人教版高一数学《函数》复习教案(有答案)
高三数学《函数》单元复习教案 新人教A版
高 三 数 学(第10讲)一、 本讲进度《函数》单元复习二、 本讲主要内容1、函数的定义及通性;2、函数性质的运用。
三、 学习指导1、函数的概念:(1)映射:设非空数集A ,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射,记为f :A →B ,f 表示对应法则,b=f(a)。
若A 中不同元素的象也不同,则称映射为单射,若B 中每一个元素都有原象与之对应,则称映射为满射。
既是单射又是满射的映射称为一一映射。
(2)函数定义:函数就是定义在非空数集A ,B 上的映射,此时称数集A 为定义域,象集C={f(x)|x ∈A}为值域。
定义域,对应法则,值域构成了函数的三要素,从逻辑上讲,定义域,对应法则决定了值域,是两个最基本的因素。
逆过来,值域也会限制定义域。
求函数定义域,通过解关于自变量的不等式(组)来实现的。
要熟记基本初等函数的定义域,通过四则运算构成的初等函数,其定义域是每个初等函数定义域的交集。
复合函数定义域,不仅要考虑内函数的定义域,还要考虑到外函数对应法则的要求。
理解函数定义域,应紧密联系对应法则。
函数定义域是研究函数性质的基础和前提。
函数对应法则通常表现为表格,解析式和图象。
其中解析式是最常见的表现形式。
求已知类型函数解析式的方法是待定系数法,抽象函数的解析式常用换元法及凑合法。
求函数值域是函数中常见问题,在初等数学范围内,直接法的途径有单调性,基本不等式及几何意义,间接法的途径为函数与方程的思想,表现为△法,反函数法等,在高等数学范围内,用导数法求某些函数最值(极值)更加方便。
在中学数学的各个部分都存在着求取值范围这一典型问题,它的一种典型处理方法就是建立函数解析式,借助于求函数值域的方法。
2、函数的通性(1)奇偶性:函数定义域关于原点对称是判断函数奇偶性的必要条件,在利用定义判断时,应在化简解析式后进行,同时灵活运用定义域的变形,如0)x (f )x (f =±-,1)x (f )x (f ±=-(f(x)≠0)。
人教b版高一数学必修一:2.1.1《函数(1)》学案(含答案)
二、填空题
6.将集合 { x|x=1 或 2≤ x≤8} 表示成区间为 ____________ . 7.若 f(2x)= x3,则 f(1)= ________. 8.函数 y= x2- 2 的定义域为 { - 1,0,1,2} ,则其值域为 ________.
三、解答题 9.求下列函数的定义域:
-x (3)y= 2x2- 3x-2;
(2) y=
3;
1- 1-x
(4) y=
2x+ 3-
1+ 2-x
1 x.
规律方法 求函数定义域的原则: (1)分式的分母不等于零; (2)偶次根式的被开方数 (式 )
为非负数ቤተ መጻሕፍቲ ባይዱ (3)零指数幂的底数不等于零等.
变式迁移 1 求下列函数的定义域:
(1)
f
(
x)=
第二章 函 数
§2.1 函 数 2.1.1 函数 (一 )
自主学习
学习目标 1.理解函数的概念,能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念 中的作用. 2.通过实例领悟构成函数的三要素;会求一些简单函数的定义域. 3.了解区间的概念,体会用区间表示数集的意义和作用.
自学导引
1.函数的有关概念 设集合 A 是一个 ____________ ,对 A 中的 ____________,按照确定的法则 f,都有
(4)两个函数是否相同,与自变量是什么字母无关. 变式迁移 2 试判断下列函数是否为同一函数:
(1)f(x)= x· x+ 1与 g( x)= x x+ 1 ; (2)f(x)= x2- 2x 与 g(t)= t2- 2t; (3)f(x)= 1 与 g(x)= x0(x≠ 0).
知识点三 求函数解析式
高一数学函数的教案优秀5篇
高一数学函数的教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!高一数学函数的教案优秀5篇作为一位不辞辛劳的人·民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。
最新人教版高中数学必修1第三章《函数的应用——复习》教案1
第三章单元复习从容说课函数的零点与用二分法求方程的近似解是新课标新增内容,在学习了函数的概念及其性质和研究了具体函数的基础上,引入函数的零点及解,一方面使函数与方程得到了完美的统一,另一方面使函数的应用问题的求解思路更广阔以及函数与方程思想更具活力.学习数学知识的目的,就是运用数学知识处理、解决实际问题,运用数学知识解决实际问题是每年高考必考内容之一,因此,函数模型及其应用是本章的重点,也是高考考查的热点,它给出的思想方法,在其他数学章节中都能应用.将所学的知识用于实际是个很复杂的过程,不但要求理解、掌握知识和思维方法,而且要求具备较强的分析、综合能力,还需要运用自己的生活经验和体会,这样才能理解实际问题中的数量关系并确定它们间的数学联系(函数关系),将实际问题抽象、概括为典型的数学问题.应用数学知识解决了数学问题后,还要分析理论的解适应实际问题的状况等等,这实际是对一个人的素质水平高低的考查,因此本单元知识是高中数学的一大难点.三维目标一、知识与技能1.了解方程的根与函数零点的关系,理解函数零点的性质.2.掌握二分法,会用二分法求方程的近似解.3.了解直线上升、指数爆炸、对数增长,会进行指数函数、对数函数、幂函数增长速度的比较.4.能熟练进行数学建模,解决有关函数实际应用问题.二、过程与方法1.培养学生分析、探究、思考的能力,进一步培养学生综合运用基本知识解决问题的能力.2.能恰当地使用信息技术工具,解决有关数学问题.三、情感态度与价值观激发学生学习数学的兴趣,培养他们合作、交流、创新意识以及分类讨论、抽象理解能力.教学重点应用函数模型解决有关实际问题.教学难点二分法求方程的近似解,指数函数、对数函数、幂函数增长速度的比较.教具准备多媒体、课时讲义.课时安排1课时教学过程一、知识回顾(一)第三章知识点1.函数的零点,方程的根与函数的零点,零点的性质.2.二分法,用二分法求函数零点的步骤.3.几类不同增长的函数模型(直线上升、指数爆炸、对数增长),指数函数、对数函数、幂函数增长速度的比较.4.函数模型,解决实际问题的基本过程. (二)方法总结1.函数y =f (x )的零点就是方程f (x )=0的根,因此,求函数的零点问题通常可转化为求相应的方程的根的问题.2.一元二次方程根的讨论在高中数学中应用广泛,求解此类问题常有三种途径: (1)利用求根公式;(2)利用二次函数的图象; (3)利用根与系数的关系.无论利用哪种方法,根的判别式都不容忽视,只是由于二次函数图象的不间断性,有些问题中的判别式已隐含在问题的处理之中.3.用二分法求函数零点的一般步骤:已知函数y =f (x )定义在区间D 上,求它在D 上的一个变号零点x 0的近似值x ,使它与零点的误差不超过正数ε,即使得|x -x 0|≤ε.(1)在D 内取一个闭区间[a ,b ] D ,使f (a )与f (b )异号,即f (a )·f (b )<0.令a 0=a ,b 0=b .(2)取区间[a 0,b 0]的中点,则此中点对应的横坐标为 x 0=a 0+21(b 0-a 0)=21(a 0+b 0). 计算f (x 0)和f (a 0).判断:①如果f (x 0)=0,则x 0就是f (x )的零点,计算终止; ②如果f (a 0)·f (x 0)<0,则零点位于区间[a 0,x 0]内,令a 1=a 0,b 1=x 0; ③如果f (a 0)·f (x 0)>0,则零点位于区间[x 0,b 0]内,令a 1=x 0,b 1=b . (3)取区间[a 1,b 1]的中点,则此中点对应的横坐标为 x 1=a 1+21(b 1-a 1)=21(a 1+b 1). 计算f (x 1)和f (a 1).