算法分析实验(三)报告

合集下载

实验报告算法分析

实验报告算法分析

实验报告算法分析实验报告:算法分析引言在计算机科学领域中,算法是解决问题的一种方法或步骤的描述。

通过对算法的分析,我们可以评估其效率和性能,从而选择最优的算法来解决特定的问题。

本实验报告旨在介绍算法分析的基本概念和方法,并通过实例来说明其应用。

一、算法分析的背景算法分析是计算机科学中的重要研究领域,它关注如何评估算法的效率和性能。

在实际应用中,我们经常面临着需要在有限的时间内解决大规模问题的挑战。

因此,选择一个高效的算法是至关重要的。

算法分析的目标是通过定量分析算法的时间复杂度和空间复杂度,为选择最佳算法提供依据。

二、算法分析的方法1. 时间复杂度分析时间复杂度是衡量算法执行时间的一种指标。

通常使用大O表示法来表示时间复杂度。

通过计算算法执行所需的基本操作次数,可以得到算法的时间复杂度。

常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。

时间复杂度越低,算法执行所需的时间越短。

2. 空间复杂度分析空间复杂度是衡量算法内存使用的一种指标。

通过计算算法执行所需的额外空间大小,可以得到算法的空间复杂度。

常见的空间复杂度有O(1)、O(n)和O(n^2)等。

空间复杂度越低,算法所需的内存空间越小。

三、算法分析的应用算法分析在计算机科学的各个领域都有广泛的应用。

以下是几个常见的应用示例:1. 排序算法排序算法是计算机科学中的经典问题之一。

通过对不同排序算法的时间复杂度进行分析,可以选择最适合特定需求的排序算法。

例如,快速排序算法的平均时间复杂度为O(n log n),在大规模数据排序中表现出色。

2. 图算法图算法是解决图结构相关问题的一种方法。

通过对图算法的时间复杂度和空间复杂度进行分析,可以选择最适合解决特定图问题的算法。

例如,广度优先搜索算法的时间复杂度为O(V+E),其中V和E分别表示图的顶点数和边数。

3. 动态规划算法动态规划算法是解决具有重叠子问题性质的问题的一种方法。

算法实验报告结果分析

算法实验报告结果分析

一、实验背景随着计算机科学技术的不断发展,算法作为计算机科学的核心内容之一,其重要性日益凸显。

为了验证和评估不同算法的性能,我们进行了一系列算法实验,通过对比分析实验结果,以期为后续算法研究和优化提供参考。

二、实验方法本次实验选取了三种常见的算法:快速排序、归并排序和插入排序,分别对随机生成的数据集进行排序操作。

实验数据集的大小分为10000、20000、30000、40000和50000五个级别,以验证算法在不同数据量下的性能表现。

实验过程中,我们使用Python编程语言实现三种算法,并记录每种算法的运行时间。

同时,为了确保实验结果的准确性,我们对每种算法进行了多次运行,并取平均值作为最终结果。

三、实验结果1. 快速排序快速排序是一种高效的排序算法,其平均时间复杂度为O(nlogn)。

从实验结果来看,快速排序在所有数据量级别下均表现出较好的性能。

在数据量较小的10000和20000级别,快速排序的运行时间分别为0.05秒和0.1秒;而在数据量较大的40000和50000级别,运行时间分别为0.8秒和1.2秒。

总体来看,快速排序在各个数据量级别下的运行时间均保持在较低水平。

2. 归并排序归并排序是一种稳定的排序算法,其时间复杂度也为O(nlogn)。

实验结果显示,归并排序在数据量较小的10000和20000级别下的运行时间分别为0.15秒和0.25秒,而在数据量较大的40000和50000级别,运行时间分别为1.5秒和2.5秒。

与快速排序相比,归并排序在数据量较小的情况下性能稍逊一筹,但在数据量较大时,其运行时间仍然保持在较低水平。

3. 插入排序插入排序是一种简单易实现的排序算法,但其时间复杂度为O(n^2)。

实验结果显示,插入排序在数据量较小的10000和20000级别下的运行时间分别为0.3秒和0.6秒,而在数据量较大的40000和50000级别,运行时间分别为8秒和15秒。

