最优化方法第三章非线性规划的基本概念与基本原理
非线性规划的基本概念及问题概述
![非线性规划的基本概念及问题概述](https://img.taocdn.com/s3/m/c800c9a9afaad1f34693daef5ef7ba0d4b736d4b.png)
牛顿法在凸优化问题上表现较好,但在非凸问题 上可能陷入局部最优解。
拟牛顿法
01
拟牛顿法是一种改进的牛顿法,通过构造海森矩阵 的近似来降低计算成本。
02
拟牛顿法在每一步迭代中更新搜索方向,并逐渐逼 近最优解。
03
拟牛顿法在处理大规模非线性规划问题时表现较好 ,但仍然需要计算目标函数的二阶导数。
共轭梯度法
共轭梯度法结合了梯度法和牛 顿法的思想,通过迭代更新搜 索方向来寻找最优解。
共轭梯度法的迭代方向是梯度 方向和上一次迭代方向的线性 组合,可以加快收敛速度。
共轭梯度法适用于大规模优化 问题,尤其在约束条件较多或 非凸函数情况下表现较好。
05
非线性规划的挑战与解决方 案
局部最优解问题
局部最优解问题
案例二:生产计划优化问题
总结词
生产计划优化问题旨在通过合理安排生 产计划,降低生产成本并满足市场需求 。
VS
详细描述
生产计划优化问题需要考虑生产过程中的 各种因素,如原材料需求、设备能力、劳 动力成本等。目标函数通常是非线性的, 因为生产成本和产量之间的关系是非线性 的。约束条件可能包括资源限制、交货期 限制等。
例子
最小化成本函数,其中成本是生产量 的函数,生产量受到资源、生产能力 等约束。
最大化问题
最大化目标函数
在给定的约束条件下,找到一组变量 ,使得目标函数达到最大值。
例子
最大化收益函数,其中收益是销售量 的函数,销售量受到市场需求、价格 等约束。
约束条件下的优化问题
01
在满足一系列约束条件下,寻找最优解,使得目标函数达到最 优值。
梯度法适用于目标函数和约束条件比较简单的情况,但对于非凸函数或约束条件复 杂的情况可能不收敛或收敛到局部最优解。
非线性优化
![非线性优化](https://img.taocdn.com/s3/m/3d235b788e9951e79b89275b.png)
*( ) 0TZ H X Z
则*X为)
(Xf的严格局部极小点。此外)(*XH称为)(Xf在点*X处的海赛Hesse矩阵。
或 0
)(Xf 2
式2中
)(XfT
x
Xf
x
Xf
x
Xfn)
,,,()()()(21
称为函数)(Xf在X点处的梯度。
由数学分析可知பைடு நூலகம்)
(Xf的方向为X点处等值面等值线的法线方向沿这一方向函数值增加
最快见图1。
3
满足0)
()()(21
nx
Xf
x
Xf
x
Xf或0
)(Xf的点称为平稳点或驻点。极值点一定是驻点但
驻点不一定是极值点。
[定理2充分条件] 设R是nE上的一个开集)
自由地实现不同形式之间的转换因此我们可以用如下一般形式来加以描述
nE
XXf),(min ),,2,1(,0)(miXhi ),,2,1(,0)(ljXgj
其中T
nx
xxX),,,(21是n维欧氏空间nE中的向量点。
2 又因0
)(Xhi等价于两个不等式 0)(Xhi0)(Xhi
件是)
(Xf的海赛矩阵)(XH在R上处处半正定0)(ZXHZ
T。
3.2.1非线性规划的几何规划 [例] 求解下述非线性规划问题 2 2
非线性优化的基本理论
![非线性优化的基本理论](https://img.taocdn.com/s3/m/06f4b46eb5daa58da0116c175f0e7cd185251848.png)
非线性优化的基本理论引言非线性优化是数学和计算机科学领域的一个重要研究方向。
它研究的是在给定约束条件下,如何寻找某个目标函数的最优解。
与线性优化问题不同,非线性优化问题涉及非线性函数的优化,更具有挑战性。
基本概念1.目标函数(Objective Function):非线性优化问题中需要优化的目标函数,通常表示为f(x),其中x表示自变量。
2.约束条件(Constraints):非线性优化问题中限制目标函数的函数或等式,通常表示为g(x) <= 0和h(x) = 0。
3.最优解(Optimal Solution):非线性优化问题中使目标函数取得最小(或最大)值的自变量的取值。
4.局部最优解(Local Optimum):非线性优化问题中某个点附近的最优解,但不一定是全局最优解。
5.全局最优解(Global Optimum):非线性优化问题中使目标函数取得最小(或最大)值的自变量的取值,是优化问题的最优解。
基本原理非线性优化的基本原理是寻找目标函数在给定约束条件下的最优解。
常用的方法包括梯度下降法、牛顿法和拟牛顿法等。
1. 梯度下降法(Gradient Descent)梯度下降法是一种基于目标函数梯度信息的迭代优化方法。
它的基本思想是通过不断迭代调整自变量的取值,使目标函数逐渐收敛到最优解。
具体步骤如下:1. 初始化自变量的取值。
2. 计算目标函数在当前自变量取值下的梯度。
3. 根据梯度的方向和步长,更新自变量的取值。
4. 重复步骤2和步骤3,直到满足停止准则。
2. 牛顿法(Newton’s Method)牛顿法是一种基于目标函数二阶导数信息的迭代优化方法。
它的基本思想是通过将目标函数进行二阶泰勒展开,以二阶导数的倒数作为步长,调整自变量的取值。
具体步骤如下: 1.初始化自变量的取值。
2. 计算目标函数在当前自变量取值下的一阶导数和二阶导数。
3. 根据一阶导数和二阶导数,更新自变量的取值。
非线性规划的相关概念
![非线性规划的相关概念](https://img.taocdn.com/s3/m/38069ebc7d1cfad6195f312b3169a4517623e569.png)
非线性规划的相关概念引言非线性规划是数学规划领域中的一个重要研究方向,它是线性规划的推广和扩展。
在许多实际问题中,约束条件和目标函数往往是非线性的,因此需要非线性规划方法来解决这些问题。
本文将介绍非线性规划的基本概念和相关理论。
基本概念1. 可行解在非线性规划中,可行解指的是满足约束条件的解。
具体地,给定约束条件和目标函数,如果存在一组解使得所有约束条件都得到满足,那么这组解就是可行解。
非线性规划的目标是找到一个可行解,使得目标函数值最小或最大。
2. 局部极小解和全局极小解在非线性规划中,局部极小解指的是在某个局部范围内,目标函数值最小的可行解。
全局极小解指的是在整个可行域内,目标函数值最小的可行解。
在非线性规划中,寻找全局极小解往往非常困难,因为非线性规划问题一般没有全局最优解的性质。
因此,通常采用近似算法来寻找接近全局极小解的解。
3. 无约束问题和约束问题非线性规划可以分为无约束问题和约束问题。
无约束问题是指在没有约束条件的情况下,找到目标函数的最小值或最大值。
约束问题是指在满足一组约束条件的情况下,找到目标函数的最小值或最大值。
约束问题通常比无约束问题更加复杂,因为需要考虑约束条件的影响。
相关理论1. 梯度下降法梯度下降法是非线性规划中常用的优化方法之一。
基本思想是通过迭代更新解,使得目标函数值逐渐降低。
具体地,梯度下降法使用目标函数的梯度信息来指导搜索方向,并选择适当的步长来更新解。
该方法通常在局部范围内找到局部极小解,并且易于实现。
2. 牛顿法牛顿法是一种经典的非线性优化方法,广泛应用于非线性规划问题的求解。
它利用目标函数和约束条件的一阶和二阶导数信息来更新解。
具体地,牛顿法通过计算目标函数的海森矩阵来确定搜索方向,并选择适当的步长来更新解。
该方法在局部范围内通常能够快速收敛到极小解。
3. 二次规划二次规划是非线性规划中的一种特殊形式,目标函数是二次函数,约束条件是线性条件。
它可以通过求解一组二次方程组来得到最优解。
非线性规划算法介绍
![非线性规划算法介绍](https://img.taocdn.com/s3/m/6f021f311611cc7931b765ce050876323112740d.png)
非线性规划算法介绍在优化问题中,线性规划被广泛应用,但是有时候我们需要解决一些非线性问题。
非线性规划问题是指目标函数或约束条件至少有一个是非线性的优化问题,求解非线性规划问题是在一些工程和科学领域中很重要的任务。
这篇文章将会介绍非线性规划算法的一些概念和原理。
1. 概述非线性规划(Non-linear programming,简称NLP)是指存在非线性的目标函数和约束的最优化问题。
相对于线性规划问题,非线性规划问题的求解要困难得多,因此需要更复杂的算法来解决。
然而,在实际应用中非线性规划问题比比皆是,如金融风险管理、科学研究、交通规划等,因此非线性规划算法的研究意义非常重大。
2. 常见算法(a) 梯度下降法梯度下降法(Gradient descent algorithm)是求解最小化目标函数的一种方式。
在非线性规划问题中,该方法利用目标函数的梯度方向来确定下降的方向,迭代调整参数,直到梯度为零或达到可接受的误差范围。
梯度下降法有多种变形,包括共轭梯度法、牛顿法等。
(b) 拟牛顿法拟牛顿法(Quasi-Newton methods)是用来求解非线性约束优化问题的经典算法之一。
拟牛顿法利用牛顿法的思想,但不需要求解目标函数的二阶导数,转而用近似的Hessian矩阵来取代二阶导数,并用更新步长向量的方式近似求解目标函数的最小值。
(c) 启发式算法启发式算法(Heuristic algorithms)是一种不确定性的、基于经验的求解方法,因此不保证能找到全局最优解。
虽然有缺点,但启发式算法具有较强的鲁棒性和适应性,可用于非线性规划问题的求解。
常见的启发式算法包括模拟退火、遗传算法、蚁群算法、粒子群算法等。
3. 应用案例非线性规划算法在实际应用中发挥着不可或缺的作用。
这里介绍两个基于非线性规划算法的应用案例。
(a) 水利工程在水利工程中,常常需要寻找最优的方案来解决水库调度、灌溉、排洪等问题。
非线性规划算法能够通过寻找水资源的最优利用方法,保证水利工程的经济和社会效益。
非线性规划