判断:①如果f (x 1)=0,则x 1就是f (x )的零点,计算终止; ②如果f (a 1)·f (x 1)<0,则零点位于区间[a 1,x 1]上,令a 2=a 1,b 2=x 1. ③如果f (a 1)·f (x 1)>0,则零点位于区间[x 1,b 1]上,令a 2=x 1,b 2=b 1. ……实施上述步骤,函数的零点总位于区间[a n ,b n ]上,当|a n -b n |<2ε时,区间[a n ,b n ]的中点x n =21(a n +b n ). 就是函数y =f (x )的近似零点,计算终止.这时函数y =f (x )的近似零点与真正零点的误差不超过ε.4.对于直线y =kx +b (k ≥0),指数函数y =m ·a x (m >0,a >1),对数函数y =log b x (b >1),(1)通过实例结合图象初步发现:当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快.(2)通过计算器或计算机得出多组数据结合函数图象(图象可借助于现代信息技术手段画出)进一步体会:直线上升,其增长量固定不变;指数增长,其增长量成倍增加,增长速度是直线上升所无法企及的.随着自变量的不断增大,直线上升与指数增长的差距越来越大,当自变量很大时,这种差距大得惊人,所以“指数增长”可以用“指数爆炸”来形容.对数增长,其增长速度平缓,当自变量不断增大时,其增长速度小于直线上升.5.在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1),y=x n(n>0)都是增函数,但是它们的增长速度不同,而且不在同一个‘档次’上,随着x的增大,y=a x(a>1)的增长速度越来越快,会远远超过y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,a x>x n>log a x.6.实际问题的建模方法.(1)认真审题,准确理解题意.(2)从问题出发,抓准数量关系,恰当引入变量或建立直角坐标系.运用已有的数学知识和方法,将数量关系用数学符号表示出来,建立函数关系式.(3)研究函数关系式的定义域,并结合问题的实际意义作出解答.必须说明的是:(1)通过建立函数模型解决实际问题,目的是通过例题培养同学们应用数学的意识和分析问题的能力.(2)把实际问题用数学语言抽象概括,从数学角度来反映或近似地反映实际问题所得出的关于实际问题的数学描述,即为数学模型.7.建立函数模型,解决实际问题的基本过程:二、例题讲解【例1】作出函数y=x3与y=3x-1的图象,并写出方程x3=3x-1的近似解.(精确到0.1)解:函数y=x3与y=3x-1的图象如下图所示.在两个函数图象的交点处,函数值相等.因此,这三个交点的横坐标就是方程x3=3x-1的解.由图象可以知道,方程x3=3x-1的解分别在区间(-2,-1)、(0,1)和(1,2)内,那么,对于区间(-2,-1)、(0,1)和(1,2)分别利用二分法就可以求得它精确到0.1的近似解为x 1≈-1.8,x 2≈0.4,x 3≈1.5.【例2】 分别就a =2,a =45和a =21画出函数y =a x ,y =log a x 的图象,并求方程a x =log a x 的解的个数.思路分析:可通过多种途径展示画函数图象的方法.解:利用Excel 、图形计算器或其他画图软件,可以画出函数的图象,如下图所示.根据图象,我们可以知道,当a =2,a =45和a =21时,方程a x =log a x 解的个数分别为0,2,1.【例3】 根据上海市人大十一届三次会议上的政府工作报告,1999年上海完成GDP (国内生产总值)4035亿元,2000年上海市GDP 预期增长9%,市委、市政府提出本市常住人口每年的自然增长率将控制在0.08%,若GDP 与人口均按这样的速度增长,则要使本市人均GDP 达到或超过1999年的2倍,至少需________年.(按:1999年本市常住人口总数约为1300万)思路分析:抓住人均GDP 这条线索,建立不等式.解:设需n 年,由题意得nn %)08.01(13000000%)91(4035+⨯+⨯≥1300000040352⨯,化简得nn %)08.01(%)91(++≥2,解得n >8.答:至少需9年. 【例4】 某地西红柿从2月1日起开始上市.通过市场调查,得到西红柿种植成本Q (单2的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.思路分析:由四个函数的变化趋势,直观得出应选择哪个函数模拟,若不能断定选择哪个函数,则分别利用待定系数法探求,最后可通过图象的增长特性进行筛选.解:由提供的数据知道,描述西红柿种植成本Q 与上市时间t 的变化关系的函数不可能是常数函数,从而用函数Q =at +b ,Q =a ·b t ,Q =a ·log b t 中的任意一个进行描述时都应有a ≠0,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合.所以,选取二次函数Q =at 2+bt +c 进行描述.以表格所提供的三组数据分别代入Q =at 2+bt +c ,得到 ⎪⎩⎪⎨⎧ 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.2225,23,2001c b a所以描述西红柿种植成本Q 与上市时间t 的变化关系的函数为Q =2001t 2-23t +2225. (2)当t =-)2001(223⨯-=150天时,西红柿种植成本最低为Q =2001·1502-23·150+2225=100(元/102kg ).三、课堂练习教科书P 132复习参考题A 组1~6题. 1.C 2.C3.设列车从A 地到B 地运行时间为T ,经过时间t 后列车离C 地的距离为y ,则 y =⎪⎪⎩⎪⎪⎨⎧<--.52,200500,520,500200T t Tt TTt t T函数图象为4.(1)圆柱形;(2)上底小、下底大的圆台形; (3)上底大、下底小的圆台形;(4)呈下大上小的两节圆柱形.(图略)5.(1)设无理根为x 0,将D 等分n 次后的长度为d n .包含x 0的区间为(a ,b ),于是d 1=1,d 2=21,d 3=221,d 4=321,…d n =121-n . 所以|x 0-a |≤d n =121-n ,即近似值可精确到121-n .(2)由于121-n 随n 的增大而不断地趋向于0,故对于事先给定的精确度ε,总有自然150=2500a +50b +c , 108=12100a +110b +c , 150=62500a +250b +c . ≤ ≤ ≤数n ,使得121n ≤ε.所以只需将区间D 等分n 次就可以达到事先给定的精确度ε.所以一般情况下,不需尽可能多地将区间D 等分.6.令f (x )=2x 3-4x 2-3x +1,函数图象如下所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x 3-4x 2-3x +1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)=-0.25. 因为f (2.5)·f (3)<0,所以x 0∈(2.5,3).再取(2.5,3)的中点x 2=2.75,用计算器可算得f (2.75)≈4.09. 因为f (2.5)·f (2.75)<0,所以x 0∈(2.5,2.75). 同理,可得x 0∈(2.5,2.625),x 0∈(2.5,2.5625),x 0∈(2.5,2.53125), x 0∈(2.515625,2.53125),x 0∈(2.515625,2.5234375). 由于|2.534375-2.515625|=0.0078125<0.01,此时区间(2.515625,2.5234375)的两个端点精确到0.01的近似值都是2.52,所以方程2x 3-4x 2-3x +1=0精确到0.01的最大根约为2.52.四、课堂小结1.函数与方程的紧密联系,体现在函数y =f (x )的零点与相应方程f (x )=0的实数根的联系上.2.二分法是求方程近似解的常用方法,应掌握用二分法求方程近似解的一般步骤.3.不同函数模型能够刻画现实世界不同的变化规律.指数函数、对数函数以及幂函数就是常用的现实世界中不同增长规律的函数模型.4.函数模型的应用,一方面是利用已知函数模型解决问题;另一方面是建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.5.在函数应用的学习中要注意充分发挥信息技术的作用. 五、作业布置教科书P 132复习参考题A 组7,8,9,10. B 组1,2,3. 板书设计第三章单元复习概念与方法 例题与解答 1. 2. 3. 4.练习与小结。