可以看出,随着数据量的增加,插入排序的性能明显下降。

算法实验报告

算法实验报告

实验一分治与递归算法的应用一、实验目的1.掌握分治算法的基本思想(分-治-合)、技巧和效率分析方法。

2.熟练掌握用递归设计分治算法的基本步骤(基准与递归方程)。

3.学会利用分治算法解决实际问题。

二 . 实验内容金块问题老板有一袋金块(共n块,n是2的幂(n≥2)),最优秀的雇员得到其中最重的一块,最差的雇员得到其中最轻的一块。

假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。

并对自己的程序进行复杂性分析。

三.问题分析:一般思路:假设袋中有n 个金块。

可以用函数M a x(程序1 - 3 1)通过n-1次比较找到最重的金块。

找到最重的金块后,可以从余下的n-1个金块中用类似法通过n-2次比较找出最轻的金块。

这样,比较的总次数为2n-3。

分治法:当n很小时,比如说,n≤2,识别出最重和最轻的金块,一次比较就足够了。

当n 较大时(n>2),第一步,把这袋金块平分成两个小袋A和B。

第二步,分别找出在A和B中最重和最轻的金块。

设A中最重和最轻的金块分别为HA 与LA,以此类推,B中最重和最轻的金块分别为HB 和LB。

第三步,通过比较HA 和HB,可以找到所有金块中最重的;通过比较LA 和LB,可以找到所有金块中最轻的。

在第二步中,若n>2,则递归地应用分而治之方法程序设计据上述步骤,可以得出程序1 4 - 1的非递归代码。

该程序用于寻找到数组w [ 0 : n - 1 ]中的最小数和最大数,若n < 1,则程序返回f a l s e,否则返回t r u e。

当n≥1时,程序1 4 - 1给M i n和M a x置初值以使w [ M i n ]是最小的重量,w [ M a x ]为最大的重量。

首先处理n≤1的情况。

若n>1且为奇数,第一个重量w [ 0 ]将成为最小值和最大值的候选值,因此将有偶,数个重量值w [ 1 : n - 1 ]参与f o r循环。

当n 是偶数时,首先将两个重量值放在for 循环外进行比较,较小和较大的重量值分别置为Min和Max,因此也有偶数个重量值w[2:n-1]参与for循环。

算法实验报告

算法实验报告

算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。

算法的设计和分析是计算机科学与工程中的重要研究方向之一。

本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。

实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。

我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。

实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。

插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。

而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。

实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。

我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。

实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。

而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。

两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。

实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。

在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。

实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。

最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。

结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。

排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。

现代密码算法实验报告(3篇)

现代密码算法实验报告(3篇)

第1篇一、实验目的1. 了解现代密码学的基本原理和数论基础知识;2. 掌握非对称密码体制的著名代表RSA加密算法的工作原理和流程;3. 设计实现一个简单的密钥系统;4. 掌握常用加密算法AES和DES的原理及实现。

二、实验内容1. RSA加密算法实验2. AES加密算法实验3. DES加密算法实验三、实验原理1. RSA加密算法RSA算法是一种非对称加密算法,由罗纳德·李维斯特、阿迪·沙米尔和伦纳德·阿德曼三位密码学家于1977年提出。

其基本原理是选择两个大质数p和q,计算它们的乘积n=pq,并计算欧拉函数φ(n)=(p-1)(q-1)。

选择一个整数e,满足1<e<φ(n)且e与φ(n)互质。

计算e关于φ(n)的模逆元d。

公开密钥为(e,n),私有密钥为(d,n)。

加密过程为C=Me mod n,解密过程为M=Cd mod n。

2. AES加密算法AES(Advanced Encryption Standard)是一种分组加密算法,采用128位分组大小和128、192或256位密钥长度。

AES算法主要分为四个阶段:初始轮、密钥扩展、中间轮和最终轮。

每个轮包括字节替换、行移位、列混淆和轮密钥加。

3. DES加密算法DES(Data Encryption Standard)是一种分组加密算法,采用64位分组大小和56位密钥长度。

DES算法主要分为16轮,每轮包括置换、置换-置换、S盒替换和密钥加。

四、实验步骤及内容1. RSA加密算法实验(1)选择两个大质数p和q,计算n=pq和φ(n)=(p-1)(q-1);(2)选择一个整数e,满足1<e<φ(n)且e与φ(n)互质,计算e关于φ(n)的模逆元d;(3)生成公开密钥(e,n)和私有密钥(d,n);(4)用公钥对明文进行加密,用私钥对密文进行解密。

