不等式(组)应用题及答案
列方程(组)、不等式(组)解应用题参考答案
![列方程(组)、不等式(组)解应用题参考答案](https://img.taocdn.com/s3/m/5c25a39b02768e9950e73814.png)
列方程(组)、不等式(组)解应用题1、某城市按以下规定收取每月的水费:用水量不超过6吨,按每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?2、江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克,求粗加工的该种山货质量.3、植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?4、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?5、一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.根据这些信息,请你推测这群学生共有多少人?6、A 、B 两地相距40km ,甲骑自行车从A 地出发1小时后,乙也从A 地出发,用相当于甲的1.5的速度追赶,当追到B 地时,甲比乙先到20分钟,求甲、乙两人的速度.7、 某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?8、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)9、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.10、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1) 求A、B两种纪念品的进价分别为多少?(2) 若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?。
不等式组应用题及答案
![不等式组应用题及答案](https://img.taocdn.com/s3/m/b2c7f4b96aec0975f46527d3240c844769eaa0e3.png)
不等式组应用题及答案用“大于号”、“小于号”、“不等号”、“大于等于”或“小于等于”连接并具有大小关系的式子,叫做不等式。
几个不等式联立起来,叫做不等式组。
以下是小编整理的不等式组应用题及答案,希望对你有帮助。
题目:一、选择题1,下列各式中,是一元一次不等式的是()a.5+48b.2x-1c.2x≤5d.-3x≥02,已知aa.4a3,下列数中:76,73,79,80,74.9,75.1,90,60,是不等式x50的解的有()a.5个b.6个c.7个d.8个4,若t0,那么a+t与a的大小关系是()a.+tb.a+tac.a+t≥ad.无法确定5,(2008年永州)如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等则下列关系正确的是( )a.acbb.bacc.abcd.cab6,若a0的解集是()a.xb.x-d.x7,不等式组的整数解的个数是()a.1个b.2个c.3个d.4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为()a1小时~2小时b2小时~3小时c3小时~4小时d2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是()a.5千米b.7千米c.8千米d.15千米10,在方程组中若未知数x、y满足x+y≥0,则m的取值范围在数轴上表示应是()二、填空题11,不等号填空:若a12,满足2n-11-3n的最小整数值是________.13,若不等式ax+b-1,则a、b应满足的条件有______.14,满足不等式组的整数x为__________.15,若|-5|=5-,则x的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g10g,表明了这罐八宝粥的净含量的范围是.17,小芳上午10时开始以每小时4km的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________.18,代数式x-1与x-2的值符号相同,则x的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)(3) (4)20,代数式的值不大于的值,求x的范围21,方程组的解为负数,求a的范围.22,已知,x满足化简:.23,已知│3a+5│+(a-2b+)2=0,求关于x的不等式3ax-(x+1)24,是否存在这样的整数m,使方程组的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案:一、选择题1,c;2,c;3,a;4,a.解:不等式t0利用不等式基本性质1,两边都加上a得a+ta.5,c.6,d.解:不等式ax+10,ax-1,∵a7,d.解:先求不等式组解集-8,d;9,c.10,d.解:①+②,得3x+3y=3-m,∴x+y=,∵x+y≥0,∴≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选d.二、填空题11,、、,再利用数轴找到最小整数n=1.13,a14,-2,-1,0,1解析:先求不等式组解集-315,x≤11解析:∵│a│=-a时a≤0,∴-5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10) 18,x2或x三、解答题19,(1)9-4(x-5).(2).解:,去分母3x-(x+8)(3)解:解不等式①得x,解不等式②得x≤4,∴不等式组的解集(4)解:解不等式①得x≥-,解不等式②得x1,∴不等式组的解集为x1.20,;21,a23,解:由已知可得代入不等式得-5x-(x+1)-1,∴最小非负整数解x=0.24,解:得∵x,y为非负数∴解得-≤m≤,∵m为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解的m,•从而建立关于m为未知数的一元一次不等式组,求解m的取值范围,选取整数解.25,设有x只猴子,则有(3x+59)只桃子,根据题意得:0。
专题复习 第2课 不等式(组)的应用(含答案)-
![专题复习 第2课 不等式(组)的应用(含答案)-](https://img.taocdn.com/s3/m/ec512918b7360b4c2e3f64a9.png)
