人教数学八年级下册中考试题汇编含精讲解析17.2勾股定理的逆定理
人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1
![人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1](https://img.taocdn.com/s3/m/d952e2d8d5d8d15abe23482fb4daa58da0111cf9.png)
人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1一. 教材分析《勾股定理的逆定理》是人教版数学八年级下册第17.2节的内容。
这部分教材主要让学生了解并掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
教材通过实例引入,引导学生探究并发现勾股定理的逆定理,进而总结出一般性结论。
这部分内容是初中数学的重要知识点,也是中考的热点,对于学生来说,理解和掌握勾股定理的逆定理对于解决实际问题具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了勾股定理和直角三角形的性质,对于这些知识点有一定的了解。
但是,学生可能对于如何运用勾股定理的逆定理来判断一个三角形是否为直角三角形还不够清晰。
因此,在教学过程中,我需要引导学生通过探究和发现来理解并掌握勾股定理的逆定理,并能够运用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.过程与方法目标:通过探究和发现,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.教学难点:如何引导学生通过探究和发现来理解并掌握勾股定理的逆定理。
五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、实例教学法和小组合作学习法等教学方法。
通过引导学生观察、思考和交流,激发学生的学习兴趣,培养学生的观察能力、思考能力和解决问题的能力。
同时,我将运用多媒体课件和教具等教学手段,帮助学生更好地理解和掌握知识点。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何判断一个三角形是否为直角三角形。
2.探究:引导学生观察和分析实例,发现勾股定理的逆定理,并总结出一般性结论。
3.讲解:对勾股定理的逆定理进行详细讲解,解释其含义和运用方法。
人教版八年级数学下册第十七章勾股定理17.2勾股定理的逆定理练习含答案
![人教版八年级数学下册第十七章勾股定理17.2勾股定理的逆定理练习含答案](https://img.taocdn.com/s3/m/01131877ee06eff9aff80710.png)
人教版八年级数学下册第十七章勾股定理17.2勾股定理的逆定理练习第1课时勾股定理的逆定理一、选择题1.下列各组数中,是勾股数的是()A. 14,36,39B. 8,24,25C. 8,15,17D. 10,20,262.下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若三角形的三边长a,b,c满足a2+b2=c2,则该三角形是直角三角形;③全等三角形的对应角相等;④若a=b, a2 =b2.A. 1个B. 2个C. 3个D. 4个3.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).A.1∶1∶2B.1∶3∶4C.9∶25∶26D.25∶144∶1694.(易错题)在△ABC中,∠A,∠B,∠C的对边分别是 a,b,c,那么下面不能判定△ABC 是直角三角形的是()A.∠B=∠C-∠AB.a2 = (b+c) (b-c)C.∠A:∠B:∠C=5 :4 :3D.a : b : c=5 : 4 : 35.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成各选项所示的两个直角三角形,其中正确的是()二、填空题6.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.7.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a2+b2>c2,则∠c为____________;②若a2+b2=c2,则∠c为____________;③若a2+b2<c2,则∠c为____________.8.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.9.△ABC的两边a,b分别为5,12,另一边c为奇数,且a+b+c是3的倍数,则c 应为______,此三角形为______.10.如图,D为△ABC的边BC上一点,已知 AB = 13,AD = 12,AC =15,BD=5,则BC 的长为.三、解答题11.写出下列命题的逆命题,并判断这些逆命题是否成立.(1) 如果a=0,那么 ab=0;(2) 如果x=4,那么x2=16;(3) 面积相等的三角形是全等三角形;(4) 如果三角形有一个内角是钝角,那么其余两个角是锐角;(5) 在一个三角形中,等角对等边.12.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.13.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?14.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.15. (教材习题变式)如图所示,在四边形 ABCD 中,∠B= 90°,AB=4,BC=3,CD=12,AD=13,求四边形ABCD的面积.16.观察下列各组勾股数的组成特点,你能求出第7组勾股数a,b,c各是多少吗?第n组呢?第 1 组:3=2X1+1,4=2X1X(1+1),5=2X1X(1 + 1)+1;第 2 组:5=2X2+1,12=2X2X(2+1),13=2X2X(2+1) + 1;第 3 组:7=2X3+1,24=2X3X(3+1),25=2X3X(3+1) + 1;第 4 组:9=2X4+1,40=2X4X(4+1),41=2X4X(4+1) + 1;…;第7 组:a,b,c.参考答案1. C 解析∵142+362=1492.392=1521≠1492,∴A项不是勾股数;∵82+242=640,252=625≠640,∴B项不是勾股数;∵82+152=289,172=289,∴C项是勾股数;∵102+202=500,262=676≠500,∴D项不是勾股数.点拨:一组数是勾股数,必须符合两个条件:(1)三个数必须是正整数.(2)两个较小数的平方和等于最大数的平方.2. B 解析①的逆命题是“等腰三角形有两边相等”,是真命题;②的逆命题是“若直角三角形的两条直角边长分别为a,b,斜边长为c,则三边长a,b,c满足a2+b2=c2”,是真命题;③对应角相等的两个三角形不一定全等;④若a2=b2,则a与b不一定相等,所以③④的逆命题是假命题,没有逆等理.3.C.4. C 解析 A选项,∵∠B=∠C-∠A,∴∠A+∠B+∠C=∠A+∠C-∠A+∠C=180°,∴∠C=90°,∴ΔABC是直角三角形;B选项,a2=(b+c)(b-c),即a2+c2=b2,∴ΔABC为直角三角形;C选项,∠A:∠B:∠C=5:4:3,则最大角∠A=180°×512=75°,则ΔABC为锐角三角形;D选项,a:b:c=5:4:3,则a2=b2+c2,则ΔABC为直角三角形,故选C.5. C 解析因为72+242=252,152+202=252,所以用长度为7,24,25和15,20,25的小木棒能分别摆成直角三角形,故选C.6.互逆命题,逆命题.7.①锐角;②直角;③钝角.8.24.提示:7<a<9,∴a=8.9.13,直角三角形.提示:7<c<17.10. 14 解析由AD2+BD2=AB2可知ΔABC为直角三角形,则AD为ΔABC的BC边上的高,在RtΔACD中,CD2=AC2-AD2=152-122=81,所以CD=9,B C=BD+CD=5+9=14.11. 解:(1)的逆命题是如果ab=0,那么a=0.不成立.(2)的逆命题是如果x2=16,那么x=4.不成立.(3)的逆命题是全等三角形的面积相等.成立.(4)的逆命题是如果三角形有两个内角是锐角,那么另一个内角是钝角.不成立.(5)的逆命题是在一个三角形中,等边对等角.成立.点拨:要确定一个命题的逆命题,只要将原命题的题设与结论互换即可. 12..5113.南偏东30°.14.等腰三角形或直角三角形.提示:原式可变形为(a2-b2)(a2+b2-c2)=0.15. 解:如图所示,连接AC.∵∠B=90°,∴ΔABC是直角三角形.依据勾股定理的AC2=AB2+BC2=42+32=25=52,∴AC=5.在ΔACD中,AD2=132=169,CD2+AC2=122+52=169,∴AD2=AC2+CD2.∴ΔACD是直角三角形,∠ACD=90°.∴S四边形ABCD=SΔABC+SΔACD=12AB•BC+12AC•CD=12×4×3+12×5×12=6+30=36.∴四边形ABCD的面积为36.方法:要求不规则四边形ABCD的面积,可把四边形分割成几个三角形,这是常用的方法.此题是先利用勾股定理求出AC的长,再利用勾股定理的逆定理判断ΔACD为直角三角形,即原四边形ABCD可分割成两个直角三角形.16. 分析:观察已知勾股数的特点,找出规律.解:第7组:a=2×7+1=15,b=2×7×(7+1)=112,c=2×7×(7+1)+1=113.第n组:a=2n+1,b=2n(n+1),c=2n(n+1)+1.17.2 勾股定理的逆定理第2课时勾股定理的逆定理的应用一、选择——基础知识运用1.在△ABC中,AB=,BC=,AC=,则()A.∠A=90° B.∠B=90° C.∠C=90° D.∠A=∠B2.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A-∠B=∠C,那么△ABC是直角三角形B.如果a2=b2-c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形3.下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=4,b=2,c=3C.a=4,b=2,c=5 D.a=4,b=5,c=34.已知四个三角形分别满足下列条件:①三角形的三边之比为1:1:;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半。
人教版数学八年级下册17.2 勾股定理的逆定理同步练习(解析版)
![人教版数学八年级下册17.2 勾股定理的逆定理同步练习(解析版)](https://img.taocdn.com/s3/m/40f28063312b3169a451a464.png)
17.2 勾股定理的逆定理1.下列命题的逆命题是真命题的是 ( )A .对顶角相等B .正方形的四个角都是直角C .两直线平行,同位角相等D .菱形的对角线互相垂直 2.下列定理有逆定理的是 ( )A .直角都相等B .同旁内角互补,两直线平行C .同位角相等D .全等三角形的对应角相等3.下列各组数是三角形的三边长,不能组成直角三角形的一组数是 ( )A .3,4,5B .6,8,10C .1.5,2,2.5D .543,,4.若一个三角形的三边长之比为8:15:17,则它为________三角形.5.如图17-2-1.以△ABC 的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为________.6.如图17-2-2,四边形ABCD 中,∠C=90º,BD 平分∠ABC ,AD=3,E 为AB 上一点,AE=4,ED=5,求CD 的长.7.下列四组数:(1)0.6,0.8,1;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中勾股数的组数为 ( )A .1B .2C .3D .4能力提升全练1.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC是直角三角形的是 ( )A .∠A =∠C-∠B B .a:b:c=2:3:4C .a ²=b ²-c ²D .a=34,b=45,c=12.如图17-2-3,四边形ABCD 中,AB=4 cm,BC=3 cm,CD=12 cm, DA=13 cm ,且∠ABC=90º,则四边形ABCD 的面积为( )A .6 cm²B .30 cm²C .24 cm²D .36 cm² 3.阅读以下解题过程:已知a ,b ,c 为△ABC 的三边长,且满足a ²c ²-b ²c ²=a ⁴-b ⁴,试判断△ABC 的形状. 解:∵a ²c ²-b ²c ²=a ⁴-b ⁴,①∴c²(a²-b²)=(a²-b²)(a²+b²),②∴c²=a²+b².③∴△ABC为直角三角形,④(1)上述解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是________________________________________________________;(3)本题正确的结论是____________________________________________________. 三年模拟全练一、选择题1.F列四组线段中,可以构成直角三角形的是 ( )A.1.5,2,2.5 B.4,5,6C.2,3,4 D.1,2,32.下列各组数中,是勾股数的为 ( )A.1,1,2 B.1.5,2,2.5C.7,24,25 D.6,12,133.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A.乙客轮用20分钟到达点B,若A、B两点的直线距离为1000 m,甲客轮沿着北偏东30º的方向航行,则乙客轮的航行方向可能是 ( )A.南偏东60º B.南偏西60º C.北偏西30º D.南偏西30º二、填空题4.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是_________.三、解答题5.如图17-2-4,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?五年中考模拟一、选择题1.下列长度的三条线段能组成直角三角形的是 ( )A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12 2.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米二、填空题3.如图17-2-5,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.则∠ACB 的大小为_______.核心素养全练1.王老师在一次“探究性学习”课中设计了如下数表:(1)请你分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n >1)的代数式表示a 、b 、c ;(2)猜想:以a 、b 、c 为边长的三角形是不是直角三角形,请证明你的猜想.2.如图17-2-6,南北线MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇曰密切注意,反走私艇A和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?3.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形, 理解:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?________(填“是”或“不是”);②若某三角形的三边长分别为1、7、2,则该三角形________(填“是”或“不是”)奇异三角形. 探究:在Rt △ABC 中,两边长分别是a 、c ,且a ²=50,c ²=100,则这个三角形是不是奇异三角形?