空间点直线平面定理总结
点线面之间的位置关系的知识点总结
![点线面之间的位置关系的知识点总结](https://img.taocdn.com/s3/m/bf1876daff00bed5b8f31d86.png)
高中空间点线面之间位置关系知识点总结第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的2平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成45°,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母a、B、Y等表示,如平面a、平面B等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC平面ABCD等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为公理1作用:判断直线是否在平面内(2)公理2 :过不在一条直线上的三点,有且只有一个平面。
符号表示为:AB、C三点不共线=> 有且只有一个平面a, 使A€a、B€a、C€a。
公理2作用:确定一个平面的依据。
(3)公理3 :如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P€aQB => aPp =L,且P€ L公理3作用:判定两个平面是否相交的依据2.1.2空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:f相交直线:同一平面内,有且只有一个公共点; 共面直线 Yl平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用公理4作用:判断空间两条直线平行的依据。
3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4注意点:①a'与b'所成的角的大小只由a、b的相互位置来确定,与0的选择无关,为简便,点0 —般取在两直线中的一条上;②两条异面直线所成的角(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a丄b;a//b2公理4:平行=>a //c④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角2.1.3 —2.1.4空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内一一有无数个公共点(2 )直线与平面相交一一有且只有一个公共点(3)直线在平面平行一一没有公共点指岀:直线与平面相交或平行的情况统称为直线在平面外,可用 a a来表示―a a a Qa =A a Ila2.2.直线、平面平行的判定及其性质2.2.1直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
空间点、线、面的位置关系
![空间点、线、面的位置关系](https://img.taocdn.com/s3/m/9de09887a45177232e60a2bf.png)
【证明】 (1)如图所示,连接B1D1.
因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体AC1 中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面,即 D,B,F,E四点共面.
(2)在正方体AC1中,设A1,C,C1三点确定的平面为α,平 面BDEF为β.因为Q∈A1C1,所以Q∈α.
2.异面直线的判定方法 (1)反证法:先假设两条直线不是异面直线,即两条直线平 行或相交,由假设出发,经过严格的推理,导出矛盾,从而否 定假设,肯定两条直线异面.此法在异面直线的判定中经常用 到. (2)定理:平面外一点A与平面内一点B的连线和平面内不经 过点B的直线是异面直线.
思考题2 (1)【多选题】如图所示,是正方体的平面 展开图,
间直角坐标系,则A(a,0,0),C1(0,a, 3 a),C(0,a,0),
D1(0,0, 3a), A→C1=(-a,a, 3a),C→D1=(0,-a, 3a), 设异面直线AC1与CD1所成角为θ, 则cosθ=|AA→→CC11|··C|C→→DD11|= 52a·a2 2a= 55.
∴异面直线AC1与CD1所成角的余弦值为
思考题1 如图所示,在正方体ABCD-A1B1C1D1中, E,F分别是AB和AA1的中点,求证:
(1)E,C,D1,F四点共面; (2)CE,D1F,DA三线共点.
【证明】 (1)如图所示,连接EF,CD1,A1B.
∵E,F分别是AB,AA1的中点,∴EF∥A1B. 又A1B∥D1C,∴EF∥CD1. ∴E,C,D1,F四点共面.
在这个正方体中,有以下四个命题,正确的结论是( CD ) A.BM与ED平行 B.CN与BE是异面直线 C.CN与BM成60°角 D.DM与BN垂直
直线、平面平行的判定和性质
![直线、平面平行的判定和性质](https://img.taocdn.com/s3/m/8cb04fd3e53a580217fcfe05.png)
∴PM∥BE,∴APEP=MAMB,
又 AE=BD,AP=DQ,∴PE=BQ, ∴APEP=DBQQ,∴MAMB=DQQB,
∴MQ∥AD,又 AD∥BC,
∴MQ∥BC,∴MQ∥平面 BCE,又 PM∩MQ=M, ∴平面 PMQ∥平面 BCE,又 PQ⊂平面 的直线 a,b 和平面 α, ①若 a∥α,b⊂α,则 a∥b; ②若 a∥α,b∥α,则 a∥b; ③若 a∥b,b⊂α,则 a∥α; ④若 a∥b,a⊂α,则 b∥α 或 b⊂α, 上面命题中正确的是________(填序号). 答案 ④
解析 ①若 a∥α,b⊂α,则 a,b 平行或异面;②若 a∥α,b∥α,则 a,b 平行、相交、异面都有可能;③若 a∥b,b⊂α,a∥α 或 a⊂α.
作 PM∥AB 交 BE 于 M, 作 QN∥AB 交 BC 于 N,
连接 MN. ∵正方形 ABCD 和正方形 ABEF 有公共边 AB,∴AE =BD. 又 AP=DQ,∴PE=QB,
又 PM∥AB∥QN,∴PAMB =PAEE=QBDB,QDNC=BBQD,
∴PAMB =QDNC, ∴PM // QN,即四边形 PMNQ 为平行四边形, ∴PQ∥MN.又 MN⊂平面 BCE,PQ⊄平面 BCE, ∴PQ∥平面 BCE.
直线、平面平行的判定及性质
2012·考纲
1.以立体几何的定义、公理、定理为出发点,认识 和理解空间中线面平行的有关性质和判定定理.
2.能运用公理、定理和已获得的结论证明一些空间位 置关系的简单命题.
课本导读
1.直线和平面平行的判定: (1)定义:直线与平面没有公共点,则称直线平行平面; (2)判定定理: a⊄α,b⊂α,a∥b⇒a∥α ; (3)其他判定方法:α∥β,a⊂α⇒a∥β. 2.直线和平面平行的性质: a∥α,a⊂β,α∩β=l⇒a∥l.
