(2020届成都高三)二诊理科数学试题和答案
2020年四川省成都市高考(理科)数学二诊试卷 含解析
2020年高考(理科)数学二诊试卷一、选择题.1.设复数z满足z(1+i)=2,i为虚数单位,则复数z的虚部是()A.1B.﹣1C.i D.﹣i2.设全集U=R,集合M={x|x<1},N={x|x>2},则(∁U M)∩N=()A.{x|x>2}B.{x|x≥1}C.{x|1<x<2}D.{x|x≥2}3.某中学有高中生1500人,初中生1000人,为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为n的样本.若样本中高中生恰有30人,则n的值为()A.20B.50C.40D.604.曲线y=x3﹣x在点(1,0)处的切线方程为()A.2x﹣y=0B.2x+y﹣2=0C.2x+y+2=0D.2x﹣y﹣2=0 5.已知锐角α满足2sin2α=1﹣cos2α,则tanα=()A.B.1C.2D.46.函数在[﹣1,1]的图象大致为()A.B.C.D.7.执行如图所示的程序框图,则输出S的值为()A.16B.48C.96D.1288.已知函数,则函数f(x)的图象的对称轴方程为()A.B.C.D.9.如图,双曲线C:=l(a>0,b>0)的左,右焦点分别是F1(﹣c,0),F2(c,0),直线与双曲线C的两条渐近线分别相交于A,B两点,若,则双曲线C的离心率为()A.2B.C.D.10.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为AB,AD的中点,过点D作平面α使B1P∥平面α,A1Q∥平面α,若直线B1D1∩平面α=M,则的值为()A.B.C.D.11.已知EF为圆(x﹣1)2+(y+1)2=1的一条直径,点M(x,y)的坐标满足不等式组,则的取值范围为()A.[,13]B.[4,13]C.[4,12]D.[,12]12.已知函数,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g (x2)=k(k<0)成立,则的最大值为()A.e2B.e C.D.二、填空题13.(x+1)4的展开式中x2的系数为.14.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,a=2,b=,则△ABC的面积为.15.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球O 的表面上,若球O的表面积为28π,则该三棱柱的侧面积为.16.经过椭圆中心的直线与椭圆相交于M,N两点(点M在第一象限),过点M作x轴的垂线,垂足为点E,设直线NE与椭圆的另一个交点为P.则cos∠NMP的值是.三、解答题17.已知{a n}是递增的等比数列,a1=l,且2a2,a3,a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,n∈N*,求数列{b n}的前n项和S n.18.如图,在四棱锥P﹣ABCD中,O是边长为4的正方形ABCD的中心,PO⊥平面ABCD,E为BC的中点.(Ⅰ)求证:平面PAC⊥平面PBD;(Ⅱ)若PE=3,求二面角D﹣PE﹣B的余弦值.19.某动漫影视制作公司长期坚持文化自信,不断挖据中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司2013年至2019年的年利润y关于年份代号x的统计数据如表(已知该公司的年利润与年份代号线性相关):年份2013201420152016201720182019年份代号x1234567年利润y(单位:29333644485259亿元)(Ⅰ)求y关于x的线性回归方程,并预测该公司2020年(年份代号记为8)的年利润;(Ⅱ)当统计表中某年年利润的实际值大于由(Ⅰ)中线性回归方程计算出该年利润的估计值时,称该年为A级利润年,否则称为B级利润年,将(Ⅰ)中预测的该公司2020年的年利润视作该年利润的实际值,现从2013年至2020年这8年中随机抽取2年,求恰有1年为A级利润年的概率.参考公式:.20.已知椭圆的左,右焦点分别为F1(﹣1,0),F2(1,0),点P在椭圆E上,PF2⊥F1F2,且|PF1|=3|PF2|.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线l:x=my+1(m∈R)与椭圆E相交于A,B两点,与圆x2+y2=a2相交于C,D两点,求|AB|•|CD|2的取值范围.21.已知函数f(x)=x2+2x﹣mln(x+1),其中m∈R.(Ⅰ)当m>0时,求函数f(x)的单调区间;(Ⅱ)设,若,在(0,+∞)上恒成立,求实数m的最大值.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(m为参数).以坐标原点O 为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ﹣ρcosθ+1=0.(Ⅰ)求直线l的直角坐标方程与曲线C的普通方程;(Ⅱ)已知点P(2,1),设直线l与曲线C相交于M,N两点,求的值[选修4-5;不等式选讲]23.已知函数f(x)=|x﹣1|+|x+3|.(Ⅰ)解不等式f(x)≥6;(Ⅱ)设g(x)=﹣x2+2ax,其中a为常数,若方程f(x)=g(x)在(0,+∞)上恰有两个不相等的实数根,求实数a的取值范围,参考答案一、选择题:共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足z(1+i)=2,i为虚数单位,则复数z的虚部是()A.1B.﹣1C.i D.﹣i【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.解:由z(1+i)=2,得,∴复数z的虚部是﹣1.故选:B.2.设全集U=R,集合M={x|x<1},N={x|x>2},则(∁U M)∩N=()A.{x|x>2}B.{x|x≥1}C.{x|1<x<2}D.{x|x≥2}【分析】进行补集和交集的运算即可.解:U=R,M={x|x<1},N={x|x>2},∴∁U M={x|x≥1},∴(∁U M)∩N={x|x>2}.故选:A.3.某中学有高中生1500人,初中生1000人,为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为n的样本.若样本中高中生恰有30人,则n的值为()A.20B.50C.40D.60【分析】根据分层抽样的定义建立比例关系即可得到结论.解:由分层抽样的定义得==100,解得n=50,故选:B.4.曲线y=x3﹣x在点(1,0)处的切线方程为()A.2x﹣y=0B.2x+y﹣2=0C.2x+y+2=0D.2x﹣y﹣2=0【分析】先根据题意求出切点处的导数,然后利用点斜式直接写出切线方程即可.解:y=x3﹣x∴y′=3x2﹣1,所以k=3×12﹣1=2,所以切线方程为y=2(x﹣1),即2x﹣y﹣2=0故选:D.5.已知锐角α满足2sin2α=1﹣cos2α,则tanα=()A.B.1C.2D.4【分析】由已知利用二倍角公式可得4sinαcosα=2sin2α,结合sinα>0,利用同角三角函数基本关系式可求tanα的值.解:∵锐角α满足2sin2α=1﹣cos2α,∴4sinαcosα=2sin2α,∵sinα>0,∴2cosα=sinα,可得tanα=2.故选:C.6.函数在[﹣1,1]的图象大致为()A.B.C.D.【分析】利用函数的奇偶性及特殊点的函数值,运用排除法得解.解:,故函数f(x)为奇函数,其图象关于原点对称,故排除CD;又,故排除A.故选:B.7.执行如图所示的程序框图,则输出S的值为()A.16B.48C.96D.128【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行,可得S=0,i=1执行循环体,S=4,i=2不满足判断框内的条件i>3,执行循环体,S=16,i=3不满足判断框内的条件i>3,执行循环体,S=48,i=4此时,满足判断框内的条件i>3,退出循环,输出S的值为48.故选:B.8.已知函数,则函数f(x)的图象的对称轴方程为()A.B.C.D.【分析】由题意求出φ,再利用诱导公式,求出函数的解析式,再利用余弦函数的图象的对称性求出结果.解:∵函数=sin(+),∴+=π,∴ω=2,f(x)=sin(2x+)=cos2x,令2x=kπ,求得x=,k∈Z,则函数f(x)的图象的对称轴方程为x=,k∈Z,故选:C.9.如图,双曲线C:=l(a>0,b>0)的左,右焦点分别是F1(﹣c,0),F2(c,0),直线与双曲线C的两条渐近线分别相交于A,B两点,若,则双曲线C的离心率为()A.2B.C.D.【分析】联立⇒即B(﹣,),利用直线BF1的斜率=.求得即可.解:联立⇒.即B(﹣,),直线BF1的斜率=.∴.则双曲线C的离心率为e=.故选:A.10.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为AB,AD的中点,过点D作平面α使B1P∥平面α,A1Q∥平面α,若直线B1D1∩平面α=M,则的值为()A.B.C.D.【分析】取BC的中点T,连接PT,B1T,QT,取A1D1的中点N,C1D1的中点K,连接NK,ND,KD,AC,A1C1,QT,由线面平行的判定定理和面面平行的判定定理、性质定理,可得B1P∥平面DNK,A1Q∥平面DNK,结合题意可得平面BNK即为平面α,结合三角形的中位线定理可得所求值.解:取BC的中点T,连接PT,B1T,QT,取A1D1的中点N,C1D1的中点K,连接NK,ND,KD,AC,A1C1,QT,在正方形ABCD中,AC∥PT,在正方形A1B1C1D1中,A1C1∥KN,由截面ACC1A1为矩形,可得AC∥A1C1,可得PT∥NK,又PT⊄平面DNK,NK⊂平面DNK,可得PT∥平面DNK,由QT∥AB,AB∥A1B1,可得QT∥A1B1,且QT=A1B1,可得四边形A1B1TQ为平行四边形,即有B1T∥A1Q,又ND∥A1Q,可得B1T∥ND,B1T⊄平面DNK,ND⊂平面DNK,可得B1T∥平面DNK,且B1T∩PT=T,可得平面B1TP∥平面DNK,由B1P⊂平面B1TP,可得B1P∥平面DNK,由ND∥A1Q,A1Q⊄平面DNK,ND⊂平面DNK,可得A1Q∥平面DNK,结合题意可得平面BNK即为平面α,由NK与B1D1交于M,在正方形A1B1C1D1中,A1C1∥KN,可得=,故选:B.11.已知EF为圆(x﹣1)2+(y+1)2=1的一条直径,点M(x,y)的坐标满足不等式组,则的取值范围为()A.[,13]B.[4,13]C.[4,12]D.[,12]【分析】由约束条件作出可行域,由数量积的坐标运算求得表达式,利用数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.解:不等式组,作出可行域如图,A(﹣2,1),B(0,1),C(﹣,﹣),∵P(1,﹣2),O(0,0),M(x,y),,∴=()•()=+﹣﹣=﹣+2=﹣1=(x﹣1)2+(y+1)2﹣1,所以当x=﹣2,y=1时,的取最大值:12,当x=,y=时,的取最小值为;所以则的取值范围是[,12];故选:D.12.已知函数,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g (x2)=k(k<0)成立,则的最大值为()A.e2B.e C.D.【分析】利用导数研究函数f(x)可得函数f(x)的单调性情况,且x∈(0,1)时,f (x)<0,x∈(1,+∞)时,f(x)>0,同时注意,则,即x2=lnx1,,,进而目标式转化为,构造函数h(k)=k2e k,k<0,利用导数求其最大值即可.解:函数f(x)的定义域为(0,+∞),,∴当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,注意f(1)=0,所以x∈(0,1)时,f(x)<0;x∈(1,e)时,f(x)>0;x∈(e,+∞)时,f(x)>0,同时注意到,所以若存在x l∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则0<x1<1且,所以,即x2=lnx1,,,故,令h(k)=k2e k,k<0,则h′(k)=2ke k+k2e k=ke k(2+k),令h′(k)<0,解得﹣2<k<0,令h′(k)>0,解得k<﹣2,∴h(k)在(﹣∞,﹣2)单调递增,在(﹣2,0)单调递减,∴.故选:C.二、填空题:共4小题,每小题5分,共20分.把答案填在答题卡上.13.(x+1)4的展开式中x2的系数为6.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为2得展开式中x2的系数.解:(x+1)4的展开式的通项为T r+1=C4r x r令r=2得T3=C42x2=6x∴展开式中x2的系数为6故答案为:6.14.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,a=2,b=,则△ABC的面积为.【分析】由已知结合余弦定理可求c,然后结合三角形的面积公式即可求解.解:由余弦定理可得,,解可得,c=1,所以△ABC的面积S===.故答案为:15.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球O 的表面上,若球O的表面积为28π,则该三棱柱的侧面积为36.【分析】通过球的内接体,说明几何体的中心是球的直径,由球的表面积求出球的半径,设出三棱柱的底面边长,通过解直角三角形求得a,即可求解.解:如图,三棱柱ABC﹣A1B1C1的所有棱长都相等,6个顶点都在球O的球面上,∴三棱柱为正三棱柱,且其中心为球的球心,设为O,设球的半径为r,由球O的表面积为28π,得4πr2=28π,∴r=,设三棱柱的底面边长为a,则上底面所在圆的半径为a,且球心O到上底面中心H的距离OH=,∴r2=7=()2+(a)2,∴a=2.则三棱柱的侧面积为S=3a2=36.故答案为:36.16.经过椭圆中心的直线与椭圆相交于M,N两点(点M在第一象限),过点M作x轴的垂线,垂足为点E,设直线NE与椭圆的另一个交点为P.则cos∠NMP的值是0.