第2 课不等式(组)的应用◆考点分析利用不等式(组)解决某些实际生活中的问题是近几年中考应用题的热点。
不等式(组)的应用题常与方程、函数和几何知识结合起来考查。
解决这类题关键是抓住以下几点:1、认真审题,把握问题中表示不等关系的关键语句。
2、根据题意,恰当地设置未知数。
3、准确地用代数式表示相关的量。
4、根据不等关系列出不等式(组)。
◆典型例题例1某中学九年级甲、乙两班在“美化、绿化家乡”的活动中,两班栽树的总棵数相同,均多于300棵且少于400棵。
已知甲班有一人栽了6棵,其余每人都栽了9棵;乙班有一人栽了13棵,其余每人都栽了8棵。
求甲、乙两班学生总人数。
(2006年新疆乌鲁木齐)【解题分析】本题的取材与学生息息相关,贴近学生的生活。
根据题目中“总棵树相同”,“多于”“少于”这些关键词,把它们转化为符号语言,从而得到方程和不等式。
可用消元法,进而再求出未知数的整数解。
【同类变式】为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序,若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人,求这个中学共选派值勤学生多少?共有多少个交通路口安排值勤?例2某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示。
现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶。
设生产A种饮料x瓶,解答下列问题:(1)有几种符合题意的生产方案?写出解答过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与 x之间的关系式,并说明x取何值会使成本总额最小?(2007年青岛)Array【解题分析】(1)观察图表,可知生产A、B两种饮料分别用甲、乙原料的量,由题意可得,甲、乙原料各2800克,所以由甲、乙原料总和均小于或等于2800克,得不等式组。
不等式组应用题及答案
![不等式组应用题及答案](https://img.taocdn.com/s3/m/8f690832ba1aa8114431d9fe.png)
不等式组应用题及答案篇一:不等式(组)应用题类型及解答(包含各种题型)一元一次不等式(组)应用题类型及解答1. 分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
3、把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,有多少颗?4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元)①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式)②当学生数是多少时,两家旅行社的收费一样???就学生数x 讨论哪家旅行社更优惠。
③就学生数x讨论哪家旅行社更优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
不等式(组)及分式方程综合应用
![不等式(组)及分式方程综合应用](https://img.taocdn.com/s3/m/202d087fa8956bec0875e314.png)
典例精解
考点: 分式方程,一元一次不等式(组)的应用
开明中学开学初在金利源商场购进A,B两种品牌的足球, 购买A品牌足球花费了2500元,购买B品牌足球花费了2000 元,且购买A品牌足球的数量是购买B品牌足球数量的2倍, 已知购买一个B品牌足球比购买一个A品牌足球多花30元. (1)求购买一个A品牌、一个B品牌的足球各需多少元;
专题突破
旧知回顾
1、某产品进价120元,共有15件,为了使利润不低 于1000元,那么这件产品的定价至少在多少元?
解:设定价为x元
(x-120) ×15≥1000
2.某人骑一辆电动自行车,如果行驶速度增加5km/h ,那么2h所行驶的路程不少于原来速度2.5h所行驶 的路程.他原来行驶的速度最大是多少?
(3)【延伸题】在(2)条件下,若购买B品牌的足球数 不少于A品牌足球数的1.5倍,求有多少种购买方案?
变式训练
考点: 分式方程,一元一次不等式(组)的应用
为配合“一带一路”国家倡议,某铁路货运集装箱物流 园区正式启动了2期扩建工程.一项地基基础加固处理 工程由A、B两个工程公司承担建设,已知A工程公司 单独建设完成此项工程需要180天.A工程公司单独施 工45天后,B工程公司参与合作,两工程公司又共同施 工54天后完成了此项工程. (1)求B工程公司单独建设完成此项工程需要多少天?
(2)设未知数注意和题目中各个量关系都密切 的量,注意根据问题情况灵活选择设法,如直接 法,间接法,设多元等 (3)求分式方程的解,验根应从两个方面出发: 方程本身和实际意义
(2)开明中学为响应习总书记“足球进校园”的号召,决 定再次购进A,B两种品牌足球共50个.恰逢金利源商场对两 种品牌足球的售价进行调整,A品牌足球的售价比第一次购 买时提高了8%,B品牌足球按第一次购买时售价的9折出售. 如果这所中学此次购买A,B两种品牌足球的总费用不超过 3260元,那么开明中学此次最多可购买多少个B品牌足球?
不等式应用题(带答案)
![不等式应用题(带答案)](https://img.taocdn.com/s3/m/3a8f6f2e58eef8c75fbfc77da26925c52dc5914e.png)
不等式应用 题1、去年某市空气质量良好的天数与全年的天数(365)之比达到60%,如果明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数要比去年至少增加多少?解:设明年空气质量良好的天数比去年增加了x6036570100365100x +⨯>则: 36.5x >解得:37x x ≥依题意,应为整数,所以:答:明年空气质量良好的天数要比去年至少增加37,才能使这一年空气质量良好的天数超过全年天数的70%。
2、甲、乙两商场以同样价格出售同样商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费;顾客到哪家商场购物花费少?解: (1)当累计购物不超过50元时,到两商场购物花费一样。
(2)当累计购物超过50元时而不超过100元时,到乙商场购物花费少。
(3)当累计购物超过100元时,设累计购物(100)x x >元。
①500.95(50)1000.9(100)150x x x +->+->由:解得:所以,累计购物超过150元时,到甲商场购物花费少②500.95(50)1000.9(100)150x x x +-+-由:<解得:<所以,累计购物超过100元而不超过150元时,到乙商场购物花费少③500.95(50)1000.9(100)150x x x +-+-由:=解得:=所以,累计购物超为150元时,到两商场购物花费一样。