2. AES加密算法实验(1)选择一个128、192或256位密钥;(2)初始化初始轮密钥;(3)进行16轮加密操作,包括字节替换、行移位、列混淆和轮密钥加;(4)输出加密后的密文。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。

算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。

本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。

二、算法分析算法分析是评估算法性能的过程。

在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。

常用的算法分析方法包括时间复杂度和空间复杂度。

1. 时间复杂度时间复杂度衡量了算法执行所需的时间。

通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。

常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。

其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。

2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。

通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。

常见的空间复杂度有O(1)、O(n)和O(n^2)等。

其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。

三、算法设计算法设计是构思和实现算法的过程。

好的算法设计能够提高算法的效率和可靠性。

常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。

1. 贪心算法贪心算法是一种简单而高效的算法设计方法。

它通过每一步选择局部最优解,最终得到全局最优解。

贪心算法的时间复杂度通常较低,但不能保证得到最优解。

2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。

它通过保存子问题的解,避免重复计算,提高算法的效率。

动态规划适用于具有重叠子问题和最优子结构的问题。

3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。

算法与分析实验报告

算法与分析实验报告

算法与分析实验报告一、引言算法是现代计算机科学中的核心概念,通过合理设计的算法可以解决复杂的问题,并提高计算机程序的执行效率。

本次实验旨在通过实际操作和数据统计,对比分析不同算法的执行效率,探究不同算法对于解决特定问题的适用性和优劣之处。

二、实验内容本次实验涉及两个经典的算法问题:排序和搜索。

具体实验内容如下:1. 排序算法- 冒泡排序- 插入排序- 快速排序2. 搜索算法- 顺序搜索- 二分搜索为了对比不同算法的执行效率,我们需要设计合适的测试用例并记录程序执行时间进行比较。

实验中,我们将使用随机生成的整数数组作为排序和搜索的测试数据,并统计执行时间。

三、实验步骤1. 算法实现与优化- 实现冒泡排序、插入排序和快速排序算法,并对算法进行优化,提高执行效率。

- 实现顺序搜索和二分搜索算法。

2. 数据生成- 设计随机整数数组生成函数,生成不同大小的测试数据。

3. 实验设计- 设计实验方案,包括测试数据的规模、重复次数等。

4. 实验执行与数据收集- 使用不同算法对随机整数数组进行排序和搜索操作,记录执行时间。

- 多次重复同样的操作,取平均值以减小误差。

5. 数据分析与结果展示- 将实验收集到的数据进行分析,并展示在数据表格或图表中。

四、实验结果根据实验数据的收集与分析,我们得到以下结果:1. 排序算法的比较- 冒泡排序:平均执行时间较长,不适用于大规模数据排序。

- 插入排序:执行效率一般,在中等规模数据排序中表现良好。

- 快速排序:执行效率最高,适用于大规模数据排序。

2. 搜索算法的比较- 顺序搜索:执行时间与数据规模成线性关系,适用于小规模数据搜索。

- 二分搜索:执行时间与数据规模呈对数关系,适用于大规模有序数据搜索。

实验结果表明,不同算法适用于不同规模和类型的问题。

正确选择和使用算法可以显著提高程序的执行效率和性能。

五、实验总结通过本次实验,我们深入了解了不同算法的原理和特点,并通过实际操作和数据分析对算法进行了比较和评估。

算法冒泡排序实验报告(3篇)

算法冒泡排序实验报告(3篇)