【分析】由题意的对称性,设M的坐标由题意可得N,E的坐标,进而求出直线MN,NE的斜率,求出直线NE的方程,与椭圆联立求出两根之和,进而求出P的坐标,再求MP的斜率可得与MN的斜率互为负倒数,所以直线MN,MP互相垂直,进而可得cos∠NMP的中为0.解:设M(m,n),由椭圆的对称性可得N(﹣m,﹣n),E(m,0),所以k MN=,k NE=,所以直线NE的方程为:y=(x﹣m),联立直线NE与椭圆的方程:,整理可得:(1+)x2﹣x+﹣2=0,所以﹣m+x P==,所以x P=+m,y P=(x P﹣m)=,所以k MP==﹣,所以k MN•k NP=﹣1,即MP⊥NP,所以cos∠NMP=0,故答案为:0三、解答题:共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知{a n}是递增的等比数列,a1=l,且2a2,a3,a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,n∈N*,求数列{b n}的前n项和S n.【分析】(Ⅰ){a n}的公比设为q,由a1=l,可得q>1,运用等比数列的通项公式和等差数列的中项性质,解方程可得q,进而得到所求通项公式;(Ⅱ)运用对数的运算性质可得b n==﹣,再由数列的裂项相消求和,化简可得所求和.解:(Ⅰ){a n}是递增的等比数列,设公比为q,a1=l,且q>1,由2a2,a3,a4成等差数列,可得3a3=2a2+a4,即3q2=2q+q3,即q2﹣3q+2=0,解得q=2(1舍去),则a n=a1q n﹣1=2n﹣1;(Ⅱ)===﹣,则前n项和S n=1﹣+﹣+…+﹣=1﹣=.18.如图,在四棱锥P﹣ABCD中,O是边长为4的正方形ABCD的中心,PO⊥平面ABCD,E为BC的中点.(Ⅰ)求证:平面PAC⊥平面PBD;(Ⅱ)若PE=3,求二面角D﹣PE﹣B的余弦值.【分析】(I)由正方形ABCD可得:AC⊥BD.由PO⊥平面ABCD,利用线面垂直的性质定理可得:PO⊥AC.进而判断出线面面面垂直.(Ⅱ)取AB的中点O,连接OM,OE.建立如图所示的空间直角坐标系.OP=,设平面DPE的法向量为=(x,y,z),则•=•=0,可得.同理可得平面PEB的法向量,再利用向量夹角公式即可得出.【解答】(I)证明:由正方形ABCD可得:AC⊥BD.由PO⊥平面ABCD,∴PO⊥AC.又PO∩BD=O,∴AC⊥平面PBD,AC⊂平面PAC,∴平面PAC⊥平面PBD;(Ⅱ)解:取AB的中点O,连接OM,OE.建立如图所示的空间直角坐标系.OP==.O(0,0,0),B(2,2,0),E(0,2,0),D(﹣2,﹣2,0),P(0,0,),=(2,4,0),=(2,2,),设平面DPE 的法向量为=(x,y,z ),则•=•=0,∴2x+4y=0,2x+2y +z=0,取=(﹣2,,2).同理可得平面PEB 的法向量=(0,,2).cos <,>===.由图可知:二面角D﹣PE﹣B的平面角为钝角.∴二面角D﹣PE﹣B 的余弦值为﹣.19.某动漫影视制作公司长期坚持文化自信,不断挖据中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司2013年至2019年的年利润y关于年份代号x的统计数据如表(已知该公司的年利润与年份代号线性相关):年份2013201420152016201720182019年份代号x1234567年利润y(单位:29333644485259亿元)(Ⅰ)求y关于x的线性回归方程,并预测该公司2020年(年份代号记为8)的年利润;(Ⅱ)当统计表中某年年利润的实际值大于由(Ⅰ)中线性回归方程计算出该年利润的估计值时,称该年为A级利润年,否则称为B级利润年,将(Ⅰ)中预测的该公司2020年的年利润视作该年利润的实际值,现从2013年至2020年这8年中随机抽取2年,求恰有1年为A级利润年的概率.参考公式:.【分析】(Ⅰ)结合表中的数据和的公式计算出回归直线方程的系数即可得解;(Ⅱ)比较8年的实际利润与相应估计值的大小,可得出这8年中被评为A级利润年的有3年,评为B级利润年的有5年,然后利用排列组合与古典概型的思想即可算出概率.解:(Ⅰ)根据表中数据,计算可得,,,所以,.所以y关于x的线性回归方程为.当x=8时,(亿元).故预测该公司2020年的年利润为63亿元.(Ⅱ)由(Ⅰ)可知2013年至2020年的年利润的估计值分别为28,33,38,43,48,53,58,63.其中实际利润大于相应估计值的有3年,故这8年中被评为A级利润年的有3年,评为B级利润年的有5年,记“从2013年至2020年这8年的年利润中随机抽取2年,恰有1年为A级利润年”的概率为P,则.20.已知椭圆的左,右焦点分别为F1(﹣1,0),F2(1,0),点P在椭圆E上,PF2⊥F1F2,且|PF1|=3|PF2|.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线l:x=my+1(m∈R)与椭圆E相交于A,B两点,与圆x2+y2=a2相交于C,D两点,求|AB|•|CD|2的取值范围.【分析】(Ⅰ)由焦点的坐标及PF2⊥F1F2,且|PF1|=3|PF2|求出a的值,再有a,b,c 之间关系求出b的值,进而求出椭圆的标准方程;(Ⅱ)直线与椭圆联立求出两根之和及两根之积,进而求出弦长AB,再求圆心O到直线l的距离,由半个弦长,半径和圆心到直线的距离构成直角三角形可得弦长CD,进而求出|AB|•|CD|2的表达式,进而可得取值范围.解:(Ⅰ)因为P在椭圆上,所以|PF1|+|PF2|=2a,又因为|PF1|=3|PF2|,所以|PF2|=,|PF1|=,因为PF2⊥F1F2,所以|PF2|2+|F1F2|2=|PF1|2,又|F1F2|=2,所以a2=2,b2=a2﹣c2=1,所以椭圆的标准方程为:+y2=1;(Ⅱ)设A(x1,y1),B(x2,y2),联立直线与椭圆的方程:,整理可得(2+m2)y2+2my﹣1=0,y1+y2=,y1y2=,所以弦长|AB|=|y1﹣y2|=,设圆x2+y2=2的圆心O到直线l的距离为d=,所以|CD|=2=2,所以|AB|•|CD|2=4==(2﹣),因为0,∴,∴4≤|AB|•|CD|2,所以|AB|•|CD|2的取值范围[4,16).21.已知函数f(x)=x2+2x﹣mln(x+1),其中m∈R.(Ⅰ)当m>0时,求函数f(x)的单调区间;(Ⅱ)设,若,在(0,+∞)上恒成立,求实数m的最大值.【分析】(I)先对函数求导,结合导数与单调性的关系,先确定导数的正负,进而可求函数的单调区间;(II)由已知不等式恒成立,转化为求解函数的范围问题,构造函数,结合导数与函数性质进行求解.解:(I)当m>0时,=,x>﹣1,令f′(x)=0可得x=(舍),或x=﹣1,当x时,f′(x)<0,函数单调递减,当x∈()时,f′(x)>0,函数单调递增,(II)由题意可得,在(0,+∞)上恒成立,(i)若m≤0,因为ln(x+1)>0,则﹣mln(x+1)≥0,所以,令G(x)=,x>0,则G′(x)=,因为x>0,所以,,又因为>2x+2>2,∴G′(x)>0在x>0时恒成立,故G(x)在(0,+∞)上单调递增,所以G(x)>G(0)=0,故当m≤0时,在(0,+∞)上恒成立,(ii)若m>0,令H(x)=e x﹣x﹣1,x>0,则H′(x)=e x﹣1>0,故H(x)(0,+∞)上单调递增,H(x)>H(0)=0,所以e x>x+1>0,所以,由题意知,f(x)(0,+∞)上恒成立,所以f(x)>0(0,+∞)上恒成立,由(I)知f(x)min=f()且f(0)=0,当即m>2时,f(x)在(0,)上单调递减,f()<f(0)=0,不合题意,所以≤0即0<m≤2,此时g(x)﹣=≥,令P(x)=,x>0,则P′(x)=2x+2﹣=>=>0,∴P(x)在(0,+∞)上单调递增,P(x)>P(0)=0恒成立,综上可得,m的最大值为2.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(m为参数).以坐标原点O 为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ﹣ρcosθ+1=0.(Ⅰ)求直线l的直角坐标方程与曲线C的普通方程;(Ⅱ)已知点P(2,1),设直线l与曲线C相交于M,N两点,求的值【分析】(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用直线和曲线的位置关系的应用和一元二次方程根和系数关系式的应用求出结果.解:(Ⅰ)直线l的极坐标方程为ρsinθ﹣ρcosθ+1=0,转换为直角坐标方程为x﹣y﹣1=0.曲线C的参数方程为(m为参数).转换为直角坐标方程为y2=4x.(Ⅱ)由于点P(2,1)在直线l上,所以直线l的参数方程为(t为参数),将直线的参数方程代入y2=4x的方程,整理得:.所以,t1t2=﹣14,所以==.[选修4-5;不等式选讲]23.已知函数f(x)=|x﹣1|+|x+3|.(Ⅰ)解不等式f(x)≥6;(Ⅱ)设g(x)=﹣x2+2ax,其中a为常数,若方程f(x)=g(x)在(0,+∞)上恰有两个不相等的实数根,求实数a的取值范围,【分析】(Ⅰ)去绝对值,化为分段函数,即可求出不等式的解集,(Ⅱ)由题意f(x)=,设方程f(x)=g(x)的两根为x1,x2,(x1<x2),根据根的情况,分类讨论即可求出a的取值范围.解:(Ⅰ)原不等式即|x﹣1|+|x+3|≥6,当x≥1时,化简得2x+2≥6,解得x≥2,当﹣3<x<1时,化简得4≥6,此时无解,当x≤﹣3时,化简得﹣2x﹣2≥6,解得x≤﹣4,综上所述,原不等式的解集为(﹣∞,﹣4]∪[2,+∞).(Ⅱ)由题意f(x)=,设方程f(x)=g(x)的两根为x1,x2,(x1<x2),①当x2>x1≥1时,方程﹣x2+2ax=2x+2等价于2a=x++2,y=x++2≥2+2=2+1,当且仅当x=时取等号,易知当a∈(+1,]在(1,+∞)上有两个不相等的实数根,此时方程x2+2ax=4,在(0,1)上无解,∴a∈(+1,]满足条件.②当0<x1<x2≤1时,x2+2ax=4等价于2a=x+,此时方程2a=x+在(0,1)上显然没有两个不相等的实数根.③当0<x1<1≤x2,易知当a∈(,+∞),方程2a=x+在(0,1)上有且只有一个实数根,此时方程﹣x2+2ax=2x+2在[1,+∞)上也有一个实数根,∴a∈(,+∞)满足条件,综上所述,实数a的取值范围为(+1,+∞).。
四川省高中2020届毕业班第二次诊断性考试数学(理)试题(解析版)
四川省高中2020届毕业班第二次诊断性考试数学(理)试题(解析版)一、选择题(本大题共12小题,共60.0分)≥0},则A∩B=()1.已知集合A={1,2,3},B={x|x−3x−2A. {1}B. {1,2}C. {1,3}D. {1,2,3}【答案】C≥0}={x|x≥3或x<2},【解析】解:∵A={1,2,3},B={x|x−3x−2∴A∩B={1,2,3}∩{x|x≥3或x<2}={1,3}.故选:C.求解分式不等式化简集合B,再利用交集的运算性质求解得答案.本题考查了交集及其运算,考查分式不等式的解法,是基础题.2.i为虚数单位,若复数(m+mi)(m+i)是纯虚数,则实数m=()A. −1B. 0C. 1D. 0或1【答案】C【解析】解:∵复数(m+mi)(m+i)=(m2−m)+(m2+m)i是纯虚数,m2−m=0,即m=1.∴{m2+m≠0故选:C.直接利用复数代数形式的乘除运算化简得答案.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.已知λ∈R,向量a⃗=(λ−1,1),b⃗=(λ,−2),则“a⃗⊥b⃗”是“λ=2”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】解:若“a⃗⊥b⃗”,则a⃗⋅b⃗=0,即(λ−1)λ−2×1=0,即λ2−λ−2=0,得λ=2或λ=−1,即“a⃗⊥b⃗”是“λ=2”的必要不充分条件,故选:B.根据向量垂直的等价条件求出λ的值,结合充分条件和必要条件的定义进行求解即可.本题主要考查充分条件和必要条件的判断,结合向量垂直的等价求出λ的值是解决本题的关键.4.某班共有50名学生,其数学科学业水平考试成绩记作a i(i=1,2,3,…,50),若成绩不低于60分为合格,则如图所示的程序框图的功能是()A. 求该班学生数学科学业水平考试的不合格人数B. 求该班学生数学科学业水平考试的不合格率C. 求该班学生数学科学业水平考试的合格人数D. 求该班学生数学科学业水平考试的合格率【答案】D【解析】解:执行程序框图,可知其功能为输入50个学生成绩a i,(1≤k≤60)k表示该班学生数学科成绩合格的人数,i表示全班总人数,输出的ki为该班学生数学科学业水平考试的合格率.故选:D.执行程序框图,可知其功能为用k表示成绩合格的人数,i表示全班总人数,即可得解.本题主要考察了程序框图和算法,属于基础题.5.在△ABC中,内角A,B,C的对边分别为a,b,c,若acosB+bcosA=4sinC,则△ABC的外接圆面积为()A. 16πB. 8πC. 4πD. 2π【答案】C【解析】解:设△ABC的外接圆半径为R,∵acosB+bcosA=4sinC,∴由余弦定理可得:a×a2+c2−b22ac +b×b2+c2−a22bc=2c22c=c=4sinC,∴2R=csinC=4,解得:R=2,∴△ABC的外接圆面积为S=πR2=4π.故选:C.设△ABC的外接圆半径为R,由余弦定理化简已知可得c=4sinC,利用正弦定理可求2R=csinC=4,解得R=2,即可得解△ABC的外接圆面积.本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.6.在(1+1x)(2x+1)3展开式中的常数项为()A. 1B. 2C. 3D. 7【答案】D【解析】解:∵(1+1x )(2x+1)3=(1+1x)(8x3+12x2+6x+1),∴(1+1x)(2x+1)3展开式中的常数项为1+6=7.故选:D.展开(2x+1)3,即可得到乘积为常数的项,作和得答案.本题考查二项式定理的应用,二项式系数的性质,属基础题.7.若函数f(x)=2sin(2x+φ)(|φ|<π2)的图象向左平移π12个单位长度后关于y轴对称,则函数f(x)在区间[0,π2]上的最小值为()A. −√3B. −1C. 1D. √3【答案】A【解析】解:函数f(x)=2sin(2x+φ)(|φ|<π2)的图象向左平移π12个单位长度后图象所对应解析式为:g(x)=2sin[2(x+π12)+φ]=2sin(2x+π6+φ),由g(x)关于y轴对称,则π6+φ=kπ+π2,φ=kπ+π3,k∈Z,又|φ|<π2,所以φ=π3,即f(x)=2sin(2x+π3),当x∈[0,π2]时,所以2x+π3∈[π3,4π3],f(x)min=f(4π3)=−√3,故选:A.