高一数学函数教案5篇
高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。
人教版新课标高一数学必修一 期末综合复习 函数及其应用 教案及课后习题附完整答案解析
一、考点突破1. 理解集合的概念及其性质;会用集合的表示方法表示集合。
2. 了解全集与空集的含义,理解两个集合的并集与交集、已知集合的补集的含义及其运算。
能使用Venn图表达集合的关系及运算。
3. 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
4. 会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,了解简单的分段函数及应用。
5. 理解函数的单调性、奇偶性、最大(小)值及其几何意义;学会运用函数图象理解和研究函数的性质。
6. 理解基本初等函数的概念和意义,能借助函数的图象探索并理解函数的性质。
7. 会研究简单复合函数与基本初等函数的单调性和最值的求法。
8. 掌握函数的零点的概念以及求零点的技巧。
9. 了解函数模型的广泛应用。
二、重难点提示:重点:1. 集合的运算。
2. 函数的概念和性质。
难点:1. 基本初等函数性质的应用。
2. 函数与方程的应用。
集合及其应用【考点精讲】一、正确理解集合的概念集合的概念:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)。
构成集合的每个对象叫做这个集合的元素(或成员)。
集合通常用英语大写字母A,B,C,…来表示,它们的元素通常用英语小写字母a∈,读作“a属于A ,b,c,…来表示。
如果a是集合A的元素,就说a属于A,记作a A∉,读作“a不属于A”。
”。
如果a不是集合A的元素,就说a不属于A,记作a A二、集合内元素的三个基本特征确定性:对任意对象都能确定它是不是某一集合的元素,就是说:对于某一个元素,要么它属于这个集合,要么它不属于这个集合,不会出现可能属于也可能不属于这种情况。
例如:对于集合{x>1},2就属于这个集合,而0就不属于这个集合。
再如:{非常大的数}就不是集合,因为1000000到底属于不属于这个集合,这很难说。
互异性:集合中的任何两个元素都不相同,即在同一集合里不能出现相同的元素。
新课标高一数学人教版必修1教案(函数)
课题:§1.2.1函数的概念教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国2003年4月份非典疫情统计:3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例12.判断两个函数是否为同一函数课本P21例2巩固练习:○1课本P22第2题○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?(1)f ( x ) = (x -1) 0;g ( x ) = 1(2)f ( x ) = x;g ( x ) = 2x(3)f ( x ) = x 2;f ( x ) = (x + 1) 2(4)f ( x ) = | x | ;g ( x ) = 2x(三)课堂练习求下列函数的定义域(1)|x |x 1)x (f -=(2)x111)x (f +=(3)5x 4x )x (f 2+--=(4)1x x 4)x (f 2--=(5)10x 6x )x (f 2+-=(6)13x x 1)x (f -++-=三、归纳小结,强化思想从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。
【B版】人教课标版高中数学必修一《函数(第二课时)》教学教案-新版
2.1.1 函数(第二课时)映射与函数知识与技能:(1)了解映射的概念及表示方法;(2)结合简单的对应图表,理解一一映射的概念.过程与方法:(1)函数推广为映射,只是把函数中的两个数集推广为两个任意的集合;(2)通过实例进一步理解映射的概念;(3)会利用映射的概念来判断“对应关系”是否是映射,一一映射.情态与价值:映射在近代数学中是一个极其重要的概念,是进一步学习各类映射的基础.教学目标(1)了解映射的概念及表示方法(2)了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象.(3)会结合简单的图示,了解一一映射的概念(4) 会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.(5) 能正确认识和使用函数的三种表示法:解析法,列表法和图像法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;(6) 求简单分段函数的解析式;了解分段函数及其简单应用.教学重难点(1)对映射、函数概念的理解、函数概念的理解。
(2)函数关系的三种表示方法.分段函数解析式的求法.教学过程一、创设情景,揭示课题问题情境:每个学生都有一个学号,这样管理比较方便;同学们在中考中,每一个人都有唯一的考号,也就是说在现实生活中,不仅是数集之间存在着某种对应关系,很多集合之间也存在着某种对应关系,为了研究集合之间的对应关系,我们引入映射的概念(板书课题).二、复习提问、研探新知提问:函数的概念教师:我们已经知道,函数是建立在两个非空数集间的一种特殊的对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,这种对应就叫映射.学生:分组讨论、归纳映射的概念。
(一)映射的定义:映射定义:设A,B是两个非空..的集合,如果按照某种对应法则f,对于集合A中的任何一个..元素与之对应,这样的对应叫做从集合A ....元素,在集合B中都有唯一到.集合B的映射,记作:B:(注:A中元素必须取完,B中元素可以取完,Af→也可以不取完,这种对应可以是一对一,也可以是多对一,但不能是一对多;注意关键词)在映射B:中,集合A叫做映射的定义域,与A中元素x对应Af→的B中元素y叫x的象,记作:)fy=,x叫做y的原象。
人教A版高中数学必修一复习教案第二章函数新人教(2)(6)
第二十九教时教材: 函数的应用举例三目的: 结合物理等学科,利用构建数学模型,解决问题。
过程:例一、 (课本 P 91 例三)设海拔 x m 处的大气压强是 y Pa ,y 与 x 之间的函数关系式是kx ce y =,其中 c ,k 为常量,已知某地某天在海平面的大气压为Pa ,1000 m 高空的大气压为51090.0⨯Pa ,求:600 m 高空的大气压强。
(结果保留3个有效数字)解:将 x = 0 , y =51001.1⨯;x = 1000 , y = 代入 kx ce y =得:)2()1(1090.01001.11090.01001.11000551000505⎩⎨⎧=⨯⨯=⇒⎩⎨⎧=⨯=⨯⋅⋅k k k ce c ce ce 将 (1) 代入 (2) 得:01.190.0ln 100011001.11090.0100055⨯=⇒⨯=⨯k e k 由计算器得:41015.1-⨯-=k ∴41015.151001.1-⨯-⨯⨯=e y将 x = 600 代入, 得:6001015.1541001.1⨯⨯--⨯⨯=e y由计算器得:41015.151001.1-⨯-⨯⨯=e y例二、(《课课练》 P 102 “例题推荐” 1)一根均匀的轻质弹簧,已知在 600 N 的拉力范围内,其长度与所受拉力成一次函数关系,现测得当它在 100 N 的拉力作用下,长度为 0.55 m ,在 300 N 拉力作用下长度为 0.65,那么弹簧在不受拉力作用时,其 自然长度是多少?解:设拉力是 x N (0≤x ≤600) 时,弹簧的长度为 y m设:y = k x + b 由题设:⎩⎨⎧==⇒⎩⎨⎧+=+=50.00005.030065.010055.0b k b k b k ∴所求函数关系是:y = 0.0005 x + 0.50∴当 x = 0时,y = 0.50 , 即不受拉力作用时,弹簧自然长度为 0.50 m 。