第1篇一、实验目的本次实验旨在通过实现冒泡排序算法,加深对排序算法原理的理解,掌握冒泡排序的基本操作,并分析其性能特点。

二、实验内容1. 冒泡排序原理冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。

遍历数列的工作是重复地进行,直到没有再需要交换,也就是说该数列已经排序完成。

2. 实验步骤(1)设计一个冒泡排序函数,输入为待排序的数组,输出为排序后的数组。

(2)编写一个主函数,用于测试冒泡排序函数的正确性和性能。

(3)通过不同的数据规模和初始顺序,分析冒泡排序的性能特点。

3. 实验环境(1)编程语言:C语言(2)开发环境:Visual Studio Code(3)测试数据:随机生成的数组、有序数组、逆序数组三、实验过程1. 冒泡排序函数设计```cvoid bubbleSort(int arr[], int n) {int i, j, temp;for (i = 0; i < n - 1; i++) {for (j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}```2. 主函数设计```cinclude <stdio.h>include <stdlib.h>include <time.h>int main() {int n;printf("请输入数组长度:");scanf("%d", &n);int arr = (int )malloc(n sizeof(int)); if (arr == NULL) {printf("内存分配失败\n");return 1;}// 生成随机数组srand((unsigned)time(NULL));for (int i = 0; i < n; i++) {arr[i] = rand() % 100;}// 冒泡排序bubbleSort(arr, n);// 打印排序结果printf("排序结果:\n");for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}printf("\n");// 释放内存free(arr);return 0;}```3. 性能分析(1)对于随机生成的数组,冒泡排序的平均性能较好,时间复杂度为O(n^2)。

算法设计与分析实验报告(中南民族大学)

算法设计与分析实验报告(中南民族大学)

院系:计算机科学学院专业:年级:课程名称:算法设计与分析基础班号:组号:指导教师:年月日实验结果及分析1.求最大数2.递归法与迭代法性能比较递归迭代3.改进算法1.利用公式法对第n项Fibonacci数求解时可能会得出错误结果。

主要原因是由于double类型的精度还不够,所以程序算出来的结果会有误差,要把公式展开计算。

2.由于递归调用栈是一个费时的过程,通过递归法和迭代法的比较表明,虽然递归算法的代码更精简更有可读性,但是执行速度无法满足大数问题的求解。

3.在当前计算机的空间较大的情况下,在一些速度较慢的问题中,空间换时间是一个比较周全的策略。

实验原理(算法基本思想)定义:若A=(a ij), B=(b ij)是n×n的方阵,则对i,j=1,2,…n,定义乘积C=A⋅B 中的元素c ij为:1.分块解法通常的做法是将矩阵进行分块相乘,如下图所示:二.Strassen解法分治法思想将问题实例划分为同一问题的几个较小的实例。

对这些较小实例求解,通常使用递归方法,但在问题规模足够小时,也会使用另一种算法。

如果有必要,合并这些问题的解,以得到原始问题的解。

求解矩阵相乘的DAC算法,使用了strassen算法。

DAC(A[],B[],n){If n=2 使用7次乘法的方法求得解ElseDivide(A)//把A分成4块Divide(B)//把B分成4块调用7次strassen算法求得解的4块合并这4块得到解并返回}伪代码Serial_StrassenMultiply(A, B, C) {T1 = A0 + A3;T2 = B0 + B3;StrassenMultiply(T1, T2, M1);T1 = A2 + A3;StrassenMultiply(T1, B0, M2);T1 = (B1 - B3);StrassenMultiply (A0, T1, M3);T1 = B2 - B0;StrassenMultiply(A3, T1, M4);T1 = A0 + A1;StrassenMultiply(T1, B3, M5);T1 = A2 – A0;T2 = B0 + B1;StrassenMultiply(T1, T2, M6);T1 = A1 – A3;T2 = B2 + B3;StrassenMultiply(T1, T2, M7);C0 = M1 + M4 - M5 + M7C1 = M3 + M5C2 = M2 + M4C3 = M1 - M2 + M3 + M6}实验结果及分析时间复杂度1.分块相乘总共用了8次乘法,因而需要Θ(n log28)即Θ(n3)的时间复杂度。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。

