实验五振幅调制

合集下载

高频调制实验报告

高频调制实验报告

一、实验目的1. 理解高频调制的基本原理和过程。

2. 掌握振幅调制(AM)和解调(AM-D)的基本方法。

3. 学习使用实验仪器进行高频信号的调制和解调。

4. 分析调制信号的频谱特性,验证调制和解调效果。

二、实验原理高频调制是将低频信号(信息信号)与高频载波信号进行混合,使信息信号以某种方式影响载波信号的幅度、频率或相位,从而实现信号的传输。

本实验主要研究振幅调制(AM)。

1. 振幅调制(AM)振幅调制是指载波信号的振幅随信息信号的变化而变化。

AM信号可以表示为:\[ s(t) = c(t) \cdot [1 + m \cdot x(t)] \]其中,\( c(t) \) 是载波信号,\( x(t) \) 是信息信号,\( m \) 是调制指数。

2. 振幅解调(AM-D)振幅解调是指从调幅信号中恢复出原始信息信号。

常见的解调方法有包络检波法和同步检波法。

三、实验仪器1. 双踪示波器2. 高频信号发生器3. 低频信号发生器4. 调制器5. 解调器6. 万用表四、实验步骤1. 调制过程(1)设置高频信号发生器,产生一个频率为 \( f_c \) 的正弦波作为载波信号。

(2)设置低频信号发生器,产生一个频率为 \( f_m \) 的正弦波作为信息信号。

(3)将载波信号和信息信号输入调制器,进行振幅调制。

(4)观察调制器的输出波形,验证调制效果。

2. 解调过程(1)将调制信号输入解调器,进行振幅解调。

(2)观察解调器的输出波形,验证解调效果。

3. 频谱分析(1)使用频谱分析仪对调制信号进行频谱分析。

(2)观察调制信号的频谱特性,验证调制效果。

4. 性能测试(1)测试调制信号的调制指数 \( m \)。

(2)测试解调信号的解调指数 \( D \)。

五、实验结果与分析1. 调制过程通过实验,成功实现了振幅调制。

调制信号的波形如图1所示。

图1 振幅调制信号波形2. 解调过程通过实验,成功实现了振幅解调。

解调信号的波形如图2所示。

调幅信号的解调(原理)

调幅信号的解调(原理)

实验五 调幅信号的解调一、实验原理从高频已调信号中恢复出调制信号的过程称为解调。

解调是调制的逆过程。

调幅信号的解调,通常称为检波,其实现方法可分为包络检波和同步检波两大类。

前者只适用于AM 波,而DSB 或SSB 信号只能用同步检波。

当然同步检波也可解调AM 信号,但因比包络检波器电路复杂,所以AM 信号很少采用同步检波。

1、 二极管峰值包络检波器二极管包络检波分为峰值包络检波和平均包络检波。

前者输入信号电压大于0.5V 。

检波器输出、输入间是线性关系——线形检波;后者输入信号较小,一般几毫伏至几十毫伏,输出的平均电压与输入信号电压振幅的平方成正比,又称平方率检波,广泛用于测量仪表中的功率指示。

本实验仅研究二极管峰值包络检波,其原理电路如图6—1所示。

图中,输入回路提供调幅信号源。

检波二极管通常选用导通电压小、导通电阻小的锗管。

RC 电路有两个作用:一是作为检波器的负载,在两端产生调制信号电压;二是滤除检波电流中的高频分量。

为此,RC 网络必须满足1c R C ω 1f R Cω (6—1) 式中,c ω为载波角频率,f ω为调制角频率。

检波过程实质上就是信号源通过二极管向电容C 充电和电容对电阻R 放电的过程,充电时间常数为d R C ,d R 为二极管正向导通电阻。

放电时间常数为RC ,通常d R R >,因此对C 而言充电快,放电慢。

经过若干个周期后,检波器的输出电压o U 在充放电过程中逐步建立起来。

该电压对二极管D 形成一个大的负电压,从而使二极管在输入电压的峰值附近才导通,导通时间很短,电流通角θ很小。

当C 充放电达到动态平衡后,o v 按高频周期作锯齿状波动,其平均值是稳定的,且变化规律与输入调幅信号包络变化规律相同,从而实现了AM 信号的解调。

平均电压,即输出电压o V 包含直流dc V 及低频调制分量f v :()()o dc f v t V v t =+ (6—2)当电路元件选择正确时,dc V 接近但小于输入电压峰值。

通信电子线路实验报告

通信电子线路实验报告

中南大学《通信电子线路》实验报告学院信息科学与工程学院题目调制与解调实验学号专业班级姓名指导教师实验一振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。

2.研究已调波与调制信号及载波信号的关系。

3.掌握调幅系数测量与计算的方法。

4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。

二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正比。

通常称高频信号为载波信号。

本实验中载波是由晶体振荡产生的10MHZ高频信号。

1KHZ的低频信号为调制信号。

振幅调制器即为产生调幅信号的装置。

在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D、V7、V8为差动放大器V5与V6的恒流源。

进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

图2-1 MC1496内部电路图用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。

器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。

振幅调制与解调设计报告

振幅调制与解调设计报告

振幅调制与解调设计报告⾼频电⼦线路课程设计实验报告《振幅调制与解调电路设计》信息学院 09电⼦B班吴志平 0915212020⼀、设计⽬的:1、通过实验掌握调幅与检波的⼯作原理。

