫方程,等式是用等号连接的,表示相等关系的式子,代数式一定不是等式,等式不一定含有未知数也不一定是方程.【解答】解:方程的定义是指含有未知数的等式,A、代数式不是等式,故不是方程;B、方程不是代数式,故B错误;C、等式不一定含有未知数,也不一定是方程;D、方程一定是等式,正确;故选D.【点评】本题主要考查方程的概念,含有未知数的等式叫方程,要熟练掌握方程的定义.2.下列方程中是一元一次方程的是()A.2x=3y B.7x+5=6(x﹣1)C.D.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1次的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、含有两个未知数,是二元一次方程;B、符合定义,是一元一次方程;C、未知数最高次数是二次,是二次方程;D、未知数在分母上,不是整式方程.故选B.【点评】本题主要考查一元一次方程的定义,注意含有一个未知数并且未知数的最高次数是一次才是一元一次方程.3.二元一次方程3x+2y=15在自然数X围内的解的个数是()A.1个B.2个C.3个D.4个【考点】二元一次方程的解.【专题】探究型.【分析】根据二元一次方程3x+2y=15,可知在自然数X围内的解有哪几组,从而可以解答本题.【解答】解:二元一次方程3x+2y=15在自然数X围内的解是:,即二元一次方程3x+2y=15在自然数X围内的解的个数是3个.故选C.【点评】本题考查二元一次方程的解,解题的关键是明确什么是自然数,可以根据题意找到二元一次方程3x+2y=15在自然数X围内的解有哪几组.4.已知方程组;则x﹣y的值是()A.1 B.﹣1 C.0 D.2【考点】解二元一次方程组.【专题】整体思想.【分析】先解方程组,求出x、y的值,也就可求出x﹣y的值;或观察两个方程,直接运用减法整体求得x﹣y的值.【解答】解:方法一:(1)×2﹣(2)得:5x=4x=代入(1)得:4×+y=3,y=﹣,x﹣y=+=1.方法二:两个方程相减,得x﹣y=1.故选A.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入消元法,同时注意整体思想的渗透.5.三个数的比是5:12:13,这三个数的和为180,则最大数比最小数大()A.48 B.42 C.36 D.30【考点】一元一次方程的应用.【专题】数字问题.【分析】此题可设每一份为x,则三个数分别表示为5x、12x、13x,根据三个数的和为180,列方程求解即可.【解答】解:设每一份为x,则三个数分别表示为5x、12x、13x,依题意得:5x+12x+13x=180,解得x=6则5x=30,13x=78,78﹣30=48故选A.【点评】在出现涉及几个量的比的时候,一般设一份为x较好.在表示其它量的时候避免出现分数.6.如果a+1与互为相反数,那么a=()A.B.10 C.﹣ D.﹣10【考点】解一元一次方程.【专题】计算题.【分析】互为相反数的两个数之和为0,所以(a+1)+()=0.这是一个带分母的方程,所以要先去括号,再去分母,最后移项,化系数为1,从而得到方程的解.【解答】解:由题意得:( a+1)+()=0去分母,得a+3+2a﹣7=0,移项,合并得3a=4,方程两边都除以3,得a=.故选A.【点评】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.当x=1时,代数式ax3+bx+1的值是2,则方程+=的解是()A.B.﹣ C.1 D.﹣1【考点】解一元一次方程;代数式求值.【专题】计算题;一次方程(组)及应用.【分析】把x=1代入代数式,使其值为2,求出a+b的值,方程变形后代入计算即可求出解.【解答】解:把x=1代入得:a+b+1=2,即a+b=1,方程去分母得:2ax+2+2bx﹣3=x,整理得:(2a+2b﹣1)x=1,即[2(a+b)﹣1]x=1,把a+b=1代入得:x=1,故选C.【点评】此题考查了解一元一次方程,以及代数式求值,熟练掌握运算法则是解本题的关键.8.一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了()A.17道B.18道C.19道D.20道【考点】一元一次方程的应用.【专题】数字问题.【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣(25﹣x)×1,据此可列出方程.【解答】方法一:解:设该同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,解得x=19.方法二:解:由题意可知,做错一道题实际扣除5分,某同学得了70分,则其扣了100﹣70=30分,∴某同学共做错了30÷5=6道,∴某同学共做对了25﹣6=19道,故选C.【点评】根据题目给出的条件,找出合适的等量关系,列出方程,再求解.9.某公路的干线上有相距108公里的A、B两个车站,某日16点整,甲、乙两车分别从A、B两站同时出发,相向而行,已知甲车的速度为45公里/时,乙车的速度为36公里/时,则两车相遇的时间是()A.16时20分B.17时20分C.17时40分D.16时40分【考点】一元一次方程的应用.