请说明理由, 拓展:在Rt△ABC中,∠C=90º,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a²:b²:c².17.2 勾股定理的逆定理1.C“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,是平行线判定定理,所以逆命题是真命题.2.B“直角都相等”的逆命题是“相等的角是直角”,选项A错误;“同旁内角互补,两直线平行”的逆命题是“两直线平行,同旁内角互补”,选项B正确;“同位角相等”的逆命题是“相等的角是同位角”,选项C错误;“全等三角形的对应角相等”的逆命题是“角对应相等的三角形是全等三角形”,选项D错误,故选B.3.D ∵3²+4²=5²,∴此三角形是直角三角形,选项A不合题意;∵6²+8²=10²,∴此三角形是直角三角形,选项B不合题意;∵1.5²+2²=2.5²,∴此三角形是直角三角形,选项C不合题意;()()()222543≠+,∴此三角形不是直角三角形,选项D符合题意,故选D.4.答案直角解析设三边长分别为8k,15k,17k( k>0),则(8k)²+(15k)²=289k²=(17k)²,由勾股定理的逆定理,可判断此三角形为直角三角形.5.答案直角三角形解析由题意得S₁+S₂=S₃,即222212121212121⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅+⎪⎭⎫⎝⎛ABACBCπππ,∴BC²+AC²=AB²,∴△ABC为直角三角形.6.解析∵AD=3,AE=4,ED=5,∴AD²+AE²=ED².∴∠A=90º,∴DA⊥AB.∵∠C=90º,∴DC⊥BC.∵BD平分∠A BC,∴CD=AD=3.7.B(1)中各数不全是正整数;(2)中5²+12²=13²;(3)中8²+15²=17²;(4)中4²+5²≠6².故有2组勾股数.1.B A.由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180º,可求得∠C=90º,故△ABC 为直角三角形;B.不妨设a=2,b=3,c=4,此时a²+b²=13,而c²=16,即a²+b²≠c²,故△ABC 不是直角三角形;C .由条件可得到a ²+c ²=b ²,满足勾股定理的逆定理,故△ABC 是直角三角形;D .由条件有a ²+c ²=2222451625143b =⎪⎭⎫ ⎝⎛==+⎪⎭⎫ ⎝⎛,满足勾股定理的逆定理,故△ABC 是直角三角形.故选B . 2.C 连接 AC, ∵∠A BC=90º,AB=4 cm,BC=3 cm,∴AC=5 cm,∵CD=12 cm,DA=13 cm,AC ²+CD ²=5²+12²=169=13²=DA ²,∴△ADC 为直角三角形,∴S 四边形ABCD =S △ACD - S △ABC=21AC •CD-21AB •BC =21×5×12-21×4×3=30-6=24(cm ²).故四边形ABCD 的面积为24 cm ².故选C .3.答案 (1)③ (2)不能确定a ²-b ²是不是0 (3)△ABC 是等腰三角形或直角三角形解析 ∵c ²(a ²-b ²)=(a ²-b ²)(a ²+b ²),∴(a ²-b ²)[c ²-(a ²+b ²)]=0,∴a ²-b ²=0或c ²-(a ²+b ²)=0,即a=b 或a ²+b ²=c ²,∴三角形为等腰三角形或直角三角形,故从第③步开始错误,其原因是不能确定a ²-b ²是不是0. 一、选择题1.A 根据勾股定理的逆定理判断,求出两短边的平方和与最长边的平方,判断是否相等即可.1.5²+2²=2.5².即三角形是直角三角形,故此选项正确.故选A . 2.C A ∵1²+1²≠2²,∴不是勾股数,此选项错误; B .1.5和2.5不是正整数,此选项错误;C .∴7²+24²=25²,且7,24,25是正整数,∴是勾股数,此选项正确;D .∵6²+12²≠13²,∴不是勾股数,此选项错误,故选C .3.A 如图,∵甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m).∵A 、B 两点间的直线距离为1000 m ,又∵600²+800²=1000²,∴∠A OB=90º, ∵甲客轮沿着北偏东30º的方向航行, ∴乙客轮沿着南偏东60º的方向航行,故选A .二、填空题4.答案 直角三角形解析化简(a+b )²=c ²+2ab ,得a ²+b ²=c ²,所以该三角形是直角三角形. 三、解答题5·解析(1)四边形ABCD 的面积为25-1-21×1×5-21×1×4-21×1×2-21×2×4=14.5, 周长为AB+BC+CD+AD=2617532026175++=+++.(2)∠D AB 是直角.理由如下:连接BD ,∴AB ²+AD ²=5+20=25,BD ²=25.∴AB ²+AD ²=BD ². ∴△ABD 是直角三角形,且∠D AB 是直角. 一、选择题1.A 根据勾股定理的逆定理,能组成直角三角形的三边长必须满足两条较短边的平方和等于最长边的平方.∵3²+4²=5²,∴长为3,4,5的三条线段能组成直角三角形.故选A .2.A 将里换算成以米为单位,则三角形沙田的三边长分别为2.5千米.6千米,6.5千米,因为2.5²+6²=6.5²,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=21×6×2.5=7.5(平方千米),故选A . 二、填空题 3.答案 90º解析在网格中,由勾股定理得AC=183322=+,BC=324422=+.AB=507122=+, ∴AC ²+BC ²=AB ².∴由勾股定理的逆定理,知△ABC 为直角三角形,且∠A CB=90º. 1.解析(1)由题表可以得出: n=2时.a=2²-1,b=2×2,c=2²+1;n=3时,a=3²-1,b=2×3,c=3²+1; n=4时,a=4²-1,b=2×4,c=4²+1; ……∴a=n ²-1,b=2n ,c=n ²+1(n >1,且n 为自然数). (2)以a 、b 、c 为边长的三角形是直角三角形, 证明:∵a ²+b ²=(n ²-1)²+4n ²=n ⁴+2n ²+1, c ²=(n ²+1)²=n ⁴+2n ²+1, ∴a ²+b 2=c 2.∴以a 、b 、c 为边长的三角形是直角三角形. 2.解析 设MN 与AC 相交于E ,则∠B EC=90º, ∴AB ²+BC ²=5²+12²=13²=AC ².∴△ABC 为直角三角形,且∠A BC=90。
人教版8下数学练习题及答案17.2 勾股定理的逆定理
![人教版8下数学练习题及答案17.2 勾股定理的逆定理](https://img.taocdn.com/s3/m/0d7b791bd5bbfd0a78567393.png)
17.2 勾股定理的逆定理评卷人得分一、选择题1. 在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且(a+b)(a-b)=c2,则()A. ∠A为直角B. ∠C为直角C. ∠B为直角D. △ABC不是直角三角形2. 满足下列条件的三角形中,不是直角三角形的是()A. 三内角之比为1∶2∶3B. 三边长的平方之比为1∶2∶3C. 三边长之比为3∶4∶5D. 三内角之比为3∶4∶53. 下列几组数:①9,12,15,②8,15,17,③7,24,25,④n2-1,2n,n2+1(n是大于1的整数),其中是勾股数的有()A. 1组B. 2组C. 3组D. 4组4. 以下定理,其中有逆定理的是()A. 对顶角相等B. 互为邻补角的角平分线互相垂直C. 如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补D. 直角三角形的两条直角边的平方和等于斜边的平方5. 下列各组数中,是勾股数的是()A. 14,36,39B. 8,24,25C. 8,15,17D. 10,20,266. 如图,每个小正方形的边长均为1,A,B,C是小正方形的顶点,则∠ABC的度数为 ()A. 90°B. 60°C. 45°D. 30°7. 一个三角形三边长a,b,c满足|a-12|++(c-20)2=0,则这个三角形最长边上的高为()A. 9.8B. 4.8C. 9.6D. 10评卷人得分二、填空题8. 如图所示,点A为小红家的位置,点B为小明家的位置,点C为学校的位置,三地之间的距离如图,已知学校在小明家的正西方向,则小红家在小明家的方向.9. 若一个三角形的三边长分别为m+1,m+2,m+3,那么当m=时,这个三角形是直角三角形.10. 把命题“如果a>b,那么ac>bc(c≠0)”的逆命题改写为“如果……,那么……”的形式:11. 已知a,b,c是△ABC的三边,且满足|a-3|++(c-5)2=0,则此三角形的形状是.评卷人得分三、解答题12. 在B港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?13. 如图所示,已知△ABC的三边分别是a,b,c,且a+b=4,ab=1,c=,试判断△ABC的形状.14. 如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.15. 如图,欲从一块三角形下脚料ADB中截出一个形如△ACD的工件,其中AD=5dm,AB=14dm,AC=10dm,CD=5dm,求剩余部分△ABC的面积.16. 已知:如图,在四边形ABCD中,AD∥BC,AB=4,BC=6,CD=5,AD=3.求四边形ABCD的面积.评卷人得分四、证明题中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.18. 如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求证:BA⊥AD.参考答案1. 【答案】A【解析】因为(a+b)(a-b)=a2-b2=c2,所以b2+c2=a2.所以△ABC为直角三角形, ∠A为直角,故选A.2. 【答案】D【解析】A项中,由三角形内角和为180°可得,三个内角分别为30°,60°,90°,故此三角形是直角三角形.B项中,令三边长分别为a,b,c,则a2∶b2∶c2=1∶2∶3,∴a2+b2=c2,故满足此条件的三角形是直角三角形.C项中,a∶b∶c=3∶4∶5,设a=3k,则b=4k,c=5k,∴a2+b2=(3k)2+(4k)2=25k2=c2,∴是直角三角形. D项中的最大角为75°,故不是直角三角形.3. 【答案】D【解析】①中因为92+122=152,所以是勾股数;②中因为82+152=172,所以是勾股数;③中因为72+242=252,所以是勾股数;④中因为(n2-1)2+(2n)2=(n2+1)2,所以是勾股数.故选D.4. 【答案】D【解析】A定理的逆命题是“相等的两个角是对顶角”,不正确;B定理的逆命题是“角平分线互相垂直的两个角是邻补角”,∵两条平行线被第三条直线所截得的同旁内角的平分线也互相垂直,∴该逆命题不成立;C定理的逆命题是“如果两个角相等或互补,那么一个角的两边与另一个角的两边分别平行”,∵当两个角相等或互补时,一个角的两边与另一个角的两边可能分别垂直,∴该逆命题不成立;D定理的逆命题为勾股定理的逆定理.综上可知A,B,C三个定理均无逆定理,故选D.5. 【答案】C【解析】确定勾股数只需验证两小数的平方和与大数平方是否相等.∵142+362=1 492,392=1 521≠1 492,∴A项不是勾股数;∵82+242=640,252=625≠640,∴B项不是勾股数;∵82+152=289,172=289,∴C是勾股数;∵102+202=500,262=676≠500,∴D项不是勾股数.故选C.6. 【答案】C【解析】连接AC,观察图形易知AB=, BC=, AC=,所以△ACB为等腰三角形,又因为BC2+ AC2=AB2, △ACB为等腰直角三角形,所以∠ABC=45°.7. 【答案】C【解析】∵|a-12|≥0,≥0,(c-20)2≥0,∴由题意得,a-12=0, b-16=0,c-20=0,则有a=12,b=16,c=20.∵a2+b2=122+162=400=202=c2,∴该三角形为直角三角形,c为斜边.设斜边上的高为h.由面积公式得ab=ch,所以h===9.6.8. 【答案】正北【解析】因为82+152=172,所以△ABC为直角三角形,即AB与BC垂直.9. 【答案】2【解析】因为m+3>m+2>m+1,所以m+3为直角边,根据勾股定理得,(m+1)2+(m+2)2=(m+3)2,解得m=2或m=-2(舍去).所以m=2.10. 【答案】如果ac>bc(c≠0),那么a>b【解析】根据命题写出它的逆命题,即原命题的题设是逆命题的结论,原命题的结论是逆命题的题设.11. 【答案】直角三角形【解析】∵|a-3|≥0,≥0,(c-5)2≥0,结合题意得a-3=0,b-4=0,c-5=0.∴a=3,b=4,c=5,a2+b2=9+16=25=c2,∴△ABC 是直角三角形.12. 【答案】如图,甲船航行的距离为BM=8×2=16(海里),乙船航行的距离为BP=15×2=30(海里).∵162+302=1 156=342,∴BM2+BP2=MP2,∴△MBP为直角三角形,且∠MBP=90°,∴乙船是沿着南偏东30°的方向航行的.13. 【答案】∵a+b=4,ab=1,∴(a+b)2=42=16,即a2+b2+2ab=16,∴a2+b2=16-2ab=16-2×1=14,又∵c2=()2=14,∴a2+b2=c2,又∵a,b,c是△ABC的三边,根据勾股定理得△ABC为直角三角形.14. 【答案】连接AC(如图).∵AD⊥DC,∴在Rt△ACD中,由勾股定理得AC==5 m.又∵AC2+BC2=52+122=132=AB2,∴△ABC 为直角三角形,∴这块地的面积为S △ABC -S △ACD =AC ×BC -AD ×CD =× 5×12-×4× 3=24(m 2).15. 【答案】因为CD 2+AD 2=(5)2+52=100=AC 2,所以△ACD 是直角三角形,且∠D =90°. 在Rt △ABD 中,BD ==3 (dm),所以BC =BD -CD =(3-5) dm,所以△ABC 的面积为BC ·AD =×(3-5)×5=(dm 2).16. 【答案】如图,作DE ∥AB 交BC 于点E ,连接BD ,则可以证明△ABD ≌△EDB (ASA),∴DE =AB =4,BE =AD =3.∵BC =6,∴EC =BC -BE =3,∴EC =EB .∵DE 2+CE 2=42+32=25=CD 2,∴△DEC 为直角三角形,∴∠DEC =90°.又∵EC =EB =3,∴△DBC 为等腰三角形,∴DB =DC =5.在△BDA 中,∵AD 2+AB 2=32+42=25=BD 2,∴△BDA 是直角三角形.易得S △BDA =×3×4=6,S △DBC =×6×4=12,∴S △四边形ABCD =S △BDA +S △DBC =6+12=18.17. 【答案】在Rt △ACD 和Rt △BCD 中,∵AC 2=AD 2+CD 2,BC 2=CD 2+BD 2,∴AC 2+BC 2=AD 2+2CD 2+BD 2=AD 2+2AD ·BD +BD 2=(AD +BD )2=AB 2,∴△ABC 是直角三角形.18. 【答案】延长AD 到点E ,使DE =AD ,连接BE .∵点D 是BC 的中点,∴BD =CD .在△ADC 和△EDB 中,CD =BD ,∠ADC =∠EDB ,AD =ED ,∴△ADC ≌△EDB ,∴EB =AC =13,AE =2AD =2×6=12.又∵AB =5,∴AB 2+AE 2=52+122=169=132=BE 2,∴△ABE 是直角三角形,且∠BAE =90°,∴BA ⊥AD .。
数学人教版八年级下册17.2勾股定理逆定理
![数学人教版八年级下册17.2勾股定理逆定理](https://img.taocdn.com/s3/m/969026accc22bcd126ff0c98.png)
“远航”号、“海天”号轮船同时离开港口,各自沿 一固定方向航行,“远航”号每小时航行16海里, “海天”号每小时航行12海里.它们离开港口一个半小 时后分别位于点Q,R处,且相距30海里.如果知道“远 航”号沿东北方向航行,能知道“海天”号沿哪个方 向航行吗? N 海天 R P Q 远航 E
C
B
D A
通过本节课的学习,我们更加明确了 勾股定理及其逆定理的用途及用法,你能 说说吗?
大展身手
一个零件的形状如左图所示,按规定这个零件中 ∠A和∠DBC都应为直角。工人师傅量得这个零 件各边尺寸如右图所示,这个零件符合要求吗?
C D 13 D 4 5 12 B
C
A
A 3 B
能力提升 已知:如图,四边形 ABCD 中,∠ B = 900 , AB = 13, 求 四边形ABCD的面积?
