2级数敛散性判定与证明

合集下载

第2节正项级数敛散性的判别

第2节正项级数敛散性的判别

n1
2 3
n
,
由等比级数的敛散性可知:原级数收敛.
例3
1
讨论 P 级数 n1 n p
( p > 0 ) 的敛散性.

当 p=1时,
P
级数为调和级数:
1 n1 n
,
它是发散的.
当 0 < p < 1 时,

0
1 n
1 np
,
由比较判别法, P 级数此时是发散的.
故 p 1时, P 级数是发散的.
综上所述:
当 p > 1 时, P 级数收敛. 当 p 1 时, P 级数发散.
4.比较判别法的极限形式
设和为两个正项级数, 且 vn 0 (n 1, 2,;
或从某一项 N0 开始).

lim un n vn
,

(1) 0 时, un 与 vn 具有相同的敛散性.
n1
n1
(2) 0 时, vn 收敛 un 收敛.
综上所述,当 0 < x < a 时, 原级数收敛; 当 x a 时, 原级数发散.
n
an 1 a2n
lim a n n 1 a2n
a 1,
1 n
当a
1时,
lim n
n
an 1 a2n
lim
n
n
a
1
1 a
2n
1 a
1,
故 a 0 且 a 1时, 原级数收敛.
例8
判别
n1
x a
n
的敛散性.
(
x
>
0,
a
>
0
为常数)

关于任意项级数敛散性判别的两个结论

关于任意项级数敛散性判别的两个结论

刘志高: 关于任意项级数敛散性判别的两个结论
! !
271
a n , 令函数 f ( x ) , 对
n= 1
解 =
对于
n= 1
ห้องสมุดไป่ตู้
( 1 - sin 1 ) , 考虑函数 f ( x ) n n
所有的正整数 n , 使得 f ( 0, + ! ) 有 lim +
x ∀0
1 = an . 若对某个 t # n
关于任意项级数敛散性判别的两个结论
刘志高
( 安徽工业大学职业技术学院 , 安徽 马鞍山 243011)

要:
以级数收敛定义和比较原则为基础 , 补充两个结论来判断某些任意项级数的敛散性. 任意项级数; 绝对收敛 O173. 1 文献标识码: A 条件下, 可以由加括号后所得新级数的收敛性来 得到原级数的收敛性. 例1 判定级数 1 1 1 1 1 1 + 2 3 2- 1 2 3- 1 3 + ∃+ 的敛散性 . 解 显然n lim a n = 0. 又因为 ∀+ ! 1 n+ 1- 1 1 1 n+ 1 n+ 1
且级数
n= 1
n + 4n + 2 发散 . 由结论 1 可知 n ( n + 1) ( n + 2)
2
原级数发散.
收稿日期: 2008- 01- 29 作者简介: 刘志高 ( 1975- ) , 男 , 安徽郎溪人 , 硕士 , 讲师 , 任职于安徽工业大学职业技术学院 .
第2 期 结论 2 设任意项级数
!
f %( x ) 存在且f ( 0) = 0, 则 an t x n= 1

关于数项级数敛散性的判定

关于数项级数敛散性的判定

关于数项级数敛散性的判定摘要:就数项级数敛散性的判定进行了深入细致的分析、探究与总结,重点论述了正项级数及一般项级数的敛散性判别方法,提出了数项级数敛散性判定的一般步骤,以及判定过程中需要注意的一些问题。

使得对数项级数敛散性的知识有了更深的认识,提高了解题能力。

关键词:数项级数;正项级数;交错级数;一般项级数;敛散性 引言:无穷级数是高等数学的一个重要组成部分,是研究“ 无穷项相加” 的理论 ,它是表示函数、研究函数的性质以及进行数值计算的一种工具。

如今,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的有力工具,而应用的前提是级数收敛,所以其收敛性的判别就显得十分重要,判断级数敛散的理论和方法很多,本文的根本目的是对数项级数敛散性的判定进行深入的研究与总结。

1.预备知识: 1.1级数的定义及性质定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式......21++++n u u u称为数项级数。

其中n u 称为该数项级数的通项。

数项级数的前n 项之和记为:∑=+++==nk n k n u u u u S 121...。

称为数项级数第n 个部分和。

定义2:若数项级数的部分和数列{}n S 收敛于S (即S S n n =∞→lim ),则称数项级数收敛。

若{}n S 是发散数列,则称数项级数发散。

即:n n S ∞→lim 不存在或为∞。

性质:(1)级数收敛的柯西准则:级数收敛的充要条件:0>∀ε,0>∃N ,使得当N m >以及对任意正整数P ,都有 ε<++++++p m m m u u u (21)推论:级数收敛的必要条件:若级数收敛,则0lim =∞→n n u 。

(2)设有两收敛级数n u s ∑=,n v ∑=σ,则其和与差)(n n v u ±∑也收敛,并且σ±=±∑s v un n)(。

8.2数项级数敛散性判定(一)

8.2数项级数敛散性判定(一)

(上界)

正项级数 un收敛
它的部分和数列 Sn有界.
n1
否则,
若数列

Sn
无界, 则

lim
n
Sn
,
从而
正项级数 un发散, 记为 un .
n1
n1
二、正项级数的敛散性判别法
正项级数敛散性的判别法较多, 只介绍几个最基本、
最常用的判别法。


定理(比较判别法1) 设 un和 vn均为正项级数,
且 un

vn(n

1, 2,
),
n1
n1
(1)若 vn 收敛,则 un 收敛; (大敛则小敛)
n1
n1
(2)若 un 发散,则 vn 发散. (小散则大散)
证明
n1
(1) 设 Sn
n
n1
uk , Tn
n
vk , un vn ,
且 Sn u1
第二节
数项级数 敛散性判别法
一、比较判别法
第七章 无穷级数
二、比值判别法
三、根值判别法
四、绝对收敛与条件收敛
复习
(一)数项级数的基本概念

un u1 u2 u3 un
n1
前n项部分和Sn u1 u2 un , 部分和数列 Sn
(二)级数的基本性质
23
n

1 (1)n1
1 01 0
均为正项级数
...
n1
2
一、正项级数及其敛散性
由正项级数的定义,可得正项级数的性质
性质 如果正项级数 un的部分和为 Sn , 则 n1