【分析】在相遇问题中,常用的相等关系为:两车所走的路程和=两个站之间的总路程,即S甲+S乙=S AB.先利用相等关系求出相遇所用的时间,再换算成时间即可.【解答】解:设两车相遇需要x小时,根据题意,得:45x+36x=108,解得:x=1,所以两车相遇的时间是16+1=17,即17点20分,故选:B.【点评】本题考查一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题要熟悉行程问题中的相遇问题的相等关系,并能熟练运用.相遇问题中,常用的相等关系为:两车所走的路程和=两个站之间的总路程.10.右边给出的是2010年某月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69 B.42 C.27 D.41【考点】一元一次方程的应用.【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是3x,因而这三个数的和一定是3的倍数.【解答】解:设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是(x﹣7)+x+(x+7)=3x,因而这三个数的和一定是3的倍数.则,这三个数的和不可能是41.故选:D.【点评】此题考查了一元一次方程的应用;解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.二.填空题11.如果x=2是方程x+a=﹣1的根,那么a的值是﹣2 .【考点】一元一次方程的解.【专题】计算题.【分析】虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.【解答】解:把x=2代入x+a=﹣1中:得:×2+a=﹣1,解得:a=﹣2.故填:﹣2.【点评】本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.12.已知a,b互为相反数,且ab≠0,则方程ax+b=0的解为x=1 .【考点】方程的解.【专题】计算题.【分析】根据互为相反数(非0)两数之商为﹣1,即可求出方程的解.【解答】解:∵a,b互为相反数,且ab≠0,∴ =﹣1,方程ax+b=0,解得:x=﹣=1.故答案为:x=1.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.7与x的差比x的3倍小6的方程是3x﹣(7﹣x)=6 .【考点】由实际问题抽象出一元一次方程.【分析】关系式为:x的3倍﹣7与x的差=6,把相关数值代入即可.【解答】解:根据题意,得:3x﹣(7﹣x)=6,故答案为:3x﹣(7﹣x)=6.【点评】此题考查列一元一次方程,得到相应倍数之间的关系式是解决本题的关键.14.已知方程﹣(2﹣m)x|m|﹣1+4m=8是关于x的一元一次方程,那么x= ﹣4 .【考点】一元一次方程的定义.【分析】根据一元一次方程的定义列出方程,解方程求出m的值,得到方程,解方程即可.【解答】解:由题意得,|m|﹣1=1,2﹣m≠0,解得,m=﹣2,则方程为:﹣4x﹣8=8,解得,x=﹣4,故答案为:﹣4.【点评】本题考查了一元一次方程的概念,只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程,ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式.15.方程+=1与方程|x﹣1|=2的解一样,则m2﹣2m+1= 16或4 .【考点】一元一次方程的解.【分析】首先解出方程|x﹣1|=2的解,然后把方程的解代入方程+=1求出m,即可求出代数式的值.【解答】解:解方程|x﹣1|=2 得:x﹣1=±2,解得:x=3或﹣1,把x=3代入方程+=1,解得:m=﹣3,m2﹣2m+1=(m﹣1)2=16;把x=﹣1代入方程+=1,解得:m=3,m2﹣2m+1=(m﹣1)2=4故答案为:16或4.【点评】本题考查了同解方程的知识,解答本题的关键是理解方程解得定义.16.已知(x﹣y+9)2+|2x+y|=0,则x= ﹣3 ,y= 6 .【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】利用非负数的性质列出关于x与y的方程组,求出方程组的解即可得到x与y的值.【解答】解:∵(x﹣y+9)2+|2x+y|=0,∴,解得:x=﹣3,y=6,故答案为:﹣3;6【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17.在解方程﹣=2时,去分母得3(x+1)﹣2(2x﹣3)=24 .【考点】解一元一次方程.【分析】方程两边都乘以分母的最小公倍数12即可.【解答】解:方程两边都乘以12,去分母得,3(x+1)﹣2(2x﹣3)=24.故答案为:3(x+1)﹣2(2x﹣3)=24.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.18.某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打7 折出售此商品.