空间点、直线、平面之间的位置关系
![空间点、直线、平面之间的位置关系](https://img.taocdn.com/s3/m/601a7262fe4733687e21aa36.png)
空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l和平面α相交、直线l和平面α平行统称为直线l在平面α外,记作l⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用B1C1D1中,E,F分[典例]如图所示,在正方体ABCD-A别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD-A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(优质试题·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a ⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c 相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD -A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(优质试题·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A当直线l与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A正确;该平面内不存在与直线l平行的直线,故B错误;该平面内有无数条直线与直线l垂直,所以C错误,平面α内的直线与l可能异面,故D错误,故选A.2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A由BC綊AD,AD綊A1D1,知BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,故A1B与EF相交.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B直线a,b分别在两个不同的平面α,β内,则由“直线a和直线b相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选B.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D设四棱锥的两组不相邻的侧面的交线为m,n,直线m,n确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相交,则截得的四边形必为平行四边形,而这样的平面α有无数多个.5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH 相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P 必在直线AC上.6.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:57.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD 的交线是________.解析:由题易知EF ∥BC ,BC ∥AD ,所以EF ∥AD ,故EF ∥平面P AD ,因为EF ∥AD ,所以E ,F ,A ,D 四点共面,所以AD 为平面AEF 与平面ABCD 的交线. 答案:平行 AD8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论.①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN 是否共面?说明理由;。
点直线平面之间的位置关系知识点总结
![点直线平面之间的位置关系知识点总结](https://img.taocdn.com/s3/m/cabbc9f5b9f67c1cfad6195f312b3169a451ea3f.png)
点、直线、平面之间的位置关系知识点总结立体几何知识点总结1.直线在平面内的判定1利用公理1:一直线上不重合的两点在平面内;则这条直线在平面内.2若两个平面互相垂直;则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内;即若α⊥β;A∈α;AB⊥β;则ABα.3过一点和一条已知直线垂直的所有直线;都在过此点而垂直于已知直线的平面内;即若A∈a;a⊥b;A∈α;b⊥α;则aα.4过平面外一点和该平面平行的直线;都在过此点而与该平面平行的平面内;即若Pα;P∈β;β∥α;P∈a;a∥α;则aβ.5如果一条直线与一个平面平行;那么过这个平面内一点与这条直线平行的直线必在这个平面内;即若a∥α;A∈α;A∈b;b∥a;则bα.2.存在性和唯一性定理1过直线外一点与这条直线平行的直线有且只有一条;2过一点与已知平面垂直的直线有且只有一条;3过平面外一点与这个平面平行的平面有且只有一个;4与两条异面直线都垂直相交的直线有且只有一条;5过一点与已知直线垂直的平面有且只有一个;6过平面的一条斜线且与该平面垂直的平面有且只有一个;7过两条异面直线中的一条而与另一条平行的平面有且只有一个;8过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质1点在平面上的射影自一点向平面引垂线;垂足叫做这点在这个平面上的射影;点的射影还是点.2直线在平面上的射影自直线上的两个点向平面引垂线;过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.3图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时;射影是一条线段;当图形所在平面不与射影面垂直时;射影仍是一个图形.4射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:i射影相等的两条斜线段相等;射影较长的斜线段也较长;ii相等的斜线段的射影相等;较长的斜线段的射影也较长;iii垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行;并且方向相同;则这两个角相等.推论若两条相交直线和另两条相交直线分别平行;则这两组直线所成的锐角或直角相等.异面直线所成的角1定义:a、b是两条异面直线;经过空间任意一点O;分别引直线a′∥a;b′∥b;则a′和b′所成的锐角或直角叫做异面直线a和b所成的角.2取值范围:0°<θ≤90°.3求解方法①根据定义;通过平移;找到异面直线所成的角θ;②解含有θ的三角形;求出角θ的大小.5.直线和平面所成的角1定义和平面所成的角有三种:i垂线面所成的角的一条斜线和它在平面上的射影所成的锐角;叫做这条直线和这个平面所成的角.ii垂线与平面所成的角直线垂直于平面;则它们所成的角是直角.iii一条直线和平面平行;或在平面内;则它们所成的角是0°的角.2取值范围0°≤θ≤90°3求解方法①作出斜线在平面上的射影;找到斜线与平面所成的角θ.②解含θ的三角形;求出其大小.③最小角定理斜线和平面所成的角;是这条斜线和平面内经过斜足的直线所成的一切角中最小的角;亦可说;斜线和平面所成的角不大于斜线与平面内任何直线所成的角.6.二面角及二面角的平面角1半平面直线把平面分成两个部分;每一部分都叫做半平面.2二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱;这两个平面叫做二面角的面;即二面角由半平面一棱一半平面组成.若两个平面相交;则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量;通常认为二面角的平面角θ的取值范围是0°<θ≤180°3二面角的平面角①以二面角棱上任意一点为端点;分别在两个面内作垂直于棱的射线;这两条射线所组成的角叫做二面角的平面角.如图;∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:i二面角的棱垂直于它的平面角所在的平面;即AB⊥平面PCD.ii从二面角的平面角的一边上任意一点异于角的顶点作另一面的垂线;垂足必在平面角的另一边或其反向延长线上.iii二面角的平面角所在的平面与二面角的两个面都垂直;即平面PCD⊥α;平面PCD⊥β.③找或作二面角的平面角的主要方法.i定义法ii垂面法iii三垂线法Ⅳ根据特殊图形的性质4求二面角大小的常见方法①先找或作出二面角的平面角θ;再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积;S′是这个平面图形在另一个面上的射影图形的面积;α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离1定义面外一点引一个平面的垂线;这个点和垂足间的距离叫做这个点到这个平面的距离.2求点面距离常用的方法:1直接利用定义求①找到或作出表示距离的线段;②抓住线段所求距离所在三角形解之.2利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上;则已知点到两平面交线的距离就是所求的点面距离.3体积法其步骤是:①在平面内选取适当三点;和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h;求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4转化法将点到平面的距离转化为平行直线与平面的距离来求.8.直线和平面的距离1定义一条直线和一个平面平行;这条直线上任意一点到平面的距离;叫做这条直线和平面的距离.2求线面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②将线面距离转化为点面距离;然后运用解三角形或体积法求解之.③作辅助垂直平面;把求线面距离转化为求点线距离.9.平行平面的距离1定义个平行平面同时垂直的直线;叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分;叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.2求平行平面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②把面面平行距离转化为线面平行距离;再转化为线线平行距离;最后转化为点线面距离;通过解三角形或体积法求解之.10.异面直线的距离1定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度;叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.2求两条异面直线的距离常用的方法①定义法题目所给的条件;找出或作出两条异面直线的公垂线段;再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法。
空间直线平面的垂直
![空间直线平面的垂直](https://img.taocdn.com/s3/m/817967ac80c758f5f61fb7360b4c2e3f572725a3.png)
空间直线平面的垂直
在空间中,如果一条直线和一个平面内的任何一条直线都垂直,我们就说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面,平面的垂线和平面一定相交,交点叫垂足。
直线与平面垂直的判定定理为:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
此外,如果两个平面互相垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
直线与平面垂直是空间中一种重要的位置关系,在实际应用中有着广泛的应用。
如在建筑、工程、几何等领域中,常常需要判断直线与平面是否垂直。
立体几何公理定理总结
![立体几何公理定理总结](https://img.taocdn.com/s3/m/ad21e5db31b765ce050814d7.png)
一.公理
公理1:如果一条直线上两点在一个平面 内,那么这条直线在此平面内.