2、掌握⽤集成模拟乘法器实现全载波调幅和抑制波双边带调幅的⽅法和过程,并研究已调波与⼆输⼊信号的关系。

3、进⼀步了解调幅波的原理,掌握调幅波的解调⽅法。

4、掌握⽤集成电路实现同步检波的的⽅法。

5、掌握调幅系数测量与计算的⽅法。

⼆、设计内容:1.调测模拟乘法器MC1496正常⼯作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑⽌载波的双边带调幅波。

4.完成普通调幅波的解调5.观察抑制载波的双边带调幅波的解调三、设计原理:幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正⽐。

通常称⾼频信号为载波信号,低频信号为调制信号,调幅器即为产⽣调幅信号的装置。

调幅波的解调即是从调幅信号中取出调制信号的过程,通常称之为检波。

调幅波解调⽅法有⼆极管包络检波器和同步检波器,在此,我们主要研究同步检波器。

同步检波器:利⽤⼀个和调幅信号的载波同频同相的载波信号与调幅波相乘,再通过低通滤波器滤除⾼频分量⽽获得调制信号。

本设计采⽤集成模拟器1496来构成调幅器和解调器。

图4-1为1496芯⽚内部电路图,它是⼀个四象限模拟乘法器的基本电路,电路采⽤了两组差动对由V1—V4组成,以反极性⽅式相连接;⽽且两组差分对的恒流源⼜组成⼀对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限⼯作。

D、V7、V8为差动放⼤器 V5与 V6的恒流源。

进⾏调幅时,载波信号加在 V1—V4的输⼊端,即引脚的⑧、⑩之间;调制信号加在差动放⼤器V5、V6的输⼊端,即引脚的①、④之间,②、③脚外接 1KΩ电位器,以扩⼤调制信号动态范围,⼰调制信号取⾃双差动放⼤器的两集电极(即引出脚(6)、(12)之间)输出。

实验四和五(调幅及检波)

实验四和五(调幅及检波)

实验四振幅调制器一、实验目的:1.了解集成模拟乘法器的使用方法,掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法。

2.研究已调波与调制信号及载波信号的关系。

3.掌握调幅系数测量与计算的方法。

4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。

5.通过实验中波形的变换,学会分析实验现象。

二、预习要求1.预习幅度调制器有关知识。

2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。

3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。

三、实验原理1、幅度调制的基本原理在无线电通信中,其基本任务是远距离传送各种信息,如语音、图象和数据等,而在这些信息传送过程中都必须用到调制与解调。

调制是将要传送的信息装载到某一高频振荡(载频)信号上去的过程。

通常称高频振荡为载波信号。

代表信息的低频信号称为调制信号,调制即是用调制信号去控制高频载波的参数,使载波信号的某一个或几个参数(振幅、频率或相位)按照调制信号的规律变化。

按照所控制载波参数(幅度、频率、相位)区分,调制可分为幅度调制、频率调制和相位调制。

幅度调制(调幅)就是载波的振幅(包络)受调制信号的控制,随调制信号的变换而变化的一种调制。

在幅度调制中,又根据所取出已调信号的频谱分量不同,分为普通调幅(标准调幅,AM)、抑制载波的双边带调幅(DSB)、抑制载波的单边带调幅(SSB)等。

它们的主要区别是产生的方法和频谱结构。

在学习时要注意比较各自特点及其应用。

2、单片集成双平衡模拟相乘器MC1496集成模拟乘法器是完成两个模拟量相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频等过程,均可看成两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分立器件简单,且性能优越。

因此,在无线电通信、广播电视等方面应用较多。

集成模拟乘法器的常见产品有:BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等等。

振幅调制器实验报告

振幅调制器实验报告

振幅调制器(利用乘法器)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系。

2.掌握测量调幅系数的方法。

3.通过实验中波形的变换,学会分析实验现象。

二、实验主要仪器1.双踪示波器。

2.高频信号发生器。

3.万用表。

4.实验板G3三、预习要求1.预习幅度调制器有关知识。

2.认真阅读实验指示书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。

3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图图5-1 1496芯片内部电路图四、实验原理幅度调制就是载波的振幅受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正比。

通常称高频信号为载波信号,低频信号为调制信号,调幅器即为产生调幅信号的装置。

实验仪器采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它1681214+VCC载波输入调制输入载波输入调制输入-VccIc Ic是一个四象限模拟乘法器的基本电路,电路采用了两组差动由V 1-V 4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V 5、V 6、,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D 、V 7、V 8为差动放大器,V 5、V 6的恒流源。

进行调幅时,载波信号加在V 1-V 4的输入端,即引脚的⑧、⑩之间,调制信号加在差动放大器V 5、V 6的输入端,即引脚的①、④之间,②、③脚外接1K Ω电阻,以扩大调制信号动态范围,已调制信号取自双差动放大的两集电极(即引出脚⑹、⑿之间)输出。

