七年级下学期4月份月考数学试卷含答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.观察下列等式: , , ,
将以上三个等式两边分别相加得: =
(1)猜想并写出: =.
(2)直接写出下列各式的计算结果:
① =;
② =;
(3)探究并计算: .
24.观察下列两个等式: , ,给出定义如下:我们称使等式 成立的一对有理数 为“共生有理数对”,记为 ,如:数对 , ,都是“共生有理数对”.
七年级下学期4月份月考数学试卷含答案
一、选择题
1.若 , ,且 ,则 的值为()
A. B. C.5D.
2.下列说法错误的是( )
A.﹣4是16的平方根B. 的算术平方根是2
C. 的平方根是 D. =5
3.下列选项中的计算,不正确的是( )
A. B. C. D.
4.下列说法中正确的个数有()
①0是绝对值最小的有理数;
三、解答题
21.(阅读材料)
数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.
你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:
第一步:∵ , , ,
∴ .
∴能确定59319的立方根是个两位数.
A. B. C. D.
7.有下列四种说法:
①数轴上有无数多个表示无理数的点;
②带根号的数不一定是无理数;
③平方根等于它本身的数为0和1;
④没有最大的正整数,但有最小的正整数;
其中正确的个数是( )
A.1B.2C.3D.4
8.按照下图所示的操作步骤,若输出y的值为22,则输入的值x为()
A.3B.-3C.±3D.±9
(3)已知: 其中 是整数,且 求 的平方根。
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
首先根据平方根的定义求出a、b的值,再由ab<0,可知a、b异号,由此即可求出a-b的值.
【详解】
解:∵a2=4,b2=9,
∴a=±2,b=±3,
而ab<0,
∴①当a>0时,b<0,即当a=2时,b=-3,a-b=5;
②无限小数是无理数;
③数轴上原点两侧的数互为相反数;
④相反数等于本身的数是0;
⑤绝对值等于本身的数是正数;
A.2个B.3个C.4个D.5个
5.下列数中π、 ,﹣ , ,3.1416,3.2121121112…(每两个2之间多一个1), 中,无理数的个数是( )
A.1个B.2个C.3个D.4个
6.若一个正方形边长为 ,面积为3,即 ,可知 是无理数,它的大小在下列哪两个数之间( )
(2)填空: __________.
22.先阅读然后解答提出的问题:
设a、b是有理数,且满足 ,求ba的值.
解:由题意得 ,
因为a、b都是有理数,所以a﹣3,b+2也是有理数,
由于 是无理数,所以a-3=0,b+2=0,
所以a=3,b=﹣2,所以 .
问题:设x、y都是有理数,且满足 ,求x+y的值.
12.观察下面两行数:
2,4,8,16,32,64…①
5,7,11,19,35,67…②
根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).
13.请先在草稿纸上计算下列四个式子的值:① ;② ;③ ;④ ,观察你计算的结果,用你发现的规律直接写出下面式子的值 __________.
(1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).
, .
(2源自文库若 是“共生有理数对”,求 的值;
(3)若 是“共生有理数对”,则 必是“共生有理数对”.请说明理由;
(4)请再写出一对符合条件的 “共生有理数对”为(注意:不能与题目中已有的“共生有理数对”重复).
25.(1)计算: ;
16. 的算术平方根为_______.
17.为了求 的值,令 ,则 ,因此 ,所以 ,即 ,仿照以下推理计算 的值是____________.
18.规定用符号 表示一个实数的整数部分,如 ,按此规定 _____.
19.将 , , 这三个数按从小到大的顺序用“<”连接________.
20.已知: , ,则 (精确到0.01)≈__________.
②a<0时,b>0,即a=-2时,b=3,a-b=-5.
故选:A.
【点睛】
本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
2.C
解析:C
【分析】
分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.
【详解】
A.﹣4是16的平方根,说法正确;
第二步:∵59319的个位数是9,
∴能确定59319的立方根的个位数是9.
第三步:如果划去59319后面的三位319得到数59,
而 ,则 ,可得 ,
由此能确定59319的立方根的十位数是3,因此59319的立方根是39.
(解答问题)
根据上面材料,解答下面的问题
(1)求110592的立方根,写出步骤.
14.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}= ,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.
15. 的平方根是_______; 的立方根是__________.
9.观察下列各等式:
……
根据以上规律可知第11行左起第11个数是()
A.-130B.-131C.-132D.-133
10.在实数 ,0,﹣ , 中,是无理数的是( )
A. B.0C.﹣ D.
二、填空题
11.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b= .
例如:(-3)☆2= = 2.
从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.
(2)若 的平方根为 , 的立方根为 ,求 的算术平方根.
26.阅读下面的文字,解答问题:大家知道 是无理数,而无理数是无限不循环小数,因此 的小数部分我们不可能全部写出来,而 <2于是可用 来表示 的小数部分.请解答下列问题:
(1) 的整数部分是_______,小数部分是_________;
(2)如果 的小数部分为 的整数部分为 求 的值;
将以上三个等式两边分别相加得: =
(1)猜想并写出: =.