3、某工程队计划在10天内修路6km ,施工前两天修完1.2 km 以后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少?解:设以后几天内平均每天至少要修路x km 。
则6 1.26x +≥ 解得:0.8x ≥答:以后几天内平均每天至少要修路0.8 km.4、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少分?解:设小明至少要答对x 道题。
一元一次不等式(组)应用题及练习(含答案)
![一元一次不等式(组)应用题及练习(含答案)](https://img.taocdn.com/s3/m/1abdd8a06429647d27284b73f242336c1eb930b1.png)
类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。
不等式(组)应用题及答案
![不等式(组)应用题及答案](https://img.taocdn.com/s3/m/03cf78259e31433238689397.png)
不等式组应用题及答案1.如图是用矩形厚纸片(厚度不计)做长方体包装盒的示意图,阴影部分是裁剪掉的部分.沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处矩形形状的“舌头”用来折叠后粘贴或封盖.ﻫ(1)若用长31cm,宽26cm的矩形厚纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“舌头”的宽度相等.求“舌头”的宽度和纸盒的高度;ﻫ(2) )现有一张40cm×35 cm的矩形厚纸片,按如图所示的方法设计包装盒,用来包装一个圆柱形工艺笔筒,已知该种笔筒的高是底面直径2.5倍,要求包装盒“舌头”的宽度为2cm(如有多余可裁剪),问这样的笔筒底面直径最大可以为多少?分析:找出题中的折叠规律,空间思维的,想象一下纸盒折叠后的形状,设“舌头”的宽为x,长为y,利用矩形硬纸的长宽,正确的列出方程,即可求出,(2)做成的包装盒的长宽必不大于纸盒的长宽列不等式.解答:解:(1)设“舌头”的宽度为xcm,盒底边长为ycm.ﻫ根据题意得ﻫ解得6×2.5=15(cm)答:“舌头”的宽度为2cm,纸盒的高度为15cm.(2)设瓶底直径为dcm,根据题意得ﻫﻫ解得:d≤8ﻫ答:这样的笔筒的底面直径最大可以为8cm.水是人类最宝贵的资源之一,我国水资源均占有量远远低于世界平均水平,为了节约用水,保护环境,学校于本学期初便制定了详细的用水计划,如果实际每天比计划多用1t水,那么本学期的用水总量将会超过2300t如果实际每天比计划节约1t水,那么本学期的用水总量将会不足2100t.在本学期得在校时间按110天计算,那么学校计划每天用水量应控制在什么范围?解:设每天用水X吨(X+1)*110>2300(X-1)*110<2100解得:11分之219<X<11分之221答:在11分之219到11分之221之间.已知二元一次方程组{2X+Y=5M+6,X-2Y=-17}的接X,Y都是正数,且X的值小于Y的值,求M的取值范围。
一元一次不等式(组)应用题及练习(含答案)
![一元一次不等式(组)应用题及练习(含答案)](https://img.taocdn.com/s3/m/80712ea0a0116c175f0e48dd.png)
一元一次不等式组的典型应用题类型一例1.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。
不等式应用题大全-附答案
![不等式应用题大全-附答案](https://img.taocdn.com/s3/m/e9f7cc501a37f111f0855b80.png)
不等式应用题大全-附答案(共11页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元:⑴什么情况下,购会员证与不购会员证付一样的钱⑵什么情况下,购会员证比不购会员证更合算⑶什么情况下,不够会员证比购会员证更合算注意:解题过程完整,分步骤,能用方程解的用方程解80+X=3x80=2XX=40X=40,购会员证与不购会员证付一样的钱X>40购会员证比不购会员证更合算X<40不够会员证比购会员证更合算2.下列是3家公司的广告:甲公司:招聘1人,年薪3万,一年后,每年加薪2000元乙公司:招聘1人,半年薪1万,半年后按每半年20%递增.丙公司:招聘1人,月薪2000元,一年后每月加薪100元你如果应聘,打算选择哪家公司(合同期为2年)甲:3+=万乙:1++*+**=1+++=万丙:*24+++++……=+=万甲工资最高,去甲3.某风景区集体门票的收费标准是:20人以内(含20人)。
每人25元,超过20人的,超过的部分每人10元,某班51名学生该风景区浏览,购买门票要话多少钱20*25+(51-20)*10=810(元)4.某公司推销某种产品,付给推销员每月的工资有两种方案:方案一:不计推销多少都有600元底薪,每推销一件产品加付推销费2元;方案二:不付底薪,每推销一件产品,付给推销费5元;若小明一个月推销产品300件,那么他应选择哪一种工资方案比较合算为什么方案一:600+2×300=1200(元)方案二:300×5=1500(元)所以方案二合算。
5.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖出这两件衣服总的是盈利还是亏损,或是不盈不亏设其中一件衣服原价是X无,另一件是Y元,那么X(1+25%)=60,得X=40Y(1-25%)=60,得Y=80总的情况是售价-原价,40+80-60*2=0所以是不盈不亏6小明在第一次数学测验中得了82分,在第二次测验中得了96分,在第三次测验中至少得多少分。
不等式(组)的应用——方案问题
![不等式(组)的应用——方案问题](https://img.taocdn.com/s3/m/d1cb00d8af45b307e9719798.png)