【考点】一元一次不等式的应用.【分析】根据题意列出不等式求解即可.不等式为750•﹣500≥500×5%.【解答】解:设售货员可以打x折出售此商品,则得到750•﹣500≥500×5%,解得x≥7.即最低可以打7折.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.19.首位数字是2的六位数,若把首位数字2移到末位,所得到的新的六位数恰好是原数的3倍,原来的六位数为285714 .【考点】一元一次方程的应用.【分析】为解答方便,可设中间的五位数是x,那么根据“六位数左端的数字是2,”可表示这个六位数是:200000+x;根据“把左端的数字2移到右端,”可表示这个新六位数是:10x+2;再根据“新数=原数×3”可列方程解答即可.【解答】解:设中间的五位数是x10x+2=(200000+x)×37x=599998x=85714,所以原数是:285714,故答案为:285714【点评】此题考查一元一次方程的应用,本题要以中间不变的五位数为解答的突破口,准确表示原来和现在的六位数是解答的关键.20.我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费.如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为12 立方米.【考点】一元一次方程的应用.【专题】应用题;经济问题;压轴题.【分析】某居民缴了17元水费,可知他用水超过了7立方米,要按两种收费方法进行计算.就要先设出未知数,然后根据题中的等量关系列方程求解.即两种收费和=17.【解答】解:设这户居民5月的用水量为x立方米.列方程为:7×1+(x﹣7)×2=17解得x=12.故填:12.【点评】此题的关键是学生要明确按两种方法收费,而且要明白超过7立方的就是x﹣7这一关键点.三.解答题21.解下列方程.(1)﹣1=;(2)2(2x﹣1)=2(1+x)+3(x+3);(3)+=1;(4) [(x﹣2)﹣6]=﹣2;(5);(6).【考点】解二元一次方程组;解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去括号,移项合并,把x系数化为1,即可求出解;(5)方程组整理后,利用加减消元法求出解即可;(6)方程组利用加减消元法求出解即可.【解答】解:(1)去分母得:6x+3﹣12=10x+1,移项合并得:4x=﹣10,解得:x=﹣2.5;(2)去括号得:4x﹣2=2+2x+3x+9,移项合并得:x=﹣13;(3)方程整理得: +=1,去分母得:4x﹣80+90﹣21x=12,移项合并得:﹣17x=2,解得:x=﹣;(4)去括号得: x﹣4﹣8=﹣2,移项合并得: x=10,解得:x=25;(5)方程组整理得:,①+②得:﹣4b=4,即b=﹣1,把b=﹣1代入②得:a=5,则方程组的解为;(6),①+②得:9x=18,即x=2,把x=2代入①得:y=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.依据下列解方程x﹣=﹣的过程,补全解答步骤解:去分母,得6x﹣3(x﹣1)=4﹣2(x+2),(两边乘以6 )去括号,得6x﹣3x+3=4﹣2x﹣4 ,(括号前为负号,去括号时要变号)移项,得5x=﹣3 ,(合并同类项)整理,得5x=﹣3,(合并同类项)系数化为1 ,得x=﹣.(两边除以5 )【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】根据一元一次方程的解题步骤判断即可.【解答】解:去分母,得6x﹣3(x﹣1)=4﹣2(x+2),(两边乘以6)去括号,得6x﹣3x+3=4﹣2x﹣4,(括号前为负号,去括号时要变号)移项,得6x﹣3x+2x=4﹣4﹣3,(移项要变号)整理,得5x=﹣3,(合并同类项)系数化为1,得x=﹣.(两边除以5),故答案为:两边乘以6;6x﹣3x+3=4﹣2x﹣4;移项要变号;5x=﹣3;系数化为1;两边除以5 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.列方程求解(1)m为何值时,关于x的一元一次方程4x﹣2m=3x﹣1的解是x=2x﹣3m的解的2倍.(2)已知|a﹣3|+(b+1)2=0,代数式的值比b﹣a+m多1,求m的值.【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题;一次方程(组)及应用.【分析】(1)分别表示出两方程的解,根据解的关系确定出m的值即可;(2)根据题意列出方程,利用非负数的性质求出a与b的值,代入计算即可求出m的值.【解答】解:(1)方程4x﹣2m=3x﹣1,解得:x=2m﹣1,方程x=2x﹣3m,解得:x=3m,由题意得:2m﹣1=6m,解得:m=﹣;(2)由|a﹣3|+(b+1)2=0,得到a=3,b=﹣1,代入方程﹣(b﹣a+m)=1,得:﹣(﹣﹣3+m)=1,整理得: ++3﹣m=1,去分母得:m﹣5+1+6﹣2m=2,解得:m=0.【点评】此题考查了解一元一次方程,以及非负数的性质,熟练掌握运算法则是解本题的关键.四.列方程解应用题24.