由三角函数图象的性质、平移变换得:g(x)=2sin[2(x+π12)+φ]=2sin(2x+π6+φ),由g(x)关于y轴对称,则π6+φ=kπ+π2,φ=kπ+π3,k∈Z,又|φ|<π2,所以φ=π3,由三角函数在区间上的最值得:当x∈[0,π2]时,所以2x+π3∈[π3,4π3],f(x)min=f(4π3)=−√3,得解本题考查了三角函数图象的性质、平移变换及三角函数在区间上的最值,属中档题.8. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)上有一个点A ,它关于原点的对称点为B ,双曲线的右焦点为F ,满足AF ⃗⃗⃗⃗⃗ ⋅BF ⃗⃗⃗⃗⃗⃗ =0,且∠ABF =π6,则双曲线的离心率e 的值是( ) A. 1+√32B. 1+√3C. 2D. 2√32【答案】B【解析】解:AF ⃗⃗⃗⃗⃗ ⋅BF ⃗⃗⃗⃗⃗⃗ =0,可得AF ⊥BF , 在Rt △ABF 中,|OF|=c , ∴|AB|=2c ,在直角三角形ABF 中,∠ABF =π6,可得|AF|=2csin π6=c ,|BF|=2ccos π6=√3c , 取左焦点,连接,,可得四边形为矩形,,∴e =ca =2√3−1=√3+1.故选:B .运用锐角三角函数的定义可得|AF|=2csin π6=c ,|BF|=2ccos π6=√3c ,取左焦点,连接,,可得四边形为矩形,由双曲线的定义和矩形的性质,可得√3c −c =2a ,由离心率公式,即可得到所求值.本题考查双曲线的离心率的求法,注意运用双曲线的定义和锐角三角函数的定义,考查化简整理的运算能力,属于中档题.9. 节能降耗是企业的生存之本,树立一种“点点滴滴降成本,分分秒秒增效益”的节能意识,以最好的管理,来实现节能效益的最大化.为此某国企进行节能降耗技术改造,下面是该国企节能降耗技术改造后连续五年的生产利润:年号 1 2 3 4 5年生产利润y(单位:千万元)0.70.8 1 1.1 1.4预测第8年该国企的生产利润约为( )千万元 (参考公式及数据:b ̂=∑(n i=1x i −x −)(y i −y −)∑(n i=1x i −x −)2=∑x i n i=1y i −nxy−∑x i2n i=1−nx −2;a ̂=y −−b ̂x −,∑(5i=1x i −x −)(y i −y −)=1.7,∑x i25i=1−nx −2=10A. 1.88B. 2.21C. 1.85D. 2.34【答案】C【解析】解:由表格数据可得,x −=1+2+3+4+55=3,y −=0.7+0.8+1+1.1+1.45=1.又∑(5i=1x i −x −)2=10,∑(5i=1x i −x −)(y i −y −)=1.7,∴b̂=∑(5i=1x i −x −)(y i −y −)∑(5i=1x i −x −)2=1.710=0.17,a ̂=y −−b ̂⋅x −=1−0.17×3=0.49,∴国企的生产利润y 与年份x 得回归方程为y ̂=0.17x +0.49, 取x =8,可得y ̂=0.17×8+0.49=1.85. 故选:C .由已知数据求得b^与a ^的值,可得线性回归方程,取x =8即可求得答案. 本题考查线性回归方程的求法,考查计算能力,是基础题. 10.已知一个几何体的正视图,侧视图和俯视图均是直径为10的圆(如图),这个几何体内接一个圆锥,圆锥的体积为27π,则该圆锥的侧面积为( )A. 9√10πB. 12√11πC. 10√17πD. 40√3π3【答案】A【解析】解:如图是几何体的轴截面图形,设圆锥的底面半径为r,由题意可得:13×π×r2×(√25−r2+5)=27π,解得r=3,所以该圆锥的侧面积:12×6π×√32+92=9π√10.故选:A.利用球的内接圆锥的体积,求出圆锥的底面半径与高,然后求解该圆锥的侧面积.本题考查三视图与几何体的关系,球的内接体圆锥的侧面积的求法,考查空间想象能力以及计算能力.11.已知A(3,0),若点P是抛物线y2=8x上任意一点,点Q是圆(x−2)2+y2=1上任意一点,则|PA|2|PQ|的最小值为()A. 3B. 4√3−4C. 2√2D. 4【答案】B【解析】解:抛物线y2=8x的准线方程为l:x=−2,焦点F(2,0),过P作PB⊥l,垂足为B,由抛物线的定义可得|PF|=|PB|,圆(x−2)2+y2=1的圆心为F(2,0),半径r=1,可得|PQ|的最大值为|PF|+r =|PF|+1, 由|PA|2|PQ|≥|PA|2|PF|+1,可令|PF|+1=t ,(t >1),可得|PF|=t −1=|PB|=x P +2, 即x P =t −3,y P 2=8(t −3), 可得|PA|2|PF|+1=(t−3−3)2+8(t−3)t=t +12t−4≥2√t ⋅12t−4=4√3−4,当且仅当t =2√3时,上式取得等号, 可得|PA|2|PQ|的最小值为4√3−4, 故选:B .求得抛物线的焦点和准线方程,过P 作PB ⊥l ,垂足为B ,求得圆的圆心和半径,运用圆外一点雨圆上的点的距离的最值和抛物线的定义,结合基本不等式,即可得到所求最小值.本题考查抛物线的方程和性质,以及定义法的运用,考查圆的性质,以及基本不等式的运用:求最值,考查运算能力,属于中档题. 12.设函数f(x)满足,且在(0,+∞)上单调递增,则f(1e )的范围是(e 为自然对数的底数)( ) A. [−1,+∞) B. [1e ,+∞)C. (−∞,1e]D. (−∞,−1]【答案】B【解析】解:令g(x)=f′(x), 由,故f′(x)=f′(x)−lnx +x[g′(x)−1x ], 故g′(x)=lnx+1x,g′(x)<0在(0,1e )恒成立,g(x)=f′(x)在(0,1e)递减,g′(x)>0在(1e,+∞)恒成立,g(x)=f′(x)在(1e,+∞)递增,故f′(x)min=f′(1e),∵f(x)在(0,+∞)递增,故f′(x)=f(x)x+lnx≥0在(0,+∞)恒成立,故在f(1e)1e+ln1e≥0,f(1e)≥1e,故选:B.令g(x)=f′(x),求出函数的导数,根据函数的单调性求出f′(x)min=f′(1e),得到f′(x)=f(x) x +lnx≥0在(0,+∞)恒成立,求出f(1e)的范围即可.本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道综合题.二、填空题(本大题共4小题,共20.0分)13.若sinα=45,α∈(π2,π),则sin(α+π6)的值为______.【答案】4√3−310【解析】解:∵sinα=45,α∈(π2,π),∴cosα=−35,则sin(α+π6)=sinαcosπ6+cosαsinπ6=45×√32−35×12=4√3−310,故答案为:4√3−310利用两角和差的正弦公式进行转化求解即可.本题主要考查三角函数值的计算,利用两角和差的正弦公式是解决本题的关键.14.若函数f(x)=√a−a x(a>0,a≠1)的定义域和值域都是[0,1],则log a711+log1a 1411=______.【答案】−1【解析】解:因为f(1)=0,所以f(x)是[0,1]上的递减函数,所以f(0)=1,即√a−1=1,解得a=2,所以原式=log2711+log121411=log2(711×1114)=−1,故答案为:−1.因为f(1)=0,所以f(x)是[0,1]上的递减函数,根据f(0)=1解得a=2,再代入原式可得.本题考查了函数的值域,属中档题.15.若正实数x,y满足x+y=1,则4x+1+1y的最小值为______.【答案】92【解析】解:∵x>0,y>0,x+y=1∴x+1+y=2,4 x+1+1y=x+1+y2⋅(4x+1+1y)=12(1+4+4yx+1+x+1y)≥12(5+2√4)=92,(当接仅当x=13,y=23时取“=”)故选:D.将x+y=1变成x+1+y=2,将原式4x+1+1y=x+1+y2⋅(4x+1+1y)=12(1+4+4yx+1+x+1y)后,用基本不等式可得.本题考查了基本不等式及其应用,属基础题.16.在体积为3√3的四棱柱ABCD−A1B1C1D1中,底面ABCD为平行四边形,侧棱AA1⊥底面ABCD,其中AA1=1,AB=2,AC=3,则线段BC的长度为______.【答案】√19或√7【解析】解:∵侧棱AA1⊥底面ABCD,其中AA1=1,四棱柱ABCD−A1B1C1D1体积为3√3,∴底面ABCD的面积为3√3.平行四边形ABCD边AB上的高为3√32设BC=m,∠DAB=θ∴ADsinθ=3√32,AC2=AB2+BC2−2AB⋅BCcos(π−θ).∴{msinθ=3√3 25−m2=4mcosθ⇒m=√7或m=√17.故答案为:√19或√7.可得底面ABCD的面积为3√3.平行四边形ABCD边AB上的高为3√32.设BC=m,∠DAB=θ,可得ADsinθ=3√32,AC2=AB2+BC2−2AB⋅BCcos(π−θ).⇒m=√7或m=√17.本题考查了空间几何体体积的计算,及解三角形的知识,属于中档题.三、解答题(本大题共7小题,共82.0分)17.已知等比数列{a n}是递增数列,且a1+a5=172,a2a4=4.(1)求数列{a n}的通项公式(2)若b n=na n(n∈N∗),求数列{b n}的前n项和S n.【答案】解:(1)由{a n}是递增等比数列,a1+a5=172,a2a4=4=a32=4∴a1+a1q4=172,(a1q2)2=4;解得:a1=12,q=2;∴数列{a n}的通项公式:a n=2n−2;(2)由b n=na n(n∈N∗),∴b n=n⋅2n−2;∴S1=12;那么S n=1×2−1+2×20+3×21+⋯…+n⋅2n−2,①则2S n=1×20+2×21+3×22+⋯…+(n−1)2n−2+n⋅2n−1,②−1−2−⋯−2n−2+n⋅2n−1;将②−①得:S n=−12−2n−1+n⋅2n−1.即:S n=−(2−1+20+2+22+2n−2)+n⋅2n−1=12,a2a4=4.即可求解数列{a n}的通【解析】(1)根据{a n}是递增等比数列,a1+a5=172项公式(2)由b n=na n(n∈N∗),可得数列{b n}的通项公式,利用错位相减法即可求解前n项和S n.本题主要考查数列通项公式以及前n项和的求解,利用错位相减法是解决本题的关键.18.今年年初,习近平在《告台湾同胞书》发表40周年纪念会上的讲话中说道:“我们要积极推进两岸经济合作制度化打造两岸共同市场,为发展增动力,为合作添活力,壮大中华民族经济两岸要应通尽通,提升经贸合作畅通、基础设施联通、能源资源互通、行业标准共通,可以率先实现金门、马祖同福建沿海地区通水、通电、通气、通桥.要推动两岸文化教育、医疗卫生合作,社会保障和公共资源共享,支持两岸邻近或条件相当地区基本公共服务均等化、普惠化、便捷化”某外贸企业积极响应习主席的号召,在春节前夕特地从台湾进口优质大米向国内100家大型农贸市场提供货源,据统计,每家大型农贸市场的年平均销售量(单位:吨),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值和年平均销售量的众数和中位数;(2)在年平均销售量为[220,240),[240,260),[260,280),[280,300)的四组大型农贸市场中,用分层抽样的方法抽取11家大型农贸市场,求年平均销售量在[240,260),[260,280)[280,300)的农贸市场中应各抽取多少家?(3)在(2)的条件下,再从[240,260),[260,280),[280,300)这三组中抽取的农贸市场中随机抽取3家参加国台办的宣传交流活动,记恰有ξ家在[240,260)组,求随机变量ξ的分布列与期望和方差.【答案】解:(1)由频率和为1,列方程(0.002+0.0095+0.011+0.0125+x+ 0.005+0.0025)×20=1,得x=0.007 5,∴直方图中x的值为0.007 5;年平均销售量的众数是220+2402=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴年平均销售量的中位数在[220,240)内,设中位数为a,则(0.002+0.0095+0.011)×20+0.0125×(a−220)=0.5,解得a=224,即中位数为224;(2)年平均销售量在[220,240)的农贸市场有0.0125×20×100=25(家),同理可求年平均销售量[240,260),[260,280),[280,300]的农贸市场有15、10、5家,所以抽取比例为1125+15+10+5=15,∴从年平均销售量在[240,260)的农贸市场中应抽取15×15=3(家),从年平均销售量在[260,280)的农贸市场中应抽取10×15=2(家),从年平均销售量在[280,300)的农贸市场中应抽取5×15=1(家);即年平均销售量在[240,260),[260,280)[280,300)的农贸市场中应各抽取3、2、1家;(3)由(2)知,从[240,260),[260,280),[280,300)的大型农贸市场中各抽取3家、2家、1家;所以ξ的可能取值分别为0,1,2,3; 则P(ξ=0)=C 30⋅C 33C 63=120,P(ξ=1)=C 31⋅C 32C 63=920,P(ξ=2)=C 32⋅C 31C 63=920,P(ξ=3)=C 33⋅C 30C 63=120,ξ的分布列为:ξ0 1 2 3 P120920920120数学期望为E(ξ)=0×120+1×920+2×920+3×120=32,方差为D(ξ)=(0−32)2×120+(1−32)2×920+(2−32)2×920+(3−32)2×120=920. 【解析】(1)由频率和为1列方程求出x 的值,再计算众数、中位数;(2)求出年平均销售量在[220,240)、[240,260)、[260,280)和[280,300]的农贸市场有多少家,再利用分层抽样法计算应各抽取的家数;(3)由(2)知ξ的可能取值,计算对应的概率值,写出分布列,计算数学期望和方差. 本题考查了频率分布直方图,众数、中位数,分层抽样,概率,分布列与数学期望和方差的计算问题,是中档题. 19.