2020年中考数学压轴题专项训练 圆的综合

合集下载

2020年九年级中考数学压轴题专项训练:圆的综合卷(含答案)

2020年九年级中考数学压轴题专项训练:圆的综合卷(含答案)

2020年九年级中考数学压轴题专项训练:圆的综合卷(含答案)1.如图,点O为Rt△ABC斜边AB上的一点,∠C=90°,以OA为半径的⊙O与BC交于点D,与AC交于点E,连接AD且AD平分∠BAC.(1)求证:BC是⊙O的切线;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π)(1)证明:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵∠ACD=90°,∴OD⊥BC,∴BC与⊙O相切;(2)解:连接OE,ED,∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°,又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴四边形OAED是菱形,∴OE⊥AD,且AM=DM,EM=OM,∴S△AED =S△AOD,∴阴影部分的面积=S扇形ODE==π.2.如图,已知AB是⊙O的直径,AC是⊙O的弦,点E在⊙O外,连接CE,∠ACB的平分线交⊙O于点D.(1)若∠BCE=∠BAC,求证:CE是⊙O的切线;(2)若AD=4,BC=3,求弦AC的长.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∴∠OAC=∠OCA,∵∠BAC=∠BCE,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切线;(2)解:连接BD,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴=,∴AD=BD,∵AB是⊙O的直径,∴∠ADB=90°,∴△ADB是等腰直角三角形,∴AB=AD=4,∵BC=3,∴AC===.3.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.(1)证明:连接OE .∵OA =OE ,∴∠OAE =∠OEA ,又∵∠DAE =∠OAE ,∴∠OEA =∠DAE ,∴OE ∥AD ,∴∠ADC =∠OEC ,∵AD ⊥CD ,∴∠ADC =90°,故∠OEC =90°.∴OE ⊥CD ,∴CD 是⊙O 的切线;(2)解:∵∠C =45°,∴△OCE 是等腰直角三角形,∴CE =OE =2,∠COE =45°,∴阴影部分面积=S △OCE ﹣S 扇形OBE =2×2﹣=2﹣.4.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.解:(1)△FAG等腰三角形;理由:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(2)成立;∵BC为直径,∴∠BAC=90°∴∠ABE+∠AGB=90°∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,又∵AF=FG,∴F为BG的中点∵△BAG为直角三角形,∴AF=BF=BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD==12,∴在Rt△BDA中,AB==4,∵∠ABC=∠DBA,∠BAC=∠ADB=90°∴△ABC∽△DBA,∴=,∴=,∴BC=,∴⊙O的直径BC=.5.如图,已知矩形ABCD的边AB=6,BC=4,点P、Q分别是AB、BC边上的动点.(1)连接AQ、PQ,以PQ为直径的⊙O交AQ于点E.①若点E恰好是AQ的中点,则∠QPB与∠AQP的数量关系是∠QPB=2∠AQP;②若BE=BQ=3,求BP的长;(2)已知AP=3,BQ=1,⊙O是以PQ为弦的圆.