级数的敛散性

级数的敛散性

学士学位论文题目有关级数的敛散性学生指导教师年级 2008级专业数学与应用数学系别数学系学院数学科学学院2011年5月目录摘要 (1)关键词 (1)引言 (1)1 基本概念和相关理论 (1)1.1 有关级数的定义 (1)2 级数敛散性的判定方法 (3)2.1 级数的相关定理及证明 (3)3 级数敛散性的应用 (7)3.1 级数敛散性的相关结论 (7)3.2 级数敛散性判定的应用 (10)结束语 (14)参考文献 (14)外文摘要 (14)有关级数的敛散性(哈尔滨师范大学数学科学学院)摘 要: 级数是高等数学中的一个重要内容,而正项级数又是级数的重要组成部分,判别正项级数的敛散性方法很多,本文主要讨论了正项级数判别法的一些特性,及判别正项级数敛散性的一般步骤关 键 词 数项级数 收敛 发散 判别法引言数项级数敛散性判定研究是一个重要而有趣的课题,关于数项级数的敛散性判定尽管有不少经典性判别法,然而对数项级数判断收敛的方法的研究至今还在继续与深入,并且获得了一些新的知识和发现.本文打算对数项级数各项重要的敛散性判别方法作简单、系统的归纳,在已有判断收敛的一般程序基础上,进行进一步探讨,使解题更简便、更直接,从而找到判断收敛更完美的一般程序及最优方法选择.1基本概念和相关理论1.1有关级数的定义定义1.1.1 给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式12......n u u u ++++ (1)称为数项级数或无穷项级数(也简称为级数),其中n u 称为数项级数(1)的通项.数项级数(1)也常写作:∑∞=1k n u 或简称写作∑n u .数项级数(1)的前n 项之和,记为n nk k n u u u u S +++==∑=...211, (2)称为数项级数(1)的第n 个部分和,也简称为部分和.定义1.1.2 若数项级数(1)的部分和数列{}n S 收敛于S(即S S n n =∞→lim ),则称数项级数(1)收敛,称S 为数项级数(1)的和,记作12......n u u u ++++ 或∑=n u S .若{}n S 是发散数列,则称数项级数(1)发散.定义1.1.3 若正项级数各项的符号都相同,则称它为同号级数.各项都是由正项组成的级数称为正项级数定义1.1.4若级数的各项符号正负相间,即11234...(1)...(0,1,2,)n n n u u u u u u n +-+-++-+>= ,则上述级数为交错级数2 级数敛散性的判定方法2.1 级数的相关定理及证明定理 2.1.1 由于级数(1)的收敛或发散(简称敛散性),是由它的部分和数列{}n S 来确定的,因而可把级数(1)作为数列{}n S 的另一种表现形式.反之任给一个数列{}n a ,如果把它看作某一数项级数的部分和数列,则这个数项级数就是 +-++-+-+=-∞=∑)()()(1231211n n n n a a a a a a a u (3)这是数列{}n a 与级数(3)具有相同的敛散性,且当{}n a 收敛时,其极限值就是级数(3)的和.定理2.1.2 (级数收敛的柯西准则) 级数(1)收敛的充要条件:任给正数ε,总存在正整数N ,使得当N m >以及对任意正整数p ,都有12m m m p u u u ε++++++< (5) 即有级数(1)发散的充要条件:存在某正整数0ε,对任何正整数N ,总存在整数)(0N m >和0p ,有12m m m p u u u ε++++++<定理2.1.3 若级数(1)收敛,则0lim =∞→n n u (6)定理2.1.4 若级数nu∑和n v ∑都收敛,则对任意常数c ,d ,级数()n n cu dv +∑亦收敛,且()nn n n cudv c u d v +=+∑∑∑定理2.1.5 去掉、增加或改变级数的有限个项不改变级数的敛散性.定理2.1.6 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和.注意:从级数加括号的收敛,不能推断它在未加括号前也收敛.例如(11)(11)(11)000-+-++-+=+++收敛,但级数1111-+-+却是发散的.定理2.1.7 正项级数nu∑收敛的充要条件是:部分和数列{}n S 有界,即存在某正整数N ,对一切正整数n 都有n S M <.定理2.1.8(比较原则) 设nu∑和nv∑是两个正项级数,如果存在某正整数N ,对一切n N >都有n n u v ≤则(i )若级数n v ∑收敛,则级数n u ∑也收敛;(ii )若级数n u ∑发散,则级数n v ∑也发散. 推论 设12......n u u u ++++ (7) 12......n v v v ++++ (8)是两个正项级数,若lim nn nu l v →∞= 则(i ) 当0l <<+∞时,级数(7)、(8)同时收敛或同时发散;(ii ) 当0l =且级数(8)收敛时,级数(7)也收敛; (iii )当l =+∞且级数(8)发散时,级数(7)也发散.定理2.1.9(达朗贝尔判别法,或称比式判别法) 设nu∑为正项级数,且存在某个正整数0N 及常数q (01q <<).(i ) 若对一切0n N >,成立不等式nnu q v ≤ 则级数n u ∑收敛.(ii )若对一切0n N >,成立不等式1nnu v ≥ 则级数n u ∑发散.推论 (比式判别法的极限形式)若n u ∑为正项级数,且1limn n nu q u +→∞= (9)则(i ) 当1q <时,级数n u ∑收敛;(ii )当1q >或q =+∞时,级数n u ∑发散.注 若(9)中1q =,这是用比式判别法对级数的敛散性不能做出判断因而它可能是收敛的,也可能是发散的.例如级数21n ∑和1n∑,它们的比式极限都是11()n nu n u +→→∞ 但21n ∑是收敛的,而1n∑却是发散的. 若某极限(9)式的极限不存在,则可用上、下极限来判别. 推论 设n u ∑为正项级数. (i )若1lim1n n n u q u +→∞=<,则级数收敛;(ii )若1lim1n n nu q u +→∞=>,则级数发散.定理2.1.10 (柯西判别法,或称根式判别法) 设nu∑为正项级数,且存在某正数0N 及正常数l , (i )若对一切0n N >,成立不等式1l ≤<, (10) 则级数n u ∑收敛;(ii )若对一切0n N >,成立不等式1≥ (11)则级数n u ∑发散.定理2.1.11(根式判别法的极限形式) 设n u ∑为正项级数,且n l = (12)则(i )当1l <时,级数n u ∑收敛; (ii )当1l >时,级数n u ∑发散.注 若(12)式中1l =,则根式判别法仍无法对级数的敛散性作出判别. 例如,对21n ∑和1n ∑,都有1()n →→∞但21n ∑是收敛的,而1n∑却是发散的.若(12.定理2.1.12 设nu∑为正项级数,且l =则当(i ) 1l <时级数收敛;(ii )1l >时级数发散.定理2.1.13(莱布尼茨判别法)若交错级数11234...(1)...n n u u u u u +-+-++-+ (13)满足下述两个条件: (i ) 数列{}n u 单调递减; (ii )lim 0n n u →∞=则级数(13)收敛.定理2.1.14 若级数(13)满足莱布尼茨判别法的条件,则收敛级数的余项估计式为1n n R u +≤绝对收敛级数及其性质 若级数12......n u u u ++++ (7) 各项绝对值所组成的级数12......n u u u ++++ (15) 收敛,则称级数(7)为绝对收敛.定理2.1.15 绝对收敛的级数一定收敛.定理2.1.16 设级数12......n u u u ++++ (7)绝对收敛,且其和等于S ,则任意重排后所得到的级数12......n v v v ++++ (8)也绝对收敛亦有相同的和数.注 由条件收敛级数重排列后所得到的新级数,即使收敛,也不一定收敛于原来的和数.而且条件收敛级数适当重排后,可得到发散级数,或收敛于事先指定的数.例如级数11111(1)231n n +-+++-++ 是条件收敛的,设其和为A ,即1111111111(1)12345678n n A n ∞+=-=-+-+-+-+=∑ 乘以常数12后,有 1111111(1)224682n A n +-=-+-+=∑ 将上述两个级数相加,就得到1111131325742A +-++-+= 定理2.1.17 (柯西定理) 若级数12......n u u u ++++ (7) 12......n v v v ++++ (8) 都绝对收敛,则对所有乘积i j u v 按任意顺序排列所得的级数n w ∑也绝对收敛,且其和等于AB .引理 (分部求和公式,也称阿贝尔变换) 设,(123)i i v i n ε= ,,,,为两组实数,若令12(12)k k v v v k n σ=+++= ,,,则有如下分部求和公式成立:121232111()()()ni in n n n n i vεεεσεεσεεσεσ--==-+-++-+∑ (16)推论(阿贝尔引理) 若(i ) 12n εεε ,,,是单调数组;(ii )对任意正整数(1)k k n ≤≤有k A σ≤(这里1k k v v σ=++ ),则记max{}k kεε=时,有13nk ki vk εε=≤∑ (17)定理2.1.18(阿贝尔判别法) 若{}n a 为单调有界数列,且级数nb∑收敛,则级数1122n n n n a b a b a b a b =++++∑ (18) 收敛.定理2.1.19(狄利克雷判别法) 若数列{}n a 单调递减,且lim 0n n a →∞=,又级数n b ∑的部分和数列有界,则级数(18)收敛. 积分判别法定理 2.1.20(积分判别法) 设f 为[1,)+∞上非负减函数,那么正项级数()f n ∑与反常积分1()f x dx +∞⎰同时收敛或同时发散.3 有关级数的敛散性的应用 3.1级数敛散性的相关结论3.1.1判断正项级数一般顺序是先检验通项的极限是否为0,若为0则收敛,若不为0则判断级数的部分和是否有界,有界则收敛,否则发散. 3.1.2若级数的一般项可以进行适当放缩则使用比较判别法,或可以找到其等价式用等价判别法.3.1.3当通项具有一定特点时,则根据其特点选择适用的方法,如比值判别法、跟式判别法。