如图,在三棱柱ABC −A 1B 1C 1中,四边形BB 1C 1C 是长方形,A 1B 1⊥BC ,AA11=AB ,AB 1∩A 1B =E ,AC 1∩A 1C =F ,连接EF .(1)证明:平面A 1BC ⊥平面AB 1C 1; (2)若BC =3,A 1B =4√3,∠A 1AB =2π3,求二面角C 1−A 1C −B 1的正弦值.【答案】(1)证明:在三棱柱ABC −A 1B 1C 1中,BC//B 1C 1,A 1B 1⊥BC , ∴A 1B 1⊥B 1C 1.又∵在长方形BCC 1B 1中,B 1C 1⊥BB 1,A 1B 1∩BB 1=B 1, ∴B 1C 1⊥平面AA 1B 1B .∵四边形AA 1B 1B 与四边形AA 1C 1C 均是平行四边形, 且AB 1∩A 1B =E ,AC 1∩A 1C =F ,连接EF , ∴EF//BC .又BC//B 1C 1,∴EF//B 1C 1,又B 1C 1⊥平面AA 1B 1B ,∴EF ⊥平面AA 1B 1B . 又AB 1,A 1B 均在平面AA 1B 1B 内, ∴EF ⊥AB 1,EF ⊥A 1B .又平面A 1BC ∩平面AB 1C 1=EF ,AB 1⊂平面AB 1C 1,A 1B ⊂平面A 1BC .∴由二面角的平面角的定义知,∠AEA 1 是平面A 1BC 与平面AB 1C 1 所成二面角的平面角. 又在平行四边形A 1ABB 1中,AA 1=A 1B 1,∴平行四边形A 1ABB 1为菱形, 由菱形的性质可得,A 1B ⊥AB 1,∴∠AEA 1=π2, ∴平面A 1BC ⊥平面AB 1C 1;(2)解:由(1)及题设可知,四边形AA 1B 1B 是菱形,A 1B =4√3,∠A 1AB =2π3,∴在△A 1AB 中,由余弦定理可得AB =AB 1=AA 1=4.又由(1)知,EB ,EA ,EF 两两互相垂直,以E 为坐标原点,建立如图所示空间直角坐标系.∴E(0,0,0),A(2,0,0),A 1(0,−2√3,0),C(0,2√3,3),B 1(−2,0,0).AA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−2,−2√3,0),AC ⃗⃗⃗⃗⃗ =(−2,2√3,3),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(−2,2√3,0),A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,4√3,3).设平面AA 1C 的法向量为m⃗⃗⃗ =(x 1,y 1,z 1),平面A 1B 1C 的一个法向量为n ⃗ =(x 2,y 2,z 2). 由{m ⃗⃗⃗ ⋅AA 1⃗⃗⃗⃗⃗⃗⃗⃗ =x 1+√3y 1=0m ⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =−2x 1+2√3y 1+3z 1=0,取y 1=−√3,得m ⃗⃗⃗ =(3,−√3,4);由{n ⃗ ⋅A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =−2x 2+2√3y 2=0n ⃗ ⋅A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ =4√3y 2+3z 2=0,取y 2=√3,得n ⃗ =(3,√3,−4).∴cos <m ⃗⃗⃗ ,n⃗ >=m ⃗⃗⃗ ⋅n ⃗ |m⃗⃗⃗ |⋅|n ⃗ |=2√7×2√7=−514.设二面角C 1−A 1C −B 1的大小为θ, 则sinθ=√1−cos 2<m ⃗⃗⃗ ,n ⃗ >=3√1914. ∴二面角C 1−A 1C −B 1的正弦值为3√1914.【解析】(1)由三棱柱的结构特征可知BC//B 1C 1,又A 1B 1⊥BC ,可得A 1B 1⊥B 1C 1,在长方形BCC 1B 1中,证明B 1C 1⊥平面AA 1B 1B .由四边形AA 1B 1B 与四边形AA 1C 1C 均是平行四边形,可得EF//BC ,进一步得到EF//B 1C 1,则EF ⊥平面AA 1B 1B ,证明∠AEA 1 是平面A 1BC 与平面AB 1C 1 所成二面角的平面角.由菱形的性质可得A 1B ⊥AB 1,即∠AEA 1=π2,从而得到平面A 1BC ⊥平面AB 1C 1;(2)由(1)及题设可知,四边形AA 1B 1B 是菱形,A 1B =4√3,∠A 1AB =2π3,求得AB =AB 1=AA 1=4.以E 为坐标原点,建立如图所示空间直角坐标系.分别求出平面AA 1C 与平面A 1B 1C 的一个法向量,由两法向量所成角的余弦值可得二面角C 1−A 1C −B 1的正弦值.本题考查空间位置关系,二面角及其应用等知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想,是中档题. 20.已知,椭圆C 过点A(32,52),两个焦点为(0,2),(0,−2),E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,直线EF 的斜率为k 1,直线l 与椭圆C 相切于点A ,斜率为k 2.(1)求椭圆C 的方程; (2)求k 1+k 2的值.【答案】解:(1)由题意可设椭圆C 的方程为y 2a +x 2b =1(a >b >0),且c =2,2a =√(32)2+(52+2)2+√(32)2+(52−2)2=3√102+√102=2√10,即有a =√10,b =√a 2−c 2=√6, 则椭圆的方程为y 210+x 26=1;(2)设直线AE :y =k(x −32)+52,代入椭圆方程可得(5+3k 2)x 2+3k(5−3k)x +3(52−3k 2)2−30=0,可得x E +32=3k(3k−5)5+3k 2,即有x E =9k 2−30k−156k +10,y E =k(x E −32)+52,由直线AE 的斜率与AF 的斜率互为相反数,可将k 换为−k , 可得x F =9k 2+30k−156k 2+10,y F =−k(x F −32)+52,则直线EF 的斜率为k 1=y F −yEx F−x E=−k(x F +x E )+3kx F −x E =1,设直线l 的方程为y =k 2(x −32)+52,代入椭圆方程可得:(5+3k 22)x 2+3k 2(5−3k 2)x +3(52−3k 22)2−30=0,由直线l 与椭圆C 相切,可得△=9k 22(5−3k 2)2−4(5+3k 22)⋅[3(52−3k 22)2−30]=0,化简可得k 22+2k 2+1=0,解得k 2=−1, 则k 1+k 2=0.【解析】(1)可设椭圆C 的方程为y 2a 2+x 2b 2=1(a >b >0),由题意可得c =2,由椭圆的定义计算可得a ,进而得到b ,即可得到所求椭圆方程;(2)设直线AE :y =k(x −32)+52,代入椭圆方程,运用韦达定理可得E 的坐标,由题意可将k 换为−k ,可得F 的坐标,由直线的斜率公式计算可得直线EF 的斜率,设出直线l 的方程,联立椭圆方程,运用直线和椭圆相切的相切的条件:判别式为0,可得直线l 的斜率,进而得到所求斜率之和.本题考查椭圆的方程的求法,注意运用椭圆的定义,考查直线的斜率之和,注意联立直线方程和椭圆方程,运用判别式和韦达定理,考查化简整理的运算能力和推理能力,是一道综合题.21.已知f(x)=xlnx.(1)求f(x)的极值;(2)若f(x)−ax x=0有两个不同解,求实数a的取值范围.【答案】解:(1)f(x)的定义域是(0,+∞),f′(x)=lnx+1,令f′(x)>0,解得:x>1e,令f′(x)<0,解得:0<x<1e,故f(x)在(0,1e )递减,在(1e,+∞)递增,故x=1e 时,f(x)极小值=f(1e)=−1e;(2)记t=xlnx,t≥−1e,则e t=e xlnx=(e lnx)x=x x,故f(x)−ax x=0,即t−ae t=0,a=te t,令g(t)=te t ,g′(t)=1−te,令g′(t)>0,解得:0<t<1,令g′(t)<0,解得:t>1,故g(t)在(0,1)递增,在(1,+∞)递减,故g(t)max=g(1)=1e,由t=xlnx,t≥−1e ,a=g(t)=te t的图象和性质有:①0<a<1e,y=a和g(t)有两个不同交点(t1,a),(t2,a),且0<t1<1<t2,t1=xlnx,t2=xlnx各有一解,即f(x)−ax x=0有2个不同解,②−e1−e e<a<0,y=a和g(t)=te仅有1个交点(t3,a),且−1e<t3<0,t3=xlnx有2个不同的解,即f(x)−ax x=0有两个不同解,③a 取其它值时,f(x)−ax x =0最多1个解, 综上,a 的范围是(−e1−e e,0)∪(0,1e).【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(2)记t =xlnx ,得到t −ae t=0,a =te t ,令g(t)=te t ,求出g(t)的最大值,通过讨论a 的范围,确定解的个数,从而确定a 的范围即可.本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题. 22.在平面直角坐标系xOy 中曲线C 1的参数方程为{y =2t x=2t 2(其中t 为参数)以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C 2的极坐标方程为ρsin(θ−π4)=−√22.(1)把曲线C 1的方程化为普通方程,C 2的方程化为直角坐标方程;(2)若曲线C 1,C 2相交于A ,B 两点,AB 的中点为P ,过点P 作曲线C 2的垂线交曲线C 1于E ,F 两点,求|EF||PE|⋅|PF|.【答案】解:(1)曲线C 1的参数方程为{y =2t x=2t 2(其中t 为参数), 转换为直角坐标方程为:y 2=2x . 曲线C 2的极坐标方程为ρsin(θ−π4)=−√22.转换为直角坐标方程为:x −y −1=0. (2)设A(x 1,y 1),B(x 2,y 2),且中点P(x 0,y 0), 联立方程为:{y 2=2xx −y −1=0,整理得:x 2−4x +1=0 所以:x 1+x 2=4,x 1x 2=1, 由于:x 0=x 1+x 22=2,y 0=1.所以线段AB 的中垂线参数方程为{x =2−√22ty =1+√22t(t 为参数),代入y 2=2x ,得到:t 2+4√2t −6=0, 故:t 1+t 2=−4√2,t 1⋅t 2=−6,所以:EF =|t 1−t 2|=√(t 1+t 2)2−4t 1t 2=2√14,|PE||PF|=|t 1⋅t 2|=6故:|EF||PE|⋅|PF|=2√146=√143. 【解析】(1)直接利用参数方程直角坐标方程和极坐标方程之间的转换求出结果. (2)利用(1)的结论,进一步利用点到直线的距离公式和一元二次方程根和系数关系的应用求出结果.本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,点到直线的距离公式的应用,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型. 23.已知函数h(x)=|x −m|,g(x)=|x +n|,其中m >0,n >0.(1)若函数h(x)的图象关于直线x =1对称,且f(x)=h(x)+|2x −3|,求不等式f(x)>2的解集.(2)若函数φ(x)=h(x)+g(x)的最小值为2,求1m +1n 的最小值及其相应的m 和n 的值.【答案】解:(1)函数h(x)的图象关于直线x =1对称,∴m =1, ∴f(x)=h(x)+|2x −3|=|x −1|+|2x −3|,①当x ≤1时,(x)=3−2x +1−x =4−3x >2,解得x <23,②当1<x <32时,f(x)=3−2x +x −1=2−x >2,此时不等式无解,②当x≥32时,f(x)=2x−3+x−1=3x−4>2,解得x>2,综上所述不等式f(x)>2的解集为(−∞,23)∪(2,+∞).(2)∵φ(x)=h(x)+g(x)=|x−m|+|x+n|≥|x−m−(x+n)|=|m+n|=m+n,又φ(x)=h(x)+g(x)的最小值为2,∴m+n=2,∴1m +1n=12(1m+1n)(m+n)=12(2+nm+mn)≥12(2+2√mn⋅nm)=2,当且仅当m=n=1时取等号,故1m +1n的最小值为2,其相应的m=n=1.【解析】(1)先求出m=1,再分类讨论,即可求出不等式的解集,(2)根据绝对值三角形不等式即可求出m+n=2,再根据基本不等式即可求出本题考查了绝对值函数的对称轴,简单绝对值不等式的解法绝对值不等式的性质和基本不等式的应用,考察了运算求解能力,推理论证能力,转化与化归思想.第21页,共21页。
成都七中高2020届高三数学二诊模拟试题(理科)含答案