高一数学人教A版必修一精品教案:1.2.2函数的表示法 Word版含答案
课题:§1.2.2函数的表示法教学目的:(1)明确函数的三种表示方法;(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用;(4)纠正认为“y=f(x)”就是函数的解析式的片面错误认识.教学重点:函数的三种表示方法,分段函数的概念.教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.教学过程:一、引入课题1.复习:函数的概念;2.常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法.二、新课教学(一)典型例题例1.某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.解:(略)注意:○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2解析法:必须注明函数的定义域;○3图象法:是否连线;○4列表法:选取的自变量要有代表性,应能反映定义域的特征.巩固练习:课本P27练习第1题例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95张城90 76 88 75 86 80赵磊68 65 73 72 75 82班平均分88.2 78.3 85.4 80.3 75.7 82.6 请你对这三们同学在高一学年度的数学学习情况做一个分析.分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?解:(略)注意:○1本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;○2 本例能否用解析法?为什么? 巩固练习:课本P 27练习第2题例3.画出函数y = | x | .解:(略)巩固练习:课本P 27练习第3题拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f (|x|) 的图象,并尝试简要说明三者(图象)之间的关系.课本P 27练习第3题例4.某市郊空调公共汽车的票价按下列规则制定:(1) 乘坐汽车5公里以内,票价2元;(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算). 已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.解:设票价为y 元,里程为x 公里,同根据题意,如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19公里,所以自变量x 的取值范围是{x ∈N *| x ≤19}.由空调汽车票价制定的规定,可得到以下函数解析式:⎪⎪⎩⎪⎪⎨⎧=5432y 1915151010550≤<≤<≤<≤<x x x x (*N x ∈)根据这个函数解析式,可画出函数图象,如下图所示:注意:○1 本例具有实际背景,所以解题时应考虑其实际意义; ○2 本题可否用列表法表示函数,如果可以,应怎样列表? 实践与拓展:请你设计一张乘车价目表,让售票员和乘客非常容易地知道任意两站之间的票价.(可以实地考查一下某公交车线路)说明:象上面两例中的函数,称为分段函数.注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.三、归纳小结,强化思想理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.四、作业布置课本P28习题1.2(A组)第8—12题(B组)第2、3题。
人教A版高中数学必修一复习教案第二章函数新人教(1)(8)
第十九教时教材:指数函数(3)目的:复习指数函数的定义和性质,并通过练习以期达到熟练技巧。
过程:一、复习:定义:形如 ()0,0≠>=a a a y x 的函数称为指数函数。
性质:定义域、值域、单调性、奇偶性 (略) 二、例一、已知函数()121-⎪⎭⎫ ⎝⎛=x y 求定义域、值域,并作出其图象。
解:⎪⎩⎪⎨⎧<≥⎪⎭⎫ ⎝⎛=--1,21,2111x x y x x 定义域:x ∈R10≤<y(其对称性与||21x y ⎪⎭⎫⎝⎛=比较)例二、求下列函数的单调区间: 1.()34260+-︒=x x tg y2.12121-++⎪⎭⎫⎝⎛=x x y解:1.()34260+-︒=x x tg y ()1223--=x∴增区间为 ),2[+∞ 减区间为 ]2,(-∞2.⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<--≤=⎪⎭⎫⎝⎛=+-+++)21()21()211(2)1(221323121x x x y x x x x x∴增区间为 ]1,(--∞ 减区间为 ),1[+∞-例三、设函数 f (x )是偶函数,如果函数 ()x f y 2= 在 x >0 时是增函数,则在x <0时,是增函数还是减函数?并证明之。
解:是减函数。
设a x x <<21 则021>->-x x∵()x f 是偶函数, ∴()()x f x f =- ∴()()()()12122222xf x f xf x f --=∵()x f y 2= 在 x >0, 时是增函数,且21x x ->-, ∴()()12212<--x f x f即()()12212<xf x f , 又:()021>x f , ()022>x f ∴()()1222x f x f <,∴ x <0 时,y 是减函数。
例四、已知函数 222xx y -+=求:1︒函数的定义域、值域 2︒判断函数的奇偶性 解:1︒ 定义域为 R由222xx y -+= 得 012222=+--x x y∵x ∈R , ∴△≥0, 即 0442≥-y , ∴12≥y , 又∵0>y ,∴1≥y2︒ ∵定义域为 R (是关于原点的对称区间)又∵ ()()x f x f xx =+=--222, ∴()x f 是偶函数。
(人教A版)必修一名师精品:1.2.1《函数的概念》教学设计(含答案)
教学设计1.2.1函数的概念整体设计教学分析函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.三维目标1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性和重要性,激发学生学习的积极性.重点难点教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值.课时安排2课时教学过程第1课时作者:高建勇导入新课问题:已知函数y=1,,0,,xx∈⎧⎨∈⎩RQQ请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题.推进新课新知探究提出问题(1)给出下列三种对应:(幻灯片)①一枚炮弹发射后,经过26 s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2.时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应f:t→h=130t-5t2,t∈A,h∈B.②近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106km2)随时间t(单位:年)从1979~2001年的变化情况.图1根据图1中的曲线,可知时间t的变化范围是数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化范围是数集B={S|0≤S≤26},则有对应:f:t→S,t∈A,S∈B.