人教版数学八年级下册17.2《勾股定理的逆定理》要点讲解
![人教版数学八年级下册17.2《勾股定理的逆定理》要点讲解](https://img.taocdn.com/s3/m/a3308a782e3f5727a5e9623f.png)
勾股定理的逆定理要点讲解一、勾股定理的逆定理1 .勾股定理的逆定理“如果直角三角形两直角边分别为a、b 、c,且满足a2+b2=c2.那么这个三角形是直角三角形.” 我们在判断一个三角形是不是直角三角形时,可直接运用这个逆定理.如图1所示,在△ABC中,如果AC2+BC2=AB2,那么△ABC就是直角三角形.2.勾股定理的逆定理与勾股定理的联系与区别联系:(1)两者都与a2+b2=c2有关,(2)两者所讨论的问题都是直角三角形区别:勾股定理是以“一个三角形是直角三角形”为条件,进而得到这个直角三角形三边的数量关系,“a2+b2=c2”;勾股定理的逆定理则是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到这个三角形是直角三角形,是判别一个三角形是否是直角三角形的一个方法.特别说明:勾股定理的逆定理和勾股定理一样,不是凭空想象出来的,而是古代科学家们在实践中逐步发现和认识的,所以我们在学习勾股定理时,也应通过实践来认识和理解它.如通过勾股数画图、剪纸、户外实践等活动认识和理解逆定理,这样才能使我们的印象深刻,认识清楚,理解透彻.二、勾股定理的逆定理的应用勾股定理的逆定理是判断一个三角形是不是直角三角形的重要依据,是运用直角三角形各种性质的先决条件,它体现了数形结合的重要数学思想,在生产实践与现实生活中有着广泛的应用.例2 如图2所示,在△ABD中,∠A 是直角,AB=3,AD =4,BC=12,DC=13,△DBC是直角三角形吗?为什么?图2分析:要判断△DBC是不是直角三角形,首先要有它的三条边,而其中的BD边需要通过Rt△BAD得到,所以,解答这个问题的步骤应是,先由Rt△BAD 中的AB、AD求得BD,再根据勾股定理的逆定理进行判定.解:是直角三角形.理由:在Rt△BAD中,根据勾股定理,得BD2=AD2+AB2=33+42=25,所以BD=5 .在△DBC中,BD2+BC2=25+144=169=132=CD2.所以△DBC是直角三角形.例3 如图3所示,在某市的地图上有三个景点A、B、C,已知景点A、B 之间的距离为0.4cm,景点C、B之间的距离为0.3cm,景点A、C之间的距离为0.5cm,问这三个景点为顶点的三角形是直角三角形吗?为什么?分析:要判别三角形是不是直角三角形只要验证AB2+BC2=AC2即可.解:因为0.3 2+0.42=0.52,所以这个三角形一定是直角三角形.说明:在运用勾股定理的逆定理判断三角形是不是直角三角形时,一是要根据三角形中的三条边,看两条较小边的平方和是否等于最大边的平方;二是注意将一组勾股数同时扩大或缩小同样的倍数所得数仍是勾股数.。
八年级数学下册 17.2《勾股定理的逆定理》教材习题解析素材 (新版)新人教版
![八年级数学下册 17.2《勾股定理的逆定理》教材习题解析素材 (新版)新人教版](https://img.taocdn.com/s3/m/6be0c849a9956bec0975f46527d3240c8447a174.png)
勾股定理的逆定理教材习题解析1.解析:此题考查运用勾股定理逆定理判断三角形的形状.答案:是直角三角形.理由:∵、b、c三条线段的长度满足关系,即,∴根据勾股定理逆定理得,这个三角形是以c为斜边的直角三角形.2.解析:此题考查互逆命题的概念的理解.先根据互逆命题的关系得出原命题的逆命题再判断命题的真假,明确原命题成立逆命题不一定成立.答案:〔1〕逆命题:内错角相等,两条直线平行.逆命题成立.〔2〕逆命题:如果两个实数的绝对值相等,那么它们相等.逆命题不成立.〔3〕逆命题:对应角相等的两个三角形全等.逆命题不成立.〔4〕逆命题:在角的内部,角平分线上的点到角两边的距离相等.逆命题成立.3.解析:此题考查勾股定理逆定理的理解及方位角的理解.答案:正北方向.理由:由题意,知A、B、C三地组成一个三角形,且AB=12,BC=5,AC=13,其中AC是最大的边,显然,∵△ABC是一个以∠B为直角的直角三角形,而A地在B地的正东方向,∴C地在B地的正北方向.P34习题17.21.解析:此题考查勾股定理及逆定理的理解,根据勾股定理的逆定理,一个三角形中两条较小边长的平方和等于最大边长的平方,那么这个三角形是直角三角形.答案:〔1〕是直角三角形.∵c最大,且,∴以线段、b、c为边长组成的三角形是直角三角形.〔2〕是直角三角形.∵最大,且∴以线段、b、c组成的三角形是直角三角形.〔3〕是直角三角形.∵最大,且,∴以线段、b、c为边长组成的三角形是直角三角形.〔4〕不是直角三角形.∵c最大,且,根据勾股定理以线段、b、c为边长组成的三角形不是直角三角形.2.解析:此题考查互逆命题的概念的理解.先根据互逆命题的关系得出原命题的逆命题再判断命题的真假,明确原命题成立逆命题不一定成立.答案:〔1〕逆命题:两直线平行,同旁内角互补.逆命题成立;〔2〕逆命题:如果两个角相等,那么这两个角都是直角.逆命题不成立;〔3〕逆命题:对应边相等的两个三角形全等.逆命题成立;〔4〕逆命题;如果两个实数的平方相等,那么这两个实数相等.逆命题不成立.3.解析:此题考查勾股定理逆定理的理解及方位角的理解.答案:向北或向南.理由:小明所走的三段路恰好组成一个三角形,第三次走了100m 是最大值,且三段路满足,∴三段路长组成的三角形是直角三角形,100m 是斜边,∴60m、80m是直角边,即第二次走的方向与第一次走的方向垂直,∴小明向东走80m后又向北或南走了60m.综合运用4.解析:此题考查勾股定理逆定理的理解及画图能力,此题先画出草图,再根据条件判断△ABD或△ACD的形状.答案:∵BC=10,AD是BC边上的中线,∴BD=CD=5.在△ABD中,AB=13是最大的边,且,∴△ABD是以∠ADB为直角的三角形,那么△ACD 是以∠ADC为直角的直角三角形,利用勾股定理,得AC=.5.解析:此题考查勾股定理及逆定理的理解、识图能力,此题先用勾股定理计算出直角△ABC中斜边AC的长,再判断△ACD的形状,最后求出两个三角形的面积和.答案:∵∠B=,AB=3,BC=4,∴,∴AC=5.又∵CD=12,AD=13,∴,∴,∴△ACD是以∠ACD 为直角的直角三角形,∴.6.解析:此题考查勾股定理及逆定理的综合运用,此题蕴含方程的思想,可先用最短线段CF表示出题目中的线段AB、BC、CD、DA、BE、CE,再在三个直角三角形中用勾股定理求出线段AE、EF、AF,最后用勾股定理逆定理判断△AEF的形状.证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=,又∵E是BC的中点,CF=CD,∴AB=4CF,BE=CE=AB=2CF,DF=3CF.由勾股定理,得,∵,即,∴△AEF是以∠AEF为直角的直角三角形,∴∠AEF=.7.解析:此题考查勾股数概念的理解.答案:是,理由:①∵当是正整数时,此时,∴3、4、5〔是正整数〕是一组股数;②当、b、c是勾股数时,即满足〔也可以是,对结论无影响〕.此时,,∴、b、c〔是正整数〕也是一组勾股数.。
2021年中考真题17.2勾股定理的逆定理试题分类解析含答案
![2021年中考真题17.2勾股定理的逆定理试题分类解析含答案](https://img.taocdn.com/s3/m/89dfb32a8bd63186bdebbc0f.png)
2021年中考真题17.2勾股定理逆定理一.选择题(共1小题)1.(2021•常德)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m =a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④B.①②④C.①②D.①④二.填空题(共4小题)2.(2021•玉林)如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.3.(2021•宿迁)《九章算术》中一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AC生长在它的中央,高出水面部分BC为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部C恰好碰到岸边的C'处(如图),水深和芦苇长各多少尺?则该问题的水深是尺.4.(2021•恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径 寸.5.(2021•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB 为x 尺,根据题意,可列方程为 .三.解答题(共1小题)6.某工程队准备从A 到B 修建一条隧道,测量员在直线AB 的同一侧选定C ,D 两个观测点,如图.测得AC 长为3√22km ,CD 长为34(√2+√6)km ,BD 长为32km ,∠ACD =60°,∠CDB =135°(A 、B 、C 、D 在同一水平面内).(1)求A 、D 两点之间的距离;(2)求隧道AB 的长度.2021年中考真题17.2勾股定理逆定理参考答案与试题解析一.选择题(共1小题)1.(2021•常德)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m =a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④B.①②④C.①②D.①④解:①∵7不能表示为两个正整数的平方和,∴7不是广义勾股数,故①结论正确;②∵13=22+32,∴13是广义勾股数,故②结论正确;③两个广义勾股数的和不一定是广义勾股数,如5和10是广义勾股数,但是它们的和不是广义勾股数,故③结论错误;④设m1=a2+b2,m2=c2+d2,则m1⋅m2=(a2+b2)⋅(c2+d2)=a2c2+a2d2+b2c2+b2d2=(a2c2+b2d2+2abcd)+(a2d2+b2c2﹣2abcd)=(ac+bd)2+(ad﹣bc)2,当ad=bc时,m1•m2不是广义勾股数,∴两个广义勾股数的积不一定是广义勾股数,故④结论错误,∴依次正确的是①②.故选:C.二.填空题(共4小题)2.(2021•玉林)如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿北偏东50°方向航行.解:由题意可知:AP=12,BP=16,AB=20,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,由题意知∠APN=40°,∴∠BPN=90°﹣∠APN=90°﹣40°=50°,即乙船沿北偏东50°方向航行,故答案为:北偏东50°.3.(2021•宿迁)《九章算术》中一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AC生长在它的中央,高出水面部分BC为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部C恰好碰到岸边的C'处(如图),水深和芦苇长各多少尺?则该问题的水深是12尺.解:依题意画出图形,设芦苇长AC=AC′=x尺,则水深AB=(x﹣1)尺,∵C′E=10尺,∴C′B=5尺,在Rt△AC′B中,52+(x﹣1)2=x2,解得x=13,即芦苇长13尺,水深为12尺,故答案为:12.4.(2021•恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径26寸.解:过圆心O作OC⊥AB于点C,延长OC交圆于点D,连接OA,如图:∵OC⊥AB,∴AC=BC=12AB,AD̂=BD̂.则CD=1寸,AC=BC=12AB=5寸.设圆的半径为x寸,则OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圆材直径为2×13=26(寸).故答案为:26.5.(2021•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB 为x 尺,根据题意,可列方程为 (x ﹣6.8)2+x 2=102 .解:设门高AB 为x 尺,则门的宽为(x ﹣6.8)尺,AC =1丈=10尺,依题意得:AB 2+BC 2=AC 2,即(x ﹣6.8)2+x 2=102.故答案为:(x ﹣6.8)2+x 2=102.三.解答题(共1小题)6.某工程队准备从A 到B 修建一条隧道,测量员在直线AB 的同一侧选定C ,D 两个观测点,如图.测得AC 长为3√22km ,CD 长为34(√2+√6)km ,BD 长为32km ,∠ACD =60°,∠CDB =135°(A 、B 、C 、D 在同一水平面内).(1)求A 、D 两点之间的距离;(2)求隧道AB 的长度.解:(1)过A 作AE ⊥CD 于E ,如图所示:则∠AEC =∠AED =90°,∵∠ACD=60°,∴∠CAE=90°﹣60°=30°,∴CE=12AC=34√2(km),AE=√3CE=34√6(km),∴DE=CD﹣CE=34(√2+√6)−34√2=34√6(km),∴AE=DE,∴△ADE是等腰直角三角形,∴AD=√2AE=√2×34√6=3√32(km);(2)由(1)得:△ADE是等腰直角三角形,∴AD=√2AE=3√32(km),∠ADE=45°,∵∠CDB=135°,∴∠ADB=135°﹣45°=90°,∴AB=√AD2+BD2=(3√32)2+(32)2=3(km),即隧道AB的长度为3km.。
人教数学八年级下册中考试题汇编含精讲解析17.2勾股定理的逆定理.docx
![人教数学八年级下册中考试题汇编含精讲解析17.2勾股定理的逆定理.docx](https://img.taocdn.com/s3/m/e125a10e168884868762d6b1.png)
初中数学试卷桑水出品17.2 勾股定理的逆定理一.选择题(共5小题)1.(2015•桂林)下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,62.(2015•淮安)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=53.(2015•广西)下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,,4.(2015•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,45.(2015•资阳)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm二.填空题(共12小题)6.(2015•山西)太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=80cm,AD=24cm,BC=25cm,EH=4cm,则点A到地面的距离是cm.7.(2015•常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.8.(2015•厦门)已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是km;若A地在C地的正东方向,则B地在C地的方向.9.(2015•朝阳)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).10.(2015•东营)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.11.(2015•庆阳)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)12.(2014•东营)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行米.13.(2014•河池)如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C 地,此时小明距离A地千米(结果可保留根号).14.(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.15.(2014•潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.16.(2013•包头)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.17.(2013•阜新)如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度=米.三.解答题(共5小题)18.(2015•娄底)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)19.(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.20.(2014•湘潭)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)21.(2014•黄石)小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你帮助小明解决以下问题:(1)求A、C之间的距离;(参考数据=4.6)(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,小明应该选择哪种乘车方案?请说明理由.(不计候车时间)22.(2014•凉山州)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.17.2 勾股定理的逆定理参考答案与试题解析一.选择题(共5小题)1.(2015•桂林)下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答:解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.(2015•淮安)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5考点:勾股定理的逆定理.分析:根据勾股定理的逆定理对各选项进行逐一分析即可.解答:解:A、∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C、∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D、∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选D.点评:本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.(2015•广西)下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,,考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.解答:解:A、12+22≠32,不能组成直角三角形,故错误;B、22+32≠42,不能组成直角三角形,故错误;C、42+52≠62,不能组成直角三角形,故错误;D、12+()2=()2,能够组成直角三角形,故正确.故选D.点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.(2015•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4考点:勾股定理的逆定理.分析:知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.解答:解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.(2015•资阳)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm考点:平面展开-最短路径问题.分析:将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.解答:解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===13(Cm).故选:A.点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.二.填空题(共12小题)6.(2015•山西)太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=80cm,AD=24cm,BC=25cm,EH=4cm,则点A到地面的距离是cm.