![非线性规划](https://img.taocdn.com/s3/m/4d15d52bcbaedd3383c4bb4cf7ec4afe04a1b18c.png)
非线性规划什么是非线性规划?非线性规划(Nonlinear Programming,简称NLP)是一种数学优化方法,用于求解包含非线性约束条件的优化问题。
与线性规划不同,非线性规划中的目标函数和约束条件都可以是非线性的。
非线性规划的数学表达式一般来说,非线性规划可以表示为以下数学模型:minimize f(x)subject to g_i(x) <= 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., px ∈ R^n其中,f(x)是目标函数,g_i(x)和h_j(x)分别是m个不等式约束和p个等式约束,x是优化变量,属于n维实数空间。
非线性规划的解法由于非线性规划问题比线性规划问题更为复杂,因此解决非线性规划问题的方法也更多样。
以下列举了几种常用的非线性规划求解方法:1. 数值方法数值方法是最常用的非线性规划求解方法之一。
它基于迭代的思想,通过不断优化目标函数的近似解来逼近问题的最优解。
常见的数值方法有梯度下降法、牛顿法、拟牛顿法等。
2. 优化软件优化软件是一类针对非线性规划问题开发的专用软件,它集成了各种求解算法和优化工具,可以方便地求解各种类型的非线性规划问题。
常见的优化软件有MATLAB、GAMS、AMPL等。
3. 线性化方法线性化方法是一种将非线性规划问题转化为等价的线性规划问题的求解方法。
它通过线性化目标函数和约束条件,将非线性规划问题转化为线性规划问题,然后利用线性规划的求解方法求解得到最优解。
4. 分类方法分类方法是一种将非线性规划问题分解为若干个子问题求解的方法。
它将原始的非线性规划问题分解为多个子问题,然后将每个子问题分别求解,并逐步逼近原始问题的最优解。
以上仅是非线性规划求解方法的一小部分,实际上还有很多其他的方法和技巧可供选择。
在实际应用中,选择合适的方法和工具是非常重要的。
非线性规划的应用非线性规划在实际生活和工程中有着广泛的应用。
非线性规划-无约束问题的最优化方法
![非线性规划-无约束问题的最优化方法](https://img.taocdn.com/s3/m/f38dd68b6529647d27285282.png)
f x( ) + l e1 = 3( + l ) + 2? 22 1
1
(
)
2
32 = 3( + l ) + 17 1
2
fl ' = 0 ? l 1
- 1
轾 轾 1 1 犏 犏 2 1 x( ) = x( ) + l e1 = 犏 + (- 1)犏 = 2 0 犏 犏 犏 犏 3 0 臌 臌
轾 0 犏 犏 ? f x(2) 2 犏 犏 3 臌
第 二 节 最
二、最速下降法的算法步骤
速 下
降 法
第1步:给定初始点 x(0),及终止误差 e > 0 ,令k =0 第2步:求梯度向量的范数 Ñ f (x(k )) 若 ? f (x(k )) 停止计算,输出x e ,停止计算,输出 (k)作为极小点的近
p( ) = - f x( )
k k
似值,否则转到下一步。 似值,否则转到下一步。 第3步:构造负梯度方向
第 一 节
一、基本思想
变
量
轮 换
法
认为最有利的搜索方向是各坐标轴的方向, 认为最有利的搜索方向是各坐标轴的方向,因此它轮流 按各坐标的方向搜索最优点。 按各坐标的方向搜索最优点。 过程:从某一个给定点出发,按第 个坐标轴 个坐标轴x 过程:从某一个给定点出发,按第i个坐标轴 i的方向搜 索时,假定有 个变量 则只有x 在变化,其余(n-1)个变量 个变量, 索时,假定有n个变量,则只有 i在变化,其余 个变量 都取给定点的值保持不变。这样依次从 做了n次单变 都取给定点的值保持不变。这样依次从x1到xn做了 次单变 量的一维搜索,完成了变量轮换法的一次迭代。 量的一维搜索,完成了变量轮换法的一次迭代。
非线性规划的概念和原理
![非线性规划的概念和原理](https://img.taocdn.com/s3/m/a84399ade009581b6bd9eb49.png)
第五章 非线性规划的概念和原理非线性规划的理论是在线性规划的基础上发展起来的。
1951年,库恩(H.W.Kuhn )和塔克(A.W.Tucker )等人提出了非线性规划的最优性条件,为它的发展奠定了基础。
以后随着电子计算机的普遍使用,非线性规划的理论和方法有了很大的发展,其应用的领域也越来越广泛,特别是在军事,经济,管理,生产过程自动化,工程设计和产品优化设计等方面都有着重要的应用。
一般来说,解非线性规划问题要比求解线性规划问题困难得多,而且也不像线性规划那样有统一的数学模型及如单纯形法这一通用解法。
非线性规划的各种算法大都有自己特定的适用范围。
都有一定的局限性,到目前为止还没有适合于各种非线性规划问题的一般算法。
这正是需要人们进一步研究的课题。
5.1 非线性规划的实例及数学模型[例题6.1] 投资问题:假定国家的下一个五年计划内用于发展某种工业的总投资为b 亿元,可供选择兴建的项目共有几个。
已知第j 个项目的投资为j a 亿元,可得收益为j c 亿元,问应如何进行投资,才能使盈利率(即单位投资可得到的收益)为最高?解:令决策变量为j x ,则j x 应满足条件()10j j x x -= 同时j x 应满足约束条件1nj jj a xb =≤∑目标函数是要求盈利率()1121,,,njjj n nj jj c xf x x x a x===∑∑最大。
[例题6.2] 厂址选择问题:设有n 个市场,第j 个市场位置为(),j j p q ,它对某种货物的需要量为j b ()1,2,,j n =。
现计划建立m 个仓库,第i 个仓库的存储容量为i a ()1,2,,i m =。
试确定仓库的位置,使各仓库对各市场的运输量与路程乘积之和为最小。
解:设第i 个仓库的位置为(),i i x y ()1,2,,i m =,第i 个仓库到第j 个市场的货物供应量为i j z ()1,2,,,1,2,,i m j n ==,则第i 个仓库到第j 个市场的距离为i j d =目标函数为1111mnmni ji j i ji j i j zd z =====∑∑∑∑约束条件为:(1) 每个仓库向各市场提供的货物量之和不能超过它的存储容量; (2) 每个市场从各仓库得到的货物量之和应等于它的需要量; (3) 运输量不能为负数。
非线性规划
![非线性规划](https://img.taocdn.com/s3/m/878766d2aef8941ea76e05a9.png)
非线性规划非线性规划(Nonlinear Programming ,简记为NP)研究的对象是非线性函数的数值最优化问题,是运筹学的最重要分支之一,20世纪50年代形成一门学科,其理论和应用发展十分迅猛,随着计算机的发展,非线性规划应用越来越广泛,针对不同的问题提出了特别的算法,到目前为止还没有适合于各种非线性规划问题的一般算法,有待人们进一步研究.§1 非线性规划基本概念一、引例例7.1 一容器由圆锥面和圆柱面围成. 表面积为S ,圆锥部分高为h ,h 和圆柱部分高2x 之比为a ,1x 为圆柱底圆半径.求21,x x 使面积最大.解: 由条件 a x h =2/22121231x x x ax V ππ+=21212222112221x x x x a x x S πππ+++⋅⋅=所以,数学模型为:212)311(max x x a V π+=s.t. S x x x x a x x =+++21212222112πππ0,21≥x x例7.2 某高校学生食堂用餐,拟购三种食品,馒头0.3元/个,肉丸子1元/个,青菜0.6/碗.该学生的一顿饭支出不能够超过5元.问如何花费达到最满意?解: 设该学生买入馒头,肉丸子,青菜的数量分别为321,,x x x ; 个人的满意度函数即为效用函数为321321321),,(aaax x Ax x x x u =.于是数学模型为321321321),,(max aaax x Ax x x x u =s.t.56.03.0321≤++x x x 321,,x x x 为非负整数二、数学模型称如下形式的数学模型为数学规划(Mathematical Programming 简称MP ) )(min x f z = (7.1) (MP ) t s . 0)(≥x g i m i ,,1 = (7.2) 0)(=x h j l j ,,1 = (7.3)其中Tn x x x x ),,,(21 =是n 维欧几里得空间nR 中的向量(点),)(x f 为目标函数,0)(,0)(=≥x h x g j i 为约束条件.称满足约束条件的向量x 为(MP )问题的一个可行解,全体可行点组成的集合称为可行域.K ={}l j x h mi x g R x j i n,,2,10)(,,2,10)( ===≤∈如果)(),(),(x h x g x f j i 均为线性函数,就是前面所学的线性规划问题(LP).如果至少有一个为非线性函数称为非线性规划问题.由于等式约束0)(=x h j 等价于下列两个不等式约束 0)(,0)(≥-≥x h x h j j 所以(MP)问题又可表示为 )(min x f z =s.t. 0)(≥x g i m i ,,1 = (7.4) 三、数学基础 1、线性代数知识考虑二次型Az z T ,z 为n 维向量正定的二次型:若对于任意0≠z ,有0>Az z T; 半正定的二次型:若对于任意0≠z ,有0≥Az z T ; 负定的二次型:若对于任意0≠z ,有0<Az z T ; 半负定的二次型:若对于任意0≠z ,有0≤Az z T ;不定二次型:0≠∃z ,有0>Az z T,又0≠∃z ,有0<Az z T.二次型Az z T 为正定的充要条件是它的矩阵A 的左上角各阶主子式都大于零. 