一件工作甲单干用20小时,乙单干用的时间比甲多4小时,丙单干用的时间是甲的还多2小时.若甲、乙合作先干10小时,丙再单干用几小时完成?【考点】一元一次方程的应用.【分析】设丙再用x小时完成,根据题意列出方程,求出方程的解即可得到结果.【解答】设丙单独再用x小时完成,根据题意得:10(+)+x=1,解得:x=1,答:丙单独再用1小时完成.【点评】此题考查了一元一次方程的应用,熟练掌握“工作效率=工作总量÷工作时间”是解本题的关键.25.用白铁皮做罐头盒,每X铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150X白铁皮,用多少X制盒身,多少X制盒底,可以正好制成整套罐头盒?【考点】一元一次方程的应用.【专题】应用题.【分析】设xX制盒身,则可用(150﹣x)X制盒底,那么盒身有16x个,盒底有43(150﹣x)个,然后根据一个盒身与两个盒底配成一套罐头盒就可以列出方程,解方程就可以解决问题.【解答】解:设xX制盒身,则可用(150﹣x)X制盒底,列方程得:2×16x=43(150﹣x),解方程得:x=86.答:用86X制盒身,64X制盒底,可以正好制成整套罐头盒.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.26.在一条直的河流中有甲、乙两条船,现同时由A地顺流而下.乙船到B地时接到通知需立即返回到C地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都为每小时,水流速度为每小时,A、C两地间的距离为10km.如果乙船由A地经B地到达C共用了4h,问乙船从B地到达C 地时,甲船离B地多远?【考点】一元一次方程的应用.+2.5)xkm,分当C地在A、B两地之间和C地在B、A的延长线上两种情况得到两个不同的答案.+2.5)xkm,+2.5)×(4﹣x)﹣(7.5﹣2.5)x=10解得:x=2∴+2.5)x=10×2=20(km)(2)当C地在B、A的延长线上时,+2.5)=10解得:x=,∴+2.5)x=km.答:乙船由B地到C地时,甲船驶离B地20km或km.【点评】本题考查了一元一次方程的应用,解题的关键是分两种情况讨论,同时这也是一个易错点.27.某种商品A的零售价为每件900元,为了适应市场竞争,商店按零售价的九折优惠后,再让利40元销售,仍可获利10%,①这种商品A的进价为多少元?②现有另一种商品B进价为600元,每件商品B也可获利10%.对商品A和B共进货100件,要使这100件商品共获纯利6670元,则需对商品A、B分别进货多少件?【考点】二元一次方程组的应用.【分析】①首先设进价为每件a元,根据题意可得等量关系:(1+利润率)×进价=原售价×打折﹣让利,代入相应数值列出方程,解方程即可;②设需对商品A进货x件,需对商品B进货y件,根据“商品A和B共进货100件、这100件商品共获纯利6670元”列方程组求解可得.【解答】解:①设这种商品A的进价为每件a元,由题意得:(1+10%)a=900×90%﹣40,解得:a=700,答:这种商品A的进价为700元;②设需对商品A进货x件,需对商品B进货y件,根据题意,得:,解得:,答:需对商品A进货67件,需对商品B进货33件.【点评】本题主要考查一元一次方程和二元一次方程组的实际应用,理解题意抓准相等关系并列出方程是解题的关键.。
2016-2017学年四川省绵阳市高二下学期期末数学试卷(文科)(解析版)
2016-2017学年四川省绵阳市高二下学期期末数学试卷(文科)(解析版)2016-2017学年四川省绵阳市高二(下)期末数学试卷(文科)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={-1,1,2},B={x| (x+1)(x-2)<0 },则A∩B=()A。
{-1}B。
{1}C。
{-1,1}D。
{1,2}2.与命题“若a∈M,则b∈M”等价的命题是()A。
若a∈M,则XXXB。
若b∈M,则a∉MC。
若b∉M,则a∈MD。
b∉M,则a∉M3.已知a>b,则下列不等式恒成立的是()A。
a^2>b^2B。
a^2<b^2C。
a^2>abD。
a^2+b^2>2ab4.设f(x)= 1/(x-3),则f(f(4))=()A。
-1B。
1/13C。
1/11D。
1/75.设a=0.9^1.1,b=1.1^0.9,c=log0.9 1.1,则a,b,c的大小关系正确的是()A。
b>a>cB。
a>b>cC。
c>a>bD。
a>c>b6.函数f(x)= -log3x的零点所在的区间为()A。
(-∞,0)B。
(0,1)C。
(1,3)D。
(3,∞)7.设p:x^2-x-20≤0,q:x≥1,则p是q的()A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件8.若变量x,y满足x+y=3,则2x-y的最大值是()A。
-2B。
3C。
7D。
99.设f(x)=sinx-x,则下列说法正确的是()A。
f(x)是有零点的偶函数B。
f(x)是没有零点的奇函数C。
f(x)既是奇函数又是R上的增函数D。