考点:勾股定理的应用.分析:分别过点A作AM⊥BF于点M,过点F作FN⊥AB于点N,利用勾股定理得出BN的长,再利用相似三角形的判定与性质得出即可.解答:解:过点A作AM⊥BF于点M,过点F作FN⊥AB于点N,∵AD=24cm,则BF=24cm,∴BN===7(cm),∵∠AMB=∠FNB=90°,∠ABM=∠FBN,∴△BNF∽△BMA,∴=,∴=,则:AM==,故点A到地面的距离是:+4=(m).故答案为:.点评:此题主要考查了勾股定理的应用以及相似三角形的判定与性质,得出△BNF∽△BMA是解题关键.7.(2015•常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是(400,800).考点:勾股定理的应用;坐标确定位置;全等三角形的应用.分析:根据题意结合全等三角形的判定与性质得出△AOD≌△ACB(SAS),进而得出C,A,D也在一条直线上,求出CD的长即可得出C点坐标.解答:解:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中∵,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).点评:此题主要考查了全等三角形的判定与性质以及勾股定理,得出C,A,D也在一条直线上是解题关键.8.(2015•厦门)已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是5km;若A地在C地的正东方向,则B地在C地的正北方向.考点:勾股定理的应用;方向角.分析:根据勾股定理来求AB的长度.由于∠C=90°,A地在C地的正东方向,则B地在C地的正北方向.解答:解:∵∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,∴AB===5(km).又∵A地在C地的正东方向,则B地在C地的正北方向.故答案是:5;正北.点评:本题考查了勾股定理的应用和方向角.勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.9.(2015•朝阳)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 2.9米(结果精确到0.1米,参考数据:=1.41,=1.73).考点:勾股定理的应用.分析:首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.解答:解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4﹣4≈2.9(米),故答案为:2.9.点评:此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.10.(2015•东营)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.考点:平面展开-最短路径问题.专题:计算题.分析:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,此时AB最短,根据三角形MCB 与三角形ACN相似,由相似得比例得到MC=2NC,求出CN的长,利用勾股定理求出AC的长即可.解答:解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB 最短,∵△BCM∽△ACN,∴=,即==2,即MC=2NC,∴CN=MN=,在Rt△ACN中,根据勾股定理得:AC==,故答案为:.点评:此题考查了平面展开﹣最短路径问题,涉及的知识有:相似三角形的判定与性质,勾股定理,熟练求出CN的长是解本题的关键.11.(2015•庆阳)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)考点:平面展开-最短路径问题.分析:根据绕两圈到C,则展开后相当于求出直角三角形ACB的斜边长,并且AB的长为圆柱的底面圆的周长,BC的长为圆柱的高,根据勾股定理求出即可.解答:解:如图所示,∵无弹性的丝带从A至C,∴展开后AB=2πcm,BC=3cm,由勾股定理得:AC==cm.故答案为:.点评:本题考查了平面展开﹣最短路线问题和勾股定理的应用,能正确画出图形是解此题的关键,用了数形结合思想.12.(2014•东营)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行10米.考点:勾股定理的应用.专题:几何图形问题;转化思想.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=12m,小树高为CD=6m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=6m,EC=8m,AE=AB﹣EB=12﹣6=6(m),在Rt△AEC中,AC==10(m).故小鸟至少飞行10m.故答案为:10.点评:本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.13.(2014•河池)如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地千米(结果可保留根号).考点:勾股定理的应用;方向角.分析:根据题意利用锐角三角函数得出BD,AD的长,再利用勾股定理得出AC的长.解答:解:如图所示,由题意可得:AB=2,∠B=60°,则BD=ABcos60°=1(km),AD=ABsin60°=(km),故DC=2km,则AC===(km).故答案为:.点评:此题主要考查了勾股定理的应用以及解直角三角形的应用,得出AD,DC的长是解题关键.14.(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.考点:平面展开-最短路径问题;截一个几何体.专题:压轴题;数形结合.分析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.解答:解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).点评:考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.15.(2014•潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.考点:平面展开-最短路径问题;勾股定理的应用.专题:压轴题;转化思想.分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.解答:解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.点评:本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.16.(2013•包头)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=135度.考点:勾股定理的逆定理;正方形的性质;旋转的性质.专题:压轴题.分析:首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45°,即可得出答案.解答:解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=∠BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.点评:此题主要考查了旋转的性质,根据已知得出△EBE′是直角三角形是解题关键.17.(2013•阜新)如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 4.7米.考点:勾股定理的应用.分析:先根据题意得出AD的长,在Rt△ACD中利用锐角三角函数的定义求出CD的长,由CE=CD+DE 即可得出结论.解答:解:由题意,易知∠CAD=30°,∠CDA=90°,AD=3,CE⊥BE,DE=AB=1.7米,∴tan∠CAD=,∴CD=×3=3,∴CE=3+1.7=4.7(米).即这棵树的高度为4.7米.故答案为:4.7.点评:本题考查的是解直角三角形在实际生活中的应用,难度适中,熟知锐角三角函数的定义是解答此题的关键.三.解答题(共5小题)18.(2015•娄底)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)考点:勾股定理的应用.分析:根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.解答:解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×=100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∵60千米/小时=m/s,∴=14.6(m/s)<≈16.7(m/s),∴此车没有超速.点评:此题主要考查了勾股定理以及锐角三角函数关系的应用,得出AB的长是解题关键.19.(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.考点:勾股定理的应用;垂径定理的应用.分析:(1)直接利用直角三角形中30°所对的边等于斜边的一半求出即可;(2)根据题意可知,图中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂径定理及勾股定理解答即可.解答:解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=80m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×80=40m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m,故BC=2×30=60米,即重型运输卡车在经过BD时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=300米/分钟,∴重型运输卡车经过BD时需要60÷300=0.2(分钟)=12(秒).答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.点评:此题考查的是垂径定理与勾股定理在实际生活中的运用,解答此题的关键是卡车在哪段路上运行时对学校产生影响.20.(2014•湘潭)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)考点:勾股定理的应用.专题:几何图形问题.分析:首先证明△BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,然后再代入BD=800米进行计算即可.解答:解:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,CD=400≈566(米),答:直线L上距离D点566米的C处开挖.点评:此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.21.(2014•黄石)小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你帮助小明解决以下问题:(1)求A、C之间的距离;(参考数据=4.6)(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,小明应该选择哪种乘车方案?请说明理由.(不计候车时间)考点:勾股定理的应用.专题:几何图形问题.分析:(1)过点C作AB的垂线,交AB的延长线于E点,利用勾股定理求得AC的长即可;(2)分别求得乘车时间,然后比较即可得到答案.解答:解:(1)过点C作AB的垂线,交AB的延长线于E点,∵∠ABC=120°,BC=20,∴BE=10,在△ACE中,∵AC2=8100+300,∴;(2)乘客车需时间(小时);乘列车需时间(小时);∴选择城际列车.点评:本题考查了勾股定理的应用,解题的关键是正确的构造直角三角形.22.(2014•凉山州)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为20cm.考点:平面展开-最短路径问题.专题:操作型.分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.解答:解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为:20.——————————新学期新成绩新目标新方向——————————点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.桑水。
最新人教版八年级数学下册 17-2 勾股定理的逆定理
![最新人教版八年级数学下册 17-2 勾股定理的逆定理](https://img.taocdn.com/s3/m/729b053c1711cc7931b716d7.png)
-18-
17.如图所示,D 是△ABC 的边 BC 上一点,已知 AB=13,AD=12, AC=15,BD=5,试求△ACD 的面积.
A.1 组
B.2 组
C.3 组
D.4 组
-10-
勾股定理及逆定理的综合运用
同步考点手册 P11
11.在△ABC 中,点 D 为 BC 的中点,BD=3,AD=4,AB=5,则 AC
=__5_.
-11-
12.如图,已知 AD=4,CD=3,∠ADC=90°,AB=13,BC=12, 求四边形 ABCD 的面积.
-8-
勾股数
同步考点手册 P11
9.下面几组数中,为勾股数的一组是( B )
A.4,5,6
B.12,16,20
C.-10,24,26
D.2.4,4.5,5.1
-9-
10.下列几组数:①9,12,15;②8,15,17;③7,24,25;④n2-1,
2n,n2+1(n 是大于 1 的整数),其中是勾股数的有( D )
⑤32,42,52,以各组数为边长,能组成直角三角形有( C )
A.1 组
B.2 组
C.3 组
D.4 组
-5-
5.在△ABC 中,∠A,∠B,∠C 的对边分别为 a,b,c,且(a+b)(a -b)=c2,则( A )
A.∠A 为直角 B.∠B 为直角 C.∠C 为直角 D.△ABC 不是直角三角形
-3-
勾股定理的逆定理
同步考点手册 P11
17.2 勾股定理的逆定理-八年级数学人教版(下册)(解析版)
![17.2 勾股定理的逆定理-八年级数学人教版(下册)(解析版)](https://img.taocdn.com/s3/m/1056f499856a561252d36fe4.png)
第十七章勾股定理17.2勾股定理的逆定理一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组数据是勾股数的是A.5,12,13 B.6,9,12 C.12,15,18 D.12,35,36 【答案】A2.下列四组线段a、b、c,能组成直角三角形的是A.a=4,b=5,c=6 B.a=1.5,b=2,c=2.5C.a=2,b=3,c=4 D.a=1,b=2,c=3【答案】B【解析】A、42+52≠62,不能组成直角三角形,故此选项错误;B、1.52+22=2.52,能组成直角三角形,故此选项正确;C、22+32=42,不能组成直角三角形,故此选项错误;D、12+(2)2≠32,不能组成直角三角形,故此选项错误.故选B.3.下列说法中错误的是A.若∠C=∠A–∠B,则△ABC为直角三角形B.若a∶b∶c=2∶2∶22,则△ABC为直角三角形C.若a=35c,b=45c,则△ABC为直角三角形D.若∠A∶∠B∶∠C=3∶4∶5,则△ABC为直角三角形【答案】D【解析】A、若∠C=∠A-∠B,则2∠A=180°,所以∠A=90°,则△ABC为直角三角形,该说法正确;B 、若a ∶b ∶c =2∶2∶22,由勾股定理的逆定理可得:a 2+b 2=c 2,则△ABC 为直角三角形,该说法正确; C 、若a =35c ,b =45c ,由勾股定理的逆定理可得:a 2+b 2=c 2,则△ABC 为直角三角形,该说法正确; D 、若∠A ∶∠B ∶∠C =3∶4∶5,则三角形中最大角为75°≠90°,则△ABC 不为直角三角形,该说法错误.故选D .4.学校的书香苑呈三角形形状,三边分别是9,12,15,那么书香苑的面积是 A .135B .180C .108D .54【答案】D5.如图所示的一块地,∠ADC =90°,12m AD =,9m CD =,39m AB =,36m BC =,求这块地的面积S 为A .54 m 2B .108 m 2C .216 m 2D .270 m 2【答案】C【解析】连接AC ,根据勾股定理,由直角△ACD 可以求得斜边AC =15 m ,根据AC ,BC ,AB 的长,求它们的平方,根据勾股定理的逆定理可以判定△ABC 为直角三角形,要求这块地的面积,求△ABC 与△ACD 的面积之差S =S △ABC -S △ACD =12AC ·BC -12CD ·AD =12×15×36-12×9×12=270-54=216 m 2.故选C . 6.如图,△ABC 中,AC =3,BC =5,AD ⊥BC 交BC 于点D ,AD =125,延长BC 至E 使得CE =BC ,将△ABC沿AC 翻折得到△AFC ,连接EF ,则线段EF 的长为A.6 B.8 C.325D.323【答案】A7.若一个三角形三边a,b,c满足(a+b)2=c2+2ab,则这个三角形是A.等边三角形B.钝角三角形C.等腰直角三角形D.直角三角形【答案】D【解析】化简(a+b)2=c2+2ab,得a2+b2=c2,所以这个三角形是直角三角形,故选D.8.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC的高是A.102B.104C.105D.5【答案】A【解析】由勾股定理得:22125AC=+=,22125AB=+=,221310BC=+=,222(5)(5)(10)+=,即222AB AC BC+=,∴△ABC是直角三角形,设BC边上的高为h,则1122ABCS AB AC h BC=⋅=⋅△,∴5510210AB AChBC⋅⨯===.故选A.二、填空题:请将答案填在题中横线上.9.若|a-7|+24b +(c-25)2=0,则以a、b、c为三边的三角形的形状是__________.【答案】直角三角形10.(1)如果两个命题的题设、结论正好相反,那么这两个命题叫做互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的__________.(2)如果一个定理的逆命题经过证明是正确的,它也是一个定理,则称这两个定理互为__________.(3)一个命题__________有逆命题,一个定理__________有逆定理.(填“一定”或“不一定”)【答案】(1)逆命题;(2)逆定理;(3)一定;不一定【解析】根据勾股定理的逆定理可得答案为:(1)逆命题;(2)逆定理;(3)一定;不一定.11.如图,小明散步从A到B走了41米,从B到C走了40米,从C到A走了9米,则∠A+∠B=________.【答案】90°【解析】∵AC2+BC2=92+402=1681,而AB2=412=1681,△ABC为直角三角形,∠C=90°,∴∠A+∠B=90°.故答案为:90°.12.如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成__________个直角三角形.【答案】2【解析】根据小正方形的边长可分别求,,,,,,根据勾股定理的逆定理,由知△ADB是直角三角形,由知△ABC是直角三角形,共2个.故答案为:2.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.14.如图,是一个四边形的边角料,东东通过测量,获得了如下数据:AB=3 cm,BC=12 cm,CD=13 cm,AD=4 cm,东东由此认为这个四边形中∠A恰好是直角,你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果你认为他不正确,那你认为需要什么条件,才可以判断∠A是直角?【解析】东东的判断不正确,可添加DB⊥BC或DB=5 cm.理由如下:∵四边形具有不稳定性,∴∠A可以是锐角,可以是直角,也可以是钝角,∴东东的判断不正确;如果添加DB⊥BC或DB=5 cm,那么∠A恰好是直角.当BD⊥BC时,∵BC=12 cm,CD=13 cm,∴225cm=-=,BD CD BC在△ABD中,AB=4 cm,AD=3 cm,BD=5 cm,∴222AB AD BD +=,即222435+=, ∴△ABD 是直角三角形,且90A ∠=︒,当DB =5 cm 时,在△ABD 中,AB =4 cm ,AD =3 cm ,BD =5 cm , ∴222AB AD BD +=,即222435+=, ∴△ABD 是直角三角形,且90A ∠=︒.15.龙梅和玉荣是草原上的好朋友,可是有一次经过一场争吵之后,两人不欢而散,龙梅的速度是12米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和龙梅成直角,她的速度是23米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距200米,那么她走的方向是否成直角?如果她们现在想讲和,那么原来的速度相向而行,多长时间后能相遇?16.如图,甲、乙两船从港口A 同时出发,甲船以30海里/时的速度向北偏东35°的方向航行,乙船以40海里/时的速度向另一方向航行,2小时后,甲船到达C 岛,乙船到达B 岛,若C ,B 两岛相距100海里,则乙船航行的方向是南偏东多少度?【解析】由题意可知,在△ABC 中,AC =30×2=60,AB =40×2=80,BC =100, ∴AC 2=3600,AB 2=6400,BC 2=10000, ∴AC 2+AB 2=BC 2,∴∠CAB =90°,又∵∠EAD =180°,∠EAC =35°, ∴∠DAB =90°-∠CAE =90°-35°=55°,∴乙船航行的方向为南偏东55°.。