公理2:过不在一条直线上的三点,有且 只有一个平面.
公理3:如果两个不重合的平面有一个公 共点,那么它们有且只有一条过该点的 公共直线.
公理4:平行于同一条直线的两条直线平 行.
二.空间位置关系
面面平行:
判定:一个平面内的两条相交直线与另一个平 面平行,则这两个平面平行.
性质:如果两个平行平面同时和第三个平面相 交,那么它们的交线平行.
四.垂直
线线垂直:
平面上的判定 如果直线与平面垂直,则该直线与平面内任意
一条直线垂直.
线面垂直:
定义:如果一条直线垂直于一个平面内的任意 一条直线,那பைடு நூலகம்就说这条直线和这个平面垂直.
判定:一条直线与一个平面内的两条相交直线 都垂直,则该直线与此平面垂直.
性质:垂直于同一个平面的两条直线平行.
面面垂直:
定义:两个平面相交,如果它们所成的二面角 是直二面角,就说这两个平面互相垂直.
判定:一个平面经过另一个平面的一条垂线, 则这两个平面垂直.
性质:两个平面互相垂直,则一个平面内垂直 于交线的直线垂直于另一个平面.
线线位置关系:平行、相交、异面. 定理:空间中如果两个角的两边分别对应
平行,那么这两个角相等或互补. 线面位置关系:线在平面内、线与平面相
交、线与平面平行. 面面位置关系:平行、相交.
三.平行
线面平行:
判定:平面外一条直线与此平面内的一条直线 平行,则该直线与此平面平行 .
性质:一条直线与一个平面平行,则过这条直 线的任一平面与此平面的交线与该直线平行.
高中数学空间点直线和平面的位置关系公式
![高中数学空间点直线和平面的位置关系公式](https://img.taocdn.com/s3/m/64b93a41ec3a87c24128c47c.png)
高中数学空间点直线和平面的位置关系公式The Standardization Office was revised on the afternoon of December 13, 2020空间点,直线和平面的位置关系一,线在面内的性质:定里1. 如果一条直线的两点在一个平面内,那么这条直线上所有点都在这个平面内。
二,平面确定的判定定理:定里2. 经过不在同一直线上的三点有且只有一个平面。
定里3.经过一条直线和直线外一点,有且只有一个平面。
定里4. 经过两条相交直线有且只有一个平面。
定里5.经过两条平行直线有且只有一个个平面。
三,两面相交的性质:定里6. 如果两个平面有一个公共点,那么还有其它公共点,则这些公共点的集合是一条直线。
四,直线平行的判定定理:定里7. 平行于同一直线的两直线平行。
五,等角定理:定里8.如果一个角的两边和另一个角的两边分别平行且同向,那么这两个角相等。
六,异面直线定义:不同在任何一个平面内的两条直线叫异面直线。
(异面直线间的夹角只能是:锐角或直角)七,直线和平面平行的判定定理:定理9. 平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示:βββ////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄推理1. 如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:b a b a a a ////⇒⎪⎪⎭⎪⎪⎬⎫=⊂⊄βαβαα 八,平面与平面平行判定定理:定理1. 如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。
符号表示:βαββαα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂b a M b a b a推论1:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
九,平面与平面平行的性质:定理1. 如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示:d l d l ////⇒⎪⎭⎪⎬⎫==γβγαβα十,线与面垂直的判定定理:定理1. 如果一条直线与一个平面内的两条相交直线都平行,那么这条直线垂直这个平面。
点线面关系知识总结和练习题
![点线面关系知识总结和练习题](https://img.taocdn.com/s3/m/7964cfed6f1aff00bed51ea9.png)
//a α//a b点线面位置关系总复习知识梳理一、直线与平面平行 1.判定方法(1)定义法:直线与平面无公共点。
(2)判定定理:(3)其他方法://a αββ⊂2.性质定理://a a bαβαβ⊂⋂=二、平面与平面平行 1.判定方法(1)定义法:两平面无公共点。
(2)判定定理:////a b a b a b Pββαα⊂⊂⋂= //αβ(3)其他方法:a a αβ⊥⊥ //αβ; ////a γβγ//αβ 2.性质定理://a bαβγαγβ⋂=⋂=三、直线与平面垂直(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。
(2)判定方法 ① 用定义.//a b a b αα⊄⊂//a α//a b//a b ② 判定定理:a ba cb c A b c αα⊥⊥⋂=⊂⊂ a α⊥③ 推论://a a bα⊥ b α⊥ (3)性质 ①a b αα⊥⊂ a b ⊥ ②a b αα⊥⊥四、平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。
(2)判定定理a a αβ⊂⊥ αβ⊥ (3)性质①性质定理la a lαβαβα⊥⋂=⊂⊥ αβ⊥② l P P A A αβαβαβ⊥⋂=∈⊥垂足为 A l ∈④ l P PA αβαβαβ⊥⋂=∈⊥ PA α⊂“转化思想”面面平行 线面平行 线线平行 面面垂直 线面垂直 线线垂直●求二面角1.找出垂直于棱的平面与二面角的两个面相交的两条交线,它们所成的角就是二面角的平面角.2.在二面角的棱上任取一点O,在两半平面内分别作射线OA⊥l,OB⊥l,则∠AOB叫做二面角的平面角例1.如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC,且分别交AC于D,交SC于E,又SA=AB,SB=BC,求以BD为棱,以BDE和BDC为面的二面角的度数。
●求线面夹角定义:斜线和它在平面内的射影的夹角叫做斜线和平面所成的角(或斜线和平面的夹角)方法:作直线上任意一点到面的垂线,与线面交点相连,利用直角三角形有关知识求得三角形其中一角就是该线与平面的夹角。
空间点、直线、平面之间的位置关系
![空间点、直线、平面之间的位置关系](https://img.taocdn.com/s3/m/7516a611482fb4daa58d4b7b.png)
考点一 平面的基本性质
【题组练透】
1.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c
()
A.一定平行
B.一定相交
C.一定是异面直线 D.一定垂直
【解析】选D.两条平行线中一条与第三条直线垂直,另 一条直线也与第三条直线垂直.