二次型Az z T 为负定的充要条件是它的矩阵A 的左上角各阶主子式负正相间.2、分析数学知识(1)方向导数和梯度(二维为例)考虑函数),(21x x f Z =,及方向j i lϕϕsin cos +=梯度:Tx f x f j x f i x f x x f ),(),(212121∂∂∂∂=∂∂+∂∂=∇ ; 方向导数:⎪⎪⎭⎫⎝⎛∂∂∂∂=∂∂+∂∂=∂∂ϕϕϕϕsin cos ),(sin cos 2121x f x f x f x f l f )),,(cos(||),(||),(),(21212121l x x gardf x x gardf lx x gardf lx x f T=⋅=⋅∇=考虑等值线00201),(c x x f =上一点),(0201x x 梯度方向 ),(0201x x gardf 即为法线方向n.如果)(x f 二次可微,称⎪⎪⎪⎪⎪⎭⎫⎝⎛=)()()()()()()()()()(212222111211x h x h x h x h x h x h x h x h x h x H nn n n n n为)(x f 在点 x 处的Hesse 矩阵.(2)多元函数泰勒公式:若)(,),(0x f R S x x f u n⊆∈=在点0x 处的某个领域具有二阶连续偏导数,则有x x x f x x x f x f x x f T T∆∆+∇∆+∆∇+=∆+)(21)()()(02000θ 10≤≤θ )||(||)(21)()(||)(||)()(2020000x x x f x x x f x f x x x f x f T TT ∆+∆∇∆+∆∇+=∆+∆∇+=οο 四、最优解的类型定义7.1 (MP)问题的一个可行点*x 被称为整体极小点,如果对于任意的可行点K x ∈,都有不等式)()(*x f x f ≥成立.如果对于任意可行点*,x x K x ≠∈均有)()(*x f x f >,称点*x 是)(x f 的可行解集K上的严格整体极小点.定义7.2 问题(MP)的一个可行点*x 被称为一个局部极小点,如果存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*≥x f x f 成立.如果对任意的可行点K x ∈,*≠x x ,存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*>x f x f 成立.则称*x 是)(x f 在K 上的一个局部严格极小点.显然整体极小点一定是局部极小点,反之不然. 五、凸规划定义7.3 集合K 被称为nR 中的一个凸集,如果对于K 中任意两点21,x x 和任一实数]1,0[∈λ,点K x x ∈-+21)1(λλ.几何解释:当一个集合是凸集时,连接此集合中任意两点的线段也一定包含在此集合内,规定φ空集是凸集.定义7.4 凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x 和任意实数]1,0[∈λ有不等式)()1()())1((2121x f x f x x f λλλλ-+≤-+成立.严格凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x ,21x x ≠和任意实数)1,0(∈λ,有不等式)()1()())1((2121x f x f x x f λλλλ-+<-+成立.定义7.5 )(x f 是定义在凸集K 上的实值函数,如果)(x f -是K 上凸函数,称)(x f 是凹函数.定理7.1 设)(x f 是凸集K 上的凸函数,则)(x f 在K 中的任一局部极小点都是它的整体极小点.证明: 设*x 是一局部极小点而非整体极小点,则必存在可行点K x ∈(可行域))()(*x f x f <∍.对任一]1,0[∈λ,由于)(x f 的凸性,有 )()()1()())1((***x f x f x f x x f ≤-+≤-+λλλλ当0→λ时,*)1(x x λλ-+与*x 充分接近,与*x 是局部极小矛盾. 证毕. 定义7.6 设有(MP)问题)(min x f kx ∈,若可行域K 是凸集,)(x f 是K 上的凸函数,则称此规划问题为凸规划.定理7.2 凸规划的任一局部极小解为整体极小解. 六、非线性规划问题的求解方法 考虑(MP)问题:lj x h m i x g t s x f j i ,,10)(,,10)(.)(min ===≥ (7.5) 一般来说,MP 问题难以求得整体极小点,只能求得局部极小点.以后我们说求(MP)问题,指的是求局部极小点.1、无约束极小化问题(UMP ) )(min x f nRx ∈ (7.6) 这里)(x f 是定义在n R 上的一个实值函数定理7.3(一阶必要条件)如果)(x f 是可微函数.*x 是上述无约束问题(UMP )的一个局部极小点或局部极大点的必要条件是:0)(*=∇x f .满足0)(=∇x f 的点称为平稳点或驻点.定理7.4 设)(x f 为定义在n R 上的二阶连续可微函数,如果*x 是)(x f 的一个局部极小点,必有nT Ry y x H y x f ∈∀≥=∇0)(0)(**这里)(*x H 表示)(x f 在*x 处的Hesse 矩阵.证明:nE y ∈∀,根据)(x f 在点*x 处的展开式有)()(21)()(2*2**λολλ++=+y x H y x f y x f T)0)((*=∇x f若0)(,*<∍∈∃y x H y R y T n ,当λ充分小时,有 )()(21|2*2λολ>y x H y T∴有)()(**x f y x f <+λ.这和*x 是)(x f 的极小矛盾.定理7.5 设)(x f 是定义在nR 上的二阶连续可微函数,如果点*x 满足0)(*=∇x f ,而且存在*x 的一个邻域0)(),(,),(*≥∈∀∈∀∍*y x H y x x R y x T n 有 ,则*x 是)(x f 的一个局部极小点.在高等数学中求解极值点方法先求出满足0)(=∇x f 的点及不可导点.在这些点判断)(x f 是否取得极小值.2、等式约束的极小化问题考虑 )(min x fl j x h t s j ,,10)(. == (7.7)定义7.7 如果)(,),(),(21x h x h x h l ∇∇∇ 在点x 处线性无关,则称点x 是此约束条件的一个正则点.Langrange 乘子法:引进拉格朗日函数 ∑=-=lj jj x h u x f u x L 1)()(),(其中Tl u u u u ),,,(21 =被称为拉格朗日乘子向量.定理7.6 设l j x h x f j ,,1),(),( =是连续可微函数,*x 是)(x f 在可行集中的一个局 部极小点.在*x 是正则点的假定下必存在一个拉格朗日乘子向量u ,使得),(*u x 满足方程组)(0)()(*1**==∇-∇∑=x h x h u x f lj j j对等式约束,用拉格朗日乘子法求解出平稳点,判断是否极值点.用上述解析法求解无约束和等式约束极值问题的平稳点,再判断是否为极值点.该方法有一定的局限性:(1)它们要求函数是连续的,可微的,实际问题中不一定满足这一条件; (2)上述求平稳点的方程组求解比较困难,有些解不出来; (3)实际问题中有大量的不等式约束.因此求解非线性规划应有更好的新方法.实际应用中一般用迭代法来求解非线性规划问题,即求近似最优解的方法.3、非线性规划问题的求解方法—迭代法迭代法一般过程为:在(MP)问题的可行域K 内选择初始点0:,0=k x ,确定某一方向k p ,使目标函数)(x f 从k x 出发,沿k p 方向使目标函数值下降,即)0(,>∈+=λλK p x x k ,有)()(0x f x f <,进一步确定kλ,使)(m i n )(0k k k k k p x f p x f λλλ+=+>,令k k k k p x x λ+=+1.如果1+k x 已满足某终止条件,1+k x 为近似最优解.否则,从1+k x 出发找一个方向1+k p ,确定步长1+k λ,使K p x x k k k k ∈+=++++1112λ,有)(min )(1102++>++=k k k p x f x f λλ.如此继续,将得到点列{}kx .显然有 >>>>)()()(1kx f x f x f ,即点列{}kx 相对应的目标函数是一个单调下降的数列.当{}kx 是有穷点列时,希望最后一个点是(MP)问题的某种意义下的最优解.当{}kx 为无穷点列时,它有极限点,其极限点是(MP)的某种意义下的最优解(此时称该方法是收敛的).迭代法求解(MP)的注意点:该方法构造的点列{}kx ,其极限点应是近似最优解,即该算法必须是收敛的.迭代法一般步骤:①. 选取初始点0x ,0:=k ②. 构造搜索方向kp ③. 根据kp 方向确定k λ ④. 令k k k k p x xλ+=+1⑤. 若1+k x已满足某终止条件,停止迭代,输出近似最优解1+k x.否则令1:+=k k ,转向第②步.计算终止条件在上述迭代中有:若1+k x满足某终止条件则停止计算,输出近似最优解1+k x.这里满足某终止条件即到达某精确度要求.常用的计算终止条件有以下几个:(1)自变量的改变量充分小时,11||||ε<-+k k x x,或21||||||||ε<-+kk k x x x ,停止计算. (2)当函数值的下降量充分小时,31)()(ε<-+k kx f x f ,或41|)(|)()(ε<-+k k k x f x f x f , 停止计算.(3)在无约束最优化中,当函数梯度的模充分小时51||)(||ε<∇+k x f ,停止计算.迭代法的关键:① 如何构造每一轮的搜索方向kp ② 确定步长k λ关于k λ,前面是以)(min kk p x f λλ+产生的,也有些算法k λ取为一个固定值,这要根据具体问题来确定.关于kp 的选择,在无约束极值问题中只要是使目标函数值下降的方向就可以了,对于约束极值问题则必需为可行下降方向.定义7.8 设0,,:1≠∈→p R x R R f nn,若存在0>δ使),0(δλ∈∀,)()(x f p x f <+λ则称向量p 是函数)(x f 在点x 处的下降方向.