2. 了解快速排序的分治算法思想。

【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。

任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。

n个字符的全体排列之间存在一个确定的线性顺序关系。

所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。

每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。

二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。

它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

【实验内容】1.全排列递归算法的实现。

2.快速排序分治算法的实现。

【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。

2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。

【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。

其中Xm-1=,Yn-1=,Zk-1=。

最长公共子序列问题具有最优子结构性质。

由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。

程序设计与算法分析综合实验报告

程序设计与算法分析综合实验报告

程序设计与算法分析综合实验报告
1. 实验目的
该实验的目的是通过设计和实现一个程序来分析算法的运行时间和空间复杂度,以便更好地理解算法的性能和优化方法。

2. 实验方法
在实验中,我们选择了一种特定的算法,并使用不同规模的数据进行测试。

我们记录了算法在处理不同规模数据时的运行时间和占用的内存空间,并进行了分析和总结。

3. 实验结果
通过实验,我们得出了以下结论:
- 算法的运行时间随着输入规模的增加而增加,但增长的速度并不是线性的,可能存在其他因素影响。

- 算法在不同规模的数据上,占用的内存空间并不一致,可以通过优化算法来减少内存使用量。

具体的实验结果请参见附录。

4. 实验分析
在实验分析中,我们对算法的性能进行了深入研究:
- 我们分析了算法运行时间与输入规模的关系,并观察到了一些规律和趋势。

- 我们比较了不同规模数据上的内存使用情况,并探讨了一些可能的优化方法。

5. 实验总结
通过本次实验,我们深入了解了程序设计与算法分析,掌握了一些基本的算法分析方法和技巧。

同时,我们也认识到了算法的优化对程序性能的影响,为以后的程序设计和优化提供了启示。

6. 附录
实验数据
注:以上数据仅为示例,实际数据可根据实际实验进行填充。

参考资料
- 《算法分析与设计》。

算法分析实验报告

算法分析实验报告

《算法设计与分析》实验报告分治策略一、试验名称:分治策略( 1) 写出源程序,并编译运行( 2) 详细记录程序调试及运行结果二、实验目的(1) 了解分治策略算法思想(2) 掌握快速排序、归并排序算法(3) 了解其他分治问题典型算法三、实验内容(1) 编写一个简单的程序,实现归并排序。

(2) 编写一段程序,实现快速排序。

(3) 编写程序实现循环赛日程表。

设有n=2k 个运动员要进行网球循环赛。

现要设计一个满足以下要求的比赛日程表: (1)每个选手必须与其它n-1 个选手各赛一次( 2)每个选手一天只能赛一场( 3)循环赛进行n-1 天四、算法思想分析(1) 编写一个简单的程序,实现归并排序。

将待排序元素分成大小大致相同的 2 个子集合,分别对 2 个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。

(2) 编写一段程序,实现快速排序。

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

(3) 编写程序实现循环日赛表。

按分治策略,将所有的选手分为两组,n 个选手的比赛日程表就可以通过为n/2 个选手设计的比赛日程表来决定。

递归地用对选手进行分割,直到只剩下 2 个选手时,比赛日程表的制定就变得很简单。

这时只要让这 2 个选手进行比赛就可以了。

五、算法源代码及用户程序(1) 编写一个简单的程序,实现归并排序。

#include<iostream>#include<>#define MAX 10using namespace std;void merge(int array[],int p,int q,int r){int i,k;int begin1,end1,begin2,end2;int* temp = new int[r-p+1];begin1 = p;end1 = q;begin2 = q+1;end2 = r;k = 0;while((begin1 <= end1)&&(begin2 <= end2)){if(array[begin1] < array[begin2]){temp[k] = array[begin1];begin1++;}else{temp[k] = array[begin2];begin2++;}k++;}while(begin1 <= end1) {temp[k++] = array[begin1++];while(begin2 <= end2){temp[k++] = array[begin2++];}for(i = 0;i < (r-p+1);i++){array[p+i] = temp[i];}delete[](temp);}void merge_sort(int data[],int left,int right){if(left < right){int mid = (left + right)/2;merge_sort(data,left,mid);merge_sort(data,mid + 1,right); merge(data,left,mid,right);}}void main(){int number[MAX] = {0};srand(time(NULL));printf(" 排序前:");for(int i = 0; i < MAX; i++) {number[i] = rand() % 100; printf("%d ", number[i]);}cout<<endl;merge_sort(number,0,9);printf(" 排序后:");for(int j = 0; j < MAX; j++) { printf("%d ", number[j]);}(2) 编写一段程序,实现快速排序。

算法设计与分析实验报告

算法设计与分析实验报告

实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。

2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。

三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。

递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。

否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。

2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。

在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。

五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

置换密码算法实验报告(3篇)

置换密码算法实验报告(3篇)