用1496集成电路构成的调幅器电路图如图5-2所示,图中Rp1用来调节引出脚①、④之间的平衡,Rp2用来调节⑧、⑩脚之间的平衡,三极管V 为射频跟随器,以提高调幅器带负载的能力。

五、实验内容及步骤实验电路图见5-2图5-2 1496构成的调幅器1.直流调制特性的测量(1)调Rp2电位器使载波输入端平衡,在调制信号输入端IN 2加峰值为100mV ,频率为1KHz 的正弦信号,调节Rp2电位器使输出端信号最小,然后去掉输入信号。

模拟通信实验报告

模拟通信实验报告

一、实验目的1. 理解模拟通信系统的基本组成和原理;2. 掌握模拟调制和解调的基本方法;3. 学习模拟信号在信道中的传输特性;4. 通过实验加深对通信理论知识的理解。

二、实验器材1. 模拟通信实验箱;2. 双踪示波器;3. 频率计;4. 调制器和解调器;5. 信号发生器;6. 计算器。

三、实验原理模拟通信系统是指将信息源产生的模拟信号,通过调制器转换为适合在信道中传输的信号,再通过解调器恢复出原始信号的过程。

实验主要涉及以下几种调制方式:1. 振幅调制(AM):通过改变载波的振幅来传输信息;2. 频率调制(FM):通过改变载波的频率来传输信息;3. 相位调制(PM):通过改变载波的相位来传输信息。

实验中,我们将通过调制器和解调器对模拟信号进行调制和解调,观察调制信号和解调信号的波形,并分析调制和解调过程中的特性。

四、实验步骤1. 振幅调制(AM)实验:(1)将信号发生器产生的正弦波作为调制信号,接入调制器;(2)调整调制器的参数,使载波频率和调制信号频率一致;(3)观察调制器输出的AM信号波形,分析调制信号的幅度、频率和相位变化;(4)将AM信号接入解调器,观察解调器输出的信号波形,分析解调信号的恢复效果。

2. 频率调制(FM)实验:(1)将信号发生器产生的正弦波作为调制信号,接入调制器;(2)调整调制器的参数,使载波频率和调制信号频率一致;(3)观察调制器输出的FM信号波形,分析调制信号的幅度、频率和相位变化;(4)将FM信号接入解调器,观察解调器输出的信号波形,分析解调信号的恢复效果。

3. 相位调制(PM)实验:(1)将信号发生器产生的正弦波作为调制信号,接入调制器;(2)调整调制器的参数,使载波频率和调制信号频率一致;(3)观察调制器输出的PM信号波形,分析调制信号的幅度、频率和相位变化;(4)将PM信号接入解调器,观察解调器输出的信号波形,分析解调信号的恢复效果。

五、实验结果与分析1. 振幅调制(AM)实验结果:调制信号和载波信号频率一致,调制器输出AM信号,解调器输出信号波形与调制信号基本一致,恢复效果较好。

振幅调制原理

振幅调制原理

振幅调制原理
振幅调制(Amplitude Modulation,简称AM)是一种调制技术,它通过改变载波的振幅,来传输要调制的信号。

具体而言,振幅调制是将调制信号的幅度(即振幅)与高频载波信号相乘,得到一个新的带有调制信号特征的调制信号。

在振幅调制中,调制信号通常是音频信号,比如人声或者音乐。

而载波信号是具有固定频率和振幅的高频信号。

调制信号和载波信号相乘的结果,就是振幅调制信号。

振幅调制过程中,调制指数(也称调制深度)是一个关键参数。

调制指数是调制信号的幅度变化与载波幅度的比值。

调制指数的大小会影响到调制信号的功率和频谱分布。

振幅调制的原理可以用以下几个步骤来解释:
1. 调制信号:将要传输的音频信号作为调制信号。

2. 载波信号:选择一个高频信号作为载波信号。

3. 调制过程:将调制信号的幅度与载波信号相乘,得到一个新的调制信号。

4. 调制指数:调节调制指数,控制调制信号的幅度变化。

5. 传输信号:将调制后的信号传输到接收端。

在接收端,需要进行解调过程,将调制信号还原为原始的调制信号。

解调过程是振幅调制的逆过程,在解调过程中,通过将收到的调制信号与一个参考信号(通常是与发送端相同的载波信号)相乘,就可以获得原始的调制信号。

振幅调制在广播和电视等领域中得到了广泛应用。

它可以实现信号的远距离传输,同时具有一定的抗干扰能力。

然而,振幅调制也存在一些问题,比如在传输过程中容易受到噪声和干扰的影响,以及只能传输一个信号的限制。

因此,在一些特定的应用场景中,人们也使用其他调制技术,比如频率调制(FM)和相位调制(PM)。

高频实验五:振幅解调器(包络检波、同步检波)

高频实验五:振幅解调器(包络检波、同步检波)