①若圆心O恰好在CB边的延长线上,求⊙O的半径;②若⊙O与矩形ABCD的一边相切,求⊙O的半径.解:(1)①∵点E恰好是AQ的中点,∠ABQ=90°,∴BE=AE=EQ,∴∠EAB=∠EBA,∴∠QEB=2∠EBP,∵以PQ为直径的⊙O交AQ于点E,∴∠QPB=∠QEB,∠PBE=∠PQA,∴∠QPB=2∠AQP,故答案为:∠QPB=2∠AQP;②∵BE=BQ,∴∠BEQ=∠BQE,且∠BPQ=∠BEQ,∴∠BPQ=∠BQE,∴tan∠BPQ=tan∠BPQ,∴,∴,∴BP=(2)①如图1,过点O作OE⊥PQ,∵AP=3,AB=6,∴BP=3,∴PQ===,∵OE⊥PQ,∴QE=PE=,∵cos∠PQB==,∴=∴OQ=5,∴⊙O的半径为5;②如图2,若⊙O与BC相切于点Q,连接OQ,过点O作OE⊥PQ于E,∴EQ=PE=,∵BC是⊙O切线,∴OQ⊥BC,且AB⊥BC,∴OQ∥AB,∴∠OQP=∠BPQ,∴cos∠OQP=cos∠BPQ,∴,∴∴OQ=;如图3,若⊙O与AB相切于点P,连接OP,过点O作OE⊥PQ于E,∴EQ=PE=,∵AB是⊙O切线,∴OP⊥AB,且AB⊥BC,∴OP∥BC,∴∠OPQ=∠PQB,∴cos∠OPQ=cos∠PQB,∴∴,∴OP=5;如图4,若⊙O与AD相切于点M,连接OM,OQ,OP,延长MO交BC于F,作OH⊥AB于H 点,∴OM⊥AD,且BC∥AD,∴OF⊥BC,∵∠A=∠B=∠AMO=∠OFB=∠OHB=90°,∴四边形AHOM,OHBF是矩形,∴OM=AH,OH=BF,∵OQ2=OF2+FQ2,OP2=OH2+PH2,∴OQ2=(6﹣OQ)2+(BF﹣1)2,OQ2=BF2+(OQ﹣3)2,∴OQ=5﹣若图5,若⊙O与CD相切于点N,连接ON,OQ,OP,延长NO交BC于E,作OH⊥BC于H 点,同理可得:OP2=PE2+OE2,OQ2=OH2+QH2,∴OQ2=(3﹣OH)2+(4﹣OQ)2,OQ2=OH2+(4﹣OQ﹣1)2,∴OQ=35﹣6.6.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB =6,BC=,(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.(1)证明:由折叠的性质可知,AF=AB=6,在Rt△ADF中,DF===3,∴CF=DC﹣DF=3,∴DF=FC,即F是CD的中点;(2)证明:在Rt△ADF中,DF=3,AF=6,∴∠DAF=30◦,∴∠BAF=60◦,由折叠的性质可知,∠EAF=∠EAB,∠AFE=∠B=90°,∴∠EAF=∠EAB=30°,∴AE=2EF,∠EFC=180°﹣∠AFD﹣∠AFE=30◦,∴EF=2CE,∴AE=4CE;(3)解:连接OP、OH、PH,∵⊙O与AD相切于点P,∴OP⊥AD,∴OP∥DF,∵∠DAF=30°,∴∠AOP=90°﹣∠DAF=60°,OF=OP=OA,∴∠OFH=∠AOP=60°,OP=OF=2,∴AP==2,∴DP=AD﹣AP=,∵∠OFH=60°,OH=OF,∴△OHF为等边三角形,∴∠FOH=∠OHF=60°,HF=OF=2,∴DH=DF﹣HF=1,∵OP∥DF,∴∠POH=∠OHF=60°,∴∠POH=∠HOF,∴=,∴阴影部分的面积=△PDH的面积=×DH×DP=.7.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.(1)求证:∠A=∠CBD.(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O 相切,并说明理由.(1)证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如图,连接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中点M,连接DM、OD,如图,∵DM为Rt△BCD斜边BC的中线,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM为⊙O的切线,此时BM=BC=.8.