泰勒公式判断级数敛散性的方法

泰勒公式判断级数敛散性的方法

教学方法课程教育研究学法教法研究 123引言大学数学课程中,级数部分是该课程知识体系中重要的组成部分。

数学专业的后续课程,如《复变函数论》等都和级数有密切的关系,对于工科的学生来讲,傅立叶级数和傅立叶变换主要应用在信号分析领域,包括滤波、数据压缩、电力系统的监控和电子产品的制造等领域,因此级数和这些内容的相应的课程紧密相关。

作为函数项级数基础的数项级数部分自然尤为重要。

判断数项级数敛散性是学习级数的重要环节,关系到后面各类函数项级数的学习。

数项级数敛散性的判断如果掌握了一些特定的技巧,则可以帮助我们巧妙地解决这个问题。

关于数项级数敛散性的判断,有一些基本方法,如:敛散性的定义、级数收敛的必要条件、比较审敛法、比值审敛法、根值审敛法等,这些方法针对一些特定形式的级数敛散性判断都非常有效,该部分在文献[4]中有详细讲解,这里不再赘述。

但是,这里存在的普遍问题是,以上方法只是针对一些特定形式的数项级数能够确定其敛散性,对于一般级数的问题,需要探索新的方法,比如对于交错级数,只有级数满足Leibniz 定理[4]的两个条件时,才能判断它是收敛的,显然这个方法有一定的局限性。

泰勒公式是高等数学课程中一个功能强大的工具,我们熟知的在近似计算、误差估计、极限计算等方面都有广泛的使用[3]。

用泰勒公式判定级数的敛散性在一些文章已有所提及[5],但这些论证没有深入挖掘它的奇妙之处及具体使用方法。

下面,本文将论证用泰勒公式判定级数的敛散性的方法::该等式称为按的幂展开的带有拉格朗日型余项的n 。

2.在几类基本初等函数中,幂函数是形式简单,容易确定极限的一类函数,借助泰勒公式可以把各类函数转化为幂函数的问题。

泰勒公式中,参照点取零,展开式各项都是关于的幂函数,余项是当变量趋向零时的无穷小量,这样无论原始级数什么形式都可以通过幂函数的次数判断该项的敛散性。

以下通过三个实例分别说明用泰勒公式判别交错级数、任意项级数、正项级数的敛散性的方法。

级数敛散性总结

级数敛散性总结

摘要级数理论是数学分析的重要组成部分,研究级数对于深入探讨数学分析问题有着深远的意义。

级数理论中最重要的问题和学者研究最多的问题则是关于级数收敛与发散的问题。

级数的收敛与发散性质更是级数存在当中的最基本的立足点。

基于级数发散和收敛的问题,本文对级数进行了比较详细和系统的介绍,并在级数收敛性方面进行了较为详细的概括,包括级数的分类和收敛性的总结和应用。

本文第一个部分首先对常见的级数:常数项级数、正项级数、交错级数、函数项级数、幂级数、傅立叶级数,进行了大概的介绍,并从常见级数的定义、常见级数的分类、级数收敛发散的充要条件和对应级数常用的收敛判别方法进行详细的分析概括。

本文的第二个部分针对具体的级数收敛方法,从方法的定义和方法的具体例子应用两个方面对其进行较为全面的介绍和分析,其中包括:判别级数发散与收敛的简单方法、比较判别法、比值判别法、高斯判别法、达朗贝尔判别法、对数判别法、积分判别法、拉贝判别法、柯西判别法。

最后,本文第三部分通过整理级数散敛性判断的方法,对本文进行一个综合的概括,主要从基于级数类型的方法和基于通项特征的方法两个方面总结了解答收敛性问题的分析思路和如何更快的寻找有效的方法。

关键词:级数敛散性方法AbstractProgression theory is an important part of the mathematical analysis. The study of series is of profound significance for further discussing mathematical analysis problems. Series convergence and divergence problem is the most important question in progression theory that many researchers research on. For the analysis, series convergence and series divergence is of the basic foothold existing in mathematical analysis.Firstly, based on the series convergence and series divergence, this thesis gives a detailed and systematical introduction to series, and a more detailed summary of series convergence, including the classification of series, application of convergence. Firstly, this paper has a general introduction to common series, including constant series, series of positive term, staggered series, series with function terms, power series, fourier series. Besides, the paper has detailed analysis and summary of the definition of common series, the classification of common series, and the sufficient and necessary conditions for the convergence series, together with the commonly used identification methods of corresponding series.And then the second part of this article has a comprehensive introduction and analysis of the method’s definition and specific examples application of the method, including: simple method distinguishing the divergence of a series , comparative method, ratio method, Gauss method, D'Alembert discriminant method, Logarithmic method, integral method, Rabe method, and Cauchy method.Finally, the third part of this paper made a comprehensive summary through sorting out identifying methods of series convergence and divergence. Based on the types of series and the methods of general term characteristics, this paper summarized the analysis mentality and effective ways of solutions to convergence problem.Key words: Series Convergence Mathod第一章引言级数理论是数学分析的重要组成部分,与极限理论有密切的联系,它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。