实验5 振幅解调器(包络检波、同步检波)—、实验准备1.做本实验时应具备的知识点:●振幅解调●二极管包络检波●模拟乘法器实现同步检波2.做本实验时所用到的仪器:●③号实验板《调幅与功率放大器电路》●双踪示波器●万用表●直流稳压电源●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握用包络检波器实现AM波解调的方法。

了解滤波电容数值对AM波解调影响;3.理解包络检波器只能解调m≤100%的AM波,而不能解调m>100%的AM波以及DSB 波的概念;4.掌握用MC1496模拟乘法器组成的同步检波器来实现AM波和DSB波解调的方法;5.了解输出端的低通滤波器对AM波解调、DSB波解调的影响;6.理解同步检波器能解调各种AM波以及DSB波的概念。

三、实验内容1.用示波器观察包络检波器解调AM波、DSB波时的性能;2.用示波器观察同步检波器解调AM波、DSB波时的性能;3.用示波器观察普通调幅波(AM)解调中的对角切割失真和底部切割失真的现象。

四、基本原理振幅解调即是从振幅受调制的高频信号中提取原调制信号的过程,亦称为检波。

通常,振幅解调的方法有包络检波和同步检波两种。

1.二极管包络检波二极管包络检波器是包络检波器中最简单、最常用的一种电路。

它适合于解调信号电平较大(俗称大信号,通常要求峰一峰值为1.5V 以上)的AM 波。

它具有电路简单,检波线性好,易于实现等优点。

本实验电路主要包括二极管、RC 低通滤波器和低频放大部分,如图9-1所示。

图中,D21为检波管,C23、R20、C24构成低通滤波器,W21为二极管检波直流负载,W21用来调节直流负载大小,W22相串构成二极管检波交流负载,W22用来调节交流负载大小。

开关K21是为二极管检波交流负载的接入与断开而设置的,短路下方时为接入交流负载,全不接入为断开交流负载。

短路上方为接入后级低放。

调节W23可调整输出幅度。

图中,利用二极管的单向导电性使得电路的充放电时间常数不同(实际上,相差很大)来实现检波,所以RC 时间常数的选择很重要。

振幅调制与解调实验报告

振幅调制与解调实验报告

振幅调制与解调实验报告一、实验目的二、实验原理1. 振幅调制原理2. 振幅解调原理三、实验器材与仪器1. 实验器材2. 实验仪器四、实验步骤1. 振幅调制步骤2. 振幅解调步骤五、实验结果与分析1. 振幅调制结果及分析2. 振幅解调结果及分析六、实验心得体会一、实验目的本次振幅调制与解调实验的主要目的是了解振幅调制与解调的基本原理,掌握振幅调制和解调的方法,进一步加深对通信原理的认识。

二、实验原理1. 振幅调制原理振幅调制是指将模拟信号的振幅变化转换成载波信号的振幅变化。

在振幅调制中,被传输信息信号称为基带信号,载波信号称为高频信号。

通过将基带信号与高频载波进行线性叠加,即可得到一个新的复合波形,其包含了被传输信息和高频载波两部分内容。

2. 振幅解调原理振幅解调是指将调制信号中的信息信号从高频载波中分离出来的过程。

在振幅解调中,需要使用一个解调器,它会将接收到的带有信息信号的复合波形进行处理,将其分离为基带信号和高频载波两部分。

三、实验器材与仪器1. 实验器材本次实验所需要使用的器材主要包括:(1)信号发生器;(2)示波器;(3)电阻箱。

2. 实验仪器本次实验所需要使用的仪器主要包括:(1)振幅调制解调实验箱;(2)万用表。

四、实验步骤1. 振幅调制步骤(1)连接好各个设备,并打开电源。

(2)设置信号发生器输出正弦波,并通过电阻箱设置合适的基带信号电平。

(3)设置振幅调制解调实验箱,将信号发生器和示波器分别连接到相应的接口上。

(4)通过示波器观察振幅调制后的波形,并记录下相关数据。

2. 振幅解调步骤(1)连接好各个设备,并打开电源。

(2)设置振幅调制解调实验箱,将信号发生器和示波器分别连接到相应的接口上。

(3)通过示波器观察振幅调制后的波形,并记录下相关数据。

(4)将解调器与示波器相连,并通过万用表测量解调输出电压。

五、实验结果与分析1. 振幅调制结果及分析在进行振幅调制实验时,我们可以通过观察示波器上的波形来验证振幅调制是否成功。

通信原理硬件实验报告

通信原理硬件实验报告

通信原理硬件实验报告实验二抑制载波双边带的产生一.实验目的:1.了解抑制载波双边带(SC-DSB)调制器的基本原理。

2.测试SC-DSB 调制器的特性。

二.实验步骤:1.将TIMS 系统中的音频振荡器(Audio Oscillator)、主振荡器(Master Signals)、缓冲放大器(Buffer Amplifiers)和乘法器(Multiplier)按图连接。