f(x)既是奇函数又是R上的减函数10.已知函数y=xf′(x)(f′(x)是函数f(x)的导函数)的图象如图所示,则y=f(x)的大致图象可能是()11.当x∈(0,3)时,关于x的不等式e^x-x-2mx>XXX成立,则实数m的取值范围是()A。
四川省宜宾市七年级下学期数学第一次月考试卷
四川省宜宾市七年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020七下·杭州期末) 下列方程中,属于二元一次方程的是()A . x2+y=1B . x﹣=1C . ﹣y=1D . xy﹣1=02. (2分)(2017·莒县模拟) 下列运算正确的是()A . a2•a3=a6B . 5a﹣2a=3a2C . (a3)4=a12D . (x+y)2=x2+y23. (2分) (2017八下·沧州期末) 要了解某校七至九年级的课外作业负担情况,下列抽样调查样本的代表性较好的是()A . 调查七年级全体女生B . 调查八年级全体男生C . 调查八年级全体学生D . 随机调查七、八、九各年级的100名学生4. (2分) (2019七下·栾城期末) 若用科学记数法可表示为,则等于()A . -6B . -5C . 5D . 65. (2分) (2020七下·东台月考) 方程3x+2y=5的非负整数解的个数为()A . 1个B . 2个C . 3个D . 4个6. (2分)下图为某班一次数学成绩的频数分布直方图,则数学成绩在69.5~89.5分范围学生占全体学生的()A . 47.55%B . 60%C . 72.5%D . 82.5%7. (2分) (2020八下·高新期末) 若,是关于x,y的方程组的解,则a+b的值是()A . 5B . 3C . -1D . 48. (2分)(2019·海曙模拟) 下列算式中,计算结果为a5的是()A . a2▪a3B . (a2)3C . a2+a3D . a4÷a9. (2分)在下列运算中,计算正确的是()A . (x5)2=x7B . (x﹣y)2=x2﹣y2C . x13÷x3=x10D . x3+x3=x610. (2分) (2018七上·唐山期中) 若实数a,b满足|a-3|+(b+ )2=0,则ba=()A . 1B . -1C .D .11. (2分) (2019八上·眉山期中) 如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A . p=5,q=6B . p=1,q=-6C . p=1,q=6D . p=5,q=-612. (2分) (2017七下·河东期中) 方程组的解为,则被遮盖的两个数分别为()A . 1,2B . 1,3C . 5,1D . 2,4二、填空题 (共6题;共7分)13. (2分)计算:﹣x2•x3=________;=________;=________.14. (1分) (2018七上·普陀期末) 将代数式化成不含有分母的形式是________.15. (1分)(2014·徐州) 如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了________场.16. (1分)(2018·泸州) 已知x1 , x2是一元二次方程x2-2x-1=0的两实数根,则的值是________.17. (1分) (2020七下·恩施月考) 已知x和y满足方程组,则x-y的值为________。
2022-2023学年四川省某校初一(下)3月月考数学试卷(含答案)173710
2022-2023学年四川省某校初一(下)3月月考数学试卷试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1. 下列说法正确的是( )A.的平方是B.平方根等于本身的数只有C.的平方根是D.的算术平方根是2. 在下列实数: ,,, 中,无理数有 A.个B.个C.个D.个3. 若,则的值为( )A.B.C.D.4. 已知,则的值为( )A.B.C.D.5. 如图所示,小明同学的家在处,他想尽快赶到附近公路边搭乘公交车,他选择路线,用数学知识解释其道理正确的是( )A.两点确定一条直线B.垂线段最短C.两点之间线段最短164429±3,,,π23–√4–√227−1.010010001⋯0.6˙1˙9–√3()2345a =64−−√−a−−−√38−82−2+|b +2|=0a −1−−−−√(a +b)2−−−−−−√03−11P P →CD.三角形两边之和大于第三边6. 在同一平面内,设是三条互相平行的直线,已知与的距离为,与的距离为,则与的距离为( )A.B.C.或D.或7. 下列说法正确的有( )A.同一平面内,垂直于同一直线的两条直线互相平行B.同一平面内,过一点有且只有一条直线平行于已知直线C.两条直线被第三条直线所截,同位角相等D.直线外一点到这条直线的垂线段,叫做点到直线的距离8. 已知直线,将一块含角的直角三角板按如图所示方式放置,其中,两点分别落在直线,上,若,则的度数为( )A.B.C.D.9. 琪琪将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),的度数是( )A.B.C.a ,b ,c a b 4cm b c 1cm a c 1cm3cm5cm 3cm1cm 3cmm//n 30∘ABC (∠ABC =)30∘A B m n ∠1=25∘∠225∘30∘45∘55∘∠AOB 22.5∘30∘45∘D.10. 