数学毕业论文级数敛散性的判别方法

数学毕业论文级数敛散性的判别方法

淮北师范大学信息学院2012 届学士学位论文级数敛散性的判别方法系别:数学系专业:数学与应用数学学号: 20081884083姓名: 赵高指导教师: 陈冬君指导教师职称: 讲师2012年 5 月10 日级数敛散性的判别方法赵高(淮北师范大学信息学院,淮北,235000)摘要级数有很多重要的性质,其中敛散性是级数的一个非常重要的性质,敛散性的判别方法也一直是人们研究的热点.通过判别级数的敛散性进一步了解级数的性质.本文探论了正项级数、交错级数以及任意项级数敛散性的判别方法,正项级数、交错级数、任意项级数通项的多变性,决定了判别正项级数、交错级数、任意项级数敛散性的方法会有多种,主要有达朗贝尔判别法、柯西判别法、莱布尼茨判别法、狄利克雷判别法.当然由于通项的特殊性也会有特殊的方法判别.本文通过归纳一些判别正项级数与交错级数敛散性的方法,让人们在学习过程中对级数敛散性的判别能够很好的把握,并掌握这些判别法成立的条件.关键词:正项级数、交错级数、敛散性、判别法.The Convergence of the Series of Discriminant MethodZhao GaoCollege of Information Technology Huaibei Normal University, Huaibei,235000AbstractThe series has a lot of important properties, which is the series convergence and divergence of a very important properties, criteria for convergence and divergence has been the focus of study. Through judging the convergence of series to further understand the series nature. This article of the series of positive terms, staggered series as well as any series convergence and divergence sexual discriminant method, a series of positive terms, staggered series, series of any general variability, determines the identification of series of positive terms, staggered series, any of the convergence of the series will have a variety of methods, mainly the d'Alembert discriminant method, Cauchy method, Leibniz method, di Like dilichlet discriminance. Of course due to the particularity of the general will also have the special methods of discriminant. This paper summarized some criteria for positive term series and the convergence of alternate series method, let people in the learning process of convergence of series of discriminant can be a very good grasp of, and grasp the discriminant conditions.Key words: Series of positive terms,Alternating series,Convergence and divergence,Discriminant analysis method目录引言 (1)一、级数及其敛散性的有关概念 (1)二、正项级数敛散性的判别方法 (2)1、比式判别法(达朗贝尔判别法) (2)2、根式判别法(柯西判别法) (3)3、拉贝判别法 (4)4、高斯判别法 (5)5、对数判别法 (5)6、隔项比值判别法 (5)7、运用微分中值定理判别级数敛散性 (6)8、利用数列判别级数的敛散性 (6)9、运用等价无穷小替换判别级数的敛散性 (7)三、交错级数敛散性的判别方法 (8)1、利用级数敛散性定义判定 (8)2、莱布尼茨判别法 (9)3、极限判别法 (10)4、添加括号法 (11)5、通项变形法 (12)6、微分形式判别法 (13)7、比值判别法或根值判别法 (14)四、任意项级数敛散性判别法 (15)总结 (16)参考文献 (16)致谢 (17)引言级数是数学的一个重要组成部分,它是表示函数、研究函数的性质以及数值计算的一种工具.对于一个级数,我们首先要讨论其敛散性,然后才讨论其求和问题.本文就级数的敛散性的判别方法作了一些探讨.正项级数和交错级数是整个级数家族中比较重要和特殊的.对其敛散性的判别方法也有别于一般的级数,除适用于一般级数的敛散性判别法外,还有许多专门针对正项级数和交错级数敛散性的判别方法,常见的如达朗贝尔判别法、柯西判别法、拉贝判别法、莱布尼茨判别法、狄利克雷判别法、微分形式判别法等.其实正项级数敛散性的判别方法远不止这些,下面就介绍几种级数敛散性的判别法.一、级数及其敛散性的有关概念定义1 给定数列{n u }:1u ,2u ,,nu则式子=1n n u ∞∑=12n u u u ++++称为无穷级数,简称为级数.定义2 如果级数=1n n u ∞∑满足n u ≥0(n =1,2,)则称=1n n u ∞∑为正项级数.如果级数是正负项交错出现的,即11234=1=+u n n n u u u u ∞---+∑(-1),或11234=1=+u +u n n n u u u ∞---∑(-1)(n u ≥0,n =1,2) 则称为交错级数.由定义,级数表示无穷多个数的和,但不能理解为无穷多个数逐次求和.事实上,这样也做不到.利用数列极限可以表示级数的和,同时给出级数敛散性的定义.定义3 级数=1n n u ∞∑前n 项之和记为S n =12n u u u +++,称为级数=1n n u ∞∑的第n 次部分和. 当n 分别取1,2, ,n ,时,得到级数=1n n u ∞∑的部分和数列{n S }:12,,,,n S S S 如果当n →∞时,n S 的极限存在,即lim =n n S S →∞时,则称级数=1n n u ∞∑是收敛的,且S 称为级数=1nn u∞∑的和,记为S ==1n n u ∞∑;如果当n →∞时,n S 的极限不存在, 即lim n n S →∞不存在,则称级数=1n n u ∞∑是发散的.由定义,只有收敛的级数才有和的问题,发散的级数没有和,或者说发散级数的和不存在.所以有必要研究级数的敛散性.由于正项级数是各项的符号均为正号的级数,它是数项级数中最简单也是最有代表意义的数项级数. 所以它收敛的最基本的判别方法也是从级数的判敛性质中引出,因此本文先讨论正项级数的敛散性. 有了着一方法来判断某些简单的正项级数的敛散性后,以它作为参照,可以判断另外一些稍微复杂的正项级数的敛散性.下面先来介绍正项级数敛散性的判别方法.二、正项级数敛散性的判别方法1、比式判别法(达朗贝尔判别法)定理[]11 设有正项级数=1n n u ∞∑,如果+1lim=n n nu l u →+∞,则(1) 当0≤l <1时,级数收敛; (2) 当1<l ≤+∞时,级数发散; (3) 当l =1时,此法失效. 例1 判断正项级数=12nn n∞∑的敛散性. 解:1121(1)limlim lim lim ()2(1)(1)1n n n n n n n n n n n n n n n n n n en++→+∞→+∞→+∞→+∞+=<==+++<1所以满足定理1中的(1),故正项级数=12nn n∞∑收敛. 例2 判别正项级数=12!n n ∞∑的敛散性. 解:由2!1(1)!lim lim lim 02(1)!1!n n n n n n n n →+∞→+∞→+∞+===++可知满足定理1中的(1),所以正项级数=12!n n ∞∑收敛. 像正项级数 =1x !nn n ∞∑(x>0)、=1!10n n n ∞∑等都可采用此法判断.2、根式判别法(柯西判别法)定理[]12 设有正项级数=1n n u ∞∑,如果n l ,则(1)当0≤l <1时,级数收敛; (2)当1<l ≤+∞时,级数发散; (3)当l =1时,此法失效.例3 研究级数=12+12nnn ∞-∑()的敛散性. 解:由于12n n →∞=<所以级数2+12nn-∑()是收敛的. 注:级数=12n n n ∞∑、=1+1nn na n ∞⎛⎫ ⎪⎝⎭∑ (0)a >、-1=1n n n αβ∞∑(α>0,β>0)等都可采用此法判 断.比式判别法与根式判别法都是建立在正项级数比较判别法基础上的,所用的比较级数是收敛速度相对比较快的等比级数.这两种方法虽然更方便,但是它们也只能用于判别那些比等比级数收敛速度更快的级数,而对于那一类比等比级数收敛速度更缓慢的级数,这两种判别法就无能为力了.这两种判别方法是我们用得比较多,因为它们用起来很方便.但是,对于比值判别法与根值判别法存在两点不足:1) 当=1l 时,判别法失效,既有收敛的,也有发散的级. 2) 判别法可能由于 l 根本不存在而失效.3、拉贝判别法定理[]43 (拉贝判别法) 设n u >0 (n =1,2,3)1。