人教版八年级数学下册17.2《勾股定理的逆定理拓展》习题含答案
![人教版八年级数学下册17.2《勾股定理的逆定理拓展》习题含答案](https://img.taocdn.com/s3/m/203f690e8762caaedc33d445.png)
《勾股定理的逆定理拓展》习题含答案1.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶52.如图所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D =120°,则该零件另一腰AB 的长是________ cm (结果不取近似值).第2题图 第3题图3.如图所示,以Rt△ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________.4.如图所示,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF =41AD ,试判断△EFC 的形状.第4题图5.一个零件的形状如图,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD =4,AB =3,BD =5,DC =12 , BC =13,这个零件符合要求吗?第5题图6.已知△ABC 的三边分别为k 2-1,2k ,k 2+1(k >1),求证:△ABC 是直角三角形.7.已知a ,b ,c 是Rt△ABC 的三边长,△A 1B 1C 1的三边长分别是2a ,2b ,2c ,那么△A 1B 1C 1是直角三角形吗?为什么?8.已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD·BD . 求证:△ABC 是直角三角形.第8题图9.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格,证明你的结论.第9题图10. 某园艺公司对一块直角三角形的花园进行改造,测得两直角边长分别为a = 6米,b = 8米。
现要将其扩建成等腰三角形,且扩充部分是以b 为直角边的直角三角形,则扩建后的等腰三角形花圃的周长是多少米?11.已知:在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,满足a 2+b 2+c 2+338=10a +24b +26c .试判断△ABC 的形状.12.已知:如图,四边形ABCD ,AD ∥BC ,AB =4,BC =6,CD =5,AD =3. 求:四边形ABCD 的面积.第12题图CA B D习题答案1.D2.5√33.2√34.解:∵E为AB中点,∴BE=2.∴CE2=BE2+BC2=22+42=20.同理可求得,EF2=AE2+AF2=22+12=5,CF2=DF2+CD2=32+42=25.∵CE2+EF2=CF2,∴△EFC是以∠CEF为直角的直角三角形.5.解:在△ABD中,AB2+AD2=32+42=9+16=25=BD2,所以△ABD为直角三角形,∠A=90°.在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.所以△BDC是直角三角形,∠CDB=90°.因此这个零件符合要求.6.证明:∵k2+1>k2-1,k2+1-2k=(k-1)2>0,即k2+1>2k,∴k2+1是最长边.∵(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2,∴△ABC是直角三角形.7.解:∆A1B1C1是直角三角形理由:∵a,b,c是Rt∆ABC的三边长,设c是斜边∴由勾股定理得:a2+b2=c2∵(2a)2+(2b)2=4a2+4b2=4(a2+b2)=4c2=(2c)2∴∆A1B1C1是直角三角形8.证明:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2.∴△ABC是直角三角形.9.解:∵ OA2=OA12+A1A2=32+12=10,OB2=OB12+B1B2=22+42=20,AB2=AC2+BC2=12+32=10,∴OA2+AB2=O B2.∴△OAB是以OB为斜边的等腰直角三角形.10.由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AD=BD两种情况进行讨论.如图所示:在Rt△ABC中,∵AC=8m,BC=6m,∴AB=10m,第10题图如图1,当AB =AD 时,CD =BC =6m ,此时等腰三角形花圃的周长=10+10+6+6=32(m ); 如图2:当AD =BD 时,设AD =BD =x m ; Rt △ACD 中,BD =x m ,CD =(x ﹣6)m ;由勾股定理,得AD 2=DC 2+CA 2,即(x −6)2+82=x 2,解得x =253; 此时等腰三角形绿地的周长=253×2+10=803(m ).当AB =BD 时,在Rt △ACD 中,AD =√AC 2+CD 2=√82+(10−6)2=4√5, 此时等腰三角形绿地的周长=2×10+4√5=20+4√5综上扩建后等腰三角形花圃的周长为32米或803米或20+4√5米11. 解:由已知可得a 2-10a +25+b 2-24b +144+c 2-26c +169=0, 配方并化简得,(a -5)2+(b -12)2+(c -13)2=0. ∵(a -5)2≥0,(b -12)2≥0,(c -13)2≥0. ∴a -5=0,b -12=0,c -13=0. 解得a =5,b =12,c =13. 又∵a 2+b 2=169=c 2,∴△ABC 是直角三角形.12. 解:作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA ), ∴D E=AB =4,BE =AD =3. ∵BC =6,∴EC =EB =3. ∵DE 2+CE 2=32+42=25=C D 2, ∴△DEC 为直角三角形.又∵EC =EB =3, ∴△DBC 为等腰三角形,DB =DC =5. 在△BDA 中AD 2+AB 2=32+42=25=BD 2, ∴△BDA 是直角三角形. 它们的面积分别为S △BDA =21×3×4=6;S △DBC =21×6×4=12. 第12题图∴S 四边形ABCD =S △BDA +S △DBC =6+12=18.A B D C E。
【精品人教版】初二八年级数学下册《17.2 第2课时 勾股定理的逆定理的应用》(附答案演示)
![【精品人教版】初二八年级数学下册《17.2 第2课时 勾股定理的逆定理的应用》(附答案演示)](https://img.taocdn.com/s3/m/24531ee2aa00b52acfc7cac7.png)
4.如图,正方形网格中每个小方格边长为1,则 △ABC的形状为( A )
A.直角三角形
B.锐角三角形 C.钝角三角形
D.以上答案都不对
5.如图,△ABC中,D为BC上一点,且BD=3, DC=AB=5,AD=4,则AC=
41
.
6.如图,AD=8,CD=6,∠ADC=90°,AB=
∴OB= 6 ,OA=2.
∵BC2=OB2+OC2=6+9=15,AB2=OB2+OA2 =6+4=10,AC=2-(-3)=5, ∴AC2=25,∴BC2+AB2=AC2, ∴△ABC是直角三角形.
10.台风是一种自然灾害,它以台风中心为圆心在
周围上千米的范围内形成极端气候,有极强的破坏
力.如图,有一台风中心沿东西方向AB由点A行驶 向点B,已知点C为一海港,且点C与直线AB上两点
解:小明在河边B处取水后是沿南偏东60°方向行走
的,理由如下: ∵AB=60m,BC=80m,AC=100m,
∴AB2+BC2=AC2.
∴∠ABC=90°. ∵AD∥NM, ∴∠NBA=∠BAD=30°,
∴∠MBC=180°-90°-30°=60°,
∴ 小明在河边 B 处取水后是沿南偏东 60°方向行走 的.
26,BC=24,则该图形的面积等于 96 .
7.如图,正方形小方格边长均为1,A,B,C是小 正方形的交点,则∠ABC的度数是【方法6】( C )
A.90°
B.60°
C.45°
D.30°
8 .如图,在 △ABC 中, AB∶BC∶CA = 3∶4∶5 ,
且周长为36cm,点P从点A开始沿AB边向B点以每秒 1cm 的速度移动;点 Q 从点 B 沿 BC 边向点 C 以每秒
2020—2021年人教版初中数学八年级下册中考试题汇编含精讲解析(勾股定理)(精品试题).docx
![2020—2021年人教版初中数学八年级下册中考试题汇编含精讲解析(勾股定理)(精品试题).docx](https://img.taocdn.com/s3/m/1ef29c60fc4ffe473268ab1d.png)
勾股定理一.选择题(共6小题)1.(2015•菏泽)将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A.140°B.160°C.170°D.150°2.(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+13.(2015•黑龙江)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.54.(2015•淄博)如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=5,AD=3,则图中长为4的线段有()A.4条B.3条C.2条D.1条5.(2015•天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A.2 B.3 C.4 D.56.(2015•烟台)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为()A.()2012 B.()2013 C.()2012 D.()2013二.填空题(共9小题)7.(2015•南昌)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.8.(2015•黑龙江)正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为.9.(2015•苏州)如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为.10.(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为.11.(2015•黄冈)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.12.(2015•哈尔滨)如图,点D在△ABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=,AD=,CD=13,则线段AC的长为.13.(2015•遵义)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH 的边长为2,则S1+S2+S3= .14.(2015•株洲)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE 是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于.15.(2015•淄博)如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.三.解答题(共3小题)16.(2015•牡丹江)在△ABC中,AB=AC=4,∠BAC=30°,以AC为一边作等边△ACD,连接BD.请画出图形,并直接写出△BCD的面积.17.(2015•柳州)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.18.(2015•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.17.1 勾股定理参考答案与试题解析一.选择题(共6小题)1.(2015•菏泽)将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A.140°B.160°C.170°D.150°考点:直角三角形的性质.分析:利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.解答:解:∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.点评:此题主要考查了直角三角形的性质,得出∠COA的度数是解题关键.2.(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+1考点:勾股定理;等腰三角形的判定与性质.分析:根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.解答:解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1;∴BC=+1.点评:本题主要考查了勾股定理,同时涉及三角形外角的性质,二者结合,是一道好题.3.(2015•黑龙江)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5考点:勾股定理;等腰三角形的性质.专题:动点型.分析:过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.解答:解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.点评:本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.4.(2015•淄博)如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=5,AD=3,则图中长为4的线段有()A.4条B.3条C.2条D.1条考点:勾股定理;角平分线的性质;含30度角的直角三角形.分析:利用线段垂直平分线的性质得出BE=EC=4,再利用全等三角形的判定与性质得出AB=BE=4,进而得出答案.解答:解:∵∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足,∴AD=DE=3,BE=EC,∵DC=5,AD=3,∴BE=EC=4,在△ABD和△EBD中,∴△ABD≌△EBD(AAS),∴AB=BE=4,∴图中长为4的线段有3条.故选:B.点评:此题主要考查了勾股定理以及角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB是解题关键.5.(2015•天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A.2 B.3 C.4 D.5考点:等腰直角三角形;点到直线的距离.分析:首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长与比较得出答案.解答:解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=2,CD=,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=2•sin45°=2•=2>,所以在AB和AD边上有符合P到BD的距离为的点2个,故选A.点评:本题考查了解直角三角形和点到直线的距离,解题的关键是先求出各边上点到BD的最大距离比较得出答案.6.(2015•烟台)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为()A.()2012 B.()2013 C.()2012 D.()2013考点:等腰直角三角形;正方形的性质.专题:规律型.分析:根据题意可知第2个正方形的边长是,则第3个正方形的边长是,…,进而可找出规律,第n个正方形的边长是,那么易求S2015的值.解答:解:根据题意:第一个正方形的边长为2;第二个正方形的边长为:;第三个正方形的边长为:,…第n个正方形的边长是,所以S2015的值是()2012,故选C点评:本题考查了正方形的性质、等腰直角三角形的性质、勾股定理.解题的关键是找出第n个正方形的边长.二.填空题(共9小题)7.(2015•南昌)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2 .考点:勾股定理;含30度角的直角三角形;直角三角形斜边上的中线.专题:分类讨论.分析:利用分类讨论,当∠APB=90°时,易得∠PAB=30°,利用锐角三角函数得AP的长;当∠ABP=90°时,分两种情况讨论,情况一:如图2易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半得出结论.解答:解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=AB•sin60°=4×=2;当∠ABP=90°时,情况一:(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.点评:本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.8.(2015•黑龙江)正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为2,或,或.考点:勾股定理;等腰三角形的判定;正方形的性质.专题:分类讨论.分析:分情况讨论:(1)当BP=BE时,由正方形的性质得出AB=BC=CD=AD=4,∠A=∠C=∠D=90°,根据勾股定理求出BP即可;(2)当BE=PE时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;①由题意得出BM=BP=,证明△BME∽△BAP,得出比例式,即可求出BE;②设CE=x,则DE=4﹣x,根据勾股定理得出方程求出CE,再由勾股定理求出BE即可.解答:解:分情况讨论:(1)当BP=BE时,如图1所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,∵P是AD的中点,∴AP=DP=2,根据勾股定理得:BP===2;(2)当BE=PE时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;①当E在AB上时,如图2所示:则BM=BP=,∵∠BME=∠A=90°,∠MEB=∠ABP,∴△BME∽△BAP,∴,即,∴BE=;②当E在CD上时,如图3所示:设CE=x,则DE=4﹣x,根据勾股定理得:BE2=BC2+CE2,PE2=DP2+DE2,∴42+x2=22+(4﹣x)2,解得:x=,∴CE=,∴BE===;综上所述:腰长为:2,或,或;故答案为:2,或,或.点评:本题考查了正方形的性质、等腰三角形的判定、勾股定理;熟练掌握正方形的性质,并能进行推理计算是解决问题的关键.9.(2015•苏州)如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为16 .考点:勾股定理;直角三角形斜边上的中线;矩形的性质.