第1篇一、实验目的1. 理解置换密码算法的基本原理和特点。

2. 掌握置换密码算法的实现方法。

3. 通过编程实践,加深对置换密码算法的理解。

二、实验原理置换密码算法是一种通过对明文进行字符或位顺序的重新排列来实现加密的算法。

其基本原理是将明文中的字符或位按照一定的规则重新排列,形成密文。

解密时,按照相同的规则将密文恢复为明文。

常见的置换密码算法有:1. 旋转密码(Caesar密码):将明文中的每个字符按照密钥k向右或向左旋转k 个位置。

2. 列置换密码:将明文矩阵中的列按照密钥顺序进行置换。

3. 矩阵换位密码:将明文矩阵中的字符按照密钥顺序进行置换。

三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.8.03. 开发环境:PyCharm四、实验步骤1. 旋转密码实现(1)定义密钥k,表示旋转的位数。

(2)定义明文字符串,将每个字符按照密钥k向右或向左旋转k个位置。

(3)输出密文。

2. 列置换密码实现(1)定义密钥,表示列的置换顺序。

(2)将明文矩阵中的列按照密钥顺序进行置换。

(3)输出密文。

3. 矩阵换位密码实现(1)定义密钥,表示矩阵的置换顺序。

(2)将明文矩阵中的字符按照密钥顺序进行置换。

(3)输出密文。

五、实验结果与分析1. 旋转密码实验结果明文:Hello, World!密钥:3密文:Khoor, Zruog分析:旋转密码将明文中的每个字符向右旋转3个位置,实现了加密。

2. 列置换密码实验结果明文:Hello, World!密钥:[2, 0, 3, 1]密文:oHlel, Wrold!分析:列置换密码将明文矩阵中的列按照密钥顺序进行置换,实现了加密。

3. 矩阵换位密码实验结果明文:Hello, World!密钥:[2, 0, 3, 1]密文:oHlel, Wrold!分析:矩阵换位密码与列置换密码类似,将明文矩阵中的字符按照密钥顺序进行置换,实现了加密。

六、实验总结通过本次实验,我们对置换密码算法有了更深入的了解。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。

二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。

如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。

那末,这类问题可以用分治法求解。

分治法的核心技术1)子问题的划分技术.2)递归技术。

反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。

3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。

算法实验3-最大子段和问题实验报告

算法实验3-最大子段和问题实验报告

昆明理工大学信息工程与自动化学院学生实验报告( 2011 — 2012 学年 第 1 学期 )课程名称:算法设计与分析 开课实验室:信自楼机房444 2012 年12月 14日一、上机目的及内容1.上机内容给定有n 个整数(可能有负整数)组成的序列(a 1,a 2,…,a n ),求改序列形如∑=jk ka1的子段和的最大值,当所有整数均为负整数时,其最大子段和为0。

2.上机目的(1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法;(3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。

二、实验原理及基本技术路线图(方框原理图或程序流程图)(1)分别用蛮力法、分治法和动态规划法设计最大子段和问题的算法; 蛮力法设计原理:利用3个for 的嵌套(实现从第1个数开始计算子段长度为1,2,3…n 的子段和,同理计算出第2个数开始的长度为1,2,3…n-1的子段和,依次类推到第n 个数开始计算的长为1的子段和)和一个if (用来比较大小),将其所有子段的和计算出来并将最大子段和赋值给summax1。

用了3个for 嵌套所以时间复杂性为○(n 3);分治法设计原理:1)、划分:按照平衡子问题的原则,将序列(1a ,2a ,…,na )划分成长度相同的两个字序列(1a ,…,⎣⎦2/n a )和(⎣⎦12/+n a ,…,na )。

2)、求解子问题:对于划分阶段的情况分别的两段可用递归求解,如果最大子段和在两端之间需要分别计算s1=⎣⎦⎣⎦)2/1(max2/n i an ik k≤≤∑=,s2=⎣⎦⎣⎦)2/(max12/n j n ajn k k≤≤∑+=,则s1+s2为最大子段和。

若然只在左边或右边,那就好办了,前者视s1为summax2,后者视s2 o summax2。

3)、合并:比较在划分阶段的3种情况下的最大子段和,取三者之中的较大者为原问题的解。

实验三 银行家算法

实验三 银行家算法
操作系统原理实验
浙江工业大学计算机科 学与技术学院 何玲娜
实验三 进程的死锁避免算法 (银行家算法实现)
实验目的:

根据银行家算法的思想,编写程序,解 决并发进程的死锁问题。
背景知识

本实验要求设计并实现银行家算法。银行家算法
是死锁避免的经典算法,其核心思想是:进程动
态地申请资源,每次申请资源时系统都执行安全

利用VC++6.0实现上述程序设计和调试操作,
根据提示输入相应的资源请求,对于算法操
作的成功与否提供一定的提示框。

通过阅读和分析实验程序,熟悉进程的死锁 问题。
工具/准备工作


在开始本实验之前,请回顾教科书的相关内容
需要做以下准备:
– 一台运行Windows 2000 /XP 操作系统的计算机
– 计算机中需安装Visual C++ 6.0专业版或企业版
死锁避免算法
实验报告
每人独立一组,需要上交实验报告 实验报告包括实验目的、实验内容、主要程序 结构(附注释)、实验步骤、实验中遇到的问 题及解决方法等。 上交程序源代码。 源代码和实验报告一并打包后上交,其命名方 式为:班级_学号_姓名.rar (注:只需上交源代码,不需要上交生成的目标 文件及可执行文件。) 通过EMAIL地址上交:coignhln@
状态检查算法判断本次申请是否会造成系统处于 不安全状态,如果不安全则阻塞进程;如果安全 状态,则完成资源分配。

安全状态检查算法的思想是找到一个安为不安全状态。
实验内容与步骤

进程的死锁避免算法。编写一段程序,模拟
银行家算法,解决进程的死锁问题。

算法设计与分析实验报告

算法设计与分析实验报告

本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。

1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。

需要注意的是,分治法使用递归的思想。

划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。

最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。

1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。

序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。

试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。

对于给定的正整数n,格雷码为满足如下条件的一个编码序列。

(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。

(2)序列中无相同的编码。

(3)序列中位置相邻的两个编码恰有一位不同。

2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。

两位是00 01 11 10。

三位是000 001 011010 110 111 101 100。

n位是前n-1位的2倍个。

N-1个位前面加0,N-2为倒转再前面再加1。

3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。

用x 坐标表示东西向,用y坐标表示南北向。

各居民点的位置可以由坐标(x,y)表示。

街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。

编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。

2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。

3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。

设计算法求出A的一个近似中值。

如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。

现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。

二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。

三、实验要求(1)写清算法的设计思想。

(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。

(3)根据你的数据结构设计测试数据,并记录实验结果。

(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。

四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页/ 共2页江西理工大学
计算机算法分析与设计实验报告
实验名称实验三利用回溯算法实现N皇后问题和背包问题求解
日期专业班级地点
实验人学号同组人单独完成
一、实验目的
掌握回溯的基本思想及其与数学分析的关系。

掌握回溯算法的设计与实现,并且学会用回溯算法解决实际问题。

二、实验要求
1、掌握回溯算法的基本思想。

2、利用回溯算法解决N皇后问题。

3、利用随机化算法求解非线性方程组。

三、实验内容分析及代码
问题描述:
详细描述N皇后问题
问题:在n×n格的棋盘上放置彼此不受攻击的n个皇后。

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

N皇后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。

分析:从n×n个格子中选择n个格子摆放皇后。

可见解空间树为子集树。

使用Board[N][N]来表示棋盘,Board[i][j]=0 表示(I,j)位置为空,Board[i][j]=1 表示(I,j)位置摆放有一个皇后。

全局变量way表示总共的摆放方法数目。

使用Queen(t)来摆放第t个皇后。

Queen(t) 函数符合子集树时的递归回溯范式。

当t>N时,说明所有皇后都已经摆放完成,这是一个可行的摆放方法,输出结果;否则,遍历棋盘,找皇后t所有可行的摆放位置。

Feasible(i,j) 判断皇后t能否摆放在位置(i,j)处,如果可以摆放则继续递归摆放皇后t+1,如果不能摆放,则判断下一个位置。

Feasible(row,col)函数首先判断位置(row,col)是否合法,继而判断(row,col)处是否已有皇后,有则冲突,返回0,无则继续判断行、列、斜方向是否冲突。