2.用频率计来调整音频振荡器,使其输出为1kHz 作为调制信号,并调整缓冲放大器的K1,使其输出到乘法器的电压振幅为1V。

3.调整缓冲放大器的K2,使主振荡器输至乘法器的电压为1V 作为载波信号。

4.测量乘法器的输出电压,并绘制其波形。

见下图:5.调整音频振荡器的输出,重复步骤4。

见下图:6.将电压控制振荡器(VCO)模快和可调低通滤波器(Tuneable LPF)模块按图连接。

8.将可调低通滤波器的频率范围选择范围至“wide”状态,并将频率调整至最大,此时截至频率大约在12kHz 左右。

LPF 截止频率最大的时候输出:(频响)9.将可调低通滤波器的输出端连接至频率计,其读数除360 就为LPF 的3dB 截止频率。

10.降低可调LPF 的截止频率,使SC-DSB 信号刚好完全通过低通滤波器,记录此频率(fh=fc+F)。

11.再降低3dB 截止频率,至刚好只有单一频率的正弦波通过低通滤波器,记录频率(fl=fc-F)只通过单一频率的LPF 输出:12.变化音频振荡器输出为频率为800Hz、500Hz,重复步骤10、11。

OSC=500HZOSC=800HZ 的频响:三、思考题1、如何能使示波器上能清楚地观察到载波信号的变化?答:可以通过观察输出信号的频谱来观察载波的变化,另一方面,调制信号和载波信号的频率要相差大一些,可通过调整音频震荡器来完成。

2.用频率计直接读SC—DSB 信号,将会读出什么值。

答:围绕一个中心频率来回摆动的值。

通信原理实验振幅键控(ASK)调制与解调实验

通信原理实验振幅键控(ASK)调制与解调实验

《通信原理》实验报告实验七: 振幅键控(ASK)调制与解调实验实验九:移相键控(PSK/DPSK)调制与解调实验系别:信息科学与技术系专业班级:电信0902学生姓名:同组学生:成绩:指导教师:惠龙飞(实验时间:2011年12月1日——2011年12月1日)华中科技大学武昌分校ﻬ实验七振幅键控(ASK)调制与解调实验一、实验目的1、掌握用键控法产生ASK信号的方法。

2、掌握ASK非相干解调的原理。

一、实验器材1、 信号源模块一块 2、 ③号模块一块 3、 ④号模块一块 4、 ⑦号模块一块 5、 20M双踪示波器一台 6、 连接线若干二、基本原理调制信号为二进制序列时的数字频带调制称为二进制数字调制。

由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2AS K)、二进制移频键控(2FSK)、二进制移相键控(2PS K)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。

1、 2ASK 调制原理。

在振幅键控中载波幅度是随着基带信号的变化而变化的。

使载波在二进制基带信号1或0的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2AS K信号,这种二进制振幅键控方式称为通—断键控(O OK )。

2ASK 信号典型的时域波形如图9-1所示,其时域数学表达式为:2()cos ASK n c S t a A t ω=⋅(9-1)式中,A 为未调载波幅度,c ω为载波角频率,n a 为符合下列关系的二进制序列的第n 个码元:⎩⎨⎧=PP a n -出现概率为出现概率为110 ﻩﻩ (9-2)综合式9-1和式9-2,令A =1,则2ASK 信号的一般时域表达式为:t nT t g a t S c n s n ASK ωcos )()(2⎥⎦⎤⎢⎣⎡-=∑t t S c ωcos )(= ﻩ(9-3)式中,T s 为码元间隔,()g t 为持续时间 [-T s /2,T s /2] 内任意波形形状的脉冲(分析时一般设为归一化矩形脉冲),而()S t 就是代表二进制信息的随机单极性脉冲序列。

实验五振幅调制

实验五振幅调制

进一步观察双边带调幅波的频谱结构发现,上边带和下边带都反映了调制信号的频谱结构,因而它们都含有调制信号的全部信息。

从传输信息的观点看,可以进一步把其中的一个边带抑制掉,只保留一个边带(上边带或下边带)。

无疑这不仅可以进一步节省发射功率,而且频带的宽度也缩小了一半,这对于波道特别拥挤的短波通信是很有利的。

这种既抑制载波又只传送一个边带的调制方式,称为单边带调幅,用SSB 表示。

由[]()cos cos 1cos()cos()2DSB c m cm c m cm c c U t Au u AU tU tAU U t t ωωωΩΩΩ==Ω=+Ω+-Ω 通过边带滤波器后,就可得到上边带或下边带: 下边带信号:1()cos()2SSBL m cm c u t AU U t ωΩ=-Ω 上边带信号:1()cos()2SSBH m cm c u t AU U t ωΩ=+Ω (二)普通调幅波的产生电路下面介绍一种高电平调幅电路。

高电平调幅电路是以调谐功率放大器为基础构成的,实际上它是一个输出电压振幅受调制信号控制的调谐功率放大器,根据调制信号注入调幅器方式的不同,分为基极调幅、发射极调幅和集电极调幅三种,下面我们仅介绍基极调幅。

基极调幅电路如图1-1所示。

由图可见,高频载波信号u ω通过高频变压器1T 加到晶体管基极回路,低频调制信号u Ω通过低频变压器2T 加到晶体管基极回路,b C 为高频旁路电容,用来为载波信号提供通路。