成都七中高2020届高三二诊数学模拟考试(理科)(满分150分,用时120分钟)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}0652<--=x xx A ,{}02<-=x x B ,则=B A I ( )A .{}23<<-x x B .{}22<<-x x C .{}26<<-x x D .{}21<<-x x2.设i z i -=⋅+1)1(,则复数z 的模等于( )A .2B .2C .1D .3 3.已知α是第二象限的角,43)tan(-=+απ,则=α2sin ( ) A .2512 B .2512- C .2524 D .2524-4.设5.0log 3=a ,3.0log 2.0=b ,3.02=c ,则c b a ,,的大小关系是( )A .c b a <<B .b c a <<C .b a c <<D .a b c <<5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的32,并且球的表面积也是圆柱表面积的32”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为π24,则该圆柱的内切球体积为( )A .π34B .π16C .π316 D .π3326.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是空气 质量合格,下面四种说法不.正确..的是( )A .1月至8月空气质量合格天数超过20天的月份有5个B .第二季度与第一季度相比,空气质量合格天数的比重下降了C .8月是空气质量最好的一个月D .6月的空气质量最差7.设等比数列{}n a 的前n 项和为n S , 则“2312a a a <+”是“012<-n S ”的( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要8.设x ,y 满足⎪⎩⎪⎨⎧≤--≥-≥+22142y x y x y x ,则y x z +=的取值范围是( )A .[]3,5-B .[]3,2C .[)+∞,2D . (]3,∞-9.设函数1sin )(22+=x xx x f ,则)(x f y =,[]ππ,-∈x 的大致图象大致是的( )ABCD10.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,23c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( ) A .3B .21 C .21 D .1957 11.如图示,三棱椎ABC P -的底面ABC 是等腰直角三角形,︒=∠90ACB ,且2===AB PB PA ,3=PC ,则PC 与面PAB 所成角的正弦值等于( )A .31B .36C .33D .3212.在ABC ∆中,2=AB ,3=AC ,︒=∠60A ,O 为ABC ∆的外心,若AC y AB x AO +=,R y x ∈,,则=+y x 32( )A .2B .35C .34 D .23二、填空题:本题共4小题,每小题5分,共20分.PCA13.在6)(a x +的展开式中的3x 系数为160,则=a _______.14.已知函数)(x f 是定义在R 上的奇函数,且0>x 时,x x x f 2)(2-=,则不等式x x f >)(的解集为__________.15.若对任意R x ∈,不等式0≥-kx e x 恒成立,则实数k 的取值范围是 .16.已知椭圆)0(1:2222>>=+b a by a x C 的左右焦点分别为1F ,2F ,上顶点为A ,延长2AF交椭圆C 于点B ,若△1ABF 为等腰三角形,则椭圆的离心率=e ______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题 考生都必须作答.第22、23为选考题,考生仅选一个作答.17.设数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,11=a ,若1a ,2a ,5a 成等比数列.(Ⅰ)求n a 及n S ; (Ⅱ)设*)(1121N n a b n n ∈-=+,设数列{}n b 的前n 项和n T ,证明:41<n T . 18.2019年6月,国内的5G 运营牌照开始发放.从2G 到5G ,我们国家的移动通信业务用了不到20年 的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对5G 的消费意愿,2019年8月, 从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:我们将大学生升级5G 时间的早晚与大学生愿意为5G 套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为5G 套餐多支付5元的人数占所有早期体验用户的40%).(Ⅰ)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到5G 的概率;(Ⅱ)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以X 表示这2人中愿意为升级5G多支付10元或10元以上的人数,求X 的分布列和数学期望;(Ⅲ)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐,能否认为样本中早期体验用户的人数有变化?说明理由.19.如图示,在三棱锥BCD A -中,2===BD BC AB ,32=AD ,2π=∠=∠CBD CBA ,点E 为AD 的中点.(Ⅰ)求证:平面ACD ⊥平面BCE ;(Ⅱ)若点F 为BD 的中点,求平面BCE 与平面ACF 所成锐二面角的余弦值.20.已知椭圆12222=+by a x (0>>b a )经过点)1,0(,离心率为23,A 、B 、C 为椭圆上不同的三点,且满足=++,O 为坐标原点.(Ⅰ)若直线AB 、OC 的斜率都存在,求证:OC AB k k ⋅为定值; (Ⅱ)求AB 的取值范围.21.设函数ax x e x f x --=221)(,R a ∈. (Ⅰ)讨论)(x f 的单调性;(Ⅱ)1≤a 时,若21x x ≠,2)()(21=+x f x f ,求证:021<+x x .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30ρρθ-+=. (Ⅰ)求l 的普通方程及C 的直角坐标方程; (Ⅱ)求曲线C 上的点P 到l 距离的取值范围. 23.已知a x x x f ++-=1)(,R a ∈.(Ⅰ) 若1=a ,求不等式4)(>x f 的解集; (Ⅱ))1,0(∈∀m ,R x ∈∃0,不等式)(1410x f mm >-+成立,求实数a 的取值范围.成都七中高2020届高三二诊模拟考试 数学理科参考解答13.2 14.()),3(0,3+∞-Y15.[]e ,0 1 6.33三、填空题17.解:(Ⅰ)设{}n a 的公差为d ,由题意有⎩⎨⎧⋅==512211a a a a ()0)4(111211≠⎩⎨⎧+⋅=+=⇒d d a a d a a 且⎩⎨⎧==⇒211d a ………………4分 所以()12121-=-+=n n a n()212n a a n S n n =+=…………6分(Ⅱ)因为()⎪⎭⎫⎝⎛+-=+=-=+111411411121n n n n a b n n ………8分所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=111...312121141n n T n …10分()411414111141<+-=⎪⎭⎫ ⎝⎛+-=n n T n ……12分 18.解:(Ⅰ)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到5G 的概率估计为样本中早期体验用户和中期跟随用户的频率,即2705300.81000+=.……2分(Ⅱ)由题意X 的所有可能值为0,1,2,……3分记事件A 为“从早期体验用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 事件B 为“从中期跟随用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 由题意可知,事件A ,B 相互独立,且()140%0.6P A =-=,()145%0.55P B =-=, 所以(0)()(10.6)(10.55)0.18P X PAB ===--=,(1)()()()P X P AB AB P AB P AB ==+=+()(1())(1()()P A P B P A P B =-+-0.6(10.55)(10.6)0.55=⨯-+-⨯0.49=,(2)()0.60.550.33P X P AB ===⨯=, ……6分所以X 的分布列为故X 的数学期望()00.1810.4920.33 1.15E X =⨯+⨯+⨯=.……8分(Ⅲ)设事件D 为“从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐”,则327031000()0.02C P D C =≈.……10分回答一:事件D 虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化. 回答二:事件D 发生概率小,所以可以认为早期体验用户人数增加. ……12分 19.(Ⅰ)证明:(第一问6分,证明了AD BC ⊥给4分)ACD BCE ACD AD BCE AD E BD BC ADBE AD BC ABD AD ED AE BD AB ABD BC CBD CBA 面面面面面面⊥⇒⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⊂⊥⇒⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫=⊥⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂⇒⎭⎬⎫==⊥⇒=∠=∠I 2π(Ⅱ)解:以点B 为坐标原点,直线BC ,BD 分别为 x 轴,y 轴,过点B 且与平面BCD 垂直的直线为z 轴,建立空间直角坐标系,则()0,0,2=→BC ,⎪⎪⎭⎫ ⎝⎛=→23,21,0BE ,()0,1,2-=→CF ,()3,2,0=→BF 设面BCE 的一个法向量()1111,,z y x n =→,⎪⎩⎪⎨⎧⊥⊥BE n BC n 11⎪⎩⎪⎨⎧=+=⇒0232102111z y x ()1,3,0111-=−−→−→=n z 令…9分同理可得平面ACF 的一个法向量⎪⎪⎭⎫⎝⎛--=2,3,232n …10分31315,,cos 222222=⋅=><n n n n n n .……11分故平面BCE 与平面ACF 所成锐二面角的余弦值为31315.……12分20.(Ⅰ)证明:依题有⎪⎪⎩⎪⎪⎨⎧+===222231c b a a c b ⎪⎩⎪⎨⎧==⇒1422b a , 所以椭圆方程为1422=+y x .…2分设()11,y x A ,()11,y x B ,()11,y x C , 由O 为ABC ∆的重心123123,;x x x y y y ⇒+=-+=-又因为()()()()222211221212121244,4440+=+=⇒+-++-=x y x y x x x x y y y y ,……4分()312121212123121;.44-++⇒==-==⇒=--++AB OC AB OC y y y x x y y k k k k x x y y x x x ……6分(Ⅱ)解 ①当AB 的斜率不存在时:1212313,02,0=+=⇒=-=x x y y x x y111,||⇒=±=⇒=x y AB 代入椭圆得……7分 ②当AB 的斜率存在时,设直线为t kx y +=,这里0≠t 由⇒⎩⎨⎧=++=4422y x tkx y ()22222418440041;,∆>=>++-⇒++k x kt t t k x ……8分222228211,44,;4141-⎛⎫⇒⇒ ⎪⎝≥+-+⎭=k t t ktt C k k 代入椭圆方程:12||;-==AB x x ……11分综上,AB 的范围是[]32,3. ……12分21. 解:(Ⅰ)a x e x f x--=')(,令)()(x f x g '=.……1分则1)(-='x e x g ,令01)(=-='xe x g 得0=x .当)0,(-∞∈x 时, ,0)(<'x g 则)(x g 在)0,(-∞单调递减;当),0(+∞∈x 时, ,0)(>'x g 则)(x g 在),0(+∞单调递增.所以a g x g -==1)0()(min .……3分当1≤a 时,01)(min ≥-=a x g , 即0)()(≥'=x f x g ,则f(x)在R 上单调递增; ……4分 当1>a 时,01)(min <-=a x g ,易知当-∞→x 时,+∞→)(x g ;当+∞→x 时,+∞→)(x g ,由零点存在性定理知,21,x x ∃,不妨设21x x <,使得.0)()(21==x g x g 当),(1x x -∞∈时,0)(>x g ,即 0)(>'x f ; 当),(21x x x ∈时,0)(<x g ,即 0)(<'x f ; 当),(2+∞∈x x 时,0)(>x g ,即 0)(>'x f .所以)(x f 在),(1x -∞和),(2+∞x 上单调递增,在),(21x x 单调递减. ……6分(Ⅱ)证明:构造函数2)()()(--+=x f x f x F ,0≥x .22121)(22-⎥⎦⎤⎢⎣⎡+-+--=-ax x e ax x e x F x x ,0≥x . 22--+=-x e e x xx e e x F x x 2)(--='-0222)(=-⋅≥-+=''--x x x x e e e e x F (当0=x 时取=).所以)(x F '在[)+∞,0上单调递增,则0)0()(='≥'F x F ,所以)(x F 在[)+∞,0上单调递增,0)0()(=≥F x F .……9分这里不妨设02>x ,欲证021<+x x , 即证21x x -< 由(Ⅰ)知1≤a 时,)(x f 在R 上单调递增,则有)()(21x f x f -<,由已知2)()(21=+x f x f 有)(2)(21x f x f -=, 只需证)()(2)(221x f x f x f -<-= ,即证2)()(22>-+x f x f ……11分 由2)()()(--+=x f x f x F 在[)+∞,0上单调递增,且02>x 时,有02)()()(222>--+=x f x f x F ,故2)()(22>-+x f x f 成立,从而021<+x x 得证. ……12分 22.【解】(Ⅰ )直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数), 消去参数t 可得l0y -+=;曲线C 的极坐标方程为24cos 30ρρθ-+=,可得C 的直角坐标方程为22430xy x +-+=.…………5分(2)C 的标准方程为()2221x y -+=,圆心为()2,0C ,半径为1,所以,圆心C 到l的距离为d == 所以点P 到l的距离的取值范围是1⎤⎥⎣⎦.………………10分 23、解: (Ⅰ)当1=a 时,⎪⎩⎪⎨⎧-≤-<<-≥=++-=.1,2,11,2,1,211)(x x x x x x x x f …………2分⎩⎨⎧>≥⇔>4214)(x x x f ,或⎩⎨⎧><<-4211x ,或⎩⎨⎧>--≤421x x ……4分2>⇔x ,或2-<x故不等式4)(>x f 的解集为),2()2,(+∞--∞Y ; (5)(Ⅱ)因为1)1()(1)(+=--+≥++-=a x a x a x x x f)1,0(∈∀m ,[]m m m m m m m m m m -+-+=-+-+=-+1145)1()141(141911425=-⋅-+≥m mm m (当31=m 时等号成立)……8分依题意,)1,0(∈∀m ,R x ∈∃0,有)(1410x f m m >-+则有91<+a解之得810<<-a故实数a 的取值范围是)8,10(-…………10分。