如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.(1)求证:AC是∠DAB的平分线;(2)若AB=10,AC=4,求AE的长.(1)证明:连接OC,∵直线MC与⊙O相切于点C,∴∠OCM=90°,∵AD⊥CD,∴∠ADM=90°,∴∠OCM=∠ADM,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAB,即AC是∠DAB的平分线;(2)解:连接BC,连接BE交OC于点F,∵AB是⊙O的直径,∴∠ACB=∠AEB=90°,∵AB=10,AC=4,∴BC===2,∵OC∥AD,∴∠BFO=∠AEB=90°,∴∠CFB=90°,F为线段BE中点,∵∠CBE=∠EAC=∠CAB,∠CFB=∠ACB,∴△CFB∽△BCA.∴=,即=,解得,CF=2,∴OF=OC﹣CF=3.∵O为直径AB中点,F为线段BE中点,∴AE=2OF=6.9.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.(1)证明:如图,连接OD.∵点D是半圆的中点,∴∠AOD=∠BOD=90°,∴∠ODC+∠OED=90°,∵OD=OC,∴∠ODC=∠OCD.又∵CF=EF,∴∠FCE=∠FEC.∵∠FEC=∠OED,∴∠FCE=∠OED.∴∠FCE+∠OCD=∠OED+∠ODC=90°,即FC⊥OC,∴FC是⊙O的切线;(2)解:∵tan A=,∴在Rt△ABC中,=,∵∠ACB=∠OCF=90°,∴∠ACO=∠BCF=∠A,∵△ACF∽△CBF,∴===.∴AF=10,∴CF2=BF•AF.∴BF=.∴AO==.10.如图,AB是⊙O的直径,弦DE垂直半径OA,C为垂足,DE=6,连接DB,∠B=30°,过点E作EM∥BD,交BA的延长线于点M.(1)求的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.解:(1)连结OE,∵DE垂直OA,∠B=30°,∴CE=DE=3,,∴∠AOE=2∠B=60°,∴∠CEO=30°,OC=OE,由勾股定理得OE=2;(2)∵EM∥BD,∴∠M=∠B=30°,∠M+∠AOE=90°,∴∠OEM=90°,即OE⊥ME,∴EM是⊙O的切线;(3)再连结OF,当∠APD=45°时,∠EDF=45°,∴∠EOF=90°,S=π(2)2﹣(2)2=3π﹣6.阴影11.如图,Rt△ABC中,∠C=90°.BE平分∠ABC交AC于点D,交△ABC的外接圆于点E,过点E作EF⊥BC交BC的延长线于点F.请补全图形后完成下面的问题:(1)求证:EF是△ABC外接圆的切线;(2)若BC=5,sin∠ABC=,求EF的长.(1)证明:补全图形如图所示,∵△ABC是直角三角形,∴△ABC的外接圆圆心O是斜边AB的中点.连接OE,∴OE=OB.∴∠2=∠3,∵BE平分∠ABC,∴∠1=∠2,∴∠1=∠3.∴OE∥BF.∵EF⊥BF,∴EF⊥OE,∴EF是△ABC外接圆的切线;(2)解:在Rt△ABC中,BC=5,sin∠ABC=,∴=.∵AC2+BC2=AB2,∴AC=12.∵∠ACF=∠CFE=∠FEH=90°,∴四边形C FEH是矩形.∴EF=HC,∠EHC=90°.∴EF=HC=AC=6.12.我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知⊙O的两条弦AB⊥CD,则AB、CD互为“十字弦”,AB是CD的“十字弦”,CD也是AB的“十字弦”.(1)若⊙O的半径为5,一条弦AB=8,则弦AB的“十字弦”CD的最大值为10 ,最小值为 6 .(2)如图1,若⊙O的弦CD恰好是⊙O的直径,弦AB与CD相交于H,连接AC,若AC=12,DH=7,CH=9,求证:AB、CD互为“十字弦”;(3)如图2,若⊙O的半径为5,一条弦AB=8,弦CD是AB的“十字弦”,连接AD,若∠ADC=60°,求弦CD的长.