不等式(组)的应用——方案问题一.解答题(共12小题)1.(2014•舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?2.(2014•台湾)小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.3.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台) 12 10月污水处理能力(吨/月) 200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.4.(2014•南宁)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?5.(2014•福州)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?6.(2014•齐齐哈尔)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)7.(2014•黄石)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和蓑衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩)蓑衣草种植面积(亩)卖花总收入(元)甲 5 3 33500乙 3 7 43500(1)试求玫瑰花,蓑衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和蓑衣草,根据市场调查,要求玫瑰花的种植面积大于蓑衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?8.(2014•开封二模)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.9.(2014•道里区三模)我市为创建全国卫生城市,有关部门计划购买甲、乙两种名贵树苗,栽种在入城大道的两侧,已知买甲种树苗、乙种树苗各1棵共需220元;买甲种树苗3棵,乙种树苗1棵共需420元,资料提示:甲、乙两种树苗的成活率分别为90%和95%.(1)购买两种树苗每棵各需多少元;(2)市相关部门研究决定:购买甲、乙两种树苗共800棵,购买树苗的钱数不得超过86500元,且这批树苗的成活率不低于92%,共有多少种购买方案?(3)直接写出最省钱的购买方案及此时买树苗的费用.10.(2014•昌宁县二模)某商店欲购进甲、乙两种商品,已知购进的甲商品的单价是乙商品的一半,进3件甲商品和1件乙商品恰好用200元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求购进的这两种商品的单价.(2)该商店有哪几种进货方案?11.(2014•牡丹江一模)为响应“大课间”活动,某学校准备购买棒球和篮球共200个,已知棒球每个55元,篮球每个95元,学校计划至少投入资金18200元,但不多于18300元.(1)学校有多少种购买方案;(2)哪种购买方案使学校投入资金最少?(3)当学校按(2)的方案买回200个球在“大课间”投入使用后,学校领导根据实际情况发现还应同时购买足球和大绳若干,来补充“大课间”活动,所以又投入资金2880元,若每个足球80元,每条大绳30元,则在钱全部用尽的情况下有多少种购买方法,请直接写出购买方法的种数.12.(2014•濮阳一模)某中学计划购买A,B两种型号的课桌凳,已知一套A型课桌凳比一套B型课桌凳少40元,且购买5套A型和1套B型共需1000元.(1)购买一套A型课桌凳和一套B型课桌凳各需要多少元?(2)学校根据实际情况计划购买A,B两种型号的共100套,且购买课桌凳的总费用不超过18480元,并且购买A 型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?不等式(组)的应用—-方案问题参考答案与试题解析一.解答题(共12小题)1.(2014•舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:应用题.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.2.(2014•台湾)小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.考点:一元一次不等式组的应用.分析:设该公司的工作人员为x人.则每盒巧克力的颗数是,根据不等关系:每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗),列不等式组.解答:解:设该公司的工作人员为x人.则,解得16<x≤19.因为x是整数,所以x=17,18,19.答:所有可能的工作人员人数是17人、18人、19人.点评:本题考查了一元一次不等式组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.3.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.考点:一元一次不等式组的应用.专题:应用题.分析:(1)设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.解答:解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,解这个不等式组,得:2。
不等式(组)应用题(一)(人教版)(含答案)
![不等式(组)应用题(一)(人教版)(含答案)](https://img.taocdn.com/s3/m/708ed7282b160b4e777fcf32.png)
不等式(组)应用题(一)(人教版)一、单选题(共6道,每道16分)1.为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,某市决定从3月1日起,在全市部分社区试点实施生活垃圾分类处理.某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.A,B两种类型处理点的占地面积、可供居民使用幢数及造价见下表:已知可供建造垃圾初级处理点占地面积不超过,该街道共有490幢居民楼.设建造A类型处理点x个.(1)满足条件的建造方案共有几种?根据题意,所列方程(组)或不等式(组)正确的是( ) A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:不等式(组)应用题2.(上接第1题)(2)设建造垃圾处理点的总费用为w万元,则w可用含x的代数式表示为__________;当x=________时,费用最少.横线处依次所填正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:不等式(组)应用题3.《中华人民共和国个人所得税法》中规定:公民月工资所得不超过3500元部分不必纳税,超过3500元的部分为全月应纳税所得额,即全月应纳税所得额=当月工资-3500元.