图1-1基极调幅电路在调制过程中,调制信号u Ω相当于一个缓慢变化的偏压(因为反偏压0b E =,否则综合偏压应是b E u Ω+),使放大器的集电极脉冲电流的最大值max c i 和导通角θ按调制信号的大小而变化。

在u Ω往正向增大时,max c i 和θ增大;在u Ω往反向减小时,max c i 和θ减少,故输出电压幅值正好反映调制信号波形。

晶体管的集电极电流c i 波形和调谐回路输出的电压波形,如图5-8所示,将集电极谐振回路调谐在载频c f 上,那么放大器的输出端便获得调幅波。

通信原理实验思考题答案

通信原理实验思考题答案

通信原理实验指导书思考题答案实验一思考题P1-4:1、位同步信号和帧同步信号在整个通信原理系统中起什么作用?答:位同步和帧同步是数字通信技术中的核心问题,在整个通信系统中,发送端按照确定的时间顺序,逐个传输数码脉冲序列中的每个码元,在接收端必须有准确的抽样判决时刻(位同步信号)才能正确判决所发送的码元。

位同步的目的是确定数字通信中的各个码元的抽样时刻,即把每个码元加以区分,使接收端得到一连串的码元序列,这一连串的码元序列代表一定的信息。

通常由若干个码元代表一个字母(符号、数字),而由若干个字母组成一个字,若干个字组成一个句。

帧同步的任务是把字、句和码组区分出来。

尤其在时分多路传输系统中,信号是以帧的方式传送的。

克服距离上的障碍,迅速而准确地传递信息,是通信的任务,因此,位同步信号和帧同步信号的稳定性直接影响到整个通信系统的工作性能。

2、自行计算其它波形的数据,利用U006和U005剩下的资源扩展其它波形。

答:在实验前,我们已经将四种波形在不同频段的数据写入了数据存储器U005(2864)并存放在固定的地址中。

当单片机U006(89C51)检测到波形选择开关和频率调节开关送入的信息后,一方面通过预置分频器调整U004(EPM7128)中分频器的分频比(分频后的信号频率由数码管M001~M004显示);另一方面根据分频器输出的频率和所选波形的种类,通过地址选择器选中数据存储器U005中对应地址的区间,输出相应的数字信号。

该数字信号经过D/A转换器U007(TLC7528)和开关电容滤波器U008(TLC14CD)后得到所需模拟信号。

自行扩展其它波形时要求非常熟悉信号源模块的硬件电路,最好先用万用表描出整个硬件电路。

此题建议让学生提供设计思路,在设计不成熟的情况很容易破坏信号源。

提示如下:工作流程同已有的信号源,波形的数据产生举例如下:a=sin(2.0*PI*(float)i/360.0)+1.0;/产生360个正弦波点,表示一个周期波形数据/k=(unsigned char)(a/2.0*255.0);/数字化所有点以便存储/将自己产生的360个点追加到数据存储器U005(2864)并存放在后续的固定的地址中,根据单片机U006(89C51)编程选中对应U005的地址,循环周期显示输出即为我们所设计的波形。

高频电子线路实验指导书(八个实验)(精)

高频电子线路实验指导书(八个实验)(精)

目录实验一调谐放大器(实验板1 (1实验二丙类高频功率放大器(实验板2 (4实验三LR电容反馈式三点式振荡器(实验板1 (6实验四石英晶体振荡器(实验板1 (9实验五振幅调制器(实验板3 (11实验六调幅波信号的解调(实验板3 (14实验七变容二极管调频管振荡器(实验板4.............................. 错误!未定义书签。

实验八相位鉴频器(实验板4...................................................... 错误!未定义书签。

实验九集成电路(压控振荡器构成的频率调制器(实验板5 (17实验十集成电路(锁相环构成的频率解调器(实验板5 (20实验十一利用二极管函数电路实现波形转换(主机版面 ....... 错误!未定义书签。

实验一调谐放大器(实验板1一、预习要求1、明确本实验的目的。

2、复习谐振回路的工作原理。

3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。

4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内,计算回路中心频率f0。

二、实验目的1、熟悉电子元器件和高频电路实验箱。

2、熟悉谐振回路的幅频特性分析—通频带预选择性。

3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。

4、熟悉和了解放大器的动态范围及其测试方法。

三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图1-1 单调谐回路谐振放大器原理图四、实验内容(一单调谐回路谐振放大器1、实验电路图见图1-1(1按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线。

(2接线后,仔细检查,确认无误后接通电源。

2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1表 1-1E B 3.动态研究(1测放大器的动态范围V i ~V 0(在谐振点选R = 10K ,R 0 = 1K 。