(完整版)关于数项级数敛散性的判定

(完整版)关于数项级数敛散性的判定

关于数项级数敛散性的判定1、问题的提出数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的.2、熟练掌握并准确应用级数的概念、性质和判定定理2.1数项级数收敛的定义数项级数∑∞=1n nu收敛⇔数项级数∑∞=1n nu的部分和数列{}n S 收敛于S .这样数项级数的敛散性问题就可以转化为部分和数列{}n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少.2.2数项级数的性质(1)若级数∑∞=1n nu与∑∞=1n nv都收敛,则对任意常数c,d, 级数∑∞=+1)(n n ndv cu亦收敛,且∑∑∑∞=∞=∞=+=+111)(n n n n n n nv d u c dv cu;相反的,若级数∑∞=+1)(n n n dv cu 收敛,则不能够推出级数∑∞=1n n u 与∑∞=1n nv都收敛.注:特殊的,对于级数∑∞=1n nu与∑∞=1n nv,当两个级数都收敛时,∑∞=±1)(n n nv u必收敛;当其中一个收敛,另一个发散时,∑∞=±1)(n n nv u一定发散;当两个都发散时,∑∞=±1)(n n n v u 可能收敛也可能发散.例1 判定级数∑∞=+1)5131(n n n 与级数∑∞=+1)211(n n n的敛散性.解:因为级数∑∞=131n n 与级数∑∞=151n n 收敛,故级数∑∞=+1)5131(n n n 收敛.因为级数∑∞=11n n 发散,级数∑∞=121n n 收敛,故级数∑∞=+1)211(n n n发散.(2)改变、增加或去掉级数的有限个项不会改变原级数的敛散性.(3)在收敛级数的项中任意加括号,既不改变级数的敛散性,也不改变它的和.即收敛的级数在不改变各项顺序的情况下,对它的各项任意加括号后,得到的新级数还是收敛的;加括号后得到的新级数发散,那么原级数也是发散的.例2 判定级数++--+++1111121-1-21n n 的敛散性.解:先考察级数∑∞=⎪⎪⎭⎫⎝⎛+--11111n n n ,因为121111-=+--=n n n u n ,而级数∑∞=-112n n 发散,由于加括号后得到得新级数发散,则原级数发散. (4)级数收敛的必要条件 若级数∑∞=1n nu收敛,则0lim =∞→n n u .若0lim ≠∞→n n u ,则级数∑∞=1n nu发散.2.3判定定理2.3.1级数收敛的柯西准则级数∑∞=1n nu收敛⇔0>∀ε,*NN ∈∃,使得当m N >以及*Np ∈∀,都有ε<++++++p m m m u u u 21.例1 用柯西准则判别级数∑nn22sin 的敛散性. 证明:由于pm p m m m m m pm m m u u u ++++++++++++=+++22sin 22sin 22sin 221121mp m m p m m m 21212121212121<-=+++<++++ 因此,对于任意的0>ε.取⎥⎦⎤⎢⎣⎡=ε1log 2N 使得当N m >及任意的*∈N p ,由上式就有ε<++++++p m m m u u u 21成立,故由柯西准则可推出原级数收敛. 2.3.2正项级数判别法(1)正项∑∞=1n nu收敛⇔它的部分和数列{}n S 有界.(2)比较判别法 如果∑∞=1n nu和∑∞=1n nv是正项级数,若存在某整数N ,对一切N n >都有n n v u ≤(i)若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;(ii )若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散.等比级数和P-级数的敛散性 ①等比级数∑∞=+++++=12n nn aq aq aq a aq ,当1<q 时,级数收敛;当1≥q 时,级数发散.②P-级数∑∞=11n p n ,当1≤p 时,发散;当1>p 时,收敛. 例2 判别级数()∑∞+114n n 的敛散性.解:因为()25441111nnn n n u n =•<+=,而且P-级数∑∞251n收敛,由比较判别法知该级数收敛.(3)比较判别法的极限形式 如果∑∞=1n n u 和∑∞=1n n v 是正项级数)0(≠n v ,如果l v u nnn =∞→lim,则(i )当+∞<<l 0时,∑∞=1n nu和∑∞=1n nv同时收敛或发散;(ii )当0=l 时,∑∞=1n nv收敛时,∑∞=1n nu也收敛;(iii )当+∞=l 时,∑∞=1n nv发散时,∑∞=1n nu也发散.例3 判别级数()()∑>-11a a n的敛散性.解:因为a a a t a n t na t t t t nn ln 1ln lim 1lim 111lim00==-=-→→∞→令,而正项级数∑n1发散,由比较原则的极限形式知原级数发散. (4)比式判别法 如果∑∞=1n n u 为正项级数,且ρ=+nn u u 1, (i )若10<<ρ,则∑∞=1n nu收敛;(ii )若1≥ρ,∑∞=1n nu发散.例4判别级数()∑+nn 10!1的敛散性.解:因为()()+∞=+=+•+=∞→+∞→+∞→102lim !11010!2lim lim 11n n n u u n n n n nn n ,所以由比式判别法知原级数发散.(5)比式判别法的极限形式 如果∑∞=1n n u 为正项级数,且ρ=+∞→nn n u u 1lim,则(i )若1<ρ,则∑∞=1n nu收敛;(ii )若1>ρ或+∞=ρ时,∑∞=1n nu发散.例5 判别级数∑•nn n n !3的敛散性.解:因为()()13113lim !31!13lim lim 111>=⎪⎭⎫ ⎝⎛+=•++=∞→++∞→+∞→e n n n n n u u n n n n n n n nn n ,所以由比式判别法的极限形式知原级数发散. (6)根式判别法 如果∑∞=1n nu为正项级数,(i )如果1<≤ρn n u ,则∑∞=1n n u 收敛;(ii )若1≥n n u ,则级数∑∞=1n nu发散.(7)根式判别法的极限形式 如果∑∞=1n nu为正项级数,还有ρ=∞→n n n u lim ,(i )当1<ρ时,则∑∞=1n nu收敛;(ii )当1>ρ时,则∑∞=1n nu发散.例6 判别级数∑⎪⎭⎫⎝⎛+nn n 12的敛散性.解:因为12112lim 12lim <=+=⎪⎭⎫⎝⎛+∞→∞→n n n n n n nn ,所以由比式判别法极限形式知原级数收敛. (8)积分判别法 若)(x f 为),1[+∞上的非负减函数,那么正项级数∑)(n f 与反常积分⎰+∞1)(dx x f 同时收敛或同时发散.例7 判别级数∑+112n 的敛散性.解:设()112+=x x f ,则()x f 在),1[+∞上为非负单调递减函数,而⎰+∞=+1241πxdx 故由积分判别法知原级数收敛.(9)Raabe 判别法 设0>n u , ,2,1,11=⎪⎪⎭⎫⎝⎛-=+n u u n R n nn .(i)若存在1>q 及正整数N ,使得当N n ≥时有q R ≥n ,则级数∑∞=1n nu收敛;(ii )若存在正整数N ,使得当N n ≥时有1≤n R ,则级数∑∞=1n nu发散.(10) Raabe 判别法的极限形式 设∑∞=1n nu是正项级数,且有r R n n =∞→lim ,(i )若1>r ,则级数∑∞=1n nu收敛;(ii )若1<r ,则级数∑∞=1n nu发散.例8 判别级数()()∑∞+⋅-121!!2!!12n n n 的敛散性. 解:容易验证,因为()∞→→n 1ρ这个级数用比式判别法和根式判别法都失效,这时可以用Raabe判别法.此时,()()()()()()∞→→++=⎭⎬⎫⎩⎨⎧-+++=⎪⎪⎭⎫⎝⎛-=+n n n n n n n n u u n R n n n 23125612232221221.由Raabe 判别法知原级数收敛.正项级数的判别方法有很多种,下面总结一下这几种方法的选择顺序:①若n n u ∞→lim 易于求的,考察n n u ∞→lim 的值:0lim ≠∞→n n u ,则依据级数收敛的必要条件,知级数发散;②若0lim =∞→n n u ,不能直接判断级数是收敛还是发散,此时用比式判别法或根式判别法,当1<ρ时,级数收敛;若1>ρ或+∞=ρ时,级数发散;③当1=ρ时,级数可能收敛也可能发散,此时用比较判别法,找出一个已知敛散性的级数与之比较,然后根据比较判别法或其极限形式判定级数的敛散性,当然,对于一些具体问题,我们应该根据其特点分析,找到更简便的判别方法.2.3.3一般项级数的判别方法(1)交错级数判别法Leibniz 判别法 若交错级数n n n u 11)1(+∞=-∑(0>n u ),满足下述两个条件:(i )数列{}n u 单调递减;(ii )0lim =∞→n n u ,则级数收敛.注:用Leibniz 判别法判定1+>n n u u 时,可以用以下几种方法:①比值法:考察是否有11>+n nu u ;②差值法:考察是否有01>-+n n u u ;③导数法:即建立一个连续可导的函数)(x f ,使),2,1()( ==n u n f n ,考察是否有0)(<'n f .例9 判定级数()∑∞=-+++-111ln )1(1)1(n n n n n 的敛散性.解:因为此级数为交错级数 ,设()()1ln 11+++=n n n u n ,易证()()01ln 11limlim =+++=∞→∞→n n n u n n n ,下面判定1+>n n u u ,下面我们用导数的知识判定数列{}n u 单调递减.设()()1ln 11)(+++==n n n u n f n ,则()()()()()1ln 11ln 22++-+='='n n nn u n f n ,又设()()n n n g -+=1ln ,则()0111<-+='n n g ,()n g ∴单调递减,()()0g n g < ,()0<'∴n f ,()n f 单调递减,1+>n n u u ,由Leibniz 判别法,知原级数发散.(2)绝对收敛 若级数∑∞=1n nu各项绝对值组成的级数∑∞=1n nu收敛,则原级数绝对收敛.性质:绝对收敛的级数一定收敛.此定理的逆命题不成立,即:若∑∞=1n nu收敛,不能判定∑∞=1n nu也收敛.(3)Abel 判别法若{}n a 为单调有界数列,且级数∑nb收敛,则级数∑nn ba 收敛.例10 判定级数()()()∑∞=-⎪⎭⎫ ⎝⎛+-2arctan 411ln 11n nnn n n 的收敛性.解:根据Leibniz 判别法知级数()∑∞=2ln 11-n nn 收敛.因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11递增有界,故由Abel 判别法知级数()()∑∞=⎪⎭⎫⎝⎛+-211ln 11n nnn n 收敛,又因{}n arctan 4-递减有界,再由Abel 判别法知原级数收敛.(4)Dirichlet 判别法若数列{}n a 单调递减,且0lim =∞→n n a ,又级数∑nb的部分和数列有界,则级数∑nn ba 收敛.例11 判定级数()πα2,0,sin 1∈∑∞=x nnxn ()0>α的敛散性. 