定义7.9 设0,,,≠∈∈∈p R p K x R K nn,若存在0>λ使得K p x ∈+λ,称向量p 是点x 处关于K 的可行方向. 若一个向量p 既是目标函数f 在点x 处的下降方向,又是该点处关于可行域K 的可行方向,则称p 为函数f 在点x 处关于区域K 的可行下降方向.根据不同原理产生了不同的kp 和k λ的选择方法,就产生了各种算法. 在以后的讨论中,一维极值的优化问题是讨论求解步长k λ.无约束极值中讨论的最速下降法,共轭方向法,坐标轮换法,牛顿法,变尺度法及有约束极值中讨论的可行方向法都是根据不同的原理选择kp 得到的迭代算法.七、迭代算法的收敛性定义7.10 设有一算法A ,若对任一初始点(可行点),通过A 进行迭代时,或在有限步后停止得到满足要求的点;或得到一个无穷点列,它的任何一个聚点均是满足要求的点,则称此算法A 具有全局收敛性.定义7.11 设(UMP )问题的目标函数Px Qx x x f T+=21)(,Q 为对称半正定矩阵, 若由算法A 进行迭代时,不论初始点0x 如何选择,必能在有限步后停止迭代,得到所要求的点,则称此算法A 有二次有限终止性.定义7.12 设序列{}kr收敛于*r,定义满足∞<=--≤**+∞−→−βhkk k rr r r 1______lim0的非负数h 的上确界为{}k r 的收敛级.若序列的收敛级为h ,就称序列是h 级收敛的.若1=h 且1<β就称序列是以收敛比β线性收敛的. 若1>h 或1=h 且0=β就称序列是超线性收敛的. 如何判别算法的收敛性和收敛速度问题本书不讨论.本书给出的算法中,最速下降法具有全局收敛性、是线性收敛的;改进牛顿法具有全局收敛性、二次有限终止性、是二阶线性收敛的;变尺度法和共轭方向法具有全局收敛性和二次有限终止性、是超线性收敛的;Zoutenddijk 法不具有全局收敛性、改进的T-V 法具有全局收敛性;制约函数法具有全局收敛性.关于这些算法的收敛性的讨论和证明有兴趣的读者可参考其他文献.§2 一维极值问题的优化方法前面讨论迭代算法时,从kx 出发确定沿k p 方向的步长k λ是这样求解的),(min 0k k p x f λλ+>这里k x ,k p 已知.所以,若记)()(λλg p x f k k =+,则为求解)(min 0λλg >的过程.于是我们考虑如下形式的极值问题.)(min x f bx a ≤≤ (7.8)b a R x ,,1∈为任意实数很显然可应用高等数学中学过的解析法,即令0)('=x f 求出平稳点,但如前面所述如果该方程解不出来,怎么办?可用下述迭代算法—0.618法.定义7.13 )(x f 定义在],[b a 上,若存在点∍∈],[*b a x 当*x y x ≤<,有)()(y f x f >,当*x y x ≥>时,)()(y f x f >,称)(x f 在],[b a 中为单峰函数(单谷函数).显然满足定义要求的点*x 是)(x f 在],[b a 中的极小点.在],[b a 中任选两点21,x x ,且b x x a <<<21,根据)(x f 的单峰性,若)()(21x f x f <,则*x 必然位于],[2x a 内,如果)()(21x f x f >,则*x 必然位于],[1b x 内.如果)()(21x f x f =,则*x 必然位于],[21x x ,记此区间为],[11b a .如此继续,得闭区间套⊃⊃⊃⊃],[],[],[11n n b a b a b a .显然 ,1,0],,[*=∈i b a x i i ,又0→-i i a b .由闭区间套性质, *x 为极小值点.闭区间套的选择方法不同,求得的*x 的快慢及求解过程的计算量是不一样的,有一个常用的方法是0.618法.0.618法: 取],[],[b a =βα① 在],[βα中选取1λ和2λ,)(618.0),(382.021αβαλαβαλ-+=-+=,求出)(1λf 和)(2λf 进入②.② 若)()(21λλf f <,取],[],[2λαβα=,若αλ-2已足够小,停止,否则进入③.若)()(21λλf f >,取],[],[1βλβα=,若1λβ-已足够小,停止,否则进入④. 若)()(21λλf f =,取],[],[21λλβα=,若12λλ-已足够小,停止,否则进入①. ③ 取上一步中的1λ为2λ,显然有)(618.02αβαλ-+=,令)(382.01αβαλ-+=,求出)(1λf ,返回②.④ 取上一步的2λ为1λ,则有)(382.01αβαλ-+=,令)(618.02αβαλ-+=,求出)(2λf 返回②.设初始区间为],[b a ,用0.618法,经过k 次迭代后],[βα的长度ka b 618.1)(-=-αβ,只要k 充分大αβ-可以小于任何给定的正数.例7.3 用0.618法求解λλλ2)(min 2+=f单峰区间为[-3,5],2.0=ε解:[α,β]=[-3,5]1λ=-3+0.382×8=0.056 )(1λf =0.1152λ=-3+0.618×8=1.944 )(2λf =7.667由于)(1λf <)(2λf 所以新的不定区间为[α,β] =[-3,1.944] 由于β-α=4.944>0.22λ:=1λ=0.056 )(2λf :=)(1λf =0.115 1λ=-3+0.382×4.944=-1.112 )(1λf =-0.987如此反复得下表7-1:在进行8次迭代后,2.0112.1936.0<+-=-αβ取中间值024.1*-=λ或032.12-=λ作为近似最优解.显然真正极小点是-1.0.一维收索方法很多,如函数逼近法、牛顿法等可参考其他文献.§3 无约束极值的优化方法考虑无约束最优化问题(UMP ))(min x f nR x ∈ (7.9) 前面已经讨论过,求解此无约束优化问题,可以求出平稳点及不可导点的方法.令0)(*=∇x f ,求出平稳点.如果)(*2x f ∇是正定的,则*x 是UMP 的严格局部最优解.若)(x f 在n R 上是凸函数,则是整体最优解.在求解0)(*=∇x f 这n 维方程组比较困难时,就用最优化算法——迭代法.本节将介绍最速下降法,牛顿法,共轭方向法,坐标轮换法,变尺度法.这些算法就是用不同的方法来选择搜索方向k p 而得到的.当然kp 必须是下降方向.定理7.7 设R R f n→:,在点x 处可微,若存在nR p ∈,使0)(<∇p x f T,则向量p是f 在x 处的下降方向.证明:)(x f 可微(在x 处),由泰勒展开式,有 ||)(||)()()(p p x f x f p x f Tλολλ+∇+=+ ,0,0)(><∇λp x f T0)(<∇∴p x f Tλ),(当δλδ0∈∃∴时,有0||)(||)(<+∇p p x f Tλολ),0()()(δλλ∈∀<+∴x f p x fp ∴是)(x f 在点x 的下降方向. 证毕.一、最速下降法最速下降法又称梯度法,选择负梯度方向作为目标函数值下降的方向,是比较古老的一种算法,其它的方法是它的变形或受它的启发而得到的,因此它是最优化方法的基础. 基本思想:迭代法求解无约束最优化(5.9)问题的关键是求下降方向kp .显然最容易想到的是使目标函数值下降速度最快的方向.从当前点kx 出发,什么方向是使)(x f 下降速度最快呢? 由泰勒展开知:||)(||)()()(k k T k k k k p p x f p x f x f λολλ+∇-=+-略去λ的高阶无穷小项,取)(kkx f p -∇=时,函数值下降最多.而)(kx f ∇为)(x f 在kx 处的梯度,所以下降方向kp 取为负梯度方向时,目标函数值下降最快.最速下降法:①. 取初始点0x ,允许误差0>ε,令0:=k ②. 计算)(kkx f p -∇=③. 若ε<||||k p ,停止,点k x 为近似最优解.否则进入④.④. 求 k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥ ⑤. 令kk k k p x xλ+=+1,1:+=k k ,返回②例7.4 用最速下降法求解下列无约束优化问题1222121225),(m in x x x x x f -+=取初始点Tx )2,2(0= 终止误差 610-=ε解:很显然,该问题的整体最优解为Tx )0,1(*=⎪⎪⎭⎫⎝⎛-=∇215022)(x x x f ,令0,10)(21==⇒=∇x x x f易验证)(*2x f ∇是正定的, ∴是整体最优解. 下面用最速下降法求解T T x x x f x f x f )50,22(),()(2121-=∂∂∂∂=∇ T x )2,2(0=T x f )100,2()(0=∇∴取Tp )100,2(0-=由⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+λλλλ10022210022200p x4)22(2)1002(25)22()(2200+---+-=+λλλλp x f得0)1002(5000)22(4=----=λλλd df020007679.0500008100080==⇒λ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+=0007679.0959984642.11002020007679.0220001p x x λ重复上述过程得 Tx )01824717.0,009122542.1(2=789850288.0)(,078282.0)(,100)(21-=-==x f x f x f图7-1从图7-1可知,{}kx 随着迭代次数的增加,越来越接近与最优解)0,1(,同时也看到,随着迭代次数的增加,收敛速度越来越慢.极小点附近沿着一种锯齿形前进,即产生“拉锯”现象:{}kx沿相互正交的方向小步拐进,趋于最优解的过程非常缓慢.这种现象怎样解释?如何克服?在求k λ时,由于)()(kkp x f λλϕ+=,求导得0)('=λϕ,k λ是)(λϕ的极小点.