空间光调制实验报告

空间光调制实验报告

一、实验目的1. 理解空间光调制的基本原理和过程。

2. 掌握空间光调制器(SLM)的基本操作和调节方法。

3. 分析不同调制模式下的光信号特性。

4. 探讨空间光调制在光学通信和成像中的应用。

二、实验原理空间光调制是一种利用光束的空间分布来调制信息的技术。

它通过改变光束的空间相位、振幅或偏振态,实现信息的传输和加工。

空间光调制器(SLM)是实现空间光调制的关键元件,它可以将电信号转换为光信号的空间分布。

本实验中,我们使用了一种基于液晶的SLM,其原理是利用液晶分子的取向变化来调制光束的偏振态。

当电场作用于液晶时,液晶分子会按照电场方向排列,从而改变光束的偏振态,实现空间光调制。

三、实验仪器与设备1. 光源:He-Ne激光器2. SLM:液晶空间光调制器3. 放大器:透镜组4. 光功率计5. 光谱分析仪6. 数据采集卡7. 计算机四、实验步骤1. 搭建实验系统:将He-Ne激光器输出光束通过SLM,然后经过放大器聚焦到检测器上。

2. 调节SLM:调整SLM的偏振片和相位板,观察检测器上的光信号变化,直到达到预期效果。

3. 调制模式实验:a. 振幅调制:使用数据采集卡将数字信号输入SLM,观察检测器上的光强变化,分析振幅调制特性。

b. 相位调制:调整SLM的相位板,观察检测器上的光强和相位变化,分析相位调制特性。

c. 偏振调制:调整SLM的偏振片,观察检测器上的光强和偏振态变化,分析偏振调制特性。

4. 实验数据记录与分析:记录不同调制模式下的实验数据,分析光信号特性,并与理论值进行对比。

五、实验结果与分析1. 振幅调制:实验结果表明,振幅调制可以实现光强的线性变化,调制深度与输入信号幅度成正比。

2. 相位调制:实验结果表明,相位调制可以实现光强的周期性变化,调制深度与输入信号相位差成正比。

3. 偏振调制:实验结果表明,偏振调制可以实现光强和偏振态的周期性变化,调制深度与输入信号偏振态差成正比。

六、实验结论1. 空间光调制是一种有效的信息传输和加工技术,具有调制速度快、抗干扰能力强等优点。

信号与系统 课程设计:基于Matlab的AM调制系统仿真

信号与系统 课程设计:基于Matlab的AM调制系统仿真

六.AM基于matlab的调制与解调
6.1载波信号与调制信号分析 (载波信号)
六.AM基于matlab的调制与解调
6.1载波信号与调制信号分析 % ======================调制信号========================= t=-1:0.00001:1; A1=5; %调制信号振幅 f=6000; %载波信号频率 w0=f*pi; mes=A1*cos(0.001*w0*t); %调制信号 subplot(2,1,1); plot(t,mes); xlabel('t'),title('调制信号'); subplot(2,1,2); Y2=fft(mes); % 对调制信号进行傅里叶变换 plot(abs(Y2)); title('调制信号频谱'); axis([198000,202000,0,1000000]);
计算科学系
信号与系统课程设计
目录
实验题目:基于Matlab的AM调制系统仿真
成员:xx 指导教师:xx 2010-2011年度第二学期
一、实验类型
设计性实验
二、实验目的
1.掌握振幅调制和解调原理。 2.学会Matlab仿真软件在振幅调制和解调中的应用。 3.掌握参数设置方法和性能分析方法。 4.通过实验中波形的变换,学会分析实验现象。
图5.1 标准调幅波示意图
五、振幅调制原理
5.3信号解调思路
从高频已调信号中恢复出调制信号的过程称为解调(demodulation ), 又称为检波(detection )。对于振幅调制信号,解调(demodulation )就是 从它的幅度变化上提取调制信号的过程。解调(demodulation )是调制的 逆过程。 可利用乘积型同步检波器实现振幅的解调,让已调信号与本地恢复载 波信号相乘并通过低通滤波可获得解调信号。

(完整版)实验五16QAM调制与解调实验

(完整版)实验五16QAM调制与解调实验

实验五16QAM调制与解调实验【实验目的】使学生了解16QAM的调制与解调原理;能够通过MATLAB对其进行调制和解调;比较解调前后功率谱密度的差别。

【实验器材】装有MATLAB软件的计算机一台【实验原理】1. 16QAM 是用两路独立的正交4ASK 信号叠加而成,4ASK 是用多电平信号去键控载波而得到的信号。

它是2ASK 体制的推广,和2ASK 相比,这种体制的优点在于信息传输速率高。

2. 正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。

16 进制的正交振幅调制是一种振幅相位联合键控信号。

16QAM 的产生有2 种方法:(1)正交调幅法,它是有2 路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2 路独立的四相位移相键控信号叠加而成。

3. 16QAM 信号采取正交相干解调的方法解调,解调器首先对收到的16QAM 信号进行正交相干解调,一路与cosωc t 相乘,一路与sinωc t 相乘。

然后经过低通滤波器,低通滤波器LPF 滤除乘法器产生的高频分量,获得有用信号,低通滤波器LPF 输出经抽样判决可恢复出电平信号。

【实验内容与步骤】1. MATLAB软件的设置:对路径的设置,设置成路径指向comm2文件夹;2. 在命令行输入start指令,然后输入num值,如3,之后按照内容3输入参考代码。