解:由于当()π2,0∈x 时,有2sin 1sin 1x kx k ≤∑∞=,即∑∞=1sin n nx 的部分和数列有界,而数列()01>⎭⎬⎫⎩⎨⎧ααn 单调递减,且01lim =∞→αn n ,故由Dirichlet 判别法知,原级数收敛. 对于交错级数敛散性判定问题,应先判定其是否绝对收敛,即若∑∞=1n nu收敛,则∑∞=1n nu收敛;若不是绝对收敛,则根据Leibniz 判别法,Abel 判别法,Dirichlet 判别法判定其是否条件收敛.3、巧妙判别数项级数敛散性以上介绍了一些判别数项级数敛散性的基本方法,但是在实际的应用中往往需要多种方法结合,且有时还有一定的技巧性,下面结合一些实例列举一些常用的判别方法和技巧.3.1等价无穷小替换的方法判断级数敛散性应用定理:设∑∞=1n nu和∑∞=1n nv是两个正项级数,且当∞→n 时,n u 和n v 为等价的无穷小量,则∑∞=1n nu和∑∞=1n nv的敛散性保持一致.证明:由于当∞→n 时,n u 和n v 为等价的无穷小量,即01lim≠=∞→nnn v u ,由比较判别法的极限形式可知级数∑∞=1n nu和级数∑∞=1n nv同时收敛或同时发散.例1 判定级数()()()∑∞=+-⎪⎭⎫⎝⎛+1142411ln 1-n n n n n 的敛散性. 解:设()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n ,则()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n~()∞→=n n n n ,41412,而级数∑∞=1231n n 收敛,所以原级数绝对收敛. 3.2运用常用不等式判断级数的敛散性常用的不等式有:n n <ln , ()x x <+1ln , x e x+>1例2 判定级数∑∞=⎪⎭⎫ ⎝⎛+-11ln 1n n n n 的敛散性. 解:此题我们可以利用不等式()x x <+1ln , 有111111ln 11ln 11ln 1+-<⎪⎭⎫ ⎝⎛+-+=++=+-=n n n n n n n n n n u n 因为级数∑∞=⎪⎭⎫⎝⎛+-1111n n n 收敛,故原级数收敛. 3.3运用平均不等式()2221b a ab +≤判断级数敛散性 应用定理:若级数∑∞=12n na和级数∑∞=12n nb都收敛,则级数∑∞=1n nn ba 绝对收敛.证明:已知级数∑∞=12n na 和级数∑∞=12n nb 都收敛,根据级数收敛的性质,则级数()∑∞+2221nn b a 收敛,由于有不等式()2221n n n n b a b a +≤,再根据比较判别法,知级数∑∞=1n n n b a 收敛,所以级数∑∞=1n n n b a 绝对收敛.例3 设常数0>λ,级数∑∞=12n n a 收敛,判断级数()∑∞=+-121n n nn a λ的敛散性.解:因为级数∑∞=12n na 收敛,并且级数∑∞=+1211n n 也收敛,所以级数∑∞⎪⎭⎫ ⎝⎛++λ221n a n 收敛,又因为⎪⎭⎫⎝⎛++≤+=+λλλ22221211n a n a n a n nn ,由比较判别法可知,级数∑∞+λ2n a n 收敛,故原级数绝对收敛.3.4拉格朗日微分中值定理判断级数敛散性应用定理:设()x f 在()1,0内可导,且其导函数有界,则级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛.证明:因为()x f 在()1,0内可导,且其导函数有界,所以存在0>M ,对于一切()1,0∈x ,都有()M x f ≤',于是由拉格朗日中值定理得()()()()211221211111k n k n k k M kn k n f kn f k n f ++-≤⎪⎪⎭⎫ ⎝⎛+-+'=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ξ,由于级数()()∑∞=++1211n k n k n 收敛,所以级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛. 例4 判定级数∑∞=⎪⎭⎫ ⎝⎛+-+111s 101sin n n in n 的敛散性. 解:设函数()x x f 1sin=,则()x xx f 1cos 12⋅-=',知()x f '有界,令1,1021==k k ,由于满足上述定理条件,故级数∑∞=⎪⎭⎫⎝⎛+-+111s 101sin n n in n 收敛. 3.5对数判别法判断级数敛散性应用定理:若级数∑∞=1n n u 为正项级数,若有0>α,使得当0n n ≥时,α+≥1ln 1lnn u n,则级数∑∞=1n nu 收敛,若有0n n ≥时,1ln 1ln≤n u n,则级数∑∞=1n n u 发散. 证明:如果0n n ≥时,不等式α+≥1ln 1lnn u n 成立,则有α+≥11n u n .由于级数∑∞=+111n nα收敛,所以由比较判别法知级数∑∞=1n n u 收敛.同理可证,当不等式1ln 1ln≤n u n成立时,则级数∑∞=1n n u 发散. 例5 判定级数()∑∞=>1ln 12n n na a 的敛散性.解:由于a nn n a n n n a n u nn n ln ln 2ln ln ln ln 2ln ln 2ln ln 1ln ln -=•-==, 由洛必达法则可知:+∞=-=-=⎪⎭⎫⎝⎛-∞←+∞→+∞→a xa x x a n n n n n ln 11lim 2ln ln ln lim 2ln ln ln 2ln lim所以,对0>α,存在0n ,使得当0n n ≥时,α+≥-1ln ln 2ln a nn,因而根据以上定理原级数发散.3.6 泰勒展开式判断级数的敛散性例6 判别级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n n n e 的敛散性.解:因为⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-=-=⎪⎭⎫ ⎝⎛+-=22121111ln 11n o n n n n n n n e e e e n e u ~⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--n o ne 12111 ~()∞→n n e 2.由于级数∑∞=12n ne 发散,所以原级数发散. 3.7拆项法判断级数的敛散性将级数的一般项运用等价变形、三角基本公式、有理化等方法拆成几项之差也是判别级数收敛的一种常用方法.例7 判别级数()∑∞=-122sin sin n n n n αα的敛散性. 解:因为()()n sin -sin sin sin 2222ααααn n n n n =-,而且()2221sin n n n ≤α,由于级数∑∞=121n n收敛,根据比较判别法知级数()∑∞=122sin n n n α收敛;而且∑∞=1sin n n α,当παk =时,该级数收敛;当παk ≠时,该级数发散.由此可知,当παk =时,原级数收敛;当παk ≠时,原级数发散.3.8 Gauss 判别法判断级数的敛散性若() ,2,10=>n a n ,且⎪⎭⎫⎝⎛++=++εμλ111n O n a a n n ,0>ε,则级数∑∞=1n n a 当1>λ时收敛;当1<λ时发散;而当1=λ时,对1>μ收敛,对1≤μ发散.例8 判别级数()()∑∞=>>-++1)0,0(1!11n qq p nn n p p p 的敛散性. 解:对于这个级数来说,⎪⎭⎫⎝⎛++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+++=+-+211111111111n O n p q n n p n n n p n a a q q n n , 所以它在p q >时收敛,在p q ≤时发散.3.9运用函数判定数项级数的敛散性以前讨论的方法判定级数敛散性都与数列极限紧密联系,这种方法利用函数来研究数项级数.给出了利用函数的导数和极限判别数项级数敛散性的的方法.应用定理1 若级数∑∞=⎪⎭⎫⎝⎛11n n f 收敛,则()0lim 0=→x f x证明:已知级数∑∞=⎪⎭⎫ ⎝⎛11n n f 收敛,有级数收敛的必要条件得01lim =⎪⎭⎫⎝⎛∞→n f x ,因而()01lim lim 0=⎪⎭⎫⎝⎛=∞→→n f x f n x . 例9 判别级数∑∞=⎪⎪⎭⎫ ⎝⎛-11cos 1n n n e n π的敛散性. 解:由于11lim 1lim 01=-=⎪⎪⎭⎫ ⎝⎛-→∞→x e e n xx nn ,又由于 2cos lim 0π→x 不存在,所以⎪⎭⎫⎝⎛∞→n f x 1lim 不存在,由定理1的逆否命题可知,级数不收敛. 应用定理2 如果()x f x '→0lim 存在,∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛,则()0lim 0='→x f x .应用定理3 如果函数在0=x 存在二阶导数,且()()000='=f f ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 应用定理4 如果()x f x ''→0lim 存在,而且()()0lim lim 0='=→→x f x f x x ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 证明:首先作辅助函数 ⎩⎨⎧≠==0)(00)(x x f x x G考察()x G ,有()00=G ()()()0lim lim 000='=='→→x f xx f G x x()()()()()x f xx f x G x G G x x x ''=='-'=''→→→000lim lim 0lim0 由于已知()x f x ''→0lim 存在,即()00=''G 存在,对()x G 满足定理3条件,所以∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.例10 判别级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 的敛散性.解:不妨设()212⎪⎪⎭⎫ ⎝⎛--+=-x x x a a a x f ,则()()()3212ln 2--+='-x x x a a a a x f()()()4223211692146ln 2-+-+-+-=''--xx x x x x aa a a a a x f求极限得()0lim 0=→x f x应用洛必达法则,得()()03242722ln 8lim 3220=+-+-+='--→x x x xx x x x a a a a a a a a x f ()()a aa a a a a a a a x f x x x x x x x x x x x 2234223200ln 4248164932149681ln lim lim =-+--+-+=''--→→ 所以()x f x ''→0lim 存在,根据定理4知级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 绝对收敛.从以上分析和各例子可以看出,判定数项级数敛散性方法众多,我们应深刻体会各个定义、性质、定理的条件及结论,同时也要善于观察和总结,正确且灵活地使用各定理.。