2020年四川成都高三二模数学试卷(理科)
2020年四川成都高三二模数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.复数满足(为虚数单位),则的虚部为( ).A. B. C. D.2.设全集,集合,,则( ).A. B. C. D.3.某中学有高中生人,初中生人.为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为的样本.若样本中高中生恰有人,则的值为( ).A. B. C. D.4.曲线在点处的切线方程为( ).A. B. C. D.5.已知锐角满足,则( ).A.B.C.D.6.函数在的图象大致为( ).A.B.C.D.7.执行如图所示的程序框图,则输出的值为( ).开始结束否是,输出()A.B.C.D.8.已知函数,,则函数的图象的对称轴方程为().A.,B.,C.,D.,9.如图,双曲线 的左,右焦点分别是,,直线与双曲线的两条渐近线分别相交于,两点,若,则双曲线的离心率为().A.B.C.D.10.在正方体中,点,分别为,的中点,过点作平面使平面,平面.若直线平面,则的值为( ).A.B.C.D.11.已知为圆的一条直径,点的坐标满足不等式组,则的取值范围为( ).A. B. C.D.12.已知函数,.若存在,,使得成立,则的最大值为( ).A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.的展开式中的系数为 .14.在中,内角,,的对边分别为,,,已知,,,则的面积为 .15.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球的表面上.若球的表面积为,则该三棱柱的侧面积为 .16.经过椭圆中心的直线与椭圆相交于,两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是 .三、解答题(本大题共5小题,每小题12分,共60分)(1)(2)17.已知是递增的等比数列,,且,,成等差数列.求数列的通项公式.设,,求数列的前项和.(1)(2)18.如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.求证:平面平面.若,求二面角的余弦值.(1)(2)19.某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关):年份年份代号年利润(单位:亿元)求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润.当统计表中某年年利润的实际值大于由()中线性回归方程计算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.将()中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.参考公式:,.(1)(2)20.已知椭圆的左,右焦点分别为,,点在椭圆上,,且.求椭圆的标准方程.设直线与椭圆相交于,两点,与圆相交于,两点,求的取值范围.【答案】解析:∵,∴,∴虚部为.故选.解析:∵,∴,∴.(1)(2)21.已知函数,其中.当时,求函数单调区间.设,若在上恒成立,求实数的最大值.四、选做题(本大题共2小题,选做1题,共10分)(1)(2)22.在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求直线的直角坐标方程与曲线的普通方程.已知点,设直线与曲线相交于,两点,求的值.(1)(2)23.已知函数.解不等式.设,其中为常数.若方程在上恰有两个不相等的实数根,求实数的取值范围.C1.A2.解析:∵高中生初中生,∴,∴.故选.解析:∵.∴,∴时,,,,∴,即.故选.解析:∵,∴,∴,∴.故选:.解析:∵,∴为奇函数,排除、,又,B 3.D 4.C 5.B 6.解析:∵,,∴,,否,,,否,,,是,输出.故选.解析:∵,,∴,∴.对称轴为,,.故选.解析:∵渐近线方程为,∴时,,∴,故,,∴ ,∴.故选.B 7.C 8.A 9.解析:取中点,中点,连接,,,由几何关系有:,同理,平面,则平面即为平面,连接交于点,则点为的四等分点.故选.解析:设圆心为,,,B 10.平面平面平面D 11.∴,到距离为,∴,,∴,故.故选.解析:首先,我们要得到函数和的图象如下图所示:xyOxyO将两个函数放入一个坐标系得:x–1123y–2–11O分析知,若出现满足题目条件的情况,则需,.又,由知于上单调递增,则得,那么.C 12.现令,则,则得于递增,于递减,则.故选.13.解析:∵,∴时,,.14.解析:∵,,,∴,,∴,∴,.15.解析:∵,∴,设棱长为,∴,,,在中有,∴∴.解析:设,,,∴,∴,,,而,,,∴,,∴,,,∴,∴,,,又有,∴.侧16.(1).17.(1)(2)(1)(2)解析:设数列的公比为,由题意及,知,∵,,成等差数列,∴,∴,即,解得或(舍去),∴,∴数列的通项公式为.∵,∴.解析:∵为正方形,∴.∵平面,平面,∴.∵,平面,且,∴平面.又平面,∴平面平面.取的中点,连结,.(2).(1)证明见解析.(2).18.(1)∵是正方形,易知,,两两垂直.分别以,,所在直线为,,轴建立如图所示的空间直角坐标系.在中,∵,,∴.∴,,,.设平面的一个法向量.,.由,得,取.设平面的一个法向量,,.由,得,取,∴,∵二面角为钝二面角,∴二面角的余弦值为.解析:根据表中数据,计算可得,,.又,(1)该公司年的年利润的预测值为亿元.(2).19.(2)(1)(2)∴.∵,∴.∴关于的线性回归方程为.将代入,∴(亿元).∴该公司年的年利润的预测值为亿元.由()可知年至年的年利润的估计值分别为,,,,,,,(单位:亿元).其中实际利润大于相应估计值的有年.故这年中被评为级利润年的有年,评为级利润年的有年.记“从年至年这年的年利润中随机抽取年,恰有年为级利润年”的概率为.∴.解析:∵点在椭圆上,∴,∵,∴,.∵,∴,又,∴.∵,,∴.∴椭圆的标准方程为.设,,(1).(2).20.(1)(2)联立,消去,得,∴,,,∴.设圆的圆心到直线的距离为,则,∴,∴.∵,∴,∴,∴的取值范围为.解析:当时,,,令,解得(舍去),,当时,,∴在上单调递减,当时,,∴在上单调递增,∴的单调递减区间为,单调递增区间为.由题意,可知在上恒成立,(ⅰ)若,(1)的单调递减区间为,单调递增区间为.(2)实数的最大值为.21.∵,∴,∴,构造函数,,则.∵,∴,∴,又∵,∴在上恒成立,∴在上单调递增,∴,∴当时,在上恒成立.(ⅱ)若,构造函数,,∵,∴在上单调递增,∴恒成立,即,∴,即,由题意,知在上恒成立,∴在上恒成立,由(),可知,最小值又∵,当,即时,在上单调递减,,不合题意.∴,即,此时,构造函数,,∴,(1)(2)(1)(2)∵,,∴,∴恒成立,∴在上单调递增,∴恒成立.综上,实数的最大值为.解析:由,,可得直线的直角坐标方程为.由曲线的参数方程,消去参数,可得曲线的普通方程为.易知点在直线上,直线的参数方程为(为参数),将直线的参数方程代入曲线的普通方程,并整理得,设,是方程的两根,则有,,∴.解析:原不等式即,①当时,化简得,解得;②当时,化简得,此时无解;③当时,化简得,解得,综上,原不等式的解集为.(1),.(2).22.(1).(2).23.由题意,设方程两根为,,①当时,方程等价于方程,易知当,方程在上有两个不相等的实数根,此时方程在上无解,∴满足条件,当时,方程等价于方程;此时方程在上显然没有两个不相等的实数根;③当时,易知当,方程在上又且只有一个实数根,此时方程在上也有一个实数根,∴满足条件.综上,实数的取值范围为.。
2020届四川省成都市高三毕业班第二次诊断性检测数学(理)试题(解析版)
2020届四川省成都市高三毕业班第二次诊断性检测数学(理)试题一、单选题1.设全集,集合,,则()A.B.C.D.【答案】A【解析】进行交集、补集的运算即可.【详解】∁U B={x|﹣2<x<1};∴A∩(∁U B)={x|﹣1<x<1}.故选:A.【点睛】考查描述法的定义,以及交集、补集的运算.2.已知双曲线的焦距为4,则双曲线的渐近线方程为()A.B.C.D.【答案】D【解析】先求出c=2,再根据1+b2=c2=4,可得b,即可求出双曲线C的渐近线方程. 【详解】双曲线C:的焦距为4,则2c=4,即c=2,∵1+b2=c2=4,∴b,∴双曲线C的渐近线方程为y x,故选:D.【点睛】本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题.3.已知向量,,则向量在向量方向上的投影为()A.B.C.-1 D.1【答案】A【解析】本题可根据投影的向量定义式和两个向量的数量积公式来计算.【详解】由投影的定义可知:向量在向量方向上的投影为:,又∵,∴.故选:A.【点睛】本题主要考查投影的向量定义以及根据两个向量的数量积公式来计算一个向量在另一个向量上的投影,本题属基础题.4.已知,条件甲:;条件乙:,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】先通过解分式不等式化简条件乙,再判断甲成立是否推出乙成立;条件乙成立是否推出甲成立,利用充要条件的定义判断出甲是乙成立的什么条件.【详解】条件乙:,即为⇔若条件甲:a>b>0成立则条件乙一定成立;反之,当条件乙成立,则也可以,但是此时不满足条件甲:a>b>0,所以甲是乙成立的充分非必要条件故选:A.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q 为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p 与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.5.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定。
四川省成都七中高2020届高三下学期二诊模拟试题理科数学(附答案)
成都七中高2020届高三二诊模拟考试数 学(理科)(满分150分,用时120分钟)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}0652<--=x x x A ,{}02<-=x x B ,则=B A I ( ) A .{}23<<-x x B .{}22<<-x x C .{}26<<-x x D .{}21<<-x x 2.设i z i -=⋅+1)1(,则复数z 的模等于( )A .2B .2C .1D .33.已知α是第二象限的角,43)tan(-=+απ,则=α2sin ( ) A .2512 B .2512- C .2524 D .2524-4.设5.0log 3=a ,3.0log 2.0=b ,3.02=c ,则c b a ,,的大小关系是( )A .c b a <<B .b c a <<C .b a c <<D .a b c << 5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的32, 并且球的表面积也是圆柱表面积的32”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积 为π24,则该圆柱的内切球体积为( )A .π34B .π16C .π316D .π332 6.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气 质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是空气 质量合格,下面四种说法不.正确..的是( )。
2020届四川省成都七中高三二诊数学模拟(理科)试题含答案
成都七中高2020届高三二诊数学模拟考试(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2560A x x x =--<,{}20B x x =-<,则A B =I ( ) A. {}32x x -<< B. {}22x x -<< C. {}62x x -<<D. {}12x x -<<2.设(1)1i z i +⋅=-,则复数z 的模等于( )A.B. 2C. 1D.3.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A.1225B. 1225-C.2425D. 2425-4.设3log 0.5a =,0.2log 0.3b =,0.32c =,则,,a b c 的大小关系是( ) A. a b c <<B. a c b <<C. c a b <<D. c b a <<5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( ) A.43π B. 16πC.163π D.323π 6.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )A. 1月至8月空气合格天数超过20天的月份有5个B. 第二季度与第一季度相比,空气达标天数的比重下降了C. 8月是空气质量最好的一个月D. 6月份的空气质量最差.7.设等比数列{}n a 的前n 项和为n S ,则“1322a a a +<”是“210n S -<”的( ) A. 充分不必要 B. 必要不充分 C. 充要D. 既不充分也不必要8.设x ,y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y=+取值范围是( )A []5,3-B. []2,3C. [)2,+∞D. (],3-∞9.设函数22sin ()1x xf x x =+,则()y f x =,[],x ππ∈-的大致图象大致是的( )A.B.C.D.10.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( )的.A.B.C.D.11.