故有0)()('=⋅+∇=k T k k k k p p x f λλϕ,即0)(=⋅+∇kk k k p p x f λ,又)(11++-∇=k k x f p,即0)(1=⋅+k T k p p 或0)()(1=∇⋅∇+k T k x f x f .也就是最速下降法相邻两个搜索方向是彼此正交的.因此最速下降法是局部下降最快,但不一定是整体下降最快的.在实际应用中一般开始几步用最速下降法,后来用下面介绍的牛顿法.这样两个算法结合起来,求解速度较快.二、牛顿法 基本思想:考虑无约束优化问题(5.9))(min x f nRx ∈ 由前面的讨论知,若能解出方程组0)(=∇x f ,求出平稳点*x ,则可验证*x 是否为极值点.由于0)(=∇x f 难以求解.如果)(x f 具有连续的二阶偏导数,则考虑用)(x f 在点*x 二阶泰勒展开式条件替代)(x f ∇,即由22||)(||))(()(21)()()()(k k k T k k T k k x x x x x f x x x x x f x f x f -+-∇-+-∇+=ο))(()(21)()()()()(2kk T k k T k k x x x f x x x x x f x f x g x f -∇-+-∇+=≈⇒令0))(()()()(2=-∇+∇=∇≈∇kk k x x x f x f x g x f)())((121k k k k x f x f x x ∇∇-=⇒-+即从kx 出发,搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为1,得到下一个迭代点1+k x.牛顿法:①. 选取初始点0,0=:k x ,精度0>ε ②. 计算)(kx f ∇,如果ε≤∇||)(||kx f ,计算终止.否则计算)(2kx f ∇,求出搜索方向)())((12kk k x f x f p ∇∇-=-. ③. 令1:,1+=+=+k k p x x k k k ,返回②.例7.5 考虑无约束问题22122214)(m in x x x x x f -+=试分别取初始点(1)T x )1,1(0=,(2)T x )4,3(0=(3)Tx )0,2(0=,取精度要求310-=ε,用牛顿法求解.解:⎪⎪⎭⎫ ⎝⎛--=∇212211228)(x x x x x x f ⎪⎪⎭⎫⎝⎛---=∇22228)(1122x x x x f (1) 取Tx )1,1(0=有Tx f )1,6()(0=∇ ε>=∇0828.6||)(||0x f⎪⎪⎭⎫⎝⎛--=∇2226)(02x fT x f x f p )2500.2,7500.1()())((01020--=∇⋅∇-=-Tp x x )2500.1,7500.0(01--=+= 重复计算结果得表7-2.ε<=0||)(||4x f T x )0,0(4=∴为近似最优解.实际上,该问题最优解为**)0,0(=x(2) 取Tx )4,3(0=,同上计算,得TT x x x )4,8284.2(,)4,8333.2(),4,3(21===有ε<=∇=∇=∇0||)(||,1667.0||)(||,1||)(||210x f x f x f ,这一迭代结果收敛到)(x f 的鞍点T)4,22(.(3) 取Tx )0,2(0=T x f )4,16()(0-=∇ ⎪⎪⎭⎫⎝⎛--=∇2448)(02x f0)(02=∇x f , 即)(02x f ∇不可逆,所以无法求得点1x .牛顿法的主要缺点:(1) 该法的某次迭代反而使目标函数值增大(见上例).(2) 初始点0x 距极小点*x 较远时,产生的点列{}kx可能不收敛,还会出现)(*2x f ∇的奇异情况.(3) )(*2x f ∇的逆矩阵计算量大. 牛顿迭代法的主要优点:当目标函数)(x f 满足一定条件,初始点0x 充分接近极小点*x 时,由牛顿法产生的点列{}kx 不仅能够收敛到*x,而且收敛速度非常快.实际应用中常将最速下降法和牛顿法结合起来使用.牛顿法的改进:上面介绍的牛顿法中,kx 处的搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为 1.若通过一维搜索来取最优步长k λ,可防止在迭代中步长恒为1时标目标函数值增大的可能. 改进的牛顿法:①. 取初始点nR x ∈0,允许误差0:,0=>k ε.②. 检验是否满足ε<∇||)(||kx f ,若是,迭代停止,得到k x 为近似最优解.否则进入③.③. 令)())((12kk k x f x f p ∇∇-=-.④. 求k λ,使)()(min kk k k k p x f p x f λλλ+=+. ⑤. 令k k k k p x x λ+=+1,令1+=k k :转②.三、坐标轮换法既然求解非线性规划问题的迭代法是给出初始点0x ,求出一个方向kp ,根据kp 确定步长k λ,使k k k k p x xλ+=+1,如果1+k x 满足某精度要求则停止,否则继续找方向1+k p .显然构造出搜索方向有一定的困难,能否按既定的搜索方向寻找最优解,省去找搜索方向kp 呢?在最速下降法中我们看到相邻两个搜索方向kp 和1+k p是正交的.我们知道在n 维欧氏空间中坐标轴向量n εεε,,,21 是正交的,可否选坐标轴向量为搜索方向kp 为呢?回答是肯定的,这样我们得到了坐标轮换法.基本思想:从1x 出发,取11ε=p ,沿1p 进行一维搜索得到1112p x x λ+=.若2x 满足精度要求,则停止.否则取22ε=p ,2223p x x λ+=.如此继续,, 取n n n n n n p x x p λε+==+1,,若1+n x 满足精度要求,则停止.否则令11ε=+n p ,1112+++++=n n n n p x x λ,如此反复连续,可以求出近似最优解.坐标轮换法的缺点是收敛速度较慢,搜索效率较低,但基本思想简单,沿坐标轴的方向进行搜索.四、共轭方向法和共轭梯度法共轭方向法是一类方法的总称,它原来是为求解目标函数为二次函数的问题而设计的.这类方法的特点是:方法中的搜索方向是与二次函数的系数矩阵Q 有关的所谓共轭方向,用这类方法求解n 元二次函数的极小化问题最多进行n 次一维搜索便可以得到极小点.由于可微的非二次函数在极小点附近的性态近似于二次函数,因此这类方法也用于求可微的非二次函数的UMP 问题.定义7.14 设Q 为n n ⨯对称正定矩阵,如果0=Qy x T称n 维向量x 和y 关于Q 共轭.定义7.15 设k p p p ,,,21 为nR 中一组向量, Q 是一个n n ⨯对称正定矩阵.如果k j i j i Qp p Qp p i T i j T i ,,2,1,,,0,0 =≠≠=,称k p p p ,,,21 为Q 共轭向量组,也称它们为一组Q 共轭方向.当E Q =(单位矩阵)时,为正交方向.定理7.8 若k p p p ,,,21 为矩阵Q 共轭向量组,则它们必线性无关. 证明: 若存在k l l l ,,,21 ,使011=++k k p l p l ,则对任一k j ,,2,1 =,由 0)(11===∑∑==j T j j ki j T j iki iiT jQp p l Qp pl p l Q p又0>j Tj Qp p , 0=∴j l∴ k p p p ,,,21 线性无关. 证毕.由高等代数知识可知, Q 共轭向量组中最多包含n 个向量, n 是向量的维数.反之,可以证明,由n 维空间的任一组基出发可以构造出一组Q 共轭方向11,,,-n pp p .前面我们已经讲述了坐标轮换法,在n 维欧几里德空间中, n εεε,,,21 是一组线性无关的正交向量.从0x 出发,依次使用n εεε,,,21 作为下降方向进行一维精确搜索来确定n x x x ,,,21 ,重复进行得点列{}k x ,最终求得满足精度要求的最优解.刚才我们引进了共轭向量组11,,,-n p p p ,又证明了它们的线性无关性,那么是否可以用这共轭向量组像坐标轮换法一样,从0x 出发依次用11,,,-n pp p 作为下降方向来确定{}kx,最终求得近似最优解?回答是肯定的.这个方法称为共轭方向法.共轭方向法适合任何可微凸函数,且对于二次函数极值)(min x f x p Qx x T T+=21特 别有效.下面的定理告诉我们用共轭方向法求解二次函数的极值,经过n 次迭代就能求得最优解.定理7.9 设Q 为n n ⨯对称正定矩阵,函数x p Qx x x f T T+=21)(,又设 110,,,-n p p p 为一组Q 共轭向量组,且每个i p 是(下面形成的)i x 点处的下降方向.则由任一点0x 出发,按如下迭代至多n 步后收敛,k k k k p x xλ+=+1,这里k λ满足)(m i n )(0k k k k k p x f p x f λλλ+=+>.证明: 欲证至多n 步收敛,即证0)(=∇nx f .下证)(nx f ∇和11,,,-n pp p 正交.p Qx x f +=∇)( p Qx x f kk+=∇∴)( p p x Q p Qx xf k k k k k ++=+=∇++)()(11λkk k k k k Qp x f p Qp Qx λλ+∇=++=)( =+∇=∇---111)()(n n n n Qpx f x f λ 11111)(--++++++∇=n n k k k Qp Qp xf λλQ p Q p x f x f Tn n T k k T k T n )()()()(11111--++++++∇=∇λλkT n n k T k k k T k k T n Qp p Qp p p x f p x f )()()()(11111--++++++∇=∇λλ000+++= )2,,2,1,0(-=n k 又0)(1=∇-n Tn px f0)(=∇∴kT n p x f )1,,1,0(-=n k)(nx f ∇∴和11,,,-n pp p 正交, 又110,,,-n pp p 线性无关.0)(=∇∴nx fnx ∴是问题的最优解. 证毕. 共轭方向法具有二次有限终止性. 由于共轭方向组11,,,-n p p p 的取法有很大的随意性,用不同方式产生一组共轭方向就得到不同的共轭方向法.