如图,直线,, ,则的度数是( )A.B.C.D.11. 如图,,,过点的直线与平行,若,则的大小为( )A.B.C.D.12. 如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )A.个B.个C.个D.个二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13. 的相反数是________.14. 的立方根是________.15. 的算术平方根是________.16. 如图,、相交于点,平分,若,则的度数是________度.60∘AB//CD ∠B =40∘∠C =50∘∠E 90∘80∘70∘100∘AB =AC CD =CE C FG DE ∠1=55∘∠A 55∘50∘45∘40∘56785–√81−−√64−−√3AB CD O OB ∠DOE ∠DOE =60∘∠AOC16. 如图,、相交于点,平分,若,则的度数是________度.17.如图,将沿着点到的方向平移到的位置,,,平移距离为,则四边形的面积为________.18. 如图,点是延长线上一点,,。
四川省成都武侯区领川外国语学校2023-2024学年七年级下学期3月月考数学试题
四川省成都武侯区领川外国语学校2023-2024学年七年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列计算正确的是( )A .m 4+m 3=m 7B .(m 4)3=m 7C .m (m ﹣1)=m 2﹣mD .2m 5÷m 3=m 22.如图,下列条件中,不能判定AB CD ∥的是( )A .180D BAD ∠+∠=︒B .12∠=∠C .34∠∠=D .B DCE ∠=∠3.某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000000001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( )A .91.510-⨯秒B .91510-⨯秒C .81.510-⨯秒D .81510-⨯秒 4.下列生活实例中,数学原理解释错误的一项是( )A .从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B .两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C .把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D .从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短5.下列各式中,为完全平方式的是( )A .221x x --B .21x x -+C .214x x -+ D .22x mx m -+6.若35m =,34n =,则23m n -等于( )A .254B .6C .21D .20 7.若10a b +=,11ab =,则代数式22a ab b -+的值是( ).A .89B .89-C .67D .67-8.如图,边长为a 的大正方形剪去一个边长为b 的小正方形后,将剩余部分通过割补拼成新的图形,根据图形能验证的等式为( )A .()222a b a b -=-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+ D .()()22a b a b a b -=+-二、填空题9.若4x y +=-,9x y -=,那么式子22x y -=.10.一个角的补角是它的余角的3倍,则这个角是.11.若关于x 的二次三项式()2116x m x +-+是完全平方式,则m 的值为.12.如图,在△ABC 中,BE 、CE 分别是∠ABC 和∠ACB 的平分线,过点 E 作 DF ∥BC ,交 AB 于 D ,交 AC 于 F ,若 AB =5,AC =4,则△ADF 周长为.13.()()232543254321023567x x x x x a x a x a x a x a x a --+-+=+++++,则012345a a a a a a +++++=.三、解答题14.计算: (1)220230321(2023)(2)3π--⎛⎫-+---+- ⎪⎝⎭ (2)()()22342299123a ab a ab a b ab --⋅-+÷15.先化简,再求值:()()()224222153+--++÷x y x y x y x y x y ,其中3x =,1y =-. 16.某中学举行了“垃圾分类,绿色环保”知识竞赛活动,根据学生的成绩划分为A ,B ,C ,D 四个等级,并绘制了不完整的两种统计图:根据图中提供的信息,回答下列问题:(1)参加知识竞赛的学生共有______人,并把条形统计图补充完整;(2)扇形统计图中,m =______,n =______,C 等级对应的圆心角为______度;(3)小明是四名获A 等级的学生中的一位,学校将从获A 等级的学生中任选取2人,参加区举办的知识竞赛,请用列表法或画树状图,求小明被选中参加区知识竞赛的概率.17.