2.如图是正方体的平面展开图,则在这个正方体中: ①BM与ED平行; ②CN与BE是异面直线; ③CN与BM成60°角; ④DM与BN是异面直线. 以上结论中,正确的序号是 ( ) A.③④ B.②④ C.①②③ D.②③④
能确定一个平面;④正确,用反证法,假设有三点共线, 设这条直线为l,则直线l与第四个点能确定一个平面,所 以这四点共面,与已知矛盾. 答案:②③④
3.下列命题中不正确的是________.(填序号) ①没有公共点的两条直线是异面直线; ②分别和两条异面直线都相交的两直线异面; ③一条直线和两条异面直线中的一条平行,则它和另一 条直线不可能平行;
B1B,AD的中点,则异面直线BF与D1E所成角的余弦值为
A. 14 7
C. 10 5
B. 5 7
D. 2 5 5
()
【解析】选D.如图,取A1A的中点M,D1D的中点N,连接EM,
MN,取MN的中点G,连接EG,D1G,FG,所以四边形BFGE是平
④一条直线和两条异面直线都相交,则它们可以确定两 个平面.
【解析】没有公共点的两直线平行或异面,故①错;命 题②错,此时两直线有可能相交;命题③正确,因为若直 线a和b异面,c∥a,则c与b不可能平行,用反证法证明如 下:若c∥b,又c∥a,则a∥b,这与a,b异面矛盾,故c与b 不平行;命题④也正确,若c与两异面直线a,b都相交,由
3.空间直线与平面、平面与平面之间的位置关系
空间直线和平面平行
![空间直线和平面平行](https://img.taocdn.com/s3/m/a5ba0df710661ed9ac51f353.png)
线、平面平行的判定及其性质2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(线面平行⇒面面平行)∵a∥β,b∥β,a∩b=P,a⊂α,b⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a,β∩γ=b,∴a∥b(1)且a∥b,否则会出现错误.(2)应用线面平行性质定理的注意点:一条直线平行于一个平面,它可以与平面内的无数条直线平行,但这条直线与平面内的任意一条直线可能平行,也可能异面.(3)线面平行的判定定理和性质定理使用的区别:如果结论中有a∥α,则要用判定定理,在α内找与a平行的直线;如果条件中有a∥α,则要用性质定理,找(或作)过a且与α相交的平面.4)面面平行判定定理的一个推论:如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行.符号表示:a⊂α,b⊂α,a∩b=O,a′⊂β,b′⊂β,a′∩b′=O′,a∥a′,b∥b′⇒α∥β. 1.两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.2.夹在两个平行平面之间的平行线段长度相等.3.经过平面外一点有且只有一个平面与已知平面平行.4.两条直线被三个平行平面所截,截得的对应线段成比例.5.同一条直线与两个平行平面所成角相等.6.如果两个平面分别平行于第三个平面,那么这两个平面互相平行.(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.11.如右图,P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥平面BDQ.1.如右图,P为梯形ABCD所在平面外一点,CD//2AB,E为PC的中点。
求证:BE∥平面PAD。
2.若两条直线都与一个平面平行,则这两条直线的位置关系是()A.平行B.相交C.异面D.以上均有可能3.已知直线a与直线b平行,直线a与平面α平行,则直线b与平面α的关系为()A.平行B.相交C.直线b在平面α内D.平行或直线b在平面α内4.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点1.如果直线a∥平面α,则()A.平面α内有且只有一条直线与a平行B.平面α内有无数条直线与a平行C.平面α内不存在与a平行的直线D.平面α内的任意直线与a都平行4.以下命题(其中,a b表示直线,α表示平面)①若//,a b b α⊂,则//a α;②若//,//a b αα,则//a b ;③若//a b ,//b α,则//a α;④若//a α,b α⊂,则//a b 。
(完整)空间点线面之间位置关系知识点总结,推荐文档
![(完整)空间点线面之间位置关系知识点总结,推荐文档](https://img.taocdn.com/s3/m/d28c944b700abb68a882fb43.png)
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系
①柱体的体积 V S底 h
②锥体的体积
V
1 3 S底
h
③台体的体积
V 13(S上上 S S下下 S ) h
④球体的体积V 4 R3 3
1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a
画三视图的原则: 长对齐、高对齐、宽相等
2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点;
β
P
α ·L
3.直观图:直观图通常是在平行投影下画出的空间图形。
共面直 平行直线:同一平面内,没有公共点;
4.斜二测法:在坐标系 x 'o ' y ' 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于 x
的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC、平面 ABCD 等。
(1)多面体——由若干个平面多边形围成的几何体.