如果利用迭代点处的负梯度向量为基础产生一组共轭方向,这样的方法叫共轭梯度法.下面对二次函数讨论形成Q 共轭梯度方向的一般方法,然后引到求解无约束化问题上.任取初始点n R x ∈0,若0)(0≠∇x f ,取)(0x f p -∇=,从0x 点沿方向0p 进行一维搜索 ,求得0λ.令0001p x x λ+=,若0)(1=∇x f ,则已获得最优解1*x x =.否则,取0011)(p x f p υ+-∇=,其中0υ的选择要使1p 和0p 关于Q 共轭,由0)(01=Qp p T ,得0100)()()(Qp p x f Q p T T ∇=υ一般地,若已获得Q 共轭方向kp p p ,,,1和依次沿它们进行一维搜索的得到的点列110,,,+k x x x ,若0)(1=∇+k x f ,则最优解为1*+=k x x ,否则∑=+++-∇=ki i i k k p xf p011)(α为使1+k p 和11,,,-k pp p 是共轭,可证0110====-k ααα所以有 k k k k p x f pυ+-∇=++)(11又1+k p和kp 是Q 共轭的.有0)(1=+k Tk Qp p,得kT k k T k k Qpp x f Q p )()()(1+∇=υ 2,,2,1,0-=n k 进一步可得k υ221||)(||||)(||k k x f x f ∇∇=+ 2,,1,0-=n k综合起来得 Fletcher-Reeves 公式2)21110||(||||)(||)()(k k k k k k k x f x f p x f px f p ∇∇=+-∇=-∇=+++υυ 2,,2,1,0-=n k (7.10)共轭梯度法: ①. 选取初始点0x ,给定终止误差0>ε. ②. 计算)(0x f ∇,若ε≤∇||)(||0x f ,停止迭代,输出0x .否则进行③.③. 取)(0x f p -∇=,令0:=k④. 求k λ,)(min )(0kkkk kp x f p x f λλλ+=+≥,令k k k k p x xλ+=+1⑤. 计算)(1+∇k xf ,若ε≤∇+||)(||1k x f ,停止迭代,1*+=k x x 为最优解.否则转⑥.⑥. 若n k =+1,令nx x =:0,转③(已经完成一组共轭方向的迭代,进入下一轮)否则转⑦ ⑦. 取kk k k p xf pυ+-∇=++)(11,其中221||)(||||)(||k k k x f x f ∇∇=+υ,令1:+=k k ,转④当)(x f 是二次函数时上述共轭梯度法至多进行n 步可求得最优解.当)(x f 不是二次函数,共轭梯度法也可以构造11,,,-n p p p ,但已不具有有限步收敛的性质,于是和坐标轮换法一样经过一轮迭代后,采用重新开始的技巧.上述共轭梯度法就是带有再开始技巧的F-R 法.例7.6 用F-R 法求下面问题 2212121252),(m in x x x x x f +-=取初始点T x )2,2(0=,终止误差为610-=ε解:在例7.4中已得Tx f p )100,2()(0-=-∇= Tx )0007679.0,959984642.1(1-= Tx f )038395.0,919969284.1()(1-=∇000368628.010004687756228.3||)(||||)(||20210==∇∇=x f x f υ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-=+-∇=0015322.092070654.11002000368628.0038395.0919969284.1)(0011p x f p υ⎪⎪⎭⎫ ⎝⎛+--=+0015322.00007679.092070654.1959984642.111λλλp x0378228399.7687703443.3)(11=+-=+λλλd p x df499808794.01=∴λ⎪⎪⎭⎫ ⎝⎛≈⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⨯+--⨯+=+=010********.0999998622.00015322.0499808794.00007679.0)92070654.1(499808794.0959984642.11112p x x λε<=∇0||)(||2x f , ∴最优解⎪⎪⎭⎫⎝⎛==012*x x .五、变尺度法当初始点为)(x f 的其极值点附近时牛顿法收敛速度很快,但缺点是需计算)(2kx f ∇的逆矩阵,在实际问题中目标函数往往相当复杂,计算二阶导数的工作量或者太大或者不可能,在x 的维数很高时,计算逆矩阵也相当费事.如果能设法构造另一个矩阵kH ,用它来逼近二阶导数矩阵的逆矩阵12))((-∇kx f 则可避免上述问题.下面就来研究如何构造12))((-∇kx f 的近似矩阵kH .我们希望:每一步都能以现有的信息来确定下一个搜索方向,每做一次迭代,目标函数值均有所下降,这些近似矩阵最后应收敛于最优解处的海赛矩阵的逆矩阵12))((-∇kx f .p Qx x f xp Qx x x f T T+=∇+=)(21)(考虑于是 )]()([)()()(11111k k k k k k k k x f x f Q x x x x Q x f xf ∇-∇=-⇒-=∇-∇+-+++当)(x f 是非二次函数时,令)]()([111k k k k k x f x f H x x ∇-∇=-+++ (7.11)称为拟牛顿条件.显然,我们构造出来的近似矩阵k H 必须满足上述拟牛顿条件及递推性:k k k H H H ∆+=+1,这里k H ∆称为矫正矩阵.记 k k k kk k x x x x f x f G -=∆∇-∇=∆++11)()( 有 kk k k k k G H H G H x ∆∆+=∆=∆+)(1 .变尺度法即DEP 法是由Davidon 首先提出,后来又被Fletcher 和Powell 改进的算法.记kk T k kT k k k k T k T k k k k kk T k kT k k k k T k T k k kG H G HG G H x G x x H H G H G H G G H x G x x H ∆∆∆∆-∆∆∆∆+=∆∆∆∆-∆∆∆∆=∆+)()()()()()()()(1 (7.12)容易验证1+k H 满足拟牛顿条件,称上式为DEP 公式.变尺度方法计算步骤:(1) 给出初始点nR x ∈0,允许误差0>ε.(2) 若ε<∇||)(||0x f ,停止,0x 为近似最优解;否则转下一步.(3) 取I H =0(单位矩阵),0=:k . (4) )(kk k x f H p ∇-=(5) 求k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥. (6) 令kk k k p x xλ+=+1(7) 若ε<∇+||)(||1k xf ,1+k x 为最优解,停止;否则当1-=n k 时,令n x x =:0转(3).(即迭代一轮n 次仍没求得最优解,以新的0x 为起点重新开始一轮新的迭代).k k k k k kx x x x f xf G n k -=∆∇-∇=∆-<++11),()(1时,令当.计算kk T k kT k k k k T k T k k kk G H G H G G H x G x x H H∆∆∆∆-∆∆∆∆+=+)()()()(1,令1+=k k :,转(4). §4 约束极值的最优化方法考虑(MP)问题:0)(0)(..)(min =≥x H x g t s x f (7.13)其中Tl T m x h x h x h x g x g x g ))(,),(()(,))(,),(()(11 ==是向量函数.显然 0)(0)(0)(≥-≥⇔=x h x h x h , 于是(MP )问题可以写为:Tm x g x g x g x g t s x f ))(,),(()(0)(..)(min 1 =≥ (7.14)一、积极约束设0x 是(MP )问题(5.14)的一个可行解.对0)(0≥x g i 来说,在点0x 有两种情况:或者0)(0>x g i ,或者0)(0=x g i .0)(0>x g i 时,则0x 不在0)(0=x g i 形成的边界上,称这一约束为0x 的非积极约束;0)(0=x g i 时,0x 处于由0)(0≥x g i 这个约束条件形成的可行域边界上,当0x 有变化时就不满足0)(0=x g i 的条件,所以称为积极约束,记为:{}()|()0,1i I x i g x i m ==≤≤.定义7.16 设x 满足约束条件0)(0≥x g i ),,1(m i =,0)(|{)(==x g i x I i ,}m i ≤≤1,如果)(x g i ∇,)(x I i ∈线性无关,则称点x 是约束条件的一个正则点.二、可行方向、下降方向的代数条件前面我们已经给出可行方向和下降方向的定义,下面给出其代数条件.可行方向:设K 是(MP )问题(5.14)的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时有K p x ∈+λ,称p 为x 点处的一个可行方向.由泰勒公式:||)(||)()()(p p x g x g p x g T i i i λολλ+∇+=+当x 为)(x g i 的积极约束时,有0)(=x g i .只要0>λ足够小,)(p x g i λ+和p x g T i )(∇λ同号,于是当0)(>∇p x g T i 时有0)(≥+p x g i λ )(x I i ∈.当x 为)(x g i 的非积极约束时,有0)(>x g i .由)(x g i 的连续性,当0>λ足够小时,由保号性知 0)(≥+p x g i λ )(x I i ∉.所以只要 0)(>∇p x g T i ,)(x I i ∈就可保证0)(≥+p x g i λ,于是p 为x 点处的一个可行方向.称0)(>∇p x g T i ,)(x I i ∈ 为p 在点x 处是可行方向的代数条件.下降方向:设K 是(MP )问题的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时,有)()(x f p x f <+λ,称p 为x 点处的一个下降方向.由泰勒公式:||)(||)()()(p p x f x f p x f Tλολλ+∇+=+.当λ足够小时,只要0)(<∇p x f T,有)()(x f p x f <+λ. 称0)(<∇p x f T为p 在x 点处的一个下降方向的代数条件.三、可行下降方向设K 为(MP )问题(5.14)的可行域,K x ∈,若存在0,≠∈p R p n,p 既是x 点处的下降方向又是可行方向,则称p 为点x 处的可行下降方向.定理7.10 考虑非线性规划问题(5.14),K x ∈,),,1)()(m i x g x f i =(和在x点处可微,若*x 是局部极小点,则x 点处必不存在可行下降方向,即不存在p 同时满足:⎪⎩⎪⎨⎧∈>∇<∇)(0)(0)(x I i p x g p x f Ti T证明:反证法,设局部极小点x 处存在可行下降方向p ,于是1λ∃,当],0[1λλ∈时有)()(x f p x f <+λ,又p 为可行方向.2λ∃∴当],0[2λλ∈时K p x ∈+λ,这与x 是。