分析:根据矩形的性质得到CD=AB=x,BC=AD=y,然后利用直角△BDE的斜边上的中线等于斜边的一半得到:BF=DF=EF=4,则在直角△DCF中,利用勾股定理求得x2+(y﹣4)2=DF2.解答:解:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,DF=4,∴BF=DF=EF=4.∴CF=4﹣BC=4﹣y.∴在直角△DCF中,DC2+CF2=DF2,即x2+(4﹣y)2=42=16,∴x2+(y﹣4)2=x2+(4﹣y)2=16.故答案是:16.点评:本题考查了勾股定理,直角三角形斜边上的中线以及矩形的性质.根据“直角△BDE的斜边上的中线等于斜边的一半”求得BF的长度是解题的突破口.10.(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为8cm2或2cm2或2cm2.考点:勾股定理;等腰三角形的判定;矩形的性质.专题:分类讨论.分析:因为等腰三角形腰的位置不明确,所以分三种情况进行讨论:(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=4时,如图:∴S△AEF=AE•AF=×4×4=8(cm2);(2)当AE=EF=4时,如图:则BE=5﹣4=1,BF===,∴S △AEF=•AE•BF=×4×=2(cm2);(3)当AE=EF=4时,如图:则DE=7﹣4=3,DF===,∴S △AEF=AE•DF=×4×=2(cm2);故答案为:8或2或2.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.11.(2015•黄冈)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为126或66 cm2.考点:勾股定理.分析:此题分两种情况:∠B为锐角或∠B为钝角已知AB、AC的值,利用勾股定理即可求出BC的长,利用三角形的面积公式得结果.解答:解:当∠B为锐角时(如图1),在Rt△ABD中,BD===5cm,在Rt△ADC中,CD===16cm,∴BC=21,∴S△ABC==×21×12=126cm2;当∠B为钝角时(如图2),在Rt△ABD中,BD===5cm,在Rt△ADC中,CD===16cm,∴BC=CD﹣BD=16﹣5=11cm,∴S△ABC==×11×12=66cm2,故答案为:126或66.点评:本题主要考查了勾股定理和三角形的面积公式,画出图形,分类讨论是解答此题的关键.12.(2015•哈尔滨)如图,点D在△ABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=,AD=,CD=13,则线段AC的长为4.考点:勾股定理;角平分线的性质;等腰三角形的判定与性质;解直角三角形.分析:作∠DAE=∠BAD交BC于E,作AF⊥BC交BC于F,作AG⊥BC交BC于G.根据三角函数设DF=4x,则AF=7x,在Rt△ADF中,根据勾股定理得到DF=4,AF=7,设EF=y,则CE=7+y,则DE=6﹣y,在Rt△DEF中,根据勾股定理得到DE=,AE=,设DG=z,则EG=﹣z,则()2﹣z2=()2﹣(﹣z)2,依此可得CG=12,在Rt △ADG中,据勾股定理得到AG=8,在Rt△ACG中,据勾股定理得到AC=4.解答:解:作∠DAE=∠BAD交BC于E,作DF⊥AE交AE于F,作AG⊥BC交BC于G.∵∠C+∠BAD=∠DAC,∴∠CAE=∠ACB,∴AE=EC,∵tan∠BAD=,∴设DF=4x,则AF=7x,在Rt△ADF中,AD2=DF2+AF2,即()2=(4x)2+(7x)2,解得x1=﹣1(不合题意舍去),x2=1,∴DF=4,AF=7,设EF=y,则CE=7+y,则DE=6﹣y,在Rt△DEF中,DE2=DF2+EF2,即(6﹣y)2=42+y2,解得y=,∴DE=6﹣y=,AE=,∴设DG=z,则EG=﹣z,则()2﹣z2=()2﹣(﹣z)2,解得z=1,∴CG=12,在Rt△ADG中,AG==8,在Rt△ACG中,AC==4.故答案为:4.点评:考查了勾股定理,等腰三角形的判定与性质,解直角三角形,解题的关键是根据勾股定理得到AG和CG的长.13.(2015•遵义)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH 的边长为2,则S1+S2+S3= 12 .考点:勾股定理的证明.分析:根据八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,得出CG=NG,CF=DG=NF,再根据S1=(CG+DG)2,S2=GF2,S3=(NG﹣NF)2,S1+S2+S3=12得出3GF2=12.解答:解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2=CG2+DG2+2CG•DG=GF2+2CG•DG,S2=GF2,S3=(NG﹣NF)2=NG2+NF2﹣2NG•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+NG2+NF2﹣2NG•NF=3GF2=12,故答案是:12.点评:此题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质,根据已知得出S1+S2+S3=3GF2=12是解题的难点.14.(2015•株洲)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE 是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于 6 .考点:勾股定理的证明.分析:根据面积的差得出a+b的值,再利用a﹣b=2,解得a,b的值代入即可.解答:解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故答案为:6.点评:此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.15.(2015•淄博)如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是120,150 度.考点:等腰直角三角形;等腰三角形的性质;等边三角形的性质.分析:根据等边三角形和等腰直角三角形的性质得出∠ABD=15°,利用全等三角形的判定和性质得出∠BAD=30°,再利用等腰三角形解答即可.解答:解:∵等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,∴∠ABD=∠ABC﹣∠DBC=60°﹣45°=15°,在△ABD与△ACD中,,∴△ABD≌△ACD(SAS),∴∠BAD=∠CAD=30°,∴过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是180°﹣15°﹣15°=150°;180°﹣30°﹣30°=120°,故答案为:120,150点评:此题考查等腰三角形的性质,关键是根据等边三角形和等腰直角三角形的性质得出∠ABD=15°.三.解答题(共3小题)16.(2015•牡丹江)在△ABC中,AB=AC=4,∠BAC=30°,以AC为一边作等边△ACD,连接BD.请画出图形,并直接写出△BCD的面积.考点:勾股定理;等腰三角形的性质;含30度角的直角三角形;等腰直角三角形.专题:分类讨论.分析:根据题意画出图形,进而利用勾股定理以及锐角三角函数关系求出BC的长,进而求出答案.解答:解:如图所示:过点D作DE⊥BC延长线于点E,∵AB=AC=4,∠BAC=30°,以AC为一边作等边△ACD,∴∠BAD=90°,∠ABC=∠ACB=75°,AB=AD=DC=4,∴∠ABD=∠ADB=45°,∠DBE=30°,∠DCE=45°,∴DB=4,则DE=EC=2,BE=BDcos30°=2,则BC=BE﹣EC=2﹣2,则△BCD的面积为:×2(2﹣2)=4﹣4.点评:此题主要考查了勾股定理以及等腰三角形的性质和锐角三角函数关系等知识,得出BC的长是解题关键.17.(2015•柳州)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.考点:勾股定理;三角形中位线定理.分析:(1)直接利用勾股定理得出BD的长即可;(2)利用平行线分线段成比例定理得出BD=AE,进而求出即可.解答:解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3;(2)延长CB,过点A作AE⊥CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=AE,∴AE=6,即BC边上高的长为6.点评:此题主要考查了勾股定理以及平行线分线段成比例定理,得出BD=AE是解题关键.18.(2015•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.考点:勾股定理;含30度角的直角三角形;等腰直角三角形.分析:(1)在四边形ABCD中,由∠A=∠C=45°,∠ADB=∠ABC=105°,得∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,求得AE,利用锐角三角函数得BE,得AB;(2)设DE=x,利用(1)的某些结论,特殊角的三角函数和勾股定理,表示AB,CD,得结果.解答:解:(1)过A点作DE⊥AB,过点B作BF⊥CD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,∵AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=;(2)设DE=x,则AE=x,BE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF==x,∴BF===,∴CF=,∵AB=AE+BE=,CD=DF+CF=x,AB+CD=2+2,∴AB=+1点评:本题考查了勾股定理、等腰直角三角形的判定和性质、含有30°角的直角三角形的性质,解题的关键是作辅助线DE、BF,构造直角三角形,求出相应角的度数.。
人教版八年级数学下册《勾股定理的逆定理》经典例题及解析
![人教版八年级数学下册《勾股定理的逆定理》经典例题及解析](https://img.taocdn.com/s3/m/b84d971b83d049649b6658ff.png)
初二数学下册知识点《勾股定理的逆定理》经典例题及解析题号一二三四总分得分一、选择题(本大题共73小题,共219.0分)1.如图所示,被纸板遮住的三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上三种情况都有可能【答案】D【解析】解:从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个锐角.故选D.三角形按角分类,可以分为锐角三角形、直角三角形、钝角三角形.有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;三个角都是锐角的三角形是锐角三角形.本题考查了三角形内角和定理的运用以及图形的识别能力和推理能力,解题的关键是熟记三角形内角和定理.2.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. π-6B. πC. π-3D. +π【答案】B【解析】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积-△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.3.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,则△ABC是()A. 直角三角形B. 等腰三角形C. 等腰三角形或直角三角形D. 等腰直角三角形【答案】C【解析】【分析】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键.移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解. 【解答】解:移项得,a2c2-b2c2-a4+b4=0,c2(a2-b2)-(a2+b2)(a2-b2)=0,(a2-b2)(c2-a2-b2)=0,所以,a2-b2=0或c2-a2-b2=0,即a=b或a2+b2=c2,因此,△ABC等腰三角形或直角三角形.故选C.4.一个三角形的三边长为15,20,25,则此三角形最大边上的高为( ).A. 10B. 12C. 24D. 48【答案】B【解析】【分析】此题主要考查了三角形面积,直角三角形的判定,勾股定理及其逆定理,解答此题的关键是根据三角形的三边的长,利用勾股定理逆定理求证该三角形为直角三角形.根据三角形的三边的长,利用勾股定理逆定理求证该三角形为直角三角形,然后根据三角形面积公式得出BD•AC=AB•BC,即可求得答案.【解答】解:已知三角形的三边分别是BC=15,AB=20,AC=25,BD是AC上的高,∵BC=15,AB=20,AC=25,∴AC2=AB2+BC2,∴三角形ABC为直角三角形,∵BD是AC上的高,∴BD•AC=AB•BC,∴BD=12.故选B.5.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. 2,3,4B. 3,4,5C. 6,8,12D.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、42+32=572,故是直角三角形,故此选项正确;C、62+82≠122,故不是直角三角形,故此选项错误;D、()2+()2≠()2,故不是直角三角形,故此选项错误.故选:B.6.下列以a,b,c为边的三角形,不是直角三角形的是()A. a=1,b=1,B. a=1,,c=2C. a=3,b=4,c=5D. a=2,b=2,c=3【答案】D【解析】解:A、∵12+12=()2,∴该三角形是直角三角形,故此选项不符合题意;B、∵12+()2=22,∴该三角形是直角三角形,故此选项不符合题意;C、∵32+42=52,∴该三角形是直角三角形,故此选项不符合题意;D、∵22+22≠32,∴该三角形不是直角三角形,故此选项符合题意.故选:D.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.下列给定的三条线段中,不能组成直角三角形的是()A. 9,12,15B. 0.5,1.2,1.3C. 7,8,9D. 7,24,25【答案】C【解析】解:A、92+122=152,故是直角三角形,故不符合题意;B、(0.5)2+(1.2)2=(1.3)2,故是直角三角形,故不符合题意;C、72+82≠92,故不是直角三角形,故符合题意;D、72+242=252,故是直角三角形,故不符合题意.故选:C.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.如图△ABC,BC=6,AC=8,AB=10,则点B到AC的距离是()A. 6B. 7C. 8D. 10【答案】A【解析】解:∵BC2+AC2=62+82=100,AB2=102=100,∴BC2+AC2=AB2,根据勾股定理逆定理得,△ABC是直角三角形,∠C=90°,所以,点B到AC的距离是6.故选:A.利用勾股定理逆定理判断出△ABC是直角三角形,∠C=90°,再根据点到直线的距离的定义解答.本题考查了勾股定理逆定理,点到直线的距离的定义,熟记定理并判断出三角形是直角三角形是解题的关键.9.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.【答案】B【解析】解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形,则使△ABC为直角三角形的概率是:.故选:B.由取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,直接利用概率公式求解即可求得答案.此题主要考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,方格中的点A,B称为格点(格线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】本题主要考查了勾股定理逆定理,关键是正确作出图形,不要漏掉任何一种情况.以AB为直角边有2个,以AB为斜边有2个,共4个.【解答】解:如图所示:以AB为一边画△ABC,其中是直角三角形的格点C共有4个,故选B.11.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则()A. ∠A为直角B. ∠C为直角C. ∠B为直角D. 不是直角三角形【答案】A【解析】解:∵(a+b)(a-b)=c2,∴a2-b2=c2,即c2+b2=a2,故此三角形是直角三角形,a为直角三角形的斜边,∴∠A为直角.故选:A.先把等式化为a2-b2=c2的形式,再根据勾股定理的逆定理判断出此三角形的形状,进而可得出结论.本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么12.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是()A. B. C. D.【答案】A【解析】解:A、三角形各边长为、、,()2+()2<()2,故该三角形不是直角三角形;B、由图可知该三角形为直角三角形;C、各边长、、,()2+()2=()2,故该三角形为直角三角形;D、各边长、2、5,()2+(2)2=(5)2,故该三角形为直角三角形.故选:A.由图可知B为直角三角形,分别求A、C、D三个选项中各边长,根据勾股定理的逆定理可以判定C、D中三角形为直角三角形,A不是直角三角形,即可解题.本题中考查了勾股定理的逆定理判定直角三角形,勾股定理在直角三角形中的运用,本题中求证B、C、D选项中三角形是直角三角形是解题的关键.13.下列条件:①∠A+∠B=∠C,②∠C=90°,③AC:BC:AB=3:4:5,④∠A:∠B:∠C=3:4:5.⑤a2=(b+c)(b-c)中,能确定△ABC是直角三角形的有()A. 2个B. 3个C. 4个D. 5个【答案】C【解析】解:①∠A+∠B=∠C时,∠C=90°,是直角三角形;②∠C=90°,是直角三角形;③AC:BC:AB=3:4:5,∴32+42=52,是直角三角形;④∠A:∠B:∠C=3:4:5时,∠C=180°×<90°,是锐角三角形;⑤a2=(b+c)(b-c),a2=b2-c2,是直角三角形.故能确定△ABC是直角三角形的有4个.故选:C.分别求出最大的角的度数,然后根据直角三角形的定义和勾股定理的逆定理解答.本题考查了直角三角形的性质,关键是掌握勾股定理,以及三角形内角和定理.14.以下各组线段为边不能组成直角三角形的是()A. 3,4,5B. 6,8,10C. 5,12,13D. 8,15,20【答案】D【解析】解:A、∵32+42=52,∴能构成直角三角形,故本选项错误;B、∵62+82=102,∴能构成直角三角形,故本选项错误;C、∵52+122=132,∴能构成直角三角形,故本选项错误;D、∵82+152≠202,∴不能构成直角三角形,故本选项正确.故选:D.根据勾股定理的逆定理对四个选项进行逐一判断即可.本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么15.满足下列条件的△ABC中,不是直角三角形的是()A. b2=c2-a2B. a:b:c=3:4:5C. ∠C=∠A-∠BD. ∠A:∠B:∠C=3:4:5【答案】D【解析】解:A、b2=c2-a2,a2+b2=c2,故能组成直角三角形,不符合题意;B、32+42=52,故能组成直角三角形,不符合题意;C、∠C=∠A-∠B,∠A=∠B+∠C,故能组成直角三角形,不符合题意;D、∠A:∠B:∠C=3:4:5,∠C=180°×=75°,故不能组成直角三角形,符合题意.故选:D.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.16.三角形的三边长a,b,c满足(a+b)2—c2 =2ab,则此三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形【答案】A【解析】【分析】本题考查勾股定理的逆定理,若是两边的平方和等于另一个边的平方,那么这个三角形是直角三角形.因为a、b、c,为三角形的三边长,可化简:(a+b)2-c2=2ab,得到结论.【解答】解:∵(a+b)2-c2=2ab,∴a2+2ab+b2-c2=2ab ,∴a2+b2=c2.所以为直角三角形.故选A.17.