③国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中的恩格尔系数y随时间t(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.“八五”计划以来我国城镇居民恩格尔系数变化情况范围是数集B={y|37.9≤y≤53.8}.则有对应:f:t→y,t∈A,y∈B.以上三个对应有什么共同特点?(2)我们把这样的对应称为函数,请用集合的观点给出函数的定义.(3)函数的定义域是自变量的取值范围,那么你是如何理解这个“取值范围”的?(4)函数有意义又指什么?(5)函数f:A→B的值域为C,那么集合B=C吗?活动:让学生认真思考以上三个对应,也可以分组讨论交流,引导学生找出这三个对应的本质共性.解:(1)共同特点是:集合A,B都是数集,并且对于数集A中的每一个元素x,在对应关系f:A→B下,在数集B中都有唯一确定的元素y与之对应.(2)一般地,设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中x叫做自变量,x的取值范围A叫做函数的定义域,函数值的集合{f(x)|x∈A}叫做函数的值域.在研究函数时常会用到区间的概念,设a,b是两个实数,且a<b,如下表所示:(4)函数有意义是指:自变量的取值使分母不为0;被开方数为非负数;如果函数有实际意义时,那么还要满足实际取值等等.(5)C ⊆B .应用示例例题 题已知函数f (x )=x +3+1x +2, (1)求函数的定义域; (2)求f (-3),f ⎝⎛⎭⎫23的值;(3)当a >0时,求f (a ),f (a -1)的值.活动:(1)让学生回想函数的定义域指的是什么?函数的定义域是使函数有意义的自变量的取值范围,故转化为求使x +3和1x +2有意义的自变量的取值范围.x +3有意义,则x+3≥0,1x +2有意义,则x +2≠0,转化为解由x +3≥0和x +2≠0组成的不等式组.(2)让学生回想f (-3),f ⎝⎛⎭⎫23表示什么含义?f (-3)表示自变量x =-3时对应的函数值,f ⎝⎛⎭⎫23表示自变量x =23时对应的函数值.分别将-3,23代入函数的对应法则中得f (-3),f ⎝⎛⎭⎫23的值.(3)f (a )表示自变量x =a 时对应的函数值,f (a -1)表示自变量x =a -1时对应的函数值.分别将a ,a -1代入函数的对应法则中得f (a ),f (a -1)的值.解:(1)要使函数有意义,自变量x 的取值需满足⎩⎪⎨⎪⎧x +3≥0,x +2≠0,解得-3≤x <-2或x >-2,即函数的定义域是[-3,-2)∪(-2,+∞).(2)f (-3)=-3+3+1-3+2=-1;f ⎝⎛⎭⎫23=23+3+123+2=333+38. (3)∵a >0,∴a ∈[-3,-2)∪(-2,+∞),即f (a ),f (a -1)有意义. 则f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1. 点评:本题主要考查函数的定义域以及对符号f (x )的理解.求使函数有意义的自变量的取值范围,通常转化为解不等式组.f (x )是表示关于变量x 的函数,又可以表示自变量x 对应的函数值,是一个整体符号,分开符号f (x )没有什么意义.符号f 可以看作是对“x ”施加的某种法则或运算.例如f (x )=x 2-x +5,当x =2时,看作对“2”施加了这样的运算法则:先平方,再减去2,再加上5;若x 为某一代数式(或某一个函数记号时),则左右两边的所有x 都用同一个代数式(或某一个函数)来代替.如:f (2x +1)=(2x +1)2-(2x +1)+5,f [g (x )]=[g (x )]2-g (x )+5等等.符号y =f (x )表示变量y 是变量x 的函数,它仅仅是函数符号,并不表示y 等于f 与x 的乘积.符号f (x )与f (m )既有区别又有联系:当m 是变量时,函数f (x )与函数f (m )是同一个函数;当m 是常数时,f (m )表示自变量x =m 对应的函数值,是一个常量.已知函数的解析式,求函数的定义域,就是求使得函数解析式有意义的自变量的取值范围,即(1)如果f (x )是整式,那么函数的定义域是实数集R .(2)如果f (x )是分式,那么函数的定义域是使分母不等于零的实数的集合.(3)如果f (x )是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f (x )是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合(即求各部分定义域的交集).(5)对于由实际问题的背景确定的函数,其定义域还要受实际问题的制约. 变式训练1.函数y =(x +1)2x +1-1-x 的定义域为__________.答案:{x |x ≤1,且x ≠-1}.点评:本题容易错解:化简函数的解析式为y =x +1-1-x ,得函数的定义域为{x |x ≤1}.其原因是这样做违背了讨论函数问题要保持定义域优先的原则.化简函数的解析式容易引起函数的定义域发生变化,因此求函数的定义域之前,不要化简解析式. 2.若f (x )=1x的定义域为M ,g (x )=|x |的定义域为N ,令全集U =R ,则M ∩N 等于( )A .MB .NC .∁U MD .∁U N解析:由题意得M ={x |x >0},N =R ,则M ∩N ={x |x >0}=M . 答案:A3.已知函数f (x )的定义域是[-1,1],则函数f (2x -1)的定义域是________. 解析:要使函数f (2x -1)有意义,自变量x 的取值需满足-1≤2x -1≤1,1.已知函数f (x )满足:f (p +q )=f (p )f (q ),f (1)=3,则f 2(1)+f (2)f (1)+f 2(2)+f (4)f (3)+f 2(3)+f (6)f (5)+f 2(4)+f (8)f (7)+f 2(5)+f (10)f (9)=________.解析:∵f (p +q )=f (p )f (q ),∴f (x +x )=f (x )f (x ),即f 2(x )=f (2x ). ∴f (p +1)f (p )=f (1)=3. ∴原式=2f (2)f (1)+2f (4)f (3)+2f (6)f (5)+2f (8)f (7)+2f (10)f (9)=2(3+3+3+3+3)=30.答案:302.若f (x )=1x 的定义域为A ,g (x )=f (x +1)-f (x )的定义域为B ,那么( )A .A ∪B =B B .AB C .A ⊆B D .A ∩B =解析:由题意得A ={x |x ≠0},B ={x |x ≠0,且x ≠-1}.则A ∪B =A ,则A 错;A ∩B =B ,则D 错;由于BA ,则C 错,B 正确.答案:B拓展提升问题:已知函数f (x )=x 2+1,x ∈R .(1)分别计算f (1)-f (-1),f (2)-f (-2),f (3)-f (-3)的值; (2)由(1)你发现了什么结论?并加以证明.活动:让学生探求f (x )-f (-x )的值.分析(1)中各值的规律,归纳猜想出结论,再用解析式证明.解:(1)f (1)-f (-1)=(12+1)-[(-1)2+1]=2-2=0; f (2)-f (-2)=(22+1)-[(-2)2+1]=5-5=0; f (3)-f (-3)=(32+1)-[(-3)2+1]=10-10=0.(2)由(1)可发现结论:对任意x ∈R ,有f (x )=f (-x ).证明如下: 由题意得f (-x )=(-x )2+1=x 2+1=f (x ). ∴对任意x ∈R ,总有f (x )=f (-x ).课堂小结本节课学习了:函数的概念、函数定义域的求法和对函数符号f (x )的理解.作业课本习题1.2A 组 1,5.设计感想本节教学中,在归纳函数的概念时,本节设计运用了大量的实例,如果不借助于信息技术,那么会把时间浪费在实例的书写上,会造成课时不足即拖堂现象.本节重点设计了函数定义域的求法,而函数值域的求法将放在函数的表示法中学习.