个人所得税款按下表累加计算:例如:某人某月工资为5500元,需交个人所得税为:(5500-3500-1500)×10%+1500×3%.(1)若某人月工资为4200元,则他应缴纳的个人所得税款为( )A.21元B.315元C.420元D.700元答案:A解题思路:试题难度:三颗星知识点:分段计费4.(上接第3题)(2)若小明今年4月份的工资应缴纳个人所得税款不低于145元,则他今年4月份工资至少为( )A.2500元B.4950元C.6000元D.6450元答案:C解题思路:试题难度:三颗星知识点:分段计费5.在某市开展城乡综合治理的活动中,需要将A,B,C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D,E两地进行处理.已知运往D地的数量为90立方米,运往E的数量为50立方米.(1)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地的数量不超过12立方米,则A,C两地运往D,E两地共有( )种方案.A.4B.3C.2D.1答案:C解题思路:试题难度:三颗星知识点:一元一次不等式组的应用6.(上接第5题)(2)已知从A,B,C三地把垃圾运往D,E两地处理所需费用如下表:在(1)的条件下,最少费用是( )元.A.2870B.2873C.2876D.2879答案:B解题思路:试题难度:三颗星知识点:一元一次不等式组的应用。
历年不等式(组)的应用题不等式组应用题及答案
![历年不等式(组)的应用题不等式组应用题及答案](https://img.taocdn.com/s3/m/798c683b7275a417866fb84ae45c3b3567ecdd80.png)
历年不等式(组)的应用题不等式组应用题及答案2008年不等式(组)的简单应用1.某学校准备添置一些“中国结”挂在教室。
若到商店去批量购买,每个“中国结”需要10元;若组织一些同学自己制作,每个“中国结”的成本是4元,无论制作多少,另外还需共付场地租金200元。
亲爱的同学,请你帮该学校出个主意,用哪种方式添置“中国结”的费用较节省?2.1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/吨。
经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克。
(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑?按此价格销售,获得的总毛利润是多少元((2)设椪柑销售价格定为x)?元/千克时,平均每天能售出y千克,求y关于x的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?3.一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对道题.(1)根据所给条件,完成下表:(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?5.为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化..绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1)种植草皮的最小面积是多少?(2)种植草皮的面积为多少时绿化总费用最低?最低费用为多少6.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可...以预订这三种球类门票各多少张?7. 荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.8.2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A 种船票的数量不少于B种船票数量的一半.若设购买A种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?9.某公司有型产品40件,型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:(1)设分配给甲店型产品件,这家公司卖出这100件产品的总利润为(元),求关于的函数关系式,并求出的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店型产品让利销售,每件让利元,但让利后型产品的每件利润仍高于甲店型产品的每件利润.甲店的型产品以及乙店的型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?10.某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A,B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本。
不等式应用题(带答案)
![不等式应用题(带答案)](https://img.taocdn.com/s3/m/0a4100d10875f46527d3240c844769eae109a343.png)
不等式应用题(带答案)不等式应用题1. 某商场正在举行打折活动,标有原价为x元的商品打7折出售,小明买了一个售价为y元的商品打了折后用了z元购买,设不等式x>y>z,请计算头一个不等式。
解: 原价为x元的商品打7折后的价格为0.7x元,由题意可知小明买的商品在打折后售价为0.7x元,且小明用z元购买了该商品。
根据不等式的性质,可得到如下关系式:0.7x > z即,x > z/0.7所以,头一个不等式为x > z/0.7。
2. 一辆汽车每小时以v公里的速度行驶,已知行驶t小时后行驶了s 公里,求不等式v < s/t。
解: 汽车行驶t小时后行驶的路程为vt公里,已知行驶了s公里,则可得到如下关系式:vt > s即,v > s/t所以,不等式为v > s/t。
3. 小明参加了一场马拉松比赛,他总共用时t小时,已知他的平均速度为v千米每小时,求不等式t > d/v,其中d为比赛的总路程。
解: 小明参加马拉松比赛用时t小时,根据速度的定义可知,平均速度v等于总路程d除以用时t,即:v = d/t由于不等式是要求t > d/v,将v的表达式代入可得:t > d/(d/t)化简后得到:t > t,该不等式恒成立。
所以,不等式为t > d/v。
4. 一个三角形的两边长分别为a和b,夹角为θ (0° < θ < 180°),求不等式a + b > 2absin(θ)。