3 三个公理:
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直 (1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
(1)若 A1B2 A2B1 0 ,两直线相交;
(2)若 A1B2 A2B1 0 ,两直线平行或重合;
(3)若 A1A2 B1B2 0 ,若两直线垂直。
10.点 (x1, y1)和(的x2中, y点2 ) 坐标是
空间直线与平面
![空间直线与平面](https://img.taocdn.com/s3/m/3ec5913a6edb6f1afe001f1a.png)
空间直线与平面1、平面的特征:无厚度,无边界,无面积,无限延展;2、公理及其作用公理一:若一条直线上有两点在一个平面内,则该直线在平面内. 【作用】用以证明线在面内....和点在面内......公理二:如果两个平面有一个公共点,则两个平面的交集是通过该点的一条直线. 【作用】用以证明..三.点共线.... 公理三:经过不在同一条直线上的三点有且仅有一个平面 【作用】确定平面的依据推论1 经过一条直线和这条直线外一点有且仅有一个平面; 推论2 经过两条相交直线有且仅有一个平面; 推论3 经过两条平行直线有且仅有一个平面;公理四:平行于同一直线的两直线平行;()// ////a b b c a c ⇒,【作用】对空间的平行线进行传递........ 3、等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补. 4、空间直线的位置关系:平行、相交、异面. 【注】异面直线的证明,一般采用反证法; 5、★异面直线所成角(1)范围:0,2π⎛⎤⎥⎝⎦(2)求解方法(一作、二证、三求解)①平移法:一般是通过作中位线(关键字:中点),或是做平行四边形进行平移; ②补形法:适用于长方体中异面直线问题,其本质还是平移;③向量法:借助异面直线方向向量的夹角,进行间接求解,设异面直线1l 和2l 的方向向量分别为1d 和2d ,1d 和2d 的夹角为ϕ,异面直线1l 和2l 所成的角为θ,则1212||cos |cos |||||d d d d θϕ⋅==⋅.【注】通过解三角形求出平移后的角度余弦值为m ,则异面直线的夹角为arccos m . 6、异面直线间的距离:公垂线段的长度,求解时,可以借助向量投影. 7、直线与平面的位置关系:平行、相交(含垂直)、在平面内.(平行与相交又称为在面外) 8、直线与平面平行(1)定义:直线与平面没有公共点. (2)判定定理:11l l l ll ααα⎧⎪⇒⎨⎪⎩ÜÚ(3)性质定理:11l l l l lαβαβ⎧⎪⇒⎨⎪=⎩Ü 【注】线面平行不具有传递性.9、直线与平面垂直(1)定义:直线垂直于平面内的所有直线(或任意一条直线) (2)判定定理:121212,,l l l l l l l l l P αα⊥⊥⎧⎪⇒⊥⎨⎪=⎩Ü;(3)性质定理:11l l l l αα⊥⎧⇒⊥⎨⎩Ü,l l ααββ⊥⎧⇒⊥⎨⎩Ü;10、★直线与平面所成的角(1)定义:斜线与射影所成的锐角或直角.(2)范围:0,2π⎡⎤⎢⎥⎣⎦;(3)求解方法①定义法:作出线面角,解三角形求解(关键找到垂足..,进而找到射影..); ②投影法:求出点到面的距离d ,斜线长为l ,则arcsindlθ=; ③*向量法:设直线l 的方向向量为d ,平面α的法向量为n ,d 和n 的夹角为ϕ,直线l 与平面α所成的角为θ,||sin |cos |||||d n d n θϕ⋅==⋅; 11、★点到平面的距离(1)定义:过点作平面的垂线,点与垂足之间的线段长即为点到面的距离. (2)求解方法 ①等体积代换.....:放在三棱锥中,借助体积转化. ②*向量法:设平面α的斜线段是()AB B α∈,平面α的法向量为n ,点A 到平面α的距离为d ,则||||AB n d n ⋅=. 12、平面与平面的位置关系:相交、平行. 13、*面面平行(1)定义:平面与平面无公共点; (2)判定:121212,,l l l l P l l ααβββ⎧⎪=⇒⎨⎪⎩Ü;(3)性质:l l αβαα⎧⇒⎨⎩Ü;1122l l l lαβαγβγ⎧⎪=⇒⎨⎪=⎩;【注】面面平行具有传递性.14、*面面垂直(1)定义:两平面所成二面角为直角; (2)判定:l l βαβα⊥⎧⇒⊥⎨⎩Ü;(3)性质:111,ll l l l αβαβαβ⊥=⎧⎪⇒⊥⎨⎪⊥⎩Ü;【注】面面垂直不具有传递性. 15、*二面角(1)定义:由两个相交的半平面组成的图形; (2)范围:[]0,π(3)求解方法(作—证—算—答)①定义法:在棱上任意取一点,过这点分别在两个面内作棱的垂线;②垂面法:在棱上任意取一点,过这点作棱的垂面,得两条交线(射线)所成的最小正角; ③借助射影定理:cos S S θ=射影原图(若是钝二面角,取补角即可)④向量法:设二面角l αβ--中,平面α和β的法向量分别为1n 和2n ,向量1n 和2n 的夹角为θ,则1212cos ||||n n n n θ⋅=⋅,若二面角l αβ--是锐角,则其大小为1212||arccos ||||n n n n ⋅⋅;若二面角l αβ--是钝角,则其大小为1212||arccos||||n n n n π⋅-⋅.【注】法向量的方向控制为一进一出....时,法向量的夹角即为二面角的平面角. 16、立体几何中的轨迹问题探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性. 17、立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有:①几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值; ②代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值. 18、立体几何中的翻折问题翻折问题处理时关键在于把握翻折过程中哪些是不变量,哪些是改变量,注意翻折前后图形之间的内在联系,结合相关理论进行处理.【例题分析】例1、空间中,下列命题正确的是( ) A.两组对边分别相等的四边形是平行四边形 B. 两组对角分别相等的四边形是平行四边形 C.四边相等的四边形是菱形; D.对角线相交的四边形是平面图形例2、完成下列问题(1)不重合的三条直线交于同一点,则三条直线可以确定的平面的个数为_______. (2)三条互相平行的直线可以确定的平面的个数为_______. (3)三个平面可以将空间分成________部分;(4)不共面的四个定点到平面α的距离相等,这样的平面α有______个. (5)正方体一个面上的对角线与正方体的棱可以组成______对异面直线.(6)三棱锥的四个顶点与各棱中点,共10个点中,任取四个点,则四点共面的概率为______.例3、如图所示,ABC ∆的三边延长线分别与平面α交于,,D E F 三点,证明:,,D E F 三点共线.【练习】如图所示,,,,E F G H 分别是空间四边形ABCD 边,,,AB AD BC CD 上的点,且直线,EF GH 相交于M 点,证明:,,B D M 三点共线.ABCD EFαM例4、判断下列命题是否正确,并说明理由.