解:(1)如图a,当CD是直径时,CD的长最大,则CD的最大值为10;如图b,当点D与点A重合时,CD有最小值,过点O作OE⊥CD于E,OF⊥AB于F,∴AF=BF=4,DE=CE,∴OF===3,∵OE⊥CD,OF⊥AB,∠CDB=90°,∴四边形CEOF是矩形,∴CE=OF=3,∴CD=6,∴CD最小值为6,故答案为:10,6;(2)如图1,连接AD,∵DH=7,CH=9,∴CD=16,∵CD是直径,∴∠CAD=90°,∴AD===4,∵,=,∴,∠ADH=∠ADC,∴△ADH∽△CDA,∴∠AHD=∠CAD=90°,∴AB⊥CD,∴AB、CD互为“十字弦”;(3)如图2,过点O作OE⊥CD于E,过点O作OF⊥AB于点F,连接AO,CO,过点O作ON⊥AC于N,∵∠ADC=60°,AB⊥CD,∴AF=DF,∵OE⊥CD,OF⊥AB,AB⊥CD,∴四边形OEHF是矩形,AF=BF=4,CE=ED,∴OF=EH,∵OF===3,∴EH=3,∴ED=CE=3+DH,∴CF=3+2DH,∵∠AOC=2∠ADC=120°,且AO=CO=5,ON⊥AC,∴∠CAO=30°,AN=CN,∴NO=,AN=,∴AC=5,∵AH2+CH2=AC2,∴75=3DH2+(3+2DH)2,∴DH=2﹣,∴CD=2CE=2(3+2﹣)=.13.如图,AB是⊙O的弦,AB=4,点P在上运动(点P不与点A、B重合),且∠APB =30°,设图中阴影部分的面积为y.(1)⊙O的半径为 4 ;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.解:(1)∵∠AOB=2∠APB=2×30°=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=4,即⊙O的半径为4;故答案为4;(2)过点O作OH⊥AB,垂足为H,如图,则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°,∵OA=OB,OH⊥AB,∴AH=BH=AB=2,在Rt△AHO中,∠AHO=90°,AO=4,AH=2,∴OH==2,∴y=﹣×4×2+×4×x=2x+π﹣4(0<x≤2+4).14.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=,AB=6,求⊙O的半径.(1)解:结论:DE与⊙O相切证:连接OD在⊙O中,∵D为的中点,∴=,∴AD=DC,∵AD=DC,点O是AC的中点,∴OD⊥AC,∴∠DOA=∠DOC=90°,∵DE∥AC,∴∠DOA=∠ODE=90°,∵∠ODE=90°,∴OD⊥DE,∵OD⊥DE,DE经过半径OD的外端点D,∴DE与⊙O相切.(2)解:连接BD.∵四边形ABCD是⊙O的内接四边形,∴∠DAB+∠DCB=180°,又∵∠DCE+∠DCB=180°,∴∠DAB=∠DCE,∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°,∵=,∴∠ABD=∠CBD=45°,∵AD=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∵DE∥AC,∴∠DCA=∠CDE=45°,在△ABD和△CDE中,∵∠DAB=∠DCE,∠ABD=∠CDE=45°,∴△ABD∽△CDE,∴=,∴=,∴AD=DC=4,在Rt△ADC中,∠ADC=90°,AD=DC=4,∴AC===8,∴⊙O的半径为4.15.(1)如图①,点A,B,C在⊙O上,点D在⊙O外,比较∠A与∠BDC的大小,并说明理由;(2)如图②,点A,B,C在⊙O上,点D在⊙O内,比较∠A与∠BDC的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点M(1,0),N(4,0),点P在y轴上,试求当∠MPN度数最大时点P的坐标.