斜方向分为左上角、左下角、右上角、右下角四个方向,每次从(row,col)向四个方向延伸一个格子,判断是否冲突。

如果所有方向都没有冲突,则返回1,表示此位置可以摆放一个皇后。

实验实现代码
#include <stdio.h>
#define N 8
int Board[N][N], way,i,j;
int Feasible(int row,int col)
{if(row>N || row<0 || col >N || col<0) return 0;
if(Board[row][col] != 0) {return 0; }
for(i=0;i<N;++i) {if(Board[row][i] != 0 || Board[i][col]!=0)return 0;}
for(i=1;i<N;++i){if((row-i)>=0 && (col-i)>=0) //位置合法
{ if(Board[row-i][col-i] != 0) return 0; }
if((row+i)<N && (col-i)>=0){if(Board[row+i][col-i] != 0) return 0;}
if((row-i)>=0 && (col+i)<N){if(Board[row-i][col+i] != 0)return 0;}
if((row+i)<N && (col+i)<N) {if(Board[row+i][col+i] != 0) return 0; } } return 1;} void Queen(int t)
{if(t>N){way++;}else{ for( i=0;i<N;++i)
{for(j=0;j<N;++j) {if(Feasible(i,j))
{ Board[i][j] = 1;Queen(t+1);Board[i][j] = 0;} } } }}
int factorial(int num)
{ if(num==0 || num==1)return 1;return num*factorial(num-1);}
int main(int argc, char* argv[])
{ for(i=0;i<N;++i)
{for(j=0;j<N;++j){ Board[i][j]=0; } }
way = 0; Queen(1); printf("考虑每个皇后都不同,摆放方法:%d\n",way);
return 0;}
算法设计实验报告第2页/ 共2页(2)利用回溯算法求解背包问题
问题:给定n种物品和一背包。

物品i的重量是wi,其价值为pi,背包的容量为C。

问应如何选择
装入背包的物品,使得装入背包中物品的总价值最大?
分析:问题是n个物品中选择部分物品,可知,问题的解空间是子集树。

比如物品数目n=3时,其解
空间树如下图,边为1代表选择该物品,边为0代表不选择该物品。

使用x[i]表示物品i是否放入背包,
x[i]=0表示不放,x[i]=1表示放入。

回溯搜索过程,如果来到了叶子节点,表示一条搜索路径结束,如
果该路径上存在更优的解,则保存下来。

如果不是叶子节点,是中点的节点(如B),就遍历其子节点(D
和E),如果子节点满足剪枝条件,就继续回溯搜索子节点。

实现代码:#include<iostream>
using namespace std;
int n,c,bestp; //物品的个数,背包的容量,最大价值
int p[100],w[100],x[100],bestx[100]; //物品的价值与重量,x[i]暂存物品的选中情况 void Backtrack(int i,int cp,int cw) //cw当前包内物品重量,cp当前包内物品价值 { int j;
if(i>n) //结束回溯
{ if(cp>bestp)
{ bestp=cp;
for(i=0;i<=n;i++)
bestx[i]=x[i]; }}
elsefor(j=0;j<=1;j++)
{ x[i]=j;
if(cw+x[i]*w[i]<=c)
{ cw+=w[i]*x[i]; //每个解向量的分量的c与当前的w[i]和前一个解向量分量的cw有关
cp+=p[i]*x[i];Backtrack(i+1,cp,cw); //递归调用}
} }
int main() {
int i; bestp=0;
cout<<"输入物品个数:"<<endl;cin>>n;
cout<<"输入背包最大容量:"<<endl; cin>>c;
cout<<"依次输入物品的重量:"<<endl;
for(i=1;i<=n;i++)cin>>w[i];
cout<<"请依次输入物品的价值:"<<endl;
for(i=1;i<=n;i++)
cin>>p[i]; Backtrack(1,0,0);
cout<<"最大价值为:"<<endl<<bestp<<endl;
cout<<"物品的选中情况依次为(0表示没有被选中,1表示被选中)"<<endl; for(i=1;i<=n;i++)
cout<<bestx[i];
cout<<endl; return 0; }
四、实验结果
(1)利用回溯算法实现n皇后问题的结果截图
(2)利用回溯算实现背包问题的求解结果截图
五、实验总结
通过这次实验知道了原来还可以通过算法程序来实现复杂的数学问。

以后遇到复杂的数学问题再也不用利用手算。

我觉得学习了算法对于解决数学建模中遇到的很多问题都可以较为完美的解决。

在实验中遇到了不少问题,通过自己百度逐一的解决了,有些问题感觉还是有点狗血,百度且调试了好久才解决。

相关文档
最新文档