①1122l l l l αα⎧⇒⎨⎩;②l lααββ⎧⇒⎨⎩;③1122l l l l αα⊥⎧⇒⎨⊥⎩;④l l ααββ⊥⎧⇒⎨⊥⎩;⑤αγαββγ⊥⎧⇒⎨⊥⎩;⑥1122l ll l l l ⊥⎧⇒⎨⊥⎩;⑦1122l l l l αα⊥⎧⇒⊥⎨⎩;⑧ll αβαβ⊥⎧⇒⎨⊥⎩.【练习1】设直线m 与平面α相交但不.垂直,则下列所有正确的命题序号是________. ①在平面α内有且只有一条直线与直线m 垂直; ②与直线m 平行的直线不.可能与平面α垂直; ③与直线m 垂直的直线不.可能与平面α平行; ④与直线m 平行的平面不.可能与平面α垂直.【练习2】平面αβ⊥,直线b α,m β,且b m ⊥,则b 与β( )A.b β⊥B.b 与β斜交C.//b βD.位置关系不确定【练习3】判断下列命题是否正确,并说明理由. ①直线l 上存在不同的两点到平面α的距离相等,则l α;②a β⊥,l αβ=,过a 内一点P 作l 的垂线1l ,则1l β⊥;③直线l 垂直于平面α内的无数条直线,则l α⊥; ④直线12,l l 与平面α成等角,则12l l ;ABCD E F例5、已知ABC ∆,点P 是平面ABC 外一点,点O 是点P 在平面ABC 上的射影,(1)若点P 到ABC ∆的三边所在直线的距离相等且O 点在ABC ∆内,则O 为ABC ∆的 心. (2)若点P 到ABC ∆的三个顶点的距离相等,则O 为ABC ∆的________心; (3)若,,PA PB PC 两两垂直,则O 为ABC ∆的________心.(4)平面PAB ,平面PAC ,平面PBC ,与平面ABC 所成的二面角相等,则O 为ABC ∆的________心;(5)若,,PA PB PC 与平面ABC 所成的线面角相等,则O 为ABC ∆的________心;例6、如图所示PA ⊥平面ABC ,AB BC ⊥,AE PB ⊥,且AF PC ⊥. (1)证明:BC ⊥平面PAB ; (2)证明:AE ⊥平面PBC ; (3)证明:PC ⊥平面AEF .例7、异面直线12,l l 所成的角为60,直线l 与12,l l 所成的角均为θ,则θ的范围是________.【变式1】直线12,l l 相交于点O 且12,l l 成60角,过点O 与12,l l 都成60角的直线有_____条.【变式2】异面直线12,l l 相交于点O 且12,l l 成80角,过点O 与12,l l 都成50角的直线有____条.例8、空间四边形ABCD 中,2AD BC ==,,E F 分别是,AB CD的中点,EF ,AD BC 所成的角为________.【变式】如图,在空间四边形ABCD 中,6AC BD ==,7AB CD ==,8AD BC ==,求异面直线AC 与BD 所成角的大小.例9、如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为21θθ和,则( )A .1sin sin 2212≥+θθB .1sin sin 2212≤+θθC .1sin sin 2212>+θθD .1sin sin 2212<+θθ【练习】长方体1111ABCD A B C D -中,设对角线1BD 与自B 点出发的三条棱所夹的角分别为,,αβγ,则222sin sin sin αβγ++=_______.例10、如图,设S AB C D -是一个高为3的四棱锥,底面ABCD 是边长为2的正方形,顶点S 在底面上的射影是正方形ABCD 的中心.K 是棱SC 的中点.试求直线AK 与平面SBC 所成角的大小.ABCDSBCDOK【变式】如图,在斜三棱柱111ABC A B C -中12A AC ACB π∠=∠=,16AAC π∠=侧棱1BB 与底面ABC 所成的角为3π,1AA =4BC =求(1)1A C 与底面ABC 所成角的大小; (2)斜三棱柱111ABC A B C -的体积.例11、已知正方体1111ABCD A B C D -的棱长为a .求点1C 到平面11AB D 的距离.【变式1】ABC ∆的三边长分别是3,4,5,P 为ABC ∆所在平面α外一点,它到三边的距离都是2,则P 到α的距离为________.【变式2】已知ABC ∆中,9AB =,15AC =,23BAC π∠=,ABC ∆所在平面外一点P 到此三角形三个顶点的距离都是14,则点P 到平面ABC 的距离是_________.例12、如图,在长方体1111ABCD A B C D -中,2AB =,11AD A A ==. (1)证明直线1BC 平面1D AC ;(2)求直线1BC 到平面1D AC 的距离.A 1A BCD1D 1C 1B A AB CD1A 1B 1C 1D【变式1】已知R t ABC ∆的直角顶点C 在平面α内,斜边AB α,AB ,AC 、BC 分别和平面α成4π和6π角,则AB 到平面α的距离为________【变式2】已知矩形ABCD 的边长6AB =,4BC =,在CD 上截取4CE =,以BE 为棱将矩形折起,使BC E '∆的高C F '⊥平面ABED ,求 (1)点C '到平面ABED 的距离; (2)点C '到AB 的距离; (3)点C '到AD 的距离.例13、*已知二面角l αβ--的大小为2πθθ⎛⎫> ⎪⎝⎭,AB αÜ,CD βÜ,且A B l ⊥,CD l ⊥,若AB 与CD 所成角为ϕ,则( ) A.ϕθ=B. 2πϕθ=-C.2πϕθ=+D.ϕπθ=-【练习1】已知二面角l αβ--的平面角为θ,在平面α内有一条直线AB 与棱l 成锐角δ,与平面β成角γ,则必有( ) A. sin sin sin θδγ= B. sin sin cos θδγ=C. cos cos sin θδγ=D. cos cos cos θδγ=【练习2】设二面角l αβ--的大小为02πθθ⎛⎫<< ⎪⎝⎭,1l 是平面α内异于l 的一条直线,则1l 与平面β所成角的范围为_______.C 'DBCF例14、*过正方形ABCD 的顶点A 作PA ^平面ABCD ,设PA AB a ==, (1)求二面角B PC D --的大小; (2)求二面角C PD A --的大小.【练习1】如图所示,四棱锥P ABCD -的底面ABCD 是边长为1的菱形,3BCDp?,E 是CD 的中点,PA ⊥底面ABCD,PA =(1)证明:BE ⊥平面PAB ; (2)求PB 与面PAC 的角; (3)求二面角A BE P --的大小.【练习2】已知空间四边形ABCD 中,若2AB AC ==,2CAB CBD π∠=∠=,6BCD π∠=,平面ABC ⊥平面BCD .(1)求AD 与平面BCD 所成角的大小; (2)求二面角A CD B --的大小; (3)求点B 到平面ACD 的距离.例15、设,M N 是直角梯形ABCD 两腰的中点,DE AB ⊥于E (如图).现将ADE ∆沿DE 折起,使二面角A DE B --为45,此时点A 在平面BCDE 内的射影恰为点B ,则,M N 的连线与AE 所成角的大小等于_________.M NBNMA EGDABCDPCED P【练习】将两块三角板按图甲方式拼好,其中2B D π∠=∠=,6ACD π∠=,4ACB π∠=,2AC =,现将三角板ACD 沿AC 折起,使D 在平面ABC 上的射影恰好在AB 上,如图乙.