解:(1)∠A>∠BDC,理由如下:设CD交⊙O于E,连接BE,如图1所示:∠BEC=∠BDC+∠DBE,∴∠BEC>∠BDC,∵∠A=∠BEC,∴∠A>∠BDC;(2)∠A<∠BDC,理由如下:延长CD交⊙O于点F,连接BF,如图2所示:∵∠BDC=∠BFC+∠FBD,∴∠BDC>∠BFC,又∵∠A=∠BFC,∴∠A<∠BDC;(3)由(1)、(2)可得:当点P是经过M、N两点的圆和y轴相切的切点时,∠MPN度数最大,①当点P在y轴的正半轴上时,如图3所示:设⊙O′为点P是经过M、N两点的圆和y轴相切的切点的圆,连接O′P、O′M、O′N,作O′H⊥MN于H,则四边形OPO′H是矩形,MH=HN,∴OP=O′H,O′P=OH=O′M,∵M(1,0),N(4,0),∴OM=1,MN=3,∴MH=HN=MN=,设O′P=OH=O′M=x,MH=OH﹣OM=x﹣1,∴x﹣1=,∴x=,∴O′H===2,∴OP=2,∴点P的坐标为(0,2);②当点P在y轴的负半轴上时,如图4所示:同理可得O′H=OP=2,∴点P的坐标为(0,﹣2);综上所述,当∠MPN度数最大时点P的坐标为(0,2)或(0,﹣2).。

2020年九年级数学典型中考压轴题综合专项训练:《圆的综合》(含答案)

2020年九年级数学典型中考压轴题综合专项训练:《圆的综合》(含答案)

2020年九年级数学典型中考压轴题综合专项训练:《圆的综合》1.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM 的值.2.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC平分∠BAD,过C点作CE⊥AD 延长线于E点.(1)求证:CE是⊙O的切线;(2)若AB=10,AC=8,求AD的长.3.已知,如图1,AB为⊙O直径,△ACD内接于⊙O,∠D+∠ACE=90°,点E在线段AD上,连接CE.(1)若CE⊥AD,求证:CA=CD;(2)如图2,连接BD,若AE=DE,求证:BD平行CE;(3)如图,在(2)的条件下,过点C作AB的垂线交AB于点K,交AD于点L,4AK =9BK,若OL=,求BD的值.4.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,点D在⊙O上,BD=BC,DE⊥AC,垂足为点E,DE与⊙O和AB分别交于点M、F.连接BO、DO、AM.(1)证明:BD是⊙O的切线;(2)若tan∠AMD=,AD=2,求⊙O的半径长;(3)在(2)的条件下,求DF的长.5.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.6.如图,在△ABC中,I是内心,AB=AC,O是AB边上一点,以点O为圆心,OB为半径的⊙O经过点I.(1)求证:AI是⊙O的切线;(2)已知⊙O的半径是5.①若E是BI的中点,OE=,则BI=;②若BC=16,求AI的长.7.[教材呈现]图是华师版九年级上册数学教材第103页的部分内容.已知:如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.通过该问题的证明,得出了直角三角形的一条性质:直角三角形斜边上的中线等于斜边的一半.请根据教材内容,结合图①,写出完整的解题过程.[结论应用](1)如图②,在Rt△ABC中,F是AD中点,∠ACB=90°,∠BAC=60°,点D在BC上(点D不与B、C重合),DE⊥AB于点E,连结CE、CF、EF.当AD=4时,S=.△CEF(2)如图③,AD是⊙O直径,点C、E在⊙O上(点C、E位于直径AD两侧),在⊙O 上,且sin∠DAC=,CD=2.当四边形OCDE有一组对边平行时,直接写出AE的长.8.已知正方形ABCD内接于⊙O,点E为上一点,连接BE、CE、DE.