解: 根据三角形的余弦定理可得 a² = b² + c² - 2bc cos(θ),将此式代入不等式中可得:a +b > 2ab sin(θ) + 2bc cos(θ)又因为sin(θ) ≤ 1,所以2ab sin(θ) ≤ 2ab,化简后得到:a +b > 2bc cos(θ)由于夹角θ位于 (0°, 180°) 之间,所以cos(θ) > 0,即2bc cos(θ) > 0。
不等式组应用题及答案
![不等式组应用题及答案](https://img.taocdn.com/s3/m/9917b4e3011ca300a6c390b4.png)
不等式组应用题及答案用“大于号”、“小于号”、“不等号”、“大于等于”或“小于等于”连接并具有大小关系的式子,叫做不等式。
几个不等式联立起来,叫做不等式组。
以下是的不等式组应用题及答案,希望对你有帮助。
题目:一、选择题1,下列各式中,是一元一次不等式的是()A.5+4>8B.2x-1C.2x≤5D.-3x≥02,已知aA.4a<4bB.a+43,下列数中:76,73,79,80,74.9,75.1,90,60,是不等式x>50的解的有()A.5个B.6个C.7个D.8个4,若t>0,那么a+t与a的大小关系是()A.+t>B.a+t>aC.a+t≥aD.无法确定5,(xx年永州)如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等则下列关系正确的是()A.a>c>bB.b>a>cC.a>b>cD.c>a>b6,若a0的解集是()A.x>B.x-D.x<-7,不等式组的整数解的个数是()A.1个B.2个C.3个D.4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为()A1小时~2小时B2小时~3小时C3小时~4小时D2小时~4小时 9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是()A.5千米B.7千米C.8千米D.15千米10,在方程组中若数x、y满足x+y≥0,则m的取值范围在数轴上表示应是()二、填空题11,不等号填空:若a12,满足2n-1>1-3n的最小整数值是________.13,若不等式ax+b-1,则a、b应满足的条件有______.14,满足不等式组的整数x为__________.15,若|-5|=5-,则x的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g10g,表明了这罐八宝粥的净含量的范围是.17,小芳上午10时开始以每小时4km的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________.18,代数式x-1与x-2的值符号相同,则x的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4;(2);(3)(4)20,代数式的值不大于的值,求x的范围21,方程组的解为负数,求a的范围.22,已知,x满足化简:.23,已知│3a+5│+(a-2b+)2=0,求关于x的不等式3ax-(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案:一、选择题1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上a得a+t>a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-因此答案应选D.7,D.解:先求不等式组解集-8,D;9,C.10,D.解:①+②,得3x+3y=3-m,∴x+y=,∵x+y≥0,∴≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、填空题11,>、>、<;12,1.解:先求解集n>,再利用数轴找到最小整数n=1.13,a<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a14,-2,-1,0,1解析:先求不等式组解集-315,x≤11解析:∵│a│=-a时a≤0,∴-5≤0,解得x≤11. 16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)18,x>2或x<1解析:由已知可得.三、解答题19,(1)9-4(x-5)<7x+4.解:去括号9-4x+2025,化系数为1,x>.(2).解:,去分母3x-(x+8)<6-2(x+1),去括号3x-x-8<6-2x-2,移项合并4x<12,化系数为1,x<3.(3)解:解不等式①得x>,解不等式②得x≤4,∴不等式组的解集(4)解:解不等式①得x≥-,解不等式②得x>1,∴不等式组的解集为x>1.20,;21,a<-3;22,7;23,解:由已知可得代入不等式得-5x-(x+1)<-(x-2),解之得x>-1,∴最小非负整数解x=0.24,解:得∵x,y为非负数∴解得-≤m≤,∵m为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解的m,•从而建立关于m为数的一元一次不等式组,求解m的取值范围,选取整数解.25,设有x只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5。
不等式组应用题
![不等式组应用题](https://img.taocdn.com/s3/m/d3e17b24192e45361066f5c8.png)
一本英语书共98 98页 8、一本英语书共98页,张力读了 一周( 还没读完, 一周(7天)还没读完,而李永不 到一周就已读完。 到一周就已读完。李永平均每天 比张力多读3 比张力多读3页,张力平均每天读 多少页(答案取整数)? 多少页(答案取整数)?
11、 11、A、B两车间各有若干名工人生产同 一种零件, 车间有一人每天只生产6 一种零件,A车间有一人每天只生产6件, 其余的每人生产11 11件 其余的每人生产11件;B车间有一人每 天只生产7 其余每人每天生产10 10件 天只生产7件,其余每人每天生产10件。 已知两车间每天生产零件的总数相等, 已知两车间每天生产零件的总数相等, 且每个车间每天生产的零件总数不少于 100件 也不超过200 200件 100件,也不超过200件,求A、B车间各 有多少人
每分钟可抽1.1吨水的A 1.1吨水的 5、用每分钟可抽1.1吨水的A型抽 水机来抽池水,半小时可以抽完; 水机来抽池水,半小时可以抽完; 如果用B型抽水机,估计20 20分钟到 如果用B型抽水机,估计20分钟到 22分钟可以抽完 分钟可以抽完。 型抽水机比A 22分钟可以抽完。B型抽水机比A型 抽水机每分钟约多抽多少吨水? 抽水机每分钟约多抽多少吨水?