(1)求证:AD ⊥平面BCD ; (2)求二面角B AC D --的大小.例16、在棱长为1的正方体1111ABCD A B C D -中,,M N 分别是矩形ABCD 和11BB C C 的中心,则过点,,A M N 的平面截正方体的截面面积为______.【变式1】在棱长为6的正方体ABCD-1111ABCD A B C D -中,,M N 分别是111,A B CC 的中点,设过,,D M N 三点的平面与11B C 交于点P ,做出P 点,并保留作图痕迹,求PM PN +的值.【变式2】在三棱锥A BCD -中,AB a =,CD b =,ABD BDC ∠=∠,,M N 分别为AD ,BC 的中点,P 为BD 上一点,则MP NP +的最小值是________.DABCOABCDMNP【变式3】已知正三棱锥A BCD ,其底面边长为a ,侧棱长为2a ,过点B 作与侧棱,AC AD 相交的截面,在这样的截面三角形中 (1)求周长的最小值; (2)求周长最小时的截面面积.例17、正方体的截面图形的形状可以为_________. ①三角形;②四边形;③五边形;④六边形;⑤七边形; 【注】①截面可以是三角形:等边三角形、等腰三角形、一般三角形;截面三角形是锐角三角形;截面三角形不能是直角三角形、钝角三角形;ABCDMN例18、如图,正方体1111ABCD A B C D -,则下列四个命题: ①P 在直线1BC 上运动时,三棱锥1A D PC -的体积不变;②P 在直线1BC 上运动时,直线AP 与平面ACD 1所成角的大小不变; ③P 在直线1BC 上运动时,二面角1P AD C --的大小不变;④M 是平面1111A B C D 上到点D 和1C 距离相等的点,则M 点的轨迹是过1D 点的直线 其中真命题的编号是___________.(写出所有真命题的编号)例19、在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 是AB 上的动点 (1)若直线1D E ⊥EC ,请确定E 点的位置,并求此时异面直线1AD 与EC 所成的角; (2)在(1)的条件下,求二面角1D EC D --的大小.【练习1】底面是矩形的四棱锥P ABCD -中,PA ⊥平面ABCD ,1PA AB ==,2BC =. (1)求PC 与平面PAD 所成角的大小;(2)若E 是PD 中点,求异面直线AE 与PC 所成角的大小;(3)在BC 边上是否存在一点G ,使得点D 到平面PAG若存在,求出BG 的值;若不存在,请说明理由.PA BCEABCD 1A 1B 1C 1D EA1A BCD1D 1C 1B P【练习2】如图,在四棱锥P ABCD -中,底面ABCD 是正方形, PA ⊥底面ABCD ,垂足为A ,PA AB =,点M 在棱PD 上,PB ∥平面ACM .(1)试确定点M 的位置;(2)计算直线PB 与平面MAC 的距离;(3)设点E 在棱PC 上,当点E 在何处时,使得AE ⊥平面PBD ?【练习3】如图,在矩形ABCD 中,AB ,BC a =,PA ⊥平面ABCD ,4PA =. (1)若在边BC 上存在一点Q ,使得PQ QD ⊥,求实数a 的取值范围;(2)当边BC 上存在唯一一点Q ,使得PQ QD ⊥时,求异面直线AQ 与PD 所成角的大小; (3)若4a =,且PQ QD ⊥,求二面角A PD Q --的大小.【练习4】如图所示,等腰ABC ∆的底边AB =,高3CD =,点E 是线段BD 上异于点,B D 的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF ∆折起到PEF ∆的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?(3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值.PAFCED PA BCDMPA BCD【练习5】如图,在四棱锥ABCD P -中,PD ⊥平面ABCD ,底面ABCD 为正方形,2PD AD ==,M ,N 分别为线段AC 上的点.若︒=∠30MBN ,则三棱锥M PNB-体积的最小值为 .【练习6】如图:PA ⊥平面ABCD ,ABCD 是矩形,1PA AB ==,PD 与平面ABCD 所成角是6π,点F 是PB 的中点,点E 在边BC 上移动. (1)点E 为BC 的中点时,试判断EF 与平面PAC 的位置关系,并说明理由;(2)无论点E 在边BC 的何处,PE 与AF 所成角是否都为定值,若是,求出其大小;若不是,请说明理由;(3)当BE 等于何值时,二面角P DE A --的大小为4π.例20、已知动点P 在正方体1111ABCD A B C D -的侧面11BB C C 中,且满11PD D BD D ∠=∠,则动点P 的轨迹是( )的一部分A .圆B .椭圆C .双曲线D .抛物线PABCEDFPBCD M N【变式1】平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( ) A .一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支【变式2】在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( ) A.直线 B .圆 C .双曲线 D .抛物线【变式3】已知正方体1111ABCD A B C D -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11A D 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( ) A .抛物线 B .双曲线 C .椭圆 D .直线【变式4】如图,在矩形ABCD 中,E 为边AD 上的动点,将ABE ∆沿着直线BE 翻转成1A BE ∆,使平面1A BE ⊥平面ABCD ,则点1A 的轨迹是( ) A.线段 B.圆弧 C.椭圆的一部分 D 以上都不是例21、已知正方体1111ABCD A B C D -的棱长为3,长为2的线段MN 点一个端点M 在1DD 上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为_________.αBCAlA B CD 1A 1B 1C 1D NMPABCD 1A E【变式1】正方体1111ABCD A B C D -的棱长为1,P 为侧面11BB C C 内的动点,且2PA PB =,则P 点在四边形11BB C C 内形成轨迹图形的长度为_________.【变式2】在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为1AC 、11A B 的中点,点P 在正方体的表面上运动,则总能使MP 与BN 垂直的点P 所构成的轨迹的周长为________.【变式3】若P 是以12,F F 为焦点的双曲线上任意一点,过焦点作12F PF ∠的平分线的垂线,垂足M 的轨迹是曲线C 的一部分,则曲线C 是( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线【变式4】设B 、C 是定点,且均不在平面α上,动点A 在平面α上,且1sin 2ABC ∠=,则点A 的轨迹为( )(A )圆或椭圆 (B )抛物线或双曲线 (C )椭圆或双曲线 (D )以上均有可能ABCD 1A 1B 1C 1D PAB CD1A 1B 1C 1D N M。