(1)如图1,求证:∠DEC+∠BEC=180°;(2)如图2,过点C作CF⊥CE交BE于点F,连接AF,M为AE的中点,连接DM并延长交AF于点N,求证:DN⊥AF;(3)如图3,在(2)的条件下,连接OM,若AB=10,tan∠DCE=,求OM的长.9.如图,AB为⊙O的直径,点C、D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线.(2)若∠CAB=36°,⊙O的半径为12,求的长.10.如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是⊙O的切线;(2)若EA=EF=2,求⊙O的半径;11.已知AB是⊙O的直径,C为⊙O上一点,∠OAC=58°.(Ⅰ)如图①,过点C作⊙O的切线,与BA的延长线交于点P,求∠P的大小;(Ⅱ)如图②,P为AB上一点,CP延长线与⊙O交于点Q.若AQ=CQ,求∠APC的大小.12.已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F.(1)如图1,求证:BD平分∠ADF;(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3,DN=9.求sin∠ADB的值.13.如图,已知AB为⊙O的直径,AD、BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA、CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.(3)在(2)中的条件下,∠ABD=30°,将△ABD以点A为中心逆时针旋转120°,求BD扫过的图形的面积(结果用π表示).14.如图,△AOB中,A(﹣8,0),B(0,),AC平分∠OAB,交y轴于点C,点P 是x轴上一点,⊙P经过点A、C,与x轴交于点D,过点C作CE⊥AB,垂足为E,EC 的延长线交x轴于点F.(1)求证:EF为⊙P的切线;(2)求⊙P的半径.15.已知,AB为⊙O的直径,弦BC、AF相交于点E,过点E作ED⊥AB,∠AEC=∠BED.(1)如图1,求证:=;(2)如图2,当∠BAF=45°时,OC交AF于点H,作FG⊥BH于点Q,交AB于点G,连接GH,求证:∠AGH=∠BGF;(3)如图3,在(2)的条件下,射线BG与⊙O交于点P,过点P作PK⊥BH交AB于点M,垂足为点K,点N为B的中点,MN=,求⊙O的半径.参考答案1.解:(1)连接OE,则∠OCB=∠OBC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.2.解:(1)连接OC,∵OC=OA,∴∠OAC=∠OCA,又∵AC平分∠BAD,∴∠CAD=∠CAO=∠OCA,∴OC∥AE,∵CE⊥AD,即可得OC⊥CE,∴CE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴BC===6,∵∠BAC=∠DAC,∴=,∴BC=CD=6,延长BC交AE的延长线于F,∵∠BAC=∠FAC,AC=AC,∠ACB=∠ACF=90°,∴△ACB≌△ACF(ASA),∴FC=BC=6,AF=AB=10,∵∠CDF=180°﹣∠ADC,∠ABF=180°﹣∠ADC,∴∠CDF=∠ABF,∵∠CFD=∠AFB,∴△CFD∽△AFB,∴=,∴=,∴AD=.3.解:(1)∵CE⊥AD,∴∠D+∠ECD=90°,∠AEC=∠DEC=90°,∵∠D+∠ACE=90°,∴∠ACE=∠DCE,在△ACE和△DCE中,,∴△ACE≌△DCE(ASA),∴CA=CD;(2)∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠BDC=90°,∵∠ADC+∠ACE=90°,∴∠BDC=∠ACE,∵∠BDC=∠BAC,∴∠BAC=∠ACE,设AB与CE的交点为M,则MA=MC,∴M在AC的垂直平分线上,∵弦的垂直平分线过圆心O,即弦的垂直平分线与直径的交点是圆心,∴M与点O重合,即CE过圆心O,∵AE=DE,∴CE⊥AD,∴∠AEC=∠ADB=90°,∴CE∥BD;(3)∵4AK=9BK,∴AK:BK=9:4,设BK=4m,则AK=9m,∴AB=13m,∴OA=OB=6.5m,∴OK=OB﹣BK=2.5m,∵AK⊥CL,∴∠AKC=90°=∠AEO,在△OAE和△OCK中,,∴△OAE≌△OCK(AAS),∴OE=OK=2.5m,∵OA=OB,AE=DE,∴BD=2OE=5m,∴AD=,∵∠AKL=∠ADB=90°,∠LAK=∠BAD,∴△AKL∽△ADB,∴,即,∴LK=,∵OK2+LK2=OL2,∴,解得,m=0.8,∴BD=5m=4.4.解:(1)在△BDO和△BCO中,BD=BC,OD=OC,BO=BO,故△BDO≌△BCO(SSS),∴∠BDO=∠ABC=90°,BD是⊙O的切线;(2)连接CD,则∠AMD=∠ACD,AB是直径,故∠ADC=90°,在Rt△ADC中,tan∠ACD=tan∠AMD==,∵AD=2,∴CD=4,故圆的半径为5;(3)在Rt△ADC中,DE⊥AC,则DE==4,则AE=2,由(1)知△BDO≌△BCO,∴∠BOC=∠BOD=∠DOC,∵∠DAE=∠DOC,∴∠DAE=∠BOC,∵ED⊥AC,∴∠AED=∠OCB=90°,∴△DAE∽△BOC,∴,即,解得:BC=10,∴∠BAC=∠ABC=45°,∴∠FAE=∠AFE=45°,∴FE=AE=2,DF=DE﹣EF=2.5.(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.6.(1)证明:延长AI交BC于D,连接OI.∵I是△ABC的内心,∴BI平分∠ABC,AI平分∠BAC.∴∠1=∠3.∵AB=AC,∴AD⊥BC.又∵OB=OI,∴∠3=∠2.∴∠1=∠2.∴OI∥BD.∴OI⊥AI.∴AI为⊙O的切线.(2)①解:∵E是BI的中点,∴OE⊥BI.在直角△OBE中,OB=5,OE=,则由勾股定理知:BE===2.∴BI=2BE=.故答案是:;②解:由(1)知OI∥BC,∴△AOI~△ABD.∴,∴=.∴.∴.∴AI=•AD=×=.7.解:[教材呈现]已知:△ABC中,∠ACB=90°,CD是中线,求证:CD=AB.证明:作DE⊥BC于E,DF⊥AC于F,则DF∥BC,DE∥AC,∵CD是中线,∴AF=FC,BE=EC,∴直线DE是线段AC的垂直平分线,直线DE是线段BC的垂直平分线,∴DA=DC,DB=DC,∴CD=DA=DB=AB;[结论应用](1)CF、FE分别是Rt△ACD、Rt△ADE的中线,则CF=EF=AD=2,设:∠CAF=α=∠ACF,∠FAE=β=∠AEF,∠CAB=α+β=60°,∠CFE=∠FCA+∠FAC+∠FEA+∠FAE=2α+2β=120°,故△CEF为腰长为2,顶角为120°的等腰三角形,过点F作FH⊥CE,则S=×CE×FH=2×1=,△CEF故答案为:;(2)设sin∠DAC==sinα,CD=2,则AD=6,OC=OE=AD=3,①当CD∥OE时,如图③(左侧图),则∠ADC=∠DOE=∠β,sin=cosβ,过点D作DH⊥OE交OE于点H,OH=OD cosβ=3×=1,则HE=3﹣1=2,同理DH=2,DE==2,AE===2;②当OC∥DE时,如图③(右侧图),则∠COD=∠ODE=2α,过点O作ON⊥DE于点N,则DN=EN,DE=2DN=2×OD cos2α=2×3×=(注:cos2α的求法见备注),AE===;综上,AE=2或;备注:等腰三角形ABC,AB=AC,作AD⊥BC于点D,过点C作CE⊥AB于点E,设∠BAD=∠CAD=α,设sin,设BD=CD=a,则AB=AC=3a,则AD=2a,S=AD×BC=AB×CE,△ABC即2a×2a=3a×CE,则CE=,sin2α==,则cos2α=.8.