由于函数是高中数学的重点内容之一,也是高考的重点和热点,因此对函数的概念等知识进行了适当的拓展,以满足高考的需要.第2课时作者:刘玉亭复习1.函数的概念. 2.函数的定义域的求法. 导入新课思路1.当实数a ,b 的符号相同,绝对值相等时,实数a =b ;当集合A ,B 中元素完全相同时,集合A =B ;那么两个函数满足什么条件才相等呢?引出课题:函数相等.思路2.我们学习了函数的概念,y =x 与y =x 2x 是同一个函数吗?这就是本节课学习的内容,引出课题:函数相等.推进新课新知探究 提出问题①指出函数y=x+1的构成要素有几部分?②一个函数的构成要素有几部分?③分别写出函数y=x+1和函数y=t+1的定义域和对应关系,并比较异同.④函数y=x+1和函数y=t+1的值域相同吗?由此可见两个函数的定义域和对应关系分别相同,值域相同吗?⑤由此你对函数的三要素有什么新的认识?讨论结果:①函数y=x+1的构成要素为:定义域R,对应关系x→x+1,值域是R.②一个函数的构成要素为:定义域、对应关系和值域,简称为函数的三要素.其中定义域是函数的灵魂,对应关系是函数的核心.当且仅当两个函数的三要素都相同时,这两个函数才相同.③定义域和对应关系分别相同.④值域相同.⑤如果两个函数的定义域和对应关系分别相同,那么它们的值域一定相等.因此只要两个函数的定义域和对应关系分别相同,那么这两个函数就相等.应用示例例题题下列函数中哪个与函数y=x相等?(1)y=(x)2;(2)y=3x3;(3)y=x2;(4)y=x2x.活动:让学生思考两个函数相等的条件后,引导学生求出各个函数的定义域,化简函数关系式为最简形式.只要它们的定义域和对应关系分别相同,那么这两个函数就相等.解:函数y=x的定义域是R,对应关系是x→x.(1)∵函数y=(x)2的定义域是[0,+∞),∴函数y=(x)2与函数y=x的定义域不相同,∴函数y=(x)2与函数y=x不相等.∴函数y=3x3与函数y=x的定义域相同.又∵y=3x3=x,∴函数y=3x3与函数y=x的对应关系也相同.∴函数y=3x3与函数y=x相等.(3)∵函数y=x2的定义域是R,∴函数y =x 2与函数y =x 的定义域相同. 又∵y =x 2=|x |,∴函数y =x 2与函数y =x 的对应关系不相同. ∴函数y =x 2与函数y =x 不相等.(4)∵函数y =x 2x 的定义域是(-∞,0)∪(0,+∞),∴函数y =x 2x 与函数y =x 的定义域不相同,∴函数y =x 2x与函数y =x 不相等.点评:本题主要考查函数相等的含义.讨论函数问题时,要保持定义域优先的原则.对于判断两个函数是否是同一个函数,要先求定义域,若定义域不同,则不是同一个函数;若定义域相同,再化简函数的解析式,若解析式相同(即对应关系相同),则是同一个函数,否则不是同一个函数.变式训练判断下列各组的两个函数是否相同,并说明理由. ①y =x -1,x ∈R 与y =x -1,x ∈N ; ②y =x 2-4与y =x -2·x +2; ③y =1+1x 与u =1+1x ;④y =x 2与y =x x 2; ⑤y =2|x |与y =2,0,2,0.x x x x ≥⎧⎨-<⎩是同一个函数的是________.(把是同一个函数的序号填上即可) 解析:只需判断函数的定义域和对应法则是否均相同即可.①前者的定义域是R ,后者的定义域是N ,由于它们的定义域不同,故不是同一个函数;②前者的定义域是{x |x ≥2,或x ≤-2},后者的定义域是{x |x ≥2},它们的定义域不同,故不是同一个函数;③定义域相同均为非零实数,对应法则相同都是自变量取倒数后加1,那么值域必相同,故是同一个函数;④定义域是相同的,但对应法则不同,故不是同一个函数;1.下列给出的四个图形中,是函数图象的是( )图2A .①B .①③④C .①②③D .③④ 答案:B2.函数y =f (x )的定义域是R ,值域是[1,2],则函数y =f (2x -1)的值域是________. 3.下列各组函数是同一个函数的有________. ①f (x )=x 3,g (x )=x x ;②f (x )=x 0,g (x )=1x0;③f (x )=-2x ,g (u )=-2u ;④f (x )=-x 2+2x ,g (u )=-u 2+2u .答案:②③④拓展提升问题:函数y=f(x)的图象与直线x=m有几个交点?探究:设函数y=f(x)定义域是D,当m∈D时,根据函数的定义知f(m)唯一,则函数y=f(x)的图象上横坐标为m的点仅有一个(m,f(m)),即此时函数y=f(x)的图象与直线x=m仅有一个交点;当m D时,根据函数的定义知f(m)不存在,则函数y=f(x)的图象上横坐标为m的点不存在,即此时函数y=f(x)的图象与直线x=m没有交点.综上所得,函数y=f(x)的图象与直线x=m有交点时仅有一个,或没有交点.课堂小结(1)复习了函数的概念,总结了函数的三要素;(2)判断两个函数是否是同一个函数.作业1.设M={x|-2≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示以集合M 为定义域,N为值域的函数关系的是()图3答案:B2.某公司生产某种产品的成本为1 000元,以1 100元的价格批发出去,随生产产品数量的增加,公司收入________,它们之间是________关系.解析:由题意,多生产一单位产品则多收入100元.生产产品数量看成是自变量,公司收入看成是因变量,容易得出对于自变量的每一个确定值,因变量都有唯一确定的值与之对应,从而判断两者是函数关系.答案:增加函数3.函数y=x2与S=t2是同一函数吗?答:函数的确定只与定义域与对应关系有关,而与所表示的字母无关,因此y=x2与S =t2表示的是同一个函数.因此并非字母不同便是不同的函数,这是由函数的本质决定的.设计感想本节教学内容主要是依据高考说明,对课本内容适当拓展,重点对函数的相等问题进行了引申,设计时对拓展的内容采取渐进式,设计时本着逐步提高、拓展,不能急于求成,否则事倍功半.备课资料【备选例题】【例1】已知函数f (x )=11+x,则函数f [f (x )]的定义域是________. 解析:∵f (x )=11+x ,∴x ≠-1.∴f [f (x )]=f ⎝⎛⎭⎫11+x =11+11+x . ∴1+11+x ≠0,即x +2x +1≠0.∴x ≠-2.∴f [f (x )]的定义域为{x |x ≠-2,且x ≠-1}. 答案:{x |x ≠-2,且x ≠-1}【例2】已知函数f (2x +3)的定义域是[-4,5),求函数f (2x -3)的定义域.解:由函数f (2x +3)的定义域得函数f (x )的定义域,从而求得函数f (2x -3)的定义域.设2x +3=t ,当x ∈[-4,5)时,有t ∈[-5,13),则函数f (t )的定义域是[-5,13),解不等式-5≤2x -3<13,得-1≤x <8,即函数f (2x -3)的定义域是[-1,8).【知识拓展】函数的传统定义和近代定义的比较函数的传统定义(初中学过的函数定义)与它的近代定义(用集合定义函数)在实质上是一致的.两个定义中的定义域和值域的意义完全相同;两个定义中的对应法则实际上也一样,只不过叙述的出发点不同.传统定义是从运动变化的观点出发,其中对应法则是将自变量x 的每一个取值与唯一确定的函数值对应起来;近代定义则是从集合、对应的观点出发,其中的对应法则是将原象集合中任一元素与象集合中的唯一确定的元素对应起来.。
人教A版高中数学必修一复习教案第二章函数新人教(4)
第五教时教材: 函数的解析式;《教学与测试》第17、18课目的: 要求学生学会利用换元法、定义法、待定系数法等方法求函数解析式。
过程:一、复习:函数的三种常用表示方法。
提问:1、已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x 则:1)]}1([{)0(;0)1(;2)1(+=-==-=ππf f f f f f2、已知f (x )=x 2-1 g (x )=1+x 求f [g (x )] 解:f [g (x )]=(1+x )2-1=x +2x 二、提出问题:已知复合函数如何求 例一、(《教学与测试》P 37 例一) 1.若)21(x x x f +=+,求f (x )。