空间点、直线、平面之间的位置关系
![空间点、直线、平面之间的位置关系](https://img.taocdn.com/s3/m/419849b2aeaad1f346933fa2.png)
第三节 空间点、直线、平面之间的位置关系1. 平面的基本性质 四个公理 2.空间两直线的位置关系(2)平行公理: 公理4:平行于同一直线的两条直线互相平行——空间平行线的传递性。
(3)等角定理: 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
(4)异面直线所成的角:①定义:设a 、b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)。
②范围:⎝⎛⎦⎤0,π2。
3.直线与平面的位置关系一、高考题3.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( ) A .15B .56 C .55 D .224.(2016·全国卷Ⅰ)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A .32 B .22 C .33 D .13考点二 空间两条直线的位置关系微点小专题 方向1:异面直线的判定【例2】 (2019·益阳、湘潭调研考试)下图中,G ,N ,M ,H 分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有( )A .①③B .②③C .②④D .②③④方向2:平行垂直的判定【例3】 如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列说法错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行 【题点对应练】1.(方向1)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,有以下四个结论:① 直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ② 直线BN 与MB 1是异面直线; ④直线AM 与DD 1是异面直线。
位置关系知识点总结
![位置关系知识点总结](https://img.taocdn.com/s3/m/75546869814d2b160b4e767f5acfa1c7aa0082e2.png)
位置关系知识点总结位置关系学问点总结第一篇空间点、直线、平面之间的位置关系以下学问点需要我们去理解,记忆。
1、数学所说的直线是无限延长的,没有起点,也没有终点。
2、数学所说的平面是无限延长的,没有起始线,也没有终点线。
3、公理1 假如一条直线上的两点在一个平面内,那么这条直线在此平面内。
4、过不在同始终线上的三点,有且只有一个平面。
5、假如两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。
6、平行于同一条直线的两条直线平行。
7、直线在平面内,因为直线上有很多多个点,平面上也有很多多个点,因此用子集的符号表示直线在平面内。
8、直线与平面的位置关系,直线与直线的位置关系是本节课的重点和难点。
9、做位置关系的题目,可以借助实物,直观理解。
一、直线与方程考试内容及考试要求考试内容:直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:理解直线的倾斜角和斜率的概念,把握过两点的直线的斜率公式,把握直线方程的点斜式、两点式、一般式,并能依据条件娴熟地求出直线方程。
把握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够依据直线的方程推断两条直线的位置关系。
位置关系学问点总结第二篇直线、平面平行的判定及其性质直线与平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行.稳固深化练习:如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.,求证:AB//平面教师点评,规范步骤,强调判定定理三条件,缺一不行.小组协作合作探究:如图,正方体中,P 是棱A1B1的中点,过点P 在正方体外表画一条直线使之与截面A1BCD1平行.教师引导小组商量,并进行各小组指导,最终汇总点评,总结关键点.如图,在正方体中,E为的中点,试推断与平面AEC的位置关系,并说明理由.位置关系学问点总结第三篇直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:留意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点留意:当直线的斜率为0°时,k=0,直线的方程是当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)留意:各式的适用范围特别的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅰ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间点直线平面定理总结
过不在一条直线上的三点,有且只有一个平面公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共线公理4 平行于同一条直线的两条直线相互平行定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补直线、平面平行的判定及其性质(直线与平面平行的判定定理)平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(平面与平面平行的判定定理)一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(直线与平面平行的性质定理)一条直线与一个平面平行,则过这条直线的任一平面的交线与该直线平行(平面与平面平行的性质定理)如果两个平行平面同时和第三个平面相交,那它们的交线平行直线、平面垂直的判定及其性质(直线与平面垂直的判定定理)一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(平面与平面垂直的判定定理)一个平面过另一个平面的垂线,则这两个平面垂直(直线与平面垂直的性质定理)垂直于同一个平面的两条直线平行(平面与平面垂直的性质定理)两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
第 1 页共 1 页。