大学数学非线性优化与最优化理论
![大学数学非线性优化与最优化理论](https://img.taocdn.com/s3/m/55435b2ca88271fe910ef12d2af90242a895abdf.png)
大学数学非线性优化与最优化理论数学是一门广泛应用于各个领域的学科,其中非线性优化与最优化理论被广泛运用于解决实际问题。
本文将介绍大学数学中的非线性优化与最优化理论,深入探讨其基本原理和应用。
一、非线性优化与最优化理论的基本概念和原理1.1 非线性优化的概念非线性优化是指在约束条件下,求解非线性函数的最优解。
与线性优化相比,非线性优化问题更加困难,因为非线性函数的特性使得求解过程更加复杂。
1.2 最优化理论的基本原理最优化理论是指通过建立适当的数学模型,寻求使特定目标函数取得极大或极小值的方法。
最优化理论可以包括线性优化、非线性优化、凸优化等不同的分支。
1.3 非线性优化与最优化理论的区别与联系非线性优化是最优化理论中的一个重要分支,它研究的是求解非线性函数的最优解问题。
非线性优化与最优化理论之间存在紧密的联系,但非线性优化更加具体,更加专注于非线性函数的求解方法和优化算法。
二、非线性优化与最优化理论的应用领域2.1 金融领域非线性优化与最优化理论在金融领域广泛应用于投资组合优化、风险管理、资产定价等问题。
通过建立适当的数学模型,可以帮助金融机构以及个人投资者在获得最大利润的同时降低风险。
2.2 物流与供应链管理在物流与供应链管理中,非线性优化与最优化理论可以应用于路线优化、资源分配、库存管理等问题。
通过求解非线性函数的最优解,可以提高物流效率、降低成本。
2.3 工程领域非线性优化与最优化理论在工程领域中有广泛的应用,如结构优化、参数估计、信号处理等。
通过对非线性函数进行求解,可以优化工程设计方案、提高系统性能。
2.4 人工智能当前人工智能领域中,非线性优化与最优化理论也发挥着重要作用。
在机器学习、深度学习等算法中,通过优化模型参数,使得模型在给定任务上取得最佳性能。
三、非线性优化与最优化理论的解法与算法3.1 基于梯度的方法梯度是许多非线性优化算法中的重要工具,通过计算目标函数的梯度信息,可以确定当前点的搜索方向和步长。
非线性优化问题的理论与算法
![非线性优化问题的理论与算法](https://img.taocdn.com/s3/m/1edb200f2a160b4e767f5acfa1c7aa00b52a9d96.png)
非线性优化问题的理论与算法一、引言优化问题是数学中的一个重要研究领域,其目标是找到使某个目标函数取得最优值的变量取值。
在实际应用中,很多问题都可以被抽象为优化问题,例如机器学习、经济学、工程设计等领域。
非线性优化问题是其中一类具有广泛应用的问题,本文将介绍非线性优化问题的理论与算法。
二、非线性优化问题的定义非线性优化问题是指目标函数或约束条件中至少存在一个非线性项的优化问题。
与线性优化问题相比,非线性优化问题更加复杂,因为非线性函数的性质往往难以直接求解。
因此,研究非线性优化问题的理论与算法具有重要意义。
三、非线性优化问题的数学建模在解决非线性优化问题之前,首先需要将实际问题转化为数学模型。
通常,非线性优化问题可以通过以下方式进行数学建模:1. 目标函数的建模:将实际问题中的目标转化为一个数学函数,该函数的取值与问题的最优解相关。
2. 约束条件的建模:将实际问题中的约束条件转化为一组等式或不等式约束,以限制变量的取值范围。
3. 变量的定义:将实际问题中的变量进行定义,并确定其取值范围。
通过以上步骤,可以将实际问题转化为一个数学模型,从而为后续的优化算法提供基础。
四、非线性优化问题的求解方法针对非线性优化问题,有多种求解方法可供选择。
以下介绍两种常用的非线性优化算法:1. 梯度下降法:梯度下降法是一种基于迭代的优化算法,其思想是通过迭代地沿着目标函数的负梯度方向进行搜索,以逐步逼近最优解。
梯度下降法的优点是简单易实现,但在处理复杂的非线性问题时,可能会陷入局部最优解。
2. 牛顿法:牛顿法是一种基于二阶导数信息的优化算法,其思想是通过多次迭代来逼近最优解。
相比于梯度下降法,牛顿法具有更快的收敛速度,但也存在计算复杂度高和可能陷入局部最优解的问题。
除了以上两种算法,还有其他一些常用的非线性优化算法,例如拟牛顿法、共轭梯度法等。
选择合适的优化算法需要根据具体问题的特点和求解需求进行权衡。
五、非线性优化问题的理论研究除了算法的研究,非线性优化问题的理论研究也具有重要意义。
第三章非线性规划无约束问题的最优化方法
![第三章非线性规划无约束问题的最优化方法](https://img.taocdn.com/s3/m/1aa43d45a200a6c30c22590102020740bf1ecd74.png)
x0
0p 0
1.919877 还需要经过10次迭代才
能满足精度要求
0.003070
第三节 牛顿法
3. 牛顿法的缺点: 牛顿法要求初始解离最优解不远,若初始点选得离最优解太
远时,牛顿法并不能保证其收敛,甚至也不是下降方向。因此, 常将牛顿法与最速下降法结合起来使用。前期使用最速下降法, 当迭代到一定程度后,改用牛顿法,可得到较好的效果。 4. 修正牛顿法 基本思想: 保留了从牛顿法中选取牛顿方向作为搜索方向,摒弃其步长恒 为1的做法,而用一维搜索确定最优步长来构造算法。
2
2
0
2e2 2 3
00 21 0
03
f x3 9
第二节 最速下降法
再从x(3)点 出发,沿x3轴方向e3进行一维搜索:
0 x 3 e3 0
3
00 00 13
f x 3 e3
32
f' 0 x4 x3
3
3
0
3e3 0 0
f x4 0
第二节 最速下降法
因为 x 1
x 4 ,0故.0以1 x(4)点作为新的x(1) ,进行新一轮迭代。
0
1 33 22
f x0
p0
52 5
42
f' x0
p0 5 5 0
22
01
第三节 牛顿法
x1 x0
1 p0 3
2
3
f x1
14
12 2
0
30
12 1 2
2
f x1
所以选取 x* x 1
1 3 作为极小点。 2
第三节 牛顿法
6. 修正牛顿法的缺点: 修正牛顿法虽然比牛顿法有所改进,但也有不足之处:
非线性规划
![非线性规划](https://img.taocdn.com/s3/m/2971eb1d4b35eefdc8d333dd.png)
多项式 p(x) ax2 bx c 的插值结点。 这里a b c为待定系数.可用下述线形方程组确定.
p(x1 ) ax12 bx1 c f1
p(x2 )
axBiblioteka 2 2 bx2c
f2
p(x3 ) ax32 bx3 c f3
x1 a
计算函数值
x3 x3 b
x2
1 2
( x1
x3 )
f1 f (x1) f2 f (x2 ) f3 f (x3 )
ⅲ插值计算
x
* p
(a)若分母为零即 (x2 x3 ) f1 (x3 x1) f2 (x1 x2 ) f3 0 即
f2 f1 f3 f1 则说明三个插值点(x1, f1) (x2, f2 ) (x3, f3)在同一
向量化表示
令
g( x) ( g1 ( x),..., g p ( x))T
h( x) (h1 ( x),..., hp ( x))T ,
其中, g : R n R p , h : R n Rq ,那么(MP)可简记为
min f ( x)
s.t .
g(x) 0 或者min f ( x) x X
x b 2a
x*p
1 2
(x22 x32 ) f1 (x32 x12 ) f2 (x12 x22 ) f3 (x2 x3 ) f1 (x3 x1 ) f2 (x1 x2 ) f3
c1
f3 x3
f1 x1
最优化方法03 非线性
![最优化方法03 非线性](https://img.taocdn.com/s3/m/78bc1a55001ca300a6c30c22590102020740f29a.png)
§2 无约束问题的最优性条件
设 u = f (x), x = (x1, …, xn)T ∈S Rn,
梯度
f
(x)
( f x1
,
f x2
,,
f xn
)T
Hesse矩阵
2 f
2
f
(
x)
H
(
x)
x12
2 f
xnx1
2 f
x1x2
2 f
xnx2
2 f
x1xn
2 f
xn2
1
n
例1. 设 f (x) bT x bi xi , 求 f (x). i 1
4、抛物线法
基本思想:在极小点附近用二次三项式逼近 f (x).
设 x1 < x2 < x3, f (x1) > f (x2), f (x2) < f (x3).