解法一(换元法):令t =1+x 则x =t 2-1, t ≥1代入原式有1)1(2)1()(22-=-+-=t t t t f ∴1)(2-=x x f (x ≥1) 解法二(定义法):1)1(22-+=+x x x ∴1)1()1(2-+=+x x f1+x ≥1 ∴f (x )=x 2-1 (x ≥1)2.若xx x f -=1)1( 求f (x )解: 令x t 1= 则t x 1= (t ≠0) 则11111)(-=-=t tt t f∴f (x )=11-x (x ≠0且x ≠1)例二、已知f (x )=ax +b ,且af (x )+b =ax +8 求f (x )解:(待定系数法)∵af (x )+b =a (ax +b )+b =a 2x +ab +b ∴⎩⎨⎧=+=892b ab a解之⎩⎨⎧==23b a 或⎩⎨⎧-=-=43b a ∴f (x )=3x +2或f (x )=-3x -4 例三、已知f (x )是一次函数, 且f [f (x )]=4x -1, 求f (x )的解析式。
解:(待定系数法)设f (x )=kx +b 则 k (kx +b )+b =4x -1则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f例四、[]221)(,21)(xx x g f x x g -=-= (x ≠0) 求)21(f 解一:令x t 21-= 则 21t x -= ∴222221234)1(4)1(1)(tt t t t t t f +--+=---= ∴1541114113)21(=+--+=f 解二:令 2121=-x 则 41=x ∴15)41()41(1)21(22=-=f 三、应用题:《教学与测试》思考题例五、动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A 。
高一数学人教A版必修一教案:函数的概念 含答案
函数的概念教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国2003年4月份非典疫情统计:3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
人教版高一数学《函数》复习教案(有答案)
高一函数复习一、函数的概念与表示1、映射映射:设A 、B 是两个集合,假如按照某种映射法那么f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应〔包括集合A 、B 以及A 到B 的对应法那么f 〕叫做集合A 到集合B 的映射,记作f :A →B 。
注意点:〔1〕对映射定义的理解;〔2〕判断一个对应是映射的关键:A 中任意,B 中唯一;对应法那么f .给定一个集合A 到集合B 的映射,且,a A b B ∈∈.假如元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.注意:(1)A 中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一; (3)a 的象记为f (a ).【例题1】设集合A ={x |0 ≤ x ≤ 6},B ={y |0 ≤ y ≤ 2},从A 到B 的对应法那么f 不是映射的是〔 〕.A . f :x →y =12x B . f :x →y =13x C . f :x →y =14x D . f :x →y =16x【变式练习1】假设:f A B →能构成映射,以下说法正确的有 〔 〕〔1〕A 中的任一元素在B 中必须有像且唯一; 〔2〕A 中的多个元素可以在B 中有一样的像; 〔3〕B 中的多个元素可以在A 中有一样的原像; 〔4〕像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个2、函数构成函数概念的三要素:①定义域;②对应法那么;③值域两个函数是同一个函数的条件:当且仅当函数定义域、对应法那么分别一样时.【例题1】以下各对函数中,一样的是〔 〕A 、x x g x x f lg 2)(,lg )(2==B 、)1lg()1lg()(,11lg)(--+=-+=x x x g x x x f C 、 vvv g u u u f -+=-+=11)(,11)( D 、f 〔x 〕=x ,2)(x x f =【例题2】}30|{},20|{≤≤=≤≤=y y N x x M 给出以下四个图形,其中能表示从集合M 到集合N 的函数关系的有 〔 〕A 、 0个B 、 1个C 、 2个D 、3个【变式练习】1.以下各组函数中,表示同一函数的是〔 〕A . 1,xy y x == B . 211,1y x x y x =-+=-C . 33,y x y x ==D . 2||,()y x y x ==2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出以下四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是〔 〕3.以下四个图象中,不是函数图象的是〔 〕【稳固练习】xx x x1 2 1 1 1 22 2 1 1 1 1 2 2 2 2 y yyy3 OO OO1.判断以下各组中的两个函数是同一函数的是〔 〕 ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一函数复习一、函数的概念与表示1、映射映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A →B 。
注意点:(1)对映射定义的理解;(2)判断一个对应是映射的关键:A 中任意,B 中唯一;对应法则f .给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.注意:(1)A 中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一; (3)a 的象记为f (a ).【例题1】设集合A ={x |0 ≤ x ≤ 6},B ={y |0 ≤ y ≤ 2},从A 到B 的对应法则f 不是映射的是( ).A . f :x →y =12x B . f :x →y =13x C . f :x →y =14x D . f :x →y =16x【变式练习1】若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个2、函数构成函数概念的三要素:①定义域;②对应法则;③值域两个函数是同一个函数的条件:当且仅当函数定义域、对应法则分别相同时.【例题1】下列各对函数中,相同的是( )A 、x x g x x f lg 2)(,lg )(2== B 、)1lg()1lg()(,11lg)(--+=-+=x x x g x x x f C 、 vvv g u u u f -+=-+=11)(,11)( D 、f (x )=x ,2)(x x f =【例题2】}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有 ( )A 、 0个B 、 1个C 、 2个D 、3个【变式练习】1.下列各组函数中,表示同一函数的是( )A . 1,xy y x==B . 211,1y x x y x =-+=-C . 33,y x y x ==D . 2||,()y x y x ==2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( )3.下列四个图象中,不是函数图象的是( )【巩固练习】xx x x1 2 1 1 1 22 2 1 1 1 1 2 2 2 2 y yyy3 OO OO1.判断下列各组中的两个函数是同一函数的是( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸ 2、设x 取实数,则f (x )与g (x )表示同一个函数的是( )A 、x x f =)(,2)(x x g = B 、x x x f 2)()(=,2)()(x x x g = C 、1)(=x f ,0)1()(-=x x g D 、39)(2+-=x x x f ,3)(-=x x g3、下列四个函数中,与y =x 表示同一函数的是( )A . y = (x )2B . y =33xC. y = 2xD. y = xx 24.下列图象中表示函数图象的是 ( )5.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈,使B 中元素31y x =+和A中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5二、函数的解析式与定义域1、函数解析式的七种求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。