如图示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=︒,且PA PB AB ==PC =PC 与面PAB 所成角的正弦值等于( )A.13B.C.D.312.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+u u u ru u u ru u u r,x ,y R ∈,则23x y +=( ) A. 2B.53C.43D.32二、填空题:本题共4小题,每小题5分,共20分.13.在6()x a +的展开式中的3x 系数为160,则a =_______.14.已知()f x 是定义在R 上的奇函数,当0x >时,2()2f x x x =-,则不等式()f x x >的解集用区间表示为__________.15.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是_____.16.已知椭圆Г:22221(0)x y a b a b+=>>,F 1、F 2是椭圆Г的左、右焦点,A 为椭圆Г的上顶点,延长AF 2交椭圆Г于点B ,若1ABF V 为等腰三角形,则椭圆Г的离心率为___________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生仅选一个作答.17.设数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,11a =,若1a ,2a ,5a 成等比数列. (1)求n a 及n S ;(2)设211(*)1n n b n N a+=∈-,设数列{}n b 的前n 项和n T ,证明:14n T <. 18.2019年6月,国内的5G 运营牌照开始发放.从2G 到5G ,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对5G 的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:我们将大学生升级5G 时间的早晚与大学生愿意为5G 套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为5G 套餐多支付5元的人数占所有早期体验用户的40%).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到5G概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以X 表示这2人中愿意为升级5G 多支付10元或10元以上的人数,求X 的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐,能否认为样本中早期体验用户的人数有变化?说明理由.19.如图所示,在三棱锥A BCD -中,2AB BC BD ===,AD =2CBA CBD π∠=∠=,点EAD 中点.(1)求证:平面ACD ⊥平面BCE ;(2)若点F 为BD 中点,求平面BCE 与平面ACF 所成锐二面角的余弦值.20.已知椭圆22221x y a b +=(0a b >>)经过点(0,1),离心率为2,A 、B 、C 为椭圆上不同的三点,且满足0OA OB OC ++=u u u r u u u r u u u r r,O 为坐标原点.(1)若直线AB 、OC 的斜率都存在,求证:AB OC k k ⋅为定值; (2)求AB 的取值范围.21.设函数21()2x f x e x ax =--,a R ∈.(Ⅰ)讨论()f x 的单调性;(Ⅱ)1a ≤时,若12x x ≠,12()()2f x f x +=,求证:120x x +<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=. (1)求l 的普通方程及C 的直角坐标方程; (2)求曲线C 上的点P 到l 距离的取值范围.23.已知()1f x x x a =-++()a R ∈. (Ⅰ) 若1a =,求不等式()4f x >的解集; (Ⅱ)(0,1)m ∀∈,0x R ∃∈,014()1f x m m+>-,求实数a 取值范围.的参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.C3.D4.A5.D6.D7.A8.C9.B 10.B 11.A 12.B二、填空题:本题共4小题,每小题5分,共20分.13. 214. (3,0)(3,)-⋃+∞ 15. 0a e ≤<16.3三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生仅选一个作答.17.(1)设{}n a 的公差为d ,由题意有122151a a a a =⎧⎨=⋅⎩()121111(4)a a d a a d =⎧⎪⇒⎨+=⋅+⎪⎩, 且0d ≠112a d =⎧⇒⎨=⎩,所以()12121n a n n =+-=-,()122n n n a a S n +==;(2)因为()211111114141n n b a n n n n +⎛⎫===- ⎪-++⎝⎭,所以1111111...42231n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦, ()111111414414n T n n ⎛⎫=-=-< ⎪++⎝⎭. 18.(1)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到5G 的概率估计为样本中早期体验用户和中期跟随用户的频率,即2705300.81000+=.(2)由题意X 的所有可能值为0,1,2,记事件A 为“从早期体验用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 事件B 为“从中期跟随用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 由题意可知,事件A ,B 相互独立,且()140%0.6P A =-=,()145%0.55P B =-=, 所以(0)()(10.6)(10.55)0.18P X P AB ===--=,(1)()()()P X P AB AB P AB P AB ==+=+()(1())(1()()P A P B P A P B =-+- 0.6(10.55)(10.6)0.55=⨯-+-⨯0.49=, (2)()0.60.550.33P X P AB ===⨯=,所以X 的分布列为故X数学期望()00.1810.4920.33 1.15E X =⨯+⨯+⨯=.(3)设事件D 为“从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐”,那么327031000()0.02C P D C =≈.回答一:事件D 虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化. 回答二:事件D 发生概率小,所以可以认为早期体验用户人数增加. 19.(1)因为2CBA CBD π∠=∠=,所以BC ⊥平面ABD ,因为AD ⊂平面ABD ,所以BC AD ⊥.因为AB BD =,点E 为AD 中点,所以BE AD ⊥. 因为BC BE B =I ,所以AD ⊥平面BCE .因为AD ⊂平面ACD ,所以平面ACD ⊥平面BCE .(2)以点B 为坐标原点,直线,BC BD 分别为x 轴,y 轴,过点B 与平面BCD 垂直的直线为z 轴,建立空间直角坐标系,则()0,0,0B,(0,A -,()2,0,0C ,()0,2,0D,10,2E ⎛ ⎝⎭,()0,1,0F ,()2,0,0BC =u u u r,10,22BE ⎛= ⎝⎭u u u r ,()2,1,0CF =-u u u r,(0,AF =u u u r ,设平面BCE 的一个法向量()111,,n x y z =r ,则0,0,n BC n BE ⎧⋅=⎨⋅=⎩u u u v v u u u v v即11120,10,2x y z =⎧⎪⎨=⎪⎩ 取11z =,则10x =,1y =()0,n =r,设平面ACF 的一个法向量()222,,m x y z =u r ,则0,0,m AF m CF ⎧⋅=⎨⋅=⎩u u u v v u u u v v即222220,20,y x y ⎧+=⎪⎨-+=⎪⎩取22z =,则2x =,2y =2m ⎛⎫= ⎪ ⎪⎝⎭u r , 设平面BCE 与平面ACF 所成锐二面角为θ,则cos cos n m θ=⋅==r u r所以平面BCE 与平面ACF.20.(1)依题有2221b c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩2241a b ⎧=⇒⎨=⎩,所以椭圆方程为2214x y +=.设()11,A x y ,()22,B x y ,()33,C x y ,由O 为ABC ∆的重心123x x x ⇒+=-,123y y y +=-;又因为221144x y +=,()()()()2222121212124440x y x x x x y y y y +=⇒+-++-=,()121212124AB y y x x k x x y y -+⇒==--+,31231214OC AB OC y y y k k k x x x +==⇒=-+,(2)当AB 的斜率不存在时:12x x =,123102y y x x +=⇒=-,30=y , 代入椭圆得,11x =±,1||y AB =⇒= 当AB 的斜率存在时:设直线为y kx t =+,这里0t ≠,由2244y kx t x y =+⎧⇒⎨+=⎩()222418440k x ktx t +++-=,22041k t ∆>⇒->, 根据韦达定理有122841kt x x k +=-+,21224441t x x k -⋅=+,122241t y y k +=+, 故2282,4141kt t C k k -⎛⎫ ⎪++⎝⎭,代入椭圆方程有2221144k t t =-⇒≥,又因为12||AB x x -==,综上,AB的范围是.21.(1)()x f x e x a '=--,令()()g x f x '=,则()1x g x e '=-,令()10xg x e -'==得0x =,当(,0)x ∈-∞时,()0g x '<则()g x 在(,0)-∞单调递减,当(0,)x ∈+∞时,()0g x '>则()g x 在(0,)+∞单调递增,所以min ()(0)1g x g a ==-,当1a ≤时,min ()10g x a =-≥,即()()0g x f x '=≥,则()f x 在R 上单调递增,当1a >时,min ()10g x a =-<,易知当x →-∞时,()g x →+∞,当x →+∞时,()g x →+∞,由零点存在性定理知,12,x x ∃,不妨设12x x <,使得12()()0g x g x ==,当1(,)x x ∈-∞时,()0>g x ,即()0f x '>,当12(,)x x x ∈时,()0<g x ,即()0f x '<,当2(,)x x ∈+∞时,()0>g x ,即()0f x '>,所以()f x 在1(,)x -∞和2(,)x +∞上单调递增,在12(,)x x 单调递减;(2)证明:构造函数()()()2F x f x f x =+--,0x ≥, 2211()222x x F x e x ax e x ax -⎡⎤=--+-+-⎢⎥⎣⎦,0x ≥, 整理得2()2x x F x e e x -=+--,()2x x F x e e x --'=-,()220x x F x e e -''=+-≥=(当0x =时等号成立), 所以()F x '在[)0,+∞上单调递增,则()(0)0F x F ''≥=, 所以()F x 在[)0,+∞上单调递增,()(0)0F x F ≥=,这里不妨设20x >,欲证120x x +<,即证12x x <-由(1)知1a ≤时,()f x 在R 上单调递增,则需证12()()f x f x <-,由已知12()()2f x f x +=有12()2()f x f x =-,只需证122()2()()f x f x f x =-<-,即证22()()2f x f x +->,由()()()2F x f x f x =+--在[)0,+∞上单调递增,且20x >时,有222()()()20F x f x f x =+-->,故22()()2f x f x +->成立,从而120x x +<得证. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(1)直线l的参数方程为3,2t x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数t∴l0y -+=.曲线C 的极坐标方程为24cos 30ρρθ-+=, 利用极坐标化直角坐标的公式:cos sin x y ρθρθ=⎧⎨=⎩∴C 的直角坐标方程为22430x y x +-+=.(2)C 的标准方程为22(2)1x y -+=,圆心为(2,0)C ,半径为1∴圆心C 到l的距离为d ==, ∴点P 到l的距离的取值范围是1,122⎡⎤-+⎢⎥⎣⎦. 23.(Ⅰ)当1a =时,2,1()112,112,1x x f x x x x x x ≥⎧⎪=-++=-<<⎨⎪-≤-⎩,1()424x f x x ≥⎧>⇔⎨>⎩,或1124x -<<⎧⎨>⎩,或124x x ≤-⎧⎨->⎩2x ⇔>,或2x <-所以不等式()4f x >的解集为(,2)(2,)-∞-+∞U ; (Ⅱ)因为()1()(1)1f x x x a x a x a =-++≥+--=+ (0,1)m ∀∈,又[]1414()(1)11m m m m m m+=++--- 4151m m m m-=++-59≥+=(当13m =时等号成立), 依题意,(0,1)m ∀∈,0x R ∃∈,有014()1f x m m+>-, 则19a +<,解之得108a -<<,故实数a 的取值范围是(10,8)-.。
2020届成都七中高三理科数学二诊模拟考试试卷答案
b 0) 的左右焦点分别为 F1 , F2 ,上顶点为 A ,延长 AF2
交椭圆 C 于点 B ,若△ ABF1 为等腰三角形,则椭圆的离心率 e ______.