3. 新建一个扩展名为M的文件,输入以下程序:M=16;k=log2(M);x=randint(30000,1);%产生二进制随机数y=modulate(modem.qammod('M',16,'InputType','Bit'),x);%调制EbNo=-5:1:10;%信噪比s_b2d=bi2de(reshape(x,k,length(x)/k).','left-msb');%二进制变为十进制for n=1:length(EbNo)snr(n)=EbNo(n)+10*log10(k);%Ratio of symbol energy to noise power spectral densityynoisy=awgn(y,snr(n),'measured');%加入高斯白噪声z=demodulate(modem.qamdemod('M',16,'OutputType','Bit'),ynoisy);%解调r_b2d=bi2de(reshape(z,k,length(z)/k).','left-msb');%二进制变为十进制[sym(n),sym_rate(n)]=symerr(s_b2d,r_b2d);%计算仿真误码率,不是误比特率。

实验五 振幅键控、移频键控、移相键控调制实验

实验五  振幅键控、移频键控、移相键控调制实验

实验五振幅键控、移频键控、移相键控调制实验一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。

2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。

3、掌握相对码波形与2PSK信号波形之间的关系、绝对波形与2DSPK信号波形之间的关系4、掌握2ASK、2FSK、2DPSK信号的频谱特性。

二、实验内容1、观察绝对码、相对码波形。

2、观察2ASK、2FSK、2DPSK信号波形3、观察2ASK、2FSK、2DPSK信号频谱三、实验器材信号源模块数字调制模块频谱分析模块20M双踪示波器频率计四、实验原理1、2ASK调制原理在振幅键控中载波幅度是随着基带信号而变化的。

将载波在二进制基带信号1或0的控制下通或段,即用载波幅度的有无来代表信号中的“1”或“0”,这样就可以得到2ASK信号,这种二进制振幅键控方式称为通——段键控(OOK)。

2ASK 信号典型的时域波形如图所示,其时域数学表达式为S2ASK(t)=an*Acosωct则S(t)的功率谱密度表达式为PS(f)=fsP(1-P)G(f)2+fs2(1-p)2)0(G2()fς2ASK 信号的双边功率谱密度表达式为()()()[]()()[]22222222ASK )0()1(41)1(41P c c s c c s f f f f G p p f f f G f f G p p f f -++-+-++-=ςς 上式表明2ASK 信号的功率谱密度由两个部分组成:(1)由g (t )经线性幅度调制所形成的双边带连续谱;(2)由被调载波分量确定的载频离散谱。

2ASK 信号的普零点带宽为B2PSK=(fc+Rs)-(fc-Rs)=2Rs=2/Ts2ASK 的原理框图2、2FSK 调制原理2FSK 信号时用载波频率的变化来表征被传信息上网状态的,被调载波的频率随二进制序列0、1状态而变化,即载波为f0时代表传0,载波为f1是代表1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四)振幅调制实验电路
图1-3 1496组成的调幅器实验电路
图2-1 调制信号及DSB信号波形
)DSB信号反相点观察
为了清楚地观察双边带信号过零点的反相,必须降低载波的频率。

本实验可将载波频率降低为果是DDS高频信号源可直接调至100KHZ;如果是其它信号源,需另配100KHZ的函数发生器)
调制信号仍为1KHZ(幅度300mv)。

图2-2 DSB信号反相点观察
由图可见,过零点的波形为反向。

图2-3 调制信号正半周期DSB与载波比较图2-4 调制信号负半周期DSB与载波比较
由图可见:
在调制信号正半周期间,DSB信号波形与载波波形同相;在调制信号负半周期间,DSB信号波形与载波波形反相。

与预期一致,实验结果正确。

4.SSB(单边带调制)波形观察
单边带(SSB)是将抑制载波的双边带(DSB)通过边带滤波器滤除一个边带而得到的。

本实验利用滤波与计数鉴频模块中的带通滤波器作为边带滤波器,该滤波器的中心频率110KHZ左右,通频带约12KHZ。

为了利用该带通滤波器取出上边带而抑制下边带。

双边带(DSB)的载波频率应取104KHZ。

具体操作方法如下:
图2-6 AM正常波形
调整电位器8W03,可以改变调幅波的调制度。

在观察输出波形时,改变音频调制信号的频率及幅度,
随之变化。

实验结果正确。

2)不对称调制度的AM波形观察
在AM正常波形调整的基础上,改变8W02,可观察到调制度不对称的情形。

最后仍调到调制度对称的情形。

图2-8 调制度为100%的AM波形图2-9 过调制AM波形)增大载波幅度时的调幅波观察
保持调制信号输入不变,逐步增大载波幅度,并观察输出已调波。

可以发现:当载波幅度增大到某值时,已调波形开始有失真;而当载波幅度继续增大时,已调波形包络出现模糊。

最后把载波幅度复原(200mv)。

图2-11 调制度为100%的三角波调幅波形图2-12 过调制时的三角波调幅波波形
五、实验总结
通过对DSB信号与调制度为100%时AM波形的而比较,可见AM波形幅度比DSB信号小,但AM波形的频率比。

相关文档
最新文档