下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=5:12:13;④△ABC中,三边长分别为,其中,直角三角形的个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:①△ABC中,∠C=∠A-∠B,即∠C+∠B=∠A,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故①正确;②△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故②正确;③∵△ABC中,a:b:c=5:12:13,∴a2+b2=c2,即△ABC是直角三角形,故③正确;④∵△ABC中,三边长分别为,∴()2+()2≠()2,即△ABC不是直角三角形,故④错误;即正确的个数是3个,故选:C.根据三角形内角和定理即可判断②;根据勾股定理的逆定理即可判断③④.本题考查了勾股定理的逆定理和三角形的内角和定理,能灵活运用定理进行推理和计算是解此题的关键.18.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A. B.C. D.【答案】C【解析】【分析】本题主要考查了三角形的面积以及勾股定理的逆定理,关键在于正确的表示出斜边、直角边的长度,熟练运用勾股定理的逆定理进行分析.过C作CD⊥AB于D,依据AB=6,AC=8,可得CD≤8,进而得到当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC 的面积最大.【解答】解:如图,过C作CD⊥AB于D,∵AB=6,AC=8,∴CD≤8,∴当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC的面积最大,∴BC==10,∴四个三角形中面积最大的三角形的三边长分别为6,8,10,故选C.19.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中是直角三角形的有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:∵四根小木棒的长分别为5cm,8cm,12cm,13cm,∴可以组成三角形的有:5cm、8cm、12cm;5cm、12cm、13cm;8cm、12cm、13cm.要组成直角三角形,根据勾股定理两边的平方和等于第三边的平方,则只有5cm、12cm、13cm的一组.∴有1个直角三角形.故选:A.要组成三角形,由三角形的边长关系,两边之和大于第三边,两边之差小于第三边.根据直角三角形的性质,两个直角边的平方和等于斜边的平方,从四个数中可以得出5cm、12cm、13cm可以满足要求,其中5cm、12cm为直角边,13cm为斜边.本题考查了勾股定理逆定理的运用以及三角形的三边关系,两边的平方和等于第三边的平方.属于比较简单的题目.20.下列各组数据中能作为直角三角形的三边长的是()A. 1,2,2B. 1,1,C. 4,5,6D. 1,,2【答案】D【解析】【分析】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.解答此题根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A.∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B.∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C.∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D.∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.21.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,则满足下列条件但不是直角三角形的是()A. a2-c2=b2B. a=n2-1,b=2n,c=n2+1 (n>1)C. ∠A:∠B:∠C=3:4:5D. ∠A=∠B=∠C【答案】C【解析】解:A、a2-c2=b2,那么a2=b2+c2,故△ABC是直角三角形;故不符合题意;B、∵a2+b2=(n2-1)2+(2n)2=(n2+1)2=c2,故△ABC是直角三角形;故不符合题意;C、∠A:∠B:∠C=3:4:5,故△ABC不是直角三角形;故符合题意;D、∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,故△ABC是直角三角形;故不符合题意;故选:C.运用直角三角形的判定方法,当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形.分别判定即可.此题主要考查了直角三角形的判定方法,勾股定理逆定理的实际运用,灵活的应用此定理是解决问题的关键.22.以a,b,c为边的三角形是直角三角形的是()A. a=2,b=3,c=4B. a=1,b=,c=2C. a=4,b=5,c=6D. a=2,b=2,c=【答案】B【解析】解:A、32+22≠42,故不是直角三角形,故本选项不符合题意;B、12+()2=22,故是直角三角形,故本选项符合题意;C、42+52≠62,故不是直角三角形,故本选项不符合题意;D、22+22≠()2,故不是直角三角形,故本选项不符合题意.故选:B.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查了勾股定理的逆定理;熟练掌握勾股定理的逆定理,并能进行推理计算是解决问题的关键.23.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,连接AB,BC,CA,则∠ACB的度数为()A. 30°B. 45°C. 60°D. 75°【答案】B【解析】解:根据勾股定理可以得到:AC=AB=,BC=,∵,即AC2+AB2=BC2,∴△ABC是等腰直角三角形.∴∠ACB=45°.故选:B.分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC 的度数.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键,注意在格点三角形中利用勾股定理.24.满足下列条件的△ABC,不是直角三角形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【解答】解:A.∵a2+b2=c2,根据勾股定理的逆定理∠C=90°,是直角三角形,故本选项错误;B.∵(3k)2+(4k)2=25k2=(5k)2,∴△ABC是直角三角形,故本选项错误;C.∵∠C=∠A-∠B,∴∠C+∠B=∠A,∴∠A=90°,是直角三角形,故本选项错误;D.∵∠A:∠B:∠C=3:4:5,∴最大的角∠C=180°×<90°,是锐角三角形,故本选项正确.故选D.25.下列给定的三条线段中,不能组成直角三角形的是()A. 9,12,15B. ,,C. 7,8,9D. 7,24,25【答案】C【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A.92+122=152,故是直角三角形,故不符合题意;B.(0.5)2+(1.2)2=(1.3)2,故是直角三角形,故不符合题意;C.72+82≠92,故不是直角三角形,故符合题意;D.72+242=252,故是直角三角形,故不符合题意.故选C.26.若△ABC的三边长a,b,c满足(a -b)(b-c)=0 ,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰或等边三角形【答案】D【解析】【分析】此题主要考查等腰三角形的判断.根据(a-b)(b-c)=0,可知三边关系,即可判断结果. 【解答】解:∵a,b,c是△ABC的三边长,又∵(a-b)(b-c)=0,∴a=b或者b=c或者a=b=c,所以三角形是等腰三角形或等边三角形 .故选D.27.五根小木棒,其长度分别为,现将他们摆成两个直角三角形,其中正确的是( )A. B.C. D.【答案】C【解析】【分析】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A:152+202≠242,72+242=252,故A错误;B:72+242=252,152+202≠242,故B错误;C:72+242=252,152+202=252,故C正确;D:72+202≠252,152+242≠252,故D错误.故选C.28.满足下列条件的△ABC,不是直角三角形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了直角三角形的判定及勾股定理的逆定理,掌握直角三角形的判定及勾股定理的逆定理是解题的关键.依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.【解答】解:A.由b2-a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;B.由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;C.由三角形三个角度数和是180°及∠C=∠A-∠B解得∠A=90°,故是直角三角形;D.由∠A:∠B:∠C=3:4:5,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形.故选D.29.如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕,则△BDE的周长为()A. 6B. 8C. 12D. 14【答案】C【解析】解:在Rt△ABC中,∵AC=6,BC=8,∠C=90°,∴AB==10,由翻折的性质可知:AE=AC=6,CD=DE,∴BE=4,∴△BDE的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=12,故选:C.利用勾股定理求出AB=10,利用翻折不变性可得AE=AC=6,推出BE=4即可解决问题.本题考查翻折变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.30.下列各组数不能构成直角三角形的是A. 12,5,13B. 40,9,41C. 7,24,25D. 10,20,16【答案】D【解析】【分析】本题主要考查了勾股定理的逆定理的运用,判断三条线段能否构成直角三角形,只需看两条短边的平方和是否等于长边的平方,如果等就是直角三角形,不等就不是直角三角形,解答此题根据勾股定理的逆定理进行判断即可.【解答】解:A.∵52+122=132,∴能构成直角三角形;B.∵402+92=412,∴能构成直角三角形;C.∵72+242=252,∴能构成直角三角形;D.∵102+162≠202,∴不能构成直角三角形.故选D.31.以下列各组线段为边作三角形,能构成直角三角形的是()A. 2,3,4B. 4,4,6C. 6,8,10D. 7,12,13【答案】C【解析】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、42+42=32≠62,不能构成直角三角形,故本选项错误;C、62+82=100=102,能构成直角三角形,故本选项正确;D、122+72=193≠132,不能构成直角三角形,故本选项错误;故选:C.只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.32.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A. B. C. D.【答案】D【解析】解:所有的情况有:4,6,8;4,6,10;4,8,10;6,8,10,共4种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,所以从中任取三条能构成直角三角形的概率是;故选:D.找出四条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.33.若△ABC三边分别是a,b,c,且满足(b-c)(a2+b2)=bc2-c3,则△ABC是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形【答案】D【解析】略34.下列选项中,不能判断△ABC为直角三角形的是()A. ∠A+∠B=∠CB. A:∠B:∠C=1:2:3C. ∠A=∠B=2∠CD. AB2+BC2=AC2【答案】C【解析】解:A、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;B、因为∠A:∠B:∠C=1:2:3,所以设∠A=x,则∠B=2x,∠C=3x,故x+2x+3x=180°,解得x=30°,3x=30°×3=90°,故为直角三角形;C、因为∠A=∠B=2∠C,∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,故此三角形是锐角三角形,错误;D、因为AB2+BC2=AC2,故为直角三角形;故选:C.A、根据三角形的内角和为180度,即可计算出∠C的值;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠A、∠B、∠C的值;D、根据勾股定理的逆定理进行判定即可.此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.35.在下列条件中:,,,④,⑤中,能确定是直角三角形的条件有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】本题考查了三角形内角和定理的应用,能求出每种情况的最大角的度数是解此题的关键,题目比较好,难度适中.根据三角形的内角和定理得出∠A+∠B+∠C=180°,再根据已知的条件逐个求出∠C的度数,即可得出答案.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴△ABC是直角三角形,故②正确;③∵∠A=90°-∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故③正确;④∵∠A=∠B=∠C,设∠A=x,∠B=2x,∠C=3x,∴x+2x+3x=180°,∴x=30º,3x=90º,∴∠C=90°,∴△ABC是直角三角形,故④正确,⑤∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴5∠C=180°∴∠C=36°∴∠A=∠B=72°∴△ABC不是直角三角形,∴⑤错误.综上所述①②③④4个全部符合题意.故选D.36.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=900-∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】略37.下列说法中:①如果∠A+∠B﹣∠C=0,那么△ABC是直角三角形;②如果∠A:∠B:∠C=5:12:13,则△ABC是直角三角形;③如果三角形三边之比为,则△ABC为直角三角形;④如果三角形三边长分别是n2﹣4、4n、n2+4(n>2),则△ABC是直角三角形.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题考查了直角三角形的判定,勾股定理的逆定理和三角形的内角和定理.利用三角形内角和定理和勾股定理逆定理逐项进行判断,从而得到答案.【解答】解:①符合题意,由三角形内角和定理可求出∠C为90度;②不符合题意,根据三角形的内角和定理可以求出三角形的三个内角分别为30°,72°,78°,不是直角三角形;③符合题意,设三边分别为x,x,x,则有7x2+10x2=17x2,则△ABC为直角三角形;④符合题意,因为,则△ABC是直角三角形.所以正确的有①③④.故选C.38.如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,则四边形ABCD的面积为()B. 30cm2C. 24cm2D. 36cm2【答案】C【解析】解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∴AC=5cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD-S△ABC=AC×CD-AB×BC=×5×12-×4×3=30-6=24(cm2).故四边形ABCD的面积为24cm2.故选:C.连接AC,在Rt△ADC中,已知AB,BC的长,运用勾股定理可求出AC的长,在△ADC 中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD 的面积为Rt△ACD与Rt△ABC的面积之差.本题考查的是勾股定理的逆定理及三角形的面积公式,根据题意作出辅助线,判断出△ACD的形状是解答此题的关键.39.王老师给出了下列三条线段的长度,其中能首尾相接构成直角三角形的是()A. 1,2,3B.C. 6,8,9D. 5,12,13【答案】D【解析】解:A、由22+12=5≠32,故本选项错误;B、由()2+()2=7≠()2,故本选项错误;C、由62+82=100≠92,故本选项错误;D、由52+122=169=132,故本项正确.故选:D.根据三边的长,运用勾股定理的逆定理进行分析解答即可.本题主要考查勾股定理的逆定理,关键在于正确的表示出斜边、直角边的长度,熟练运用勾股定理的逆定理进行分析.40.图中三角形的个数是( )A. 6B. 7C. 8D. 9【解析】【分析】本题考查了三角形的定义,根据图形找出其中三角形即可得结果.【解答】解:图中三角形有ΔABF、ΔADF、ΔCDF、ΔAEC、ΔACD、ΔABD、ΔAED、ΔBDE,共8个.故选C.41.在下列几组数中,能作为直角三角形三边的是().A. 0.9,1.6,2.5B. ,,C. 32,42,52D. ,,【答案】D【解析】解:A、0.92+1.62≠2.52,不符合勾股定理的逆定理,故选项错误;B、()2+()2≠()2,不符合勾股定理的逆定理,故选项错误;C、(32)2+(42)2≠(52)2,不符合勾股定理的逆定理,故选项错误;D、()2+()2=()2,符合勾股定理的逆定理,故选项正确.故选D.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.42.给出下列四个说法:①由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5为边长的三角形不是直角三角形;②由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,其中正确的是()A. ①②B. ②③C. ③④D. ①④【答案】C【解析】【分析】此题考查了勾股数:满足a2+b2=c2的三个正整数,称为勾股数.注意:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是勾股数.②一组勾股数扩大相同的整数倍得到的三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;….欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:①由于0.32+0.42=0.52,所以以0.3,0.4,0.5为边长的三角形是直角三角形,但是0.3,0.4,0.5不是整数,所以0.3,0.4,0.5不是勾股数,故①说法错误;②虽然以0.5,1.2,1.3为边长的三角形是直角三角形,但是0.5,1.2,1.3不是整数,所以0.5,1.2,1.3不是勾股数,故②说法错误;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2,故③说法正确;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,故④说法正确.故选:C.43.已知△ABC,三边长AB=8cm,AC=6cm,BC=10cm,则最长边上的高是()A. 48cmB. 4.8cmC. 0.48cmD. 5cm【答案】B【解析】【分析】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,三角形的面积,是基础知识要熟练掌握.勾股的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形. 首先根据勾股定理的逆定理得出斜边为AB,再利用“面积法”来求AB边上的高.【解答】解:∵Rt△ABC的三边AC=6cm,BC=8cm,AB=10cm,∴AB2=AC2+BC2,∠C=90°,,∴AB边上的高.