(2)直接写出下列各式的计算结果:
① =;
② =;
(3)探究并计算: .
24.观察下列两个等式: , ,给出定义如下:我们称使等式 成立的一对有理数 为“共生有理数对”,记为 ,如:数对 , ,都是“共生有理数对”.
七年级下学期4月份月考数学试卷含答案
一、选择题
1.若 , ,且 ,则 的值为()
A. B. C.5D.
2.下列说法错误的是( )
A.﹣4是16的平方根B. 的算术平方根是2
C. 的平方根是 D. =5
3.下列选项中的计算,不正确的是( )
A. B. C. D.
4.下列说法中正确的个数有()
①0是绝对值最小的有理数;
三、解答题
21.(阅读材料)
数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.
你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:
第一步:∵ , , ,
∴ .
∴能确定59319的立方根是个两位数.
A. B. C. D.
7.有下列四种说法:
①数轴上有无数多个表示无理数的点;
②带根号的数不一定是无理数;
③平方根等于它本身的数为0和1;
④没有最大的正整数,但有最小的正整数;
其中正确的个数是( )
A.1B.2C.3D.4
8.按照下图所示的操作步骤,若输出y的值为22,则输入的值x为()
A.3B.-3C.±3D.±9
(3)已知: 其中 是整数,且 求 的平方根。
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
首先根据平方根的定义求出a、b的值,再由ab<0,可知a、b异号,由此即可求出a-b的值.
【详解】
解:∵a2=4,b2=9,
∴a=±2,b=±3,
而ab<0,
∴①当a>0时,b<0,即当a=2时,b=-3,a-b=5;
②无限小数是无理数;
③数轴上原点两侧的数互为相反数;
④相反数等于本身的数是0;
⑤绝对值等于本身的数是正数;
A.2个B.3个C.4个D.5个
5.下列数中π、 ,﹣ , ,3.1416,3.2121121112…(每两个2之间多一个1), 中,无理数的个数是( )
A.1个B.2个C.3个D.4个
6.若一个正方形边长为 ,面积为3,即 ,可知 是无理数,它的大小在下列哪两个数之间( )
(2)填空: __________.
22.先阅读然后解答提出的问题:
设a、b是有理数,且满足 ,求ba的值.
解:由题意得 ,
因为a、b都是有理数,所以a﹣3,b+2也是有理数,
由于 是无理数,所以a-3=0,b+2=0,
所以a=3,b=﹣2,所以 .
问题:设x、y都是有理数,且满足 ,求x+y的值.
12.观察下面两行数:
2,4,8,16,32,64…①
5,7,11,19,35,67…②
根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).
13.请先在草稿纸上计算下列四个式子的值:① ;② ;③ ;④ ,观察你计算的结果,用你发现的规律直接写出下面式子的值 __________.
(1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).
, .
(2源自文库若 是“共生有理数对”,求 的值;
(3)若 是“共生有理数对”,则 必是“共生有理数对”.请说明理由;
(4)请再写出一对符合条件的 “共生有理数对”为(注意:不能与题目中已有的“共生有理数对”重复).
25.(1)计算: ;
16. 的算术平方根为_______.
17.为了求 的值,令 ,则 ,因此 ,所以 ,即 ,仿照以下推理计算 的值是____________.
18.规定用符号 表示一个实数的整数部分,如 ,按此规定 _____.
19.将 , , 这三个数按从小到大的顺序用“<”连接________.
20.已知: , ,则 (精确到0.01)≈__________.
②a<0时,b>0,即a=-2时,b=3,a-b=-5.
故选:A.
【点睛】
本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
2.C
解析:C
【分析】
分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.
【详解】
A.﹣4是16的平方根,说法正确;
第二步:∵59319的个位数是9,
∴能确定59319的立方根的个位数是9.
第三步:如果划去59319后面的三位319得到数59,
而 ,则 ,可得 ,
由此能确定59319的立方根的十位数是3,因此59319的立方根是39.
(解答问题)
根据上面材料,解答下面的问题
(1)求110592的立方根,写出步骤.
14.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}= ,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.
15. 的平方根是_______; 的立方根是__________.
9.观察下列各等式:
……
根据以上规律可知第11行左起第11个数是()
A.-130B.-131C.-132D.-133
10.在实数 ,0,﹣ , 中,是无理数的是( )
A. B.0C.﹣ D.
二、填空题
11.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b= .
例如:(-3)☆2= = 2.
从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.
(2)若 的平方根为 , 的立方根为 ,求 的算术平方根.
26.阅读下面的文字,解答问题:大家知道 是无理数,而无理数是无限不循环小数,因此 的小数部分我们不可能全部写出来,而 <2于是可用 来表示 的小数部分.请解答下列问题:
(1) 的整数部分是_______,小数部分是_________;
(2)如果 的小数部分为 的整数部分为 求 的值;