如果甲、 (2)如果甲、乙两种汽车每辆的 租车费用分别为2000 2000元 1800元 租车费用分别为2000元、1800元, 请你选择最省钱的一种租车方案
答案:(1)甲种租3辆,乙种租5辆 乙种租5 答案:(1 甲种租3 :( 甲种租4 乙种租4 甲种租4辆,乙种租4辆 甲种租5 乙种租3 甲种租5辆,乙种租3辆 甲种租6 乙种租2 甲种租6辆,乙种租2辆 甲种租3 乙种租5 (2)甲种租3辆,乙种租5辆,一共是 15000元 15000元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式组应用题及答案1.如图是用矩形厚纸片(厚度不计)做长方体包装盒的示意图,阴影部分是裁剪掉的部分.沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处矩形形状的“舌头”用来折叠后粘贴或封盖.(1)若用长31cm,宽26cm的矩形厚纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“舌头”的宽度相等.求“舌头”的宽度和纸盒的高度;(2))现有一张40cm×35 cm的矩形厚纸片,按如图所示的方法设计包装盒,用来包装一个圆柱形工艺笔筒,已知该种笔筒的高是底面直径2.5倍,要求包装盒“舌头”的宽度为2cm(如有多余可裁剪),问这样的笔筒底面直径最大可以为多少?分析:找出题中的折叠规律,空间思维的,想象一下纸盒折叠后的形状,设“舌头”的宽为x,长为y,利用矩形硬纸的长宽,正确的列出方程,即可求出,(2)做成的包装盒的长宽必不大于纸盒的长宽列不等式.解答:解:(1)设“舌头”的宽度为xcm,盒底边长为ycm.根据题意得解得6×2.5=15(cm)答:“舌头”的宽度为2cm,纸盒的高度为15cm.(2)设瓶底直径为dcm,根据题意得解得:d≤8答:这样的笔筒的底面直径最大可以为8cm.水是人类最宝贵的资源之一,我国水资源均占有量远远低于世界平均水平,为了节约用水,保护环境,学校于本学期初便制定了详细的用水计划,如果实际每天比计划多用1t水,那么本学期的用水总量将会超过2300t如果实际每天比计划节约1t水,那么本学期的用水总量将会不足2100t.在本学期得在校时间按110天计算,那么学校计划每天用水量应控制在什么范围?解:设每天用水X吨(X+1)*110>2300(X-1)*110<2100解得:11分之219<X<11分之221答:在11分之219到11分之221之间.已知二元一次方程组{2X+Y=5M+6,X-2Y=-17}的接X,Y都是正数,且X的值小于Y的值,求M的取值范围。
先用消元法解X、Y1)-2)*2:Y+4Y=5M+40 => Y=M+8代入1):X=2M-1由题意0<X<Y得0<2M-1<M+8解M得 1/2<M<9(2009•十堰)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:分析:(1)关系式为:A型沼气池占地面积+B型沼气池占地面积≤365;A型沼气池能用的户数+B型沼气池能用的户数≥492;(2)由(1)得到情况进行分析.解答:解:(1)设建造A型沼气池x个,则建造B型沼气池(20-x)个(1分),依题意得:(3分),解得:7≤x≤9(4分).∵x为整数∴x=7,8,9,∴满足条件的方案有三种(5分).(2)设建造A型沼气池x个时,总费用为y万元,则:y=2x+3(20-x)=-x+60(6分),∵-1<0,∴y随x增大而减小,当x=9时,y的值最小,此时y=51(万元)(7分).∴此时方案为:建造A型沼气池9个,建造B型沼气池11个(8分).解法②:由(1)知共有三种方案,其费用分别为:方案一:建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2+13×3=53(万元)(6分).方案二:建造A型沼气池8个,建造B型沼气池12个,总费用为:8×2+12×3=52(万元)(7分).方案三:建造A型沼气池9个,建造B型沼气池11个,总费用为:9×2+11×3=51(万元).∴方案三最省钱(8分).(2004•安徽)喷灌是一种先进的田间灌水技术,雾化指标P是它的技术要素之一,当喷嘴的直径d(mm),喷头的工作压强为h(kPa)时,雾化指标P= ,如果树喷灌时要求3000≤P≤4000,若d=4mm,求h的范围..分析:把d代入公式得到P=25h,再根据P的取值范围建立不等式从而求到h 的取值范围.解答:解:把d=4代入公式P= 中得:P=即P=25h又∵3000≤P≤4000∴3000≤25h≤4000120≤h≤160故h的范围为120~160(kPa)(2005•南通)海门市三星镇的叠石桥国际家纺城是全国最大的家纺专业市场,年销售额突破百亿元.2005年5月20日,该家纺城的羽绒被和羊毛被这两种产品的销售价如下表:现购买这两种产品共80条,付款总额不超过2万元.问最多可购买羽绒被多少条?分析:设购买羽绒被x条,则购买羊毛被(80-x)条,根据付款总额不超过2万元就可以列出不等式,解出x,x取整数.解答:解:设购买羽绒被x条,则购买羊毛被(80-x)条.根据题意,得415x+150(80-x)≤20000.(3分)整理,得265x≤8000.解之得x≤ .(5分)∵x为整数∴x的最大整数值为30.答:最多可购买羽绒被30条.(7分)某幼儿园把一筐桔子分给若干个小朋友,若每人3只,那么还剩59只,若每人5只,那么最后一个小朋友分到桔子,但不足4只,试求这筐桔子共有多少只?考点:一元一次不等式组的应用.专题:和差倍关系问题.分析:“不足4只”意思是最后一个小朋友分得的桔子数在0和4之间,把相关数值代入计算即可.解答:解:设幼儿园共有x名小朋友,则桔子的个数为(3x+59)个,由“最后一个小朋友分到桔子,但不足4个”可得不等式组0<(3x+59)-5(x-1)<4,解得30<x<32,∴x=31,∴有桔子3x+59=3×31+59=152(个).答:这筐桔子共有152个.小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端;体重整好是妈妈一半的小宝和妈妈一同坐在跷跷板的一端.这时,爸爸的一端仍然着地.后来,小宝借来一个质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被跷起离地.