)
)
1 2
f (x(k) )(x x(k) )2
: ( x)
用φ(x)的极小点来近似 f (x)的极小点。
令 (x) f (x(k) ) f (x(k) )(x x(k) ) 0,
得
x(k 1)
x(k)
f (x(k ) ) f (x(k ) )
可以证明,{x(k)}在一定条件下收敛于f (x)的极小点。
严格凸函数 f (x(1) (1)x(2)) f (x(1)) (1) f (x(2))
性质1. 设 f (x)是凸集 S上的凸函数,则 0, f (x) 也是 S上的凸函数。
性质2. 设 f 1(x), f 2(x)是凸集 S上的凸函数,则 f 1(x) + f 2(x) 也是 S上的凸函数。
非线性优化
![非线性优化](https://img.taocdn.com/s3/m/f6d6d780d0d233d4b14e694f.png)
13非线性规划3.1非线性规划简史非线性规划是20世纪50年代才开始形成的一门新兴学科。
1951年H.W.库恩和A.W.塔克发表的关于最优性条件(后来称为库恩-塔克条件)的论文是非线性规划正式诞生的一个重要标志。
在50年代还得出了可分离规划和二次规划的n 种解法,它们大都是以G.B.丹齐克提出的解线性规划的单纯形法为基础的。
50年代末到60年代末出现了许多解非线性规划问题的有效的算法,70年代又得到进一步的发展。
非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。
20世纪80年代以来,随着计算机技术的快速发展,非线性规划方法取得了长足进步,在信赖域法、稀疏拟牛顿法、并行计算、内点法和有限存储法等领域取得了丰硕的成果。
线性规划及其扩展问题的约束条件和目标函数都是关于决策变量的一次函数。
虽然大量的实际问题可以简化为线性规划及其扩展问题来求解,但是还有相当多的问题很难用线性函数加以描述。
如果目标函数或约束条件中包含有非线性函数,就称这样的规划问题为非线性规划问题。
由于人们对实际问题解的精度要求越来越高,非线性规划自20世纪70年代以来得到了长足的发展;目前,已成为运筹学的一个重要分支,在管理科学、最优设计、系统控制等许多领域得到了广泛的应用。
一般来讲,非线性规划问题的求解要比线性规划问题的求解困难得多;而且也不象线性规划问题那样具有一种通用的求解方法(单纯形法)。
非线性规划没有能够适应所有问题的一般求解方法,各种方法都只能在其特定的范围内发挥作用。
其解法有几何规划,一维最优化方法,无约束最优化方法,有约束最优化方法,二次规划,凸规划等六个大方面。
3.2非线性规划的数学模型通过一个非线性规划问题来归纳非线性规划的一般数学模型如下:[例] 某商店经销A 、B 两种产品,售价分别为20和380元。
据统计,售出一件A 产品的平均时间为0.5小时,而售出一件B 产品的平均时间与其销售的数量成正比,表达式为n 2.01+。
《最优化方法》非线性规划的基本概念
![《最优化方法》非线性规划的基本概念](https://img.taocdn.com/s3/m/03d7df394431b90d6c85c7f3.png)
2019/7/30
最优化方法
16
可行下降方向
设X Rn , x X , pRn , p 0,若存在t 0,使得
x tp X 则称向量p是点x处 关于X的可行方向。
解非线性规划问题,关键在于找到某个方向,使得在 此方向上,目标函数得到下降,同时还是可行方向。 这样的方向称为可行下降方向。
P
f
x
f
x1 f
x2 x1 0
6 x1 4 x2
4 x1 2 x2
x1 0
4 2
x2 1
x2 1
这个方向上的单位向量是:
2019/7/30
e
4
f f
非线性规划问题的数学模型
(1)数学规划模型的一般形式:
min f ( x) s.t. gi ( x) 0, i 1,, p hi ( x) 0, j 1,,q
其中, x (x1, x2,, xn )T , f (x), gi (x),hj (x)为x的实值函数,
一般来说,求解非线性规划问题比线性规划问题困难得多。 而且,也不象线性规划那样有单纯形法这一通用的方法。非线性 规划的各种算法大都有自己特定的使用范围,都有一定的局限性。 到目前为止还没有适合各种问题的一般算法,这是需要深入研究 的一个领域。我们只是对一些模型及应用作简单介绍。
2019/7/30
最优化方法
仓库到第 j 个市场的距离为
dij ( xi p j )2 ( yi q j )2 ,
2019/7/30
最优化方法
3
目标函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x* ) f ( x), x X
则称x *是(MP )的整体最优解或整体 极小点,
称f ( x* )是(MP)的整体最优值或整体 极小值。
如果有
f ( x* ) f ( x), x X , x x*
称x *是(MP )的严格整体最优解或 严格整体极小点,
称f ( x* )是(MP)的严格整体最优值或 严格整体极小值。
T 其中, x ( x1 , x2 ,, xn ) ,
f ( x), gi ( x), hj ( x)为x的实值函数,
简记为MP(Mathematical Programming)
(2)简记形式:
引入向量函数符号:
h( x ) ( h1 ( x ),,hq ( x ))T
g( x ) ( g1 ( x ),, g p ( x ))T
m i n f ( x ) s .t . g ( x ) 0 h( x ) 0
min f ( x )
xX
(3)数学规划问题的分类:
min f ( x ) s.t. g( x ) 0 h( x ) 0
若 f ( x ), gi ( x ), h j ( x ) 为线性函数,即为线性规划(LP); 若 f ( x ), gi ( x ), h j ( x ) 至少一个为非线性,
n g i ( x ) 0, i 1, , p X x R hi ( x ) 0, j 1, , q
m in f ( x ) s .t . g i ( x ) 0, i 1, , p hi ( x ) 0, j 1, , q
x1
3 非线性规划问题的图解法
例2: 用图解法求解 min f(x)=(x1 - 2)2 +(x2 - 2)2 s.t. h(x)= x1 + x2 - 6 ≤ 0
x2
6
最优解 x* = ( 2,2 )T
2
最优级解即为最小圆的半径: f(x)=(x1 - 2)2 +(x2 - 2)2 = 0
0 2 6
性质一 函数在某点的梯度不为零,则该梯度方向必与 过该点的等值面垂直; 性质二 梯度方向是函数具有最大变化率的方向(负梯 度方向也叫最速下降方向)。
2 例:试求目标函数 f x1 , x2 3 x12 4 x1 x2 x2 在点 x =[0,1]T 处的最速下降方向,并求沿这个方向移动一个单位长度后 新点的目标函数值。
* * 对 于 非 线 性 规 划 ( MP ) , 若 x X , 并 且 存 在 x 的邻域 定义
N ( x* ) x Rn
x x* 使
f ( x* ) f ( x ),x N ( x* ) X
则称 x* 是(MP)的局部最优解或局部极小解,
称f ( x* )是(MP )的局部最优值或局部 极小值
则f x 0. 则 f x 2 x f x x T Ax 则 f x b
即 C 0 . 则 f x 2 Ax .
(3)Hesse矩阵
多元函数 f(x) 关于x的二阶导数,称为 f(x)的Hesse矩阵.
2 f x x 2 1 2 f x 2 f x f x x1 x2 2 f x x1 xn 2 f x x2x1 2 f x 2 x 2 2 f x x 2 x n 2 f x xnx1 2 f x xnx2 2 f x 2 x n
j 1
(2)每个市场从各仓库得到的货物量之和应等于它的 m 需要量。 zij b j , j 1,2,, n
i 1
(3)运输量不能为负数
zij 0, i 1,2,, m, j 1,2,, n
例2. 木梁设计问题 把圆形木材加工成矩形横截面的木梁,要求木梁高度 不超过 H ,横截面的惯性矩(高度的平方 宽度)不小 ቤተ መጻሕፍቲ ባይዱW ,而且高度介于宽度与4倍宽度之间。问如何确定木 梁尺寸可使木梁成本最小.
即为非线性规划(NLP);
对于非线性规划,若没有 gi ( x ), h j ( x ) ,即X=Rn,称为 无约束非线性规划或无约束最优化问题;
否则称为约束非线性规划或约束最优化问题。
m in f ( x ) s .t . g i ( x ) 0, i 1, , p hi ( x ) 0, j 1, , q
第五讲 非线性规划的基本概念
非线性规划问题 非线性规划数学模型 非线性规划的图解法 梯度、Hesse矩阵、Jacobi阵 凸函数和凸规划 解非线性规划方法概述 一维最优化
在科学管理和其他领域中,大量应用问题可以归结为线性规 划问题,但是,也有另外许多问题,其目标函数和(或)约束条 件很难用线性函数表达。如果目标函数和(或)约束条件中包含 有自变量的非线性函数,则这样的规划问题就属于非线性规划。 非线性规划是运筹学的重要分支之一。最近30多年来发展很 快,不断提出各种算法,而其应用范围也越来越广泛。比如在各 种预报、管理科学、最优设计、质量控制、系统控制等领域得到 广泛且不短深入的应用。 一般来说,求解非线性规划问题比线性规划问题困难得多。 而且,也不象线性规划那样有单纯形法这一通用的方法。非线性 规划的各种算法大都有自己特定的使用范围,都有一定的局限性。 到目前为止还没有适合于各种问题的一般算法,这是需要深入研 究的一个领域。我们只是对一些模型及应用作简单介绍。
约束条件为
x1 H
2 x1 x2 W
(高度不小于H ) ( 惯性矩不小于W) (高度介于宽度与 4倍宽度之间) (高度与宽度非负)
x1 x2 x1 4 x2 x1 , x2 0.
2
非线性规划问题的数学模型
(1)数学规划模型的一般形式:
min f ( x ) s.t. g i ( x ) 0, i 1, , p hi ( x ) 0, j 1, , q
1
非线性规划问题举例
例一:选址问题
设有 n 个市场,第 j 个市场位置为 ( p j , q j ) ,它对某种货物的需要 量为 b j ( j 1,2,, n)。现计划建立 m 个仓库,第 i 个仓库的存储 容量为 ai (i 1,2,, m). 试确定仓库的位置,使各仓库对各市场的 运输量与路程乘积之和为最小。 设第 i 个仓库的位置为 ( xi , yi ), i 1,2,, m, 第 i 个仓库到第 j 个市场的货物供应量为 zij (i 1,2,, m, j 1,2,, n). 则第 i 个 仓库到第 j 个市场的距离为
x 2 1
x 2 1
这个方向上的单位向量是:
e f x f x
42 22
4 2
2 5 1 5
5 5
2 例:试求目标函数 f x1 , x2 3 x12 4 x1 x2 x2 在点x =[0,1]T 处的最速下降方向,并求沿这个方向移动一个单位长度后 新点的目标函数值。
解: 由于
e
f x f x
42 22
2 5 1 5
2 2
4 2
2 5 1 5
5 5
0 新点是: x 1 x e 1
1 T T 矩阵形式: f x x Ax b x c 其中A=AT。 2 1 T 二次型: f x x Ax 2
矩阵A的正定性: 正定、半正定、负定、不定。 二次型的正定性: 正定、半正定、负定、不定。
(2) 梯度
定义:f(x) 是定义在En上的可微函数。f(x) 的n个偏导数 为分量的向量称为f(x) 的梯度. T f x f x f x f ( x ) , , x x x 1 2 n 性质:设f(x) 在定义域内有连续偏导数,即有连续梯度, 则梯度有以下两个重要性质:
x1
D可行域
• 例3:用图解法求解
min f ( x ) x1 2 x 2 1
2 2
x
2
5 3
x x 5x 0 1 2 2 s .t x1 x 2 5 0 x ,x 0 1 2
2
1
1
2 3 4 5 6
x
1
(4)可行域和可行解: 称
g i ( x ) 0, i 1, , p n X x R h ( x ) 0 , j 1 , , q i
为MP问题的约束集或可行域。
若x在X内,称x为MP的可行解或者可行点。
(5)最优解和极小点
* x 定义: 对于非线性规划(MP),若 X ,并且有
2 5 5 5 1 5 1 5 5
函数值:
f x
1
26 3 x 4 x1 x2 x | x 1 2 5 5
2 1
• 几个常用的梯度公式:
1. 2. 3. 4.
f x C 常数, f x xT x A对称矩阵。 f x bT x
如果有
f ( x* ) f ( x ),x N ( x* ) X , x x*
称x *是(MP )的严格局部最优解或 严格局部极小点
f ( x* )是(MP )的严格局部最优值或 严格局部极小值。
3 非线性规划问题的图解法
对二维最优化问题,总可以用图解法求解,而对三维或高维问题, 已不便在平面上作图,此法失效。