【2019年整理】任意项级数的敛散性判别

【2019年整理】任意项级数的敛散性判别

0 r ,同敛散
给定
v
n
,

lim
n
un vn
r r 0, r ,
vn收敛,则 un收敛
v

n



un发散
1、p
级数
:
n1
1 np
当p 1时, 当p 1时,
收敛 发散
2、 aqn敛散性
n0
当q 当q
1时, 收 敛 1时, 发 散
3、调和级数
1 发散.
n1 n
比值判别法: (不需要比较对象)
复习
正项级数判别法:
(1)
lim
n
un
0?
(2)比值判别法(含n的阶乘)不用比较对象
或根式判别法(通项中含有n次幂)
(3)比较判别法极限形式(含对数函数时 经常采用比较法)
(4)比较判别法 需要敛散性已知的比较对象
比 较 判 别 法:非极极限限形形式式::un
cvn
,

vn收敛,则 un收敛 un发散,则 vn发散
(2)
lim
n
un
0
则 (1)n1un收敛,且它的和s u1 .
n1
证 un1 un 0, S2n (u1 u2 ) (u3 u4 ) (u2n1 u2n )
即数列 {S2n }是单调增加的 ,
又S2n u1 (u2 u3 )
u (u2n2 u2n1 ) u2n
n1 n
当x 1时, 原级数 1 发散.
n1 n

判别级数
n1
s
in na n2
(a
0)
的收敛性.
解 经判断该级数为任意项级数(易出错认为正项级数)

第九章无穷级数第二节数项级数的敛散性

第九章无穷级数第二节数项级数的敛散性

二、用 比较 审 敛 法或 极 限审 敛法 判别 下列 级 数的 收 敛
性:
1、1 1 2 1 3 1 n ;
1 22 1 32
1 n2

2、
1
n1 1 a n
(a 0) .
三、用比值审敛法判别下列级数的收敛性:
1、 3
32

33

n1
n1
n1
上定理的作用: 任意项级数
正项级数


定义:若 un 收敛, 则称 un 为绝对收敛;
n1
n1



若 un 发散,而 un 收敛, 则称 un 为条件收敛.
n1
n1
n1
例6

判别级数
n1
sin n n2
的收敛性.


sin n n2

1 n2
s2
是有界的
n
,
lim n
s2n

s

u1 .
lim n
u2n1

0,
lim n
s2n1

lim(
n
s2n

u2n1 )

s,
级数收敛于和 s, 且s u1. 余项 rn (un1 un2 ),
rn un1 un2 ,
满足收敛的两个条件, rn un1 .
例 1 讨论 P-级数
1

1 2p

1 3p

1 4p

1 np
的收敛性.(
p

0)

设 p 1,

数项级的敛散性判别法

数项级的敛散性判别法

第六讲 数项级数的敛散性判别法§1 柯西判别法及其推广比较原理适用于正项级数,高等数学中讲过正项级数的比较原理: 比较原理I :设1n n u ∞=∑,1nn v∞=∑都是正项级数,存在0c >,使(i ) 若1nn v∞=∑收敛,则1nn u∞=∑也收敛;(ii ) 若1nn u∞=∑发散,则1nn v∞=∑也发散.比较原理II (极限形式)设1n n u ∞=∑,1nn v∞=∑均为正项级数,若则1n n u ∞=∑、1nn v∞=∑同敛散.根据比较原理,可以利用已知其敛散性的级数作为比较对象来判别其它级数的敛散性.柯西判别法和达朗贝尔判别法是以几何级数作为比较对象而 得到的审敛法.下面用比较判别法推出更宽泛的柯西判别法. 定理1(柯西判别法1)设1nn u∞=∑为正项级数,(i )若从某一项起(即存在N ,当n N >1q ≤<(q 为常数), 则1nn u∞=∑收敛;(ii1≥,则1n n u ∞=∑发散.证(i )若当n N >1q ≤<,即nn u q≤,而级数1nn q∞=∑收敛,根据比较原理I 知级数1nn u∞=∑也收敛.(ii )1≥,则1n u ≥,故lim 0n n u →∞≠,由级数收敛的必要条件知1nn u ∞=∑发散.定理证毕.定理2(柯西判别法2) 设1nn u∞=∑为正项级数,n r =,则:(i )当1r <时,1nn u ∞=∑收敛;(ii ) 当1r>(或r =+∞)时,1n n u ∞=∑发散;(iii )当1r =时,法则失效. 例1 判别下列正项级数的敛散性23123(1)()()()35721nn n ++++++;n nn e∞-∑n=1(2)n n x α∞∑n=1(3)(α为任何实数,0x >).解 (1) 因为112n r==<,所以原级数收敛.(2) 因为lim n n nre→∞===∞,所以原级数发散.(3) 对任意α,n rx ==.当01x <<时收敛;当1x >时发散;当1x =时,此时级数是p -级数,要对p α=-进行讨论,当1α->,即1α<-时收敛;当1α-≤时,即1α≥-时发散.例2 判别级数11[(1)]3n nnn ∞=+-∑的敛散性. 解 由于不存在,故应用定理2无法判别级数的敛散性.又因为 由定理1(柯西判别法1)知原级数收敛.例3(98考研)设正项数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数111nn n a ∞=⎛⎫ ⎪+⎝⎭∑是否收敛?并说明理由.解 答案:级数111nn n a ∞=⎛⎫⎪+⎝⎭∑收敛,证明如下:由于{}n a 单调减少且0,n a ≥根据单调有界准则知极限lim n n a →∞存在.设lim ,n n a a →∞=则0a ≥.如果0,a =则由莱布尼兹判别法知1(1)nnn a∞=-∑收敛,这与1(1)nnn a∞=-∑发散矛盾,故0a >.再由{}n a 单调减少,故0,n a a >>取111q a =<+, 根据柯西判别法1知111nn n a ∞=⎛⎫⎪+⎝⎭∑收敛.下面介绍柯西判别法的两个推广,称它们为广义柯西判别法. 定理3(广义柯西判别法1) 设1nn u∞=∑为正项级数,如果它的通项n u 的()0an b a +>次根的极限等于r,即lim an n r →∞=.则当1r <时,级数收敛;当1r >时,级数发散;当1r =级数可能收敛也可能发散.证因为lim an n r →∞=,即对任给正数ε,存在正整数1N ,当1n N >时,有()()an r r εε-<<+ (1)对于任给常数b ,总存在2N ,当有2n N >时有0an b +> (2)取{}12max ,N N N =,当n N >时,式(1)和式(2)同时成立.当1r <时,取ε足够小,使1r q ε+=<.由上述讨论,存在N ,当n N >时,式(1)和式(2)同时成立,那么有an bn u q+<,正项级数11()an bba nn n qqq∞∞+===∑∑收敛(因为其为等比级数且公比01nq <<),由比较审敛法知,级数1nn u∞=∑收敛.当1r >时,取ε足够小,使1r q ε-=>,由上面的讨论,存在N ,当n N >时,式(1)和式(2)同时成立,则an bn u q+>,正项级数11()an bba nn n qqq∞∞+===∑∑发散,由比较审敛法知,级数1nn u∞=∑发散.当1r =时,取1n pu n =,那么,对任何0,a b >为常数,有/()1lim lim 1an p an b n n n +→∞→∞==.而11n n ∞=∑发散,211n n∞=∑收敛.说明此时级数可能收敛也可能发散.定理证毕. 例4 判别级数211131n n n -∞=⎛⎫ ⎪-⎝⎭∑的收敛性.解因为21lim lim01,31n n n →∞→∞==<-由广义柯西判别法1知,级数211131n n n -∞=⎛⎫ ⎪-⎝⎭∑收敛.注 例4也可用柯西判别法2(定理2),但比较麻烦,而用广义柯西判别法1要简单得多. 定理4(广义柯西判别法2) 设1nn u∞=∑为正项级数,如果它的一般项n u 的m n (m 是大于1的正整数)次根的极限等于r,即lim n r →∞=.则当1r <时,级数收敛;当1r >时,级数发散;当1r =时,级数可能收敛也可能发散.证因为lim n r →∞=,即对任给的正数ε,存在正整数N ,当n N >时有当1r <时,取ε足够小,使1r q ε+=<.由上面的讨论,存在N ,当n N >时, 有m n n u q <.因为mn nqq <,又正项级数1nn q ∞=∑收敛(因(0,1)q ∈),由比较审敛法知1mnn q ∞=∑收敛 ,所以1nn u∞=∑收敛.当1r >时,取ε足够小,使1r q ε-=>.由上面的讨论,存在N ,当n N >时,有1mn n u q>>,那么lim 0n n u →∞≠,所以级数1n n u ∞=∑发散.当1r =时,同样取()10n p u p n=>,那么 这说明1r =时,级数可能收敛也可能发散.定理证毕.注 广义柯西判别法是柯西判别法2(定理2)的推广[1].事实上,在广义柯西判别法1中,取1,0a b ==,在广义柯西判别法2中,取1m =便得定理2(柯西判别法2).例5 判断级数2121n n n n ∞=⎛⎫⎪+⎝⎭∑的收敛性. 解因为1lim lim lim1212n n n n n →∞→∞→∞===<+,由广义柯西判别法2知原级数收敛.定理5(广义柯西判别法3) 设,0,0,(1,2,)n n n n n w u v u v n =≥≥=,若n u =,1limnn n v v v →∞-=.则当1uv <时,级数1n n w ∞=∑收敛;当1uv >时,级数1n n w ∞=∑发散[2].为证明定理5,需要一些预备知识:Stolz 定理 设{}n a 、{}n b 为两个数列,数列{}n b 在某顶之后单调递增,且lim n n b →∞=+∞,若11limn n n n n a a l b b -→∞--=-,(或+∞),则lim n n nal b →∞=(或+∞).命题1 设数列{}n x .若lim n n x l →∞=,则12lim lim nn n n x x x l x n→∞→∞+++==。