故选B.44.线段BC上有3个点P1、P2、P3,线段BC外有一点A,把A和B、P1、P2、P3、C连接起来,可以得到的三角形个数为()A. 8个B. 10个C. 12个D. 20个【答案】B【解析】解:从5个点中,任意选2个点组合,显然有10种情况.故选B.45.将下列各组数据中的三个数作为三角形的三边长,其中能构成直角三角形的是( )A. ,,B. 1,,C. 6,7,8D. 2,3,4【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A.,不能构成直角三角形,故错误;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷17.2 勾股定理的逆定理一.选择题(共5小题)1.(2015•桂林)下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,62.(2015•淮安)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=53.(2015•广西)下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,,4.(2015•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,45.(2015•资阳)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm二.填空题(共12小题)6.(2015•山西)太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=80cm,AD=24cm,BC=25cm,EH=4cm,则点A到地面的距离是cm.7.(2015•常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.8.(2015•厦门)已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是km;若A地在C地的正东方向,则B地在C 地的方向.9.(2015•朝阳)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).10.(2015•东营)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.11.(2015•庆阳)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)12.(2014•东营)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行米.13.(2014•河池)如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地千米(结果可保留根号).14.(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.15.(2014•潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.16.(2013•包头)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.17.(2013•阜新)如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度=米.三.解答题(共5小题)18.(2015•娄底)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)19.(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.20.(2014•湘潭)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)21.(2014•黄石)小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你帮助小明解决以下问题:(1)求A、C之间的距离;(参考数据=4.6)(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,小明应该选择哪种乘车方案?请说明理由.(不计候车时间)22.(2014•凉山州)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A 处到达内壁B处的最短距离为cm.17.2 勾股定理的逆定理参考答案与试题解析一.选择题(共5小题)1.(2015•桂林)下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答:解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.(2015•淮安)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5考点:勾股定理的逆定理.分析:根据勾股定理的逆定理对各选项进行逐一分析即可.解答:解:A、∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C、∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D、∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选D.点评:本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.(2015•广西)下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,,考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.解答:解:A、12+22≠32,不能组成直角三角形,故错误;B、22+32≠42,不能组成直角三角形,故错误;C、42+52≠62,不能组成直角三角形,故错误;D、12+()2=()2,能够组成直角三角形,故正确.故选D.点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.(2015•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4考点:勾股定理的逆定理.分析:知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.解答:解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.(2015•资阳)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm考点:平面展开-最短路径问题.分析:将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.解答:解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===13(Cm).故选:A.点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.二.填空题(共12小题)6.(2015•山西)太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=80cm,AD=24cm,BC=25cm,EH=4cm,则点A到地面的距离是cm.考点:勾股定理的应用.分析:分别过点A作AM⊥BF于点M,过点F作FN⊥AB于点N,利用勾股定理得出BN的长,再利用相似三角形的判定与性质得出即可.解答:解:过点A作AM⊥BF于点M,过点F作FN⊥AB于点N,∵AD=24cm,则BF=24cm,∴BN===7(cm),∵∠AMB=∠FNB=90°,∠ABM=∠FBN,∴△BNF∽△BMA,∴=,∴=,则:AM==,故点A到地面的距离是:+4=(m).故答案为:.点评:此题主要考查了勾股定理的应用以及相似三角形的判定与性质,得出△BNF∽△BMA是解题关键.7.(2015•常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是(400,800).考点:勾股定理的应用;坐标确定位置;全等三角形的应用.分析:根据题意结合全等三角形的判定与性质得出△AOD≌△ACB(SAS),进而得出C,A,D也在一条直线上,求出CD的长即可得出C点坐标.解答:解:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中∵,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).点评:此题主要考查了全等三角形的判定与性质以及勾股定理,得出C,A,D也在一条直线上是解题关键.8.(2015•厦门)已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是5km;若A地在C地的正东方向,则B地在C地的正北方向.考点:勾股定理的应用;方向角.分析:根据勾股定理来求AB的长度.由于∠C=90°,A地在C地的正东方向,则B地在C地的正北方向.解答:解:∵∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,∴AB===5(km).又∵A地在C地的正东方向,则B地在C地的正北方向.故答案是:5;正北.点评:本题考查了勾股定理的应用和方向角.勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.9.(2015•朝阳)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 2.9米(结果精确到0.1米,参考数据:=1.41,=1.73).考点:勾股定理的应用.分析:首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.解答:解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4﹣4≈2.9(米),故答案为:2.9.点评:此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.10.(2015•东营)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.考点:平面展开-最短路径问题.专题:计算题.分析:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,此时AB最短,根据三角形MCB与三角形ACN相似,由相似得比例得到MC=2NC,求出CN的长,利用勾股定理求出AC 的长即可.解答:解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,∵△BCM∽△ACN,∴=,即==2,即MC=2NC,∴CN=MN=,在Rt△ACN中,根据勾股定理得:AC==,故答案为:.点评:此题考查了平面展开﹣最短路径问题,涉及的知识有:相似三角形的判定与性质,勾股定理,熟练求出CN的长是解本题的关键.11.(2015•庆阳)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)考点:平面展开-最短路径问题.分析:根据绕两圈到C,则展开后相当于求出直角三角形ACB的斜边长,并且AB的长为圆柱的底面圆的周长,BC的长为圆柱的高,根据勾股定理求出即可.解答:解:如图所示,∵无弹性的丝带从A至C,∴展开后AB=2πcm,BC=3cm,由勾股定理得:AC==cm.故答案为:.点评:本题考查了平面展开﹣最短路线问题和勾股定理的应用,能正确画出图形是解此题的关键,用了数形结合思想.12.(2014•东营)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行10米.考点:勾股定理的应用.专题:几何图形问题;转化思想.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=12m,小树高为CD=6m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=6m,EC=8m,AE=AB﹣EB=12﹣6=6(m),在Rt△AEC中,AC==10(m).故小鸟至少飞行10m.故答案为:10.点评:本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.13.(2014•河池)如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地千米(结果可保留根号).考点:勾股定理的应用;方向角.分析:根据题意利用锐角三角函数得出BD,AD的长,再利用勾股定理得出AC的长.解答:解:如图所示,由题意可得:AB=2,∠B=60°,则BD=ABcos60°=1(km),AD=ABsin60°=(km),故DC=2km,则AC===(km).故答案为:.点评:此题主要考查了勾股定理的应用以及解直角三角形的应用,得出AD,DC的长是解题关键.14.(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.考点:平面展开-最短路径问题;截一个几何体.专题:压轴题;数形结合.分析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.解答:解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).点评:考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.15.(2014•潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.考点:平面展开-最短路径问题;勾股定理的应用.专题:压轴题;转化思想.分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.解答:解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.点评:本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.16.(2013•包头)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=135度.考点:勾股定理的逆定理;正方形的性质;旋转的性质.专题:压轴题.分析:首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45°,即可得出答案.解答:解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=∠BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.点评:此题主要考查了旋转的性质,根据已知得出△EBE′是直角三角形是解题关键.17.(2013•阜新)如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 4.7米.考点:勾股定理的应用.分析:先根据题意得出AD的长,在Rt△ACD中利用锐角三角函数的定义求出CD的长,由CE=CD+DE即可得出结论.解答:解:由题意,易知∠CAD=30°,∠CDA=90°,AD=3,CE⊥BE,DE=AB=1.7米,∴tan∠CAD=,∴CD=×3=3,∴CE=3+1.7=4.7(米).即这棵树的高度为4.7米.故答案为:4.7.点评:本题考查的是解直角三角形在实际生活中的应用,难度适中,熟知锐角三角函数的定义是解答此题的关键.三.解答题(共5小题)18.(2015•娄底)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A 到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)考点:勾股定理的应用.分析:根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.解答:解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×=100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∵60千米/小时=m/s,∴=14.6(m/s)<≈16.7(m/s),∴此车没有超速.点评:此题主要考查了勾股定理以及锐角三角函数关系的应用,得出AB的长是解题关键.19.(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.考点:勾股定理的应用;垂径定理的应用.分析:(1)直接利用直角三角形中30°所对的边等于斜边的一半求出即可;(2)根据题意可知,图中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂径定理及勾股定理解答即可.解答:解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=80m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×80=40m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m,故BC=2×30=60米,即重型运输卡车在经过BD时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=300米/分钟,∴重型运输卡车经过BD时需要60÷300=0.2(分钟)=12(秒).答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.点评:此题考查的是垂径定理与勾股定理在实际生活中的运用,解答此题的关键是卡车在哪段路上运行时对学校产生影响.20.(2014•湘潭)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)考点:勾股定理的应用.专题:几何图形问题.分析:首先证明△BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,然后再代入BD=800米进行计算即可.解答:解:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,在Rt△DCB中:CD2+BC2=BD2,2CD2=8002,CD=400≈566(米),答:直线L上距离D点566米的C处开挖.点评:此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.21.(2014•黄石)小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你帮助小明解决以下问题:(1)求A、C之间的距离;(参考数据=4.6)(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,小明应该选择哪种乘车方案?请说明理由.(不计候车时间)考点:勾股定理的应用.专题:几何图形问题.分析:(1)过点C作AB的垂线,交AB的延长线于E点,利用勾股定理求得AC的长即可;(2)分别求得乘车时间,然后比较即可得到答案.解答:解:(1)过点C作AB的垂线,交AB的延长线于E点,∵∠ABC=120°,BC=20,∴BE=10,在△ACE中,∵AC2=8100+300,∴;(2)乘客车需时间(小时);乘列车需时间(小时);∴选择城际列车.点评:本题考查了勾股定理的应用,解题的关键是正确的构造直角三角形.22.(2014•凉山州)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A 处到达内壁B处的最短距离为20cm.考点:平面展开-最短路径问题.专题:操作型.分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.解答:解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为:20.点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.。