【例1】设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .解:设b ax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 ● 二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
【例2】已知221)1(x x xx f +=+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+xx2)(2-=∴x x f )2(≥x● 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
【例3】已知x x x f 2)1(+=+,求)1(+x f .解:令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x● 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
【例4】已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y xx ,解得:⎩⎨⎧-='--='y y x x 64,点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='y y x x 64代入得:)4()4(62--+--=-x x y整理得672---=x x y∴67)(2---=x x x g● 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
【例5】设,)1(2)()(x xf x f x f =-满足求)(x f解 x xf x f =-)1(2)( ①显然,0≠x 将x 换成x 1,得:xx f x f 1)(2)1(=- ② 解① ②联立的方程组,得:xx x f 323)(--=【例6】设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式解 )(x f 为偶函数,)(x g 为奇函数,)()(),()(x g x g x f x f -=-=-∴ 又11)()(-=+x x g x f ① , 用x -替换x 得:11)()(+-=-+-x x g x f 即11)()(+-=-x x g x f ②解① ②联立的方程组,得 11)(2-=x x f , xx x g -=21)(● 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
【例7】已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f解对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,不妨令0x =,则有1)1(1)1()0()(2+-=-+=+--=-y y y y y y f y f 再令 x y =- 得函数解析式为:1)(2++=x x x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。
【例8】设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a ,都有ab b a f b f a f -+=+)()()(,求)(x f解 +∈-+=+N b a ab b a f b f a f ,)()()(,,∴不妨令1,==b x a ,得:x x f f x f -+=+)1()1()(,又1)()1(,1)1(+=-+=x x f x f f 故 ① 分别令①式中的1,21x n =- 得:(2)(1)2,(3)(2)3,()(1),f f f f f n f n n -=-=--=将上述各式相加得:n f n f ++=-32)1()(,2)1(321)(+=+++=∴n n n n f +∈+=∴N x x x x f ,2121)(2 【变式练习】1、已知11112-=⎪⎭⎫ ⎝⎛+xx f ,求()x f 的解析式。
(换元法)2、设二次函数()x f y =的最小值等于4,且()()620==f f ,求()x f 的解析式。
(待定系数法)3、已知3311()f x x x x+=+,求()f x ;4、已知f (x -1)=3x -1,求()f x ;5、已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;6、已知()f x 满足12()()3f x f x x+=,求()f x .7、已知()x x x f21+=+,求()x f 。
8、已知)(x f 是一次函数,且()()14-=x x f f ,求)(x f 的解析式。
9、设)(x f 是R 上的函数,且满足()10=f ,并且对任意实数y x ,,有()()()12+--=-y x y x f y x f ,求()x f 的表达式。
【巩固练习】1.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( ) A .21x + B .21x - C .23x - D .27x + 2.函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于( ) A .3 B .3- C .33-或 D .35-或3.已知)0(1)]([,21)(22≠-=-=x x x x g f x x g ,那么)21(f 等于( ) A .15 B .1 C .3 D .30 4.已知2211()11x x f x x --=++,则()f x 的解析式为( ) A .21x x + B .212x x +- C .212x x + D .21xx+- 5.若函数x x x f 2)12(2-=+,则)3(f = . 6.已知2(21)2f x x x +=-,则(3)f =_________.7.已知函数1()1xf x x -=+. 求:(1)(2)f 的值;(2)()f x 的表达式.8.已知2()f x ax bx c =++,(0)0f =,且(1)()1f x f x x +=++,试求()f x 的表达式.2、求函数定义域的主要依据:(1)()f x 是整式时,定义域是全体实数.(2)()f x 是分式函数时,定义域是使分母不为零的一切实数.(3)()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. (4)零(负)指数幂的底数不能为零. (5)对数函数的真数必须大于零.(6)指数函数、对数函数的底数必须大于零且不等于1.(7)若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.(8)对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.(9)实际问题中的函数的定义域还要保证实际问题有意义.求函数定义域的两个难点问题1、已知()f x 的定义域是[-2,5],求(23)f x +的定义域。