(完整版)级数敛散性判别方法的归纳,推荐文档

(完整版)级数敛散性判别方法的归纳,推荐文档

级数敛散性判别方法的归纳(西北师大)摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。

关键词:级数 ;收敛;判别 ;发散一. 级数收敛的概念和基本性质给定一个数列{},形如n u ①n u u u +++21称为无穷级数(常简称级数),用表示。

无穷级数①的前n 项之和,记为∑∞=1n n u = ②∑==nn n n u s 1n u u u +++ 21称它为无穷级数的第n 个部分和,也简称部分和。

若无穷级数②的部分和数列{}收敛于s.则称无穷级数收敛,若级数的部分和发散则称级数n s ∑∞=1n n u 发散。

∑n v 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理:定理1若级数和都收敛,则对任意的常数c 和d ,级数∑n u ∑n v 亦收敛,且=c +d )(n n dv cu ∑+)(n n du cu ∑+∑n u ∑nv 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。

定理4 级数①收敛的充要条件是:任给>0,总存在自然数N ,使得当εm >N 和任意的自然数,都有<εp p m m m u u u ++++++ 21以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。

由于级数的复杂性,以下只研究正项级数的收敛判别。

二 正项级数的收敛判别各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{}有界,即存在某正整数M ,对一切正整数 n 有<M 。

级数的收敛与发散判定

级数的收敛与发散判定

级数的收敛与发散判定级数是由一系列数相加得到的数列求和,它在数学中起到重要的作用。

在研究级数时,我们通常需要确定级数是收敛还是发散。

本文将介绍判断级数收敛与发散的常用方法。

一、级数收敛定义首先,我们需要明确级数收敛的定义。

若级数的部分和数列{s_n}存在有限极限L,即lim_{n->∞} s_n = L,则称该级数收敛,L为该级数的和。

若级数的部分和数列{s_n}不存在有限极限,则称该级数发散。

二、正项级数的收敛判定对于正项级数来说,它的每一项都是非负数。

关于正项级数的收敛判定,我们有下面的几个重要定理:1. 比较判别法:若对于正项级数∑a_n和∑b_n,存在正整数N,使得当n≥N时,有a_n≤b_n,则若∑b_n收敛,则∑a_n也收敛;若∑a_n发散,则∑b_n也发散。

2. 极限判别法:若对于正项级数∑a_n,存在正整数N,使得当n≥N时有 lim_{n->∞}(a_{n+1}/a_n) = L,其中0≤L<1,则∑a_n收敛;若L>1,则∑a_n发散。

3. 积分判别法:若对于正项级数∑a_n,存在正整数N,使得当n≥N时有 a_n = f(n),且f(x)在区间[N,+∞)上单调递减,则∑a_n与∫^{+∞}_{N}f(x)dx同时收敛或同时发散。

三、任意项级数的收敛判定对于任意项级数,即包含正项和负项的级数,我们有以下两个重要定理:1. 绝对收敛与条件收敛:对于级数∑a_n,若∑|a_n|收敛,则称∑a_n 绝对收敛;若∑a_n收敛而∑|a_n|发散,则称∑a_n条件收敛。

2. 判别法:若对于级数∑a_n,存在正整数N,使得当n≥N时,有判别式D = lim_{n->∞}(|a_{n+1}/a_n|)存在,则:a) 若D<1,则∑a_n绝对收敛;b) 若D>1,则∑a_n发散;c) 若D=1,则判别不出级数的敛散性,需进一步研究。

四、收敛级数的性质在判断级数收敛与发散的过程中,我们还需要了解一些收敛级数的性质:1. 收敛级数的子级数也收敛,并且和不超过原级数的和。

p判别法级数敛散性证明

p判别法级数敛散性证明

p判别法级数敛散性证明证明方法如下:一、即当p≤1p≤1时,有1np≥1n1np≥1n,调和级数是发散的,按照比较审敛法:若vnvn是发散的,在n>N,总有un≥vnun≥vn,则unun也是发散的。

调和级数1n1n是发散的,那么p级数也是发散的。

二、当p>1时,证明的思路大概就是对于每一个整数,取一个邻域区间,使邻域区间间x∈[k,k−1]x∈[k,k−1]使得某个函数在[k,k−1][k,k −1]邻域区间内的积分小于1xp1xp在这个邻域区间的积分。

然后目的当然是通过积分求指数原函数解决问题。

这个证明的比较函数取的很巧妙,令k−1≤x≤kk−1≤x≤k,那么1kp≤1xp1kp≤1xp.利用比较审敛法的感觉,应该找一个比p级数的一般式大的收敛数列,证明p级数收敛。

这个就有点反套路了。

1kp=∫kk−11kpdx(这里是对x积分而不是k)≤∫kk−11xp1kp=∫k−1k1kpdx(这里是对x积分而不是k)≤∫k−1k1xp其中(k=2,3....)(k=2,3....)讨论级数和,用k的形式代表p级数,并且用一个大于它的函数来求得极限。

sn=1+∑k=2n1kp(p级数)≤1+∑k=2n∫k−1k1xp=1+∫n11xpdxsn=1+∑k=2n1kp(p级数)≤1+∑k=2n∫kk−11xp=1+∫1n1xpdx。

这里利用积分区间的可加性:∫D1f(x)dx+∫D2f(x)dx=∫D1+D2f(x)dx。

扩展资料:1. 级数将数列unun 的项u1,u2,…,un,…u1,u2,…,un,…,依次用加号连接起来的函数。

数项级数的简称。

如:u1+u2+…+un+…u1+u2+…+un+…,简写为∑un∑un ,unun 称为级数的通项,记Sn=∑unSn=∑un 称之为级数的部分和。

如果当n→∞n→∞时,数列有极限,则说级数收敛,并以SS 为其和,记为∑un=S∑un=S ;否则就说级数发散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档