请把下列证明过程补充完整.已知:如图,B 、C 、E 三点在同一直线上,A 、F 、E 三点在同一直线上,∠1=∠2=∠E ,∠3=∠4.求证:AB ∥CD .证明:∵∠2=∠E (已知)∴∥BC ()∴∠3=∠()∵∠3=∠4(已知)∴∠4=∠()∵∠1=∠2(已知)∴∠1+∠CAF =∠2+∠CAF ,即∠BAF =∠∴∠4=∠(等量代换)∴()18.如图,CE 平分ACD AE ∠,平分90BAC EAC ACE ∠∠+∠=︒,.(1)请判断AB 与CD 的位置关系并说明理由.(2)如图,在(1)的结论下,当90E ∠=︒保持不变,移动直角顶点E ,使M C E E C D ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠是否存在确定的数量关系?并说明理由.(3)如图,在(1)的结论下,P 为线段AC 上一定点,点Q 为直线CD 上一动点,当点Q 在射线CD 上运动时(点C 除外)CPQ CQP ∠+∠与BAC ∠有何数量关系?请写出你的结论并证明.四、填空题19.在同一平面内,若A ∠与B ∠的两边分别垂直,且A ∠比B ∠的3倍少40︒,则A ∠的度数为.20.多项式 4x 2﹣12xy+10y 2+4y ﹣12的最小值是.21.若n 条直线两两相交于不同的点时,可形成对对顶角.22.已知多项式3221x x ax -+-为被除式,除式为1bx -,商式为22x x -+,余式为1,则这个多项式为.23.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”.从图中取一列数:1,3,6,10,…,记11a =,23a =,36a =,410a =,L ,那么41110235a a a +-+的值是.五、解答题24.观察下列各式,寻找规律:已知x ≠1,计算:(x ﹣1)(1+x )=x 2﹣1(x ﹣1)(1+x +x 2)=x 3﹣1(x ﹣1)(1+x +x 2+x 3)=x 4﹣1(x ﹣1)(1+x +x 2+x 3+x 4)=x 5﹣1…(1)根据上面各式可得规律:(x ﹣1)(1+x +x 2+x 3+…+xn )= .(2)根据(1)中规律计算1+2+22+23+24+…+22018 的值.(3)求314+315+…+3100的个位数字.25.随着智能手机的普及,网购已经成为人们的一种生活方式,快递业也随之发展壮大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体育 20%新闻 10%戏曲 5%娱乐 35%动画O四川省2016-2017学年度下学期第 二 次段考初 一 数 学一、选择题(每小题3分,共24分)1、下列命题中:①.等角的补角相等;②.两点确定一条直线;③.相等的角是对顶角;④.所含字母相同,指数也相同的单项式是同类项;⑤.两直线被第三直线所截,同位角相等;⑥.两点之间,线段最短;⑦.若2x 1=,则x 1=±;⑧.若22a b =,则a b =;⑨.若a b =,则a bc c=;⑩.同一平面内,过一点有且只有一条直线和已知直线平行. 其中属于假命题的有 ( ) A.4个 B.5个 C.6个 D.7个2、如右图,下列能判定AD ∥BC 的是 ( )A.B BCD 180∠+∠=B. 12∠=∠C. 34∠=∠D. B 5∠=∠3、一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯时 ( ) A.第一次向右拐30°,第二次向右拐30° B.第一次向右拐30°,第二次向右拐150° C.第一次向左拐30°,第二次向右拐150° D.第一次向左拐30°,第二次向右拐30°4、不等式组x 3x 1<-⎧⎨<⎩的解集在数轴上表示出来是 ( )5、如果3x y 1a b 2与2y x 1a b +-是同类项,则 ( )A.x 2y 3=-⎧⎨=⎩B.x 2y 3=⎧⎨=-⎩C.x 2y 3=-⎧⎨=-⎩D.x 2y 3=⎧⎨=⎩.6、一个宽度相等的纸条,按如图所示的方式折叠一下,已知∠3=120°,则∠1的度数为 ( )A.30°B. 60°C. 90°D. 120°7、为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五 类电视节目的喜爱情况,并结合调查数据作出如图所示的扇形统 计图,根据统计图提供的信息,可估算出该校喜爱动画节目的学 生有 ( )A.500名B.600名C.700名D. 800名8、如图,用12块相同的小长方形瓷砖拼成一个大的长方 形,则每个长方形瓷砖的面积是 ( ) A. 2175cm B. 2300cm C. 2375cm D. 2336cm二、填空题(每小题3分,共18分)1、命题“对顶角相等”的题设是: ;结论是: .2、存入甲、乙两种性质的存款共2000元,甲种存款年利率为2.25%,乙种存款的年利率为3.60%,一年共得利息70.2元,若设存甲种存款x 元,存乙种存款y 元,根据题意列出方程组为 .3、如上左图,小强告诉小华图中A 、B 两点的坐标分别为(– 3,5)、(3,5),小华一下就说出了C 在同一坐标系下的坐标,请你写出小华说出的C 的坐标 .4、如上中图,已知AB CD EF AM FB ,,写出与∠1相等的角: .5、如上右图,在平面直角坐标系中, A(1,1), B(-1,1), C(-1,-2),D(1,-2).