小宝的体重约是多少千克?(精确到1千克)考点:一元一次不等式组的应用.专题:应用题.分析:关键描述语:①体重整好是妈妈一半的小宝和妈妈一同坐在跷跷板的一端,这时爸爸的一端仍然着地,即小宝和妈妈的体重和小于爸爸的体重.②小宝借来一个质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地,即小宝和妈妈哑铃的总质量大于爸爸的质量.列不等式组求解即可.解答:解:设小宝的体重为x千克,则妈妈的体重为2x千克,依题意得解得22<x<24∵小宝的体重精确到1千克∴x=23,即小宝的体重约为23千克.某种植物适宜生长在温度在18℃~20℃的山区,已知山区海拔每升高100米,气温下降0.5℃,现在测得山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)考点:一元一次不等式的应用.专题:应用题.分析:设该植物种在海拔x米的地方为宜,根据“温度在18℃~20℃”作为不等关系列不等式组,解不等式组即可.解答:解:设该植物种在海拔x米的地方为宜,则解得400≤x≤800答:该植物种在山的400--800米之间比较适宜.(2001•安徽)恩格尔系数表示家庭日常饮食开支占家庭经济总收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数如下表所示:则用含n的不等式表示小康家庭的恩格尔系数为40%≤n≤49%.考点:一元一次不等式的应用.专题:图表型.分析:本题要用含n的不等式表示小康家庭的恩格尔系数,只要找出小康家庭所在的系数,令n处在该范围内即可.解答:解:依题意得不等式:40%≤n≤49%.一个三角形三边长分别是3、1-2m、8,则m的取值范围是-5<m<-2.考点:三角形三边关系.分析:根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求m的取值范围.解答:解:由三角形三边关系定理得8-3<1-2m<8+3,即-5<m<-2.即m的取值范围是-5<m<-2.(2010•温州)某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了8支.考点:一元一次不等式组的应用.专题:应用题.分析:根据“所付金额大于26元,但小于27元”作为不等关系列不等式组求其整数解即可求解.解答:解:设签字笔购买了x支,则圆珠笔购买了15-x支,根据题意得解不等式组得7<x<9∵x是整数∴x=8.有人问一位老师,他所教的班有多少学生,老师说:“现在班中有一半的学生正在做数学作业,四分之一的学生做语文作业,七分之一的学生在做英语作业,还剩不足6位的学生在操场踢足球。
”试问这个班共有多少学生?解:设一共有X个学生依题意,X是2,4,7的公倍数,即X可以被28整除。
所以X=28,56,84,... 又因为X-1/2X-1/4X-1/7X<6 只有X=28时满足条件答:有28人.(2007•广州)某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,购买门票最少共需花费770元.(2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要88人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜.考点:一元一次不等式的应用.专题:应用题;分类讨论.分析:(1)两个班分别买票时,按8折优惠,共同买票时按7折优惠,分别计算出这两种情况下,甲乙两班所需的费用,然后判断出购买门票最少要多少钱;(2)我们可根据两班前往博物馆参观的人数在30-100人之内,实际人数按8折购票所需的钱>购买100张门票7折的钱数,以此来列出不等式组,求出自变量的取值范围,找出符合条件的值.解答:解:(1)当两个班分别购买门票时,甲班购买门票的费用为56×10×0.8=448元乙班购买门票的费用54×10×0.8=432元甲乙两班分别购买门票共需花费880元当两个班一起购买门票时,甲乙两班共需花费(56+54)×10×0.7=770元答:甲乙两班购买门票最少共需花费770元.(2)(2)当多于30人且不足100人时,设有x人前往参观,才能使得按7折优惠购买100张门票比根据实际人数按8折优惠购买门票更便宜,根据题意得解得87.5<x<100答:当多于30人且不足100人时,至少有88人前往参观,才能使得按7折优惠购买100张门票比根据实际人数按8折优惠购买门票更便宜.(2009•株洲)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.考点:一元一次不等式组的应用.专题:应用题.分析:(1)1000份是界限,那就算出1000份时能赚多少钱,进行分析.(2)关系式为:1000份的收入+超过1000份的收入≥140;1000份的收入+超过1000份的收入≤200解答:解:(1)如果孔明同学卖出1000份报纸,则可获得:1000×0.1=100元,没有超过140元,从而不能达到目的;(注:其它说理正确、合理即可.)(3分)(2)设孔明同学暑假期间卖出报纸x份,(2)设孔明同学暑假期间卖出报纸x份,由(1)可知x>1000,依题意得:,(7分)解得:1200≤x≤1500.(9分)答:孔明同学暑假期间卖出报纸的份数在1200~1500份之间.(10分)(2010•宜宾)小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.为了节约资金,小明应选择哪一种购买方案?请说明理由.考点:一元一次不等式组的应用.专题:方案型;图表型.分析:设购买大笔记本为x本,则购买小笔记本为(5-x)本.不等关系:①5本大小不同的两种笔记本,要求共花钱不超过28元;②购买的笔记本的总页数不低于340页.解答:解:设购买大笔记本为x本,则购买小笔记本为(5-x)本.依题意,得,解得,1≤x≤3.x为整数,∴x的取值为1,2,3.当x=1时,购买笔记本的总金额为6×1+5×4=26(元);当x=2时,购买笔记本的总金额为6×2+5×3=27(元);当x=3时,购买笔记本的总金额为6×3+5×2=28(元).∴应购买大笔记本l本,小笔记本4本,花钱最少.。