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题
考生都必须作答.第 22、23 为选考题,考生仅选一个作答.
1; 4
|AB|= 1 k 2 | x1 x2 |
16 4k 2 t2 1
k2 1
4k 2 1 2
3
9 4t 2
3, 2 3 ; ……11 分
综 上 , AB 的 范围是 3,2 3 . ……12 分
21. 解:(Ⅰ) f (x) e x x a ,令 g(x) f (x) .……1 分
3; ……7 分
②当 AB 的斜率存在时,设直线为 y kx t ,这里 t 0
y kx t
由
x
2
4y2
4
4k2 1
x2 8ktx 4t2 4 0, 0 4k 2 1 t2; ……8 分
C
8kt 4k 2 1,
2t 4k 2 1
代入椭圆方程:k 2
t2
1 4
,t2
质量检测情况,图中一市、新二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是空气
质量合格,下面四成种都说法不.正.确.的是( )
省
川
四
供
仅
用 使 学 中 城 香 都 新 市 都 成 省 川 四 供 仅
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.在 (x a)6 的展开式中的 x3 系数为160 ,则 a _______.
2020届四川省成都市二诊数学(理科)试卷及答案
, aˆ y bˆx .
(xi x )2
i 1
20.(12
分)已知椭圆
E
:
x2 a2
y2 b2
1(a
0,b 0) 的左,右焦点分别为 F1(1, 0) , F2 (1, 0) ,点
P 在椭圆 E 上, PF2 F1F2 ,且 | PF1 | 3 | PF2 | .
(Ⅰ)求椭圆 E 的标准方程;
(Ⅰ)求证:平面 PAC 平面 PBD ;
(Ⅱ)若 PE 3 ,求二面角 D PE B 的余弦值.
19.(12 分)某动漫影视制作公司长期坚持文化自信,不断挖据中华优秀传统文化中的动漫
题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为
公司赢得丰厚的利润.该公司 2013 年至 2019 年的年利润 y 关于年份代号 x 的统计数据如表
f
(x)
sin( x
)(0
),
f
(
)
0 ,则函数
f
(x)
的图象的对称轴方
2
4
程为 ( )
A. x k , k Z 4
B. x k , k Z 4
C. x 1 k , k Z 2
D. x 1 k , k Z 24
9.(5
分)如图,双曲线 C :
x2 a2
y2 b2
l(a
值时,称该年为 A 级利润年,否则称为 B 级利润年,将(Ⅰ)中预测的该公司 2020 年的年
第 4页(共 21页)
利润视作该年利润的实际值,现从 2013 年至 2020 年这 8 年中随机抽取 2 年,求恰有 1 年为
A 级利润年的概率.
n
(xi x )( yi y)
2020届四川省成都市高三第二次诊断性检测数学(理)试卷及解析
2020届四川省成都市高三第二次诊断性检测数学(理)试卷★祝考试顺利★(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( )A. iB. i -C. 1-D. 1【答案】C【解析】21i z =+,分子分母同乘以分母的共轭复数即可. 【详解】由已知,22(1i)1i 1i (1i)(1i)z -===-++-,故z 的虚部为1-. 故选:C. 2. 设全集,U R =集合{}{}1,||2M x x N x x =<=>,则()U M N ⋂=( )A. {}|2x x >B. {}|1x x ≥C. {}|12x x <<D. {}|2x x ≥ 【答案】A【解析】先求出U M ,再与集合N 求交集.【详解】由已知,{|1}U M x x =≥,又{}|2N x x =>,所以{|2}U M N x x ⋂=>.故选:A.3. 某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( )A. 20B. 50C. 40D. 60【答案】B【解析】利用某一层样本数等于某一层的总体个数乘以抽样比计算即可.【详解】由题意,30=150015001000n ⨯+,解得50n =. 故选:B.4. 曲线3y x x =-在点()1,0处的切线方程为( )A. 20x y -=B. 220x y +-=C. 220x y ++=D. 220x y --= 【答案】D【解析】 只需利用导数的几何意义计算曲线在点1x =处的导数值即可.【详解】由已知,'231y x =-,故切线的斜率为12x y ='=,所以切线方程为2(1)y x =-,即220x y --=.故选:D.5. 已知锐角α满足2sin21cos2 ,αα=-则tan α=( ) A. 12 B. 1 C. 2D. 4【答案】C【解析】利用sin 22sin cos ,ααα=2cos 212sin αα=-代入计算即可.【详解】由已知,24sin cos 2sin ααα=,因α为锐角,所以sin 0α≠,2cos sin αα=, 即tan α=2.故选:C.6. 函数())cos ln f x x x =⋅在[1,1]-的图象大致为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市2017级高中毕业班第二次诊断性检测
数学(理科)
本试卷分选择题和非选择题两部分,第1卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:
1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第Ⅰ卷(选择题,共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数z 满足2)1(=+i z (i 为虚数单位),则z 的虚部为( ) A.i B.-i C.-1 D.1
2.设全集R U =,集合{}1<=x x M ,{}
2>=x x N ,则N M C U )(=( ) A.{}2>x x B.{}1≥x x C.{}21<<x x D.{}
2≥x x 3.某中学有高中生1500人,初中生1000人,为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为n 的样本。
若样本中高中生恰有30人,则n 的值为( )
A.20
B.50
C.40
D.60 4.曲线x x y −=3
在点)0,1(处的切线方程为( )
A.02=−y x
B.022=−+y x
C.022=++y x
D.022=−−y x 5.已知锐角β满足αα2cos 12sin 2−=,则αtan =( ) A.
2
1
B.1
C.2
D.4 6.函数)1ln(cos )(2
x x x x f −+⋅=在]1,1[−的图象大致为( )
A B C D
7.执行如图所示的程序框图,则输出S 的值为( )
A.16
B.48
C.96
D.128
8.已知函数0)4
(),0)(2sin()(=<<+=π
πωπ
ωf x x f ,则函数)(x f 的图象的对称轴方程为( ) A.Z k k x ∈−=,4
π
π B.Z k k x ∈+
=,4
π
π
C.Z k k x ∈=
,21π D.Z k k x ∈+=,4
21π
π 9.如图,双曲线C )0,0(122
22>>=−b a b
y a x :的左,右交点分别是)0,(1c F −,)0,(2c F ,直
线a bc y 2=
与双曲线C 的两条渐近线分别相交于B A ,两点.若3
21π
=∠F BF ,则双曲线C 的离心率为( ) A.2 B.
324 C.2 D.3
3
2
10.在正方体1111D C B A ABCD −中,点Q P ,分别为AD AB ,的中点,过点D 作平面α使
αα平面∥,平面∥Q A P B 11,若直线M D B =α平面 11,则
1
1
MB MD 的值为( ) A.
41 B.31 C.21 D.3
2 11.已知EF 为圆1)1()1(2
2
=++−y x 的一条直径,点),(y x M 的坐标满足不等式组
⎪⎩
⎪
⎨⎧≤≥++≤+−103201y y x y x ,则MF ME ⋅的取值范围为( ) A.]13,29[ B.]13,4[ C.]12,4[ D.]12,2
7[ 12.已知函数x xe x g x
x
x f −==
)(,ln )(,若存在R x x ∈+∞∈21),,0(,使得)0()()(21<==k k x g x f 成立,则k
e x x 21
2)(
的最大值为( ) A.2e B.e C.24e D.21e
第Ⅱ卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.()4
1x +的展开式中x 2的系数为 。
14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3
B π
=,a=2,3△
ABC 的面积为 。
15.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球O 的表面上,若球O 的表面积为28π,则该三棱柱的侧面积为 。
16.经过椭圆2
212
x y +=中心的直线与椭圆相交于M ,N 两点(点M 在第一象限),过点M 作x 轴的垂线,垂足为点E ,设直线NE 与椭圆的另一个交点为P .则cos ∠NMP 的值是 。
三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)
已知{}n a 是递增的等比数列,a 1=1,且2a 2,33
2
a ,4a 成等差数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2122
1
log log n n n b a a ++=⋅,n N *∈。
求数列{b n }的前n 项和S n .
18.(本小题满分12分)
如图,在四棱锥P-ABCD 中,O 是边长为4的正方形ABCD 的中心,PO ⊥平面ABCD ,E 为BC 的中点.
(Ⅰ)求证:平面PAC ⊥平面PBD
(Ⅱ)若PE=3,求二面角D 一PE 一B 的余弦值.
某动漫影视制作公司长期坚持文化自信,不断挖据中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司2013年至2019年的年利润y 关于年份代号x 的统计数据如下表(已知该公司的年利润与年份代号线性相关):
(Ⅰ)求y 关于x 的线性回归方程,并预测该公司2020年(年份代号记为8)的年利润;
(Ⅱ)当统计表中某年年利润的实际值大于由(Ⅰ)中线性回归方程计算出该年利润的估计值时,称该年为A 级利润年,否则称为B 级利润年,将(Ⅰ)中预测的该公司2020年的年利润视作该年利润的实际值,现从2013年至2020年这8年中随机抽取2年,求恰有1年为A 级利润年的概率.
参考公式:x b y a
x x y y x x b
n
i i
n
i i
i
ˆˆ,)
()
)((ˆ1
2
1
−=−−−=∑∑==
20.(本小题满分12分)
已知椭圆)0,0(122
22>>=+b a b
y a x E :的左,右焦点分别为F 1(-1,0),F 2(1,0),点
P 在椭圆E 上,PF 2⊥F 1F 2,且|PF 1|=3|PF 2|. 等守其,平
(Ⅰ)求椭圆E 的标准方程;
(Ⅱ)设直线l :x=my+1(m ∈R )与椭圆E 相交于A ,B 两点,与圆x 2+y 2=a 2相交于C ,D 两点,求|AB|·|CD|2的取值范围.
已知函数)1ln(2)(2
+−+=x m x x x f ,其中m ∈R . (Ⅰ)当m>0时,求函数f (x )的单调区间; (Ⅱ)设x e x f x g 1)()(+=,若1
1
)(+>x x g ,在),0(+∞上恒成立,求实数m 的最大值.
请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方
在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧==m
y m x 22
(m 为参数).以坐标原点O
为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为01cos sin =+−θρθρ.
(Ⅰ)求直线l 的直角坐标方程与曲线C 的普通方程;
(Ⅱ)已知点P (2,1)设直线l 与曲线C 相交于M ,N 两点,求
PN
PM 1
1+
的值.
23.(本小题满分10分)选修4-5;不等式选讲)
已知函数f (x )=|x-1|+|x+3|. (Ⅰ)解不等式f (x )≥6;
(Ⅱ)设g (x )=-x 2+2ax ,其中a 为常数若方程f (x )=g (x )在(0,+∞)上恰有两个不相等的实数根,求实数a 的取值范围.
答案 第一卷
1C 2A 3B 4D 5C 6B 7B 8C 9A 10B 11D 12C
第二卷
13. 6 14.2
3
15. 36 16. 0。