把一条长为2011个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A —B —C -D —A 的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标 .××××××××××××××××××××××××××××××××× ×××××××××××××××××××××××××××××××密封线内不要答题 市区(县)学校班级 姓名准考证号ABCD4题3题A C E F D B O16、篮鸡蛋,两个两个地数、三个三个地数、四个四个地数都余1,把它分给8个人,每人10个还分不完,那么这蓝鸡蛋至少有个.三、作图题(不写作法,但要保留作图痕迹):(每小题3分,共6分)1、如图甲,将四边形ABCD进行平移,已知点A的平移后对应点是'A(见图示).2、如图乙,已知水渠外有一点P,要把水渠的水开一小沟引到P点,请用作图方法作出引水小沟到点P的最短距离的线路,并说明数学道理.四、解答下列各题(每小题5分,共20分)1()20111-2、解方程组:()()4x y131y211x y223⎧----=-⎪⎪⎨⎪+=⎪⎩3、解不等式组,并把解集表示在数轴上:()()2x35x23x12x1132⎧++-<⎪⎪⎨++⎪-≤⎪⎩4、如图所示是赵化镇部分地点的大致分布图,请以十字口为坐标原点建立平面直角坐标系,并写出各个地点的坐标.B'A甲水渠.道理:乙中坝镇政府鑫城赵中文化广场十字口赵小/////////////////////////////////////////////////////////////////////////////////////////////////密封线内不要答题购票用时(分)频数(人数)151020255五、解答下列各题(每小题6分,共24分)1、推理填空,如图所示: ∵∠B=∴AB ∥∵∠∴CD ∥∵AB ∥( )∴∠B + =180°( ) .2、如图∠1=∠2 ,CF ⊥AB ,DE ⊥AB ,求证:FG ∥BC3、某车站在临近端午节期间为改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t (以下简称购票用时,单位为分钟),如图是这次调查统计分析得到的频率(百分比)分布表和频数分布直方图;解答下列问题: ⑪.这次抽样的样本容量是多少? ⑫.在表中填写出缺失的数据并补全频数分布直方图;⑬.旅客购票用时的平均数可能在哪一组?⑭.若每增加一个购票窗口可以使平均购票用时降低5分钟,要使平均购票用时不超过10分钟,那么请你估计最少需要增加几个窗口?4、如图,将三角形ABC 向右平移2个单位长度,再向下平移 3个单位长度,得到对应的三角形111A B C . ⑪.写出点111A B C 、、的坐标; ⑫.画出三角形111A B C ; ⑬.求出三角形111A B C d 的面积.yx–1–2–3–4–5–61234567–1–2–3–4–5–6123456CBAOF××××××××××××××××××××××××××××××××× ×××××××××××××××××××××××××××××××密封线内不要答题 市区(县)学校 班级姓名 准考证号六(8分).为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不足90人),准备在同一家服装厂购买演出服装,下面是该服装厂给出的服装的价格:如果两所学校分别单独购买服装,一共应付5000元. ⑪.如果甲、乙两校联合购买服装共可以节约多少钱? ⑫.甲、乙两所学校各有多少学生准备参加演出?⑬.如果甲校有10名同学因故不能演出,请你为两所学校设计一种最省钱的购买服装方案.加试题(每小题10分,共20分;不计入总分)1、某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.⑪.求甲、乙两种花木每株成本分别多少元?⑫.据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元,该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?2、如图在平面直角坐标系中,()()(),,,,,A a 0B b 012-.且2a b 10++. ⑪.求a b 、的值;⑫.①.在y 轴的正半轴上存在一点M ,使COM1S S 2=点M 的坐标。
(标注:三角形ABC 的面积表示为ABC S ②.在坐标轴的其他位置是否存在点M ,使COM 1S 2= 成立?若存在,请直接写出符合条件的点M 的坐标。
/////////////////////////////////////////////////////////////////////////////////////////////////密封线内不要答题。