(1)证明:连接BD,OC,∵四边形ABCD为正方形,∴∠A=90°,BC=CD,∴BD为⊙O的直径,∵OB=OD,∴OC⊥BD,∴∠BOC=90°,∴∠BEC=∠BOC=45°,∵正方形ABED是圆O的内接四边形,∴∠A+∠DEB=180°,∴∠DEB=90°,∴∠DEC+∠BEC=∠DEB+∠BEC+∠BEC=180°;(2)证明:如图2,延长ED至G,使ED=DG,连接AG,∵CE⊥CF,∴∠ECF=90°,∵∠CEF=45°,∴∠CEF=∠CFE=45°,∴CE=CF,∵∠BCD=∠ECF=90°,∴∠BCF=∠DCF,∵BC=CD,∴△BFC≌△DEC(SAS),∴BF=DE,∵DE=DG,∴BF=DG,∵四边形ABED为圆O的内接四边形,∴∠ABE+∠ADE=180°,∵∠ADE+∠ADG=180°,∴∠ABE=∠ADG,∵AB=AD,∴△ABF≌△ADG(SAS),∴∠BAF=∠DAC,∵∠BAF+∠FAD=∠BAD=90°,∴∠DAG+∠FAD=90°,∴∠FAG=90°,∵M为AE的中点,∴DM为△AEG的中位线,∴DM∥AG,∴∠DNF=∠FAG=90°,∴DN⊥AF,(3)解:如图3,连接BD,OC,过点B作BK⊥CF交CF的延长线于点K,过点B作BT⊥AE于点T,由(1)知∠BOC=90°,∴OB=OC=,由(1)知BD为⊙O的直径,在Rt△ABD中,BD=AB=10,∵,∴∠DBE=∠DCE,∴tan∠DCE=tan∠DBE=,∴,设DE=x,则BE=7x,在Rt△BDE中,BD==5x,∴,∴x=2,∴DE=2,∴BF=2,∵∠EFC=45°,∴∠BFK=∠EFC=45°,∴∠KBF=∠BFK=45°,∴,由(2)知∠BCF=∠DCE,∴tan∠BCF=tan∠DCE=,∴,∴,∴,在Rt△ECF中,EF=CF=12,∴BE=EF+BF=14,∵∠AEB=∠AEC﹣∠BEC=90°﹣45°=45°,∴∠TBE=∠TEB,∴TB=TE=,∴=,∴,∴,∵M为AE的中点,∴OM⊥AE,在Rt△OME中,OM==3.9.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;(2)连接OD,∵∠BOC=2∠CAB=2×36°=72°,∵,∴∠BOD=2∠BOC=144°,∴的长==π.10.解:(1)连接OD,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是⊙O的切线;(2)设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+2,∴BD=CD=DE=r+2,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+2,∴AF=AB﹣BF=2OB﹣BF=2r﹣(2+r)=r﹣2,∵∠BFD=∠EFA,∠B=∠E,∴△BFD∽△EFA,∴,即=解得:r1=1+,r2=1﹣(舍),综上所述,⊙O的半径为1+.11.解:(I)如图①,∵OA=OC,∠OAC=58°,∴∠OCA=58°∴∠COA=180°﹣2×58°=64°∵PC是⊙O的切线,∴∠OCP=90°,∴∠P=90°﹣64°=26°;(II)∵∠AOC=64°,∴∠Q=∠AOC=32°,∵AQ=CQ,∴∠QAC=∠QCA=74°,∵∠OCA=58°,∴∠PCO=74°﹣58°=16°,∵∠AOC=∠QCO+∠APC,∴∠APC=64°﹣16°=48°.12.(1)证明:如图1,∵AC⊥BD,DE⊥BC,∴∠AHD=∠BED=90°,∴∠DAH+∠ADH=90°,∠DBE+∠BDE=90°,∵∠DAC=∠DBC,∴∠ADH=∠BDE,∴BD平分∠ADF.(2)证明:连接OA、OB.∵OB=OC=OA,AC=BC∴△OCB≌△OCA(SSS),∴OBC=∠OCA,∴OC平分∠ACB;(3)如图3中,连接BN,过点O作OP⊥BD于点P,过点O作OQ⊥AC于点Q.则四边形OPHQ是矩形,∵DN∥AC,∴∠BDN=∠BHC=90°,∴BN是直径,则OP=DN=,∴HQ=OP=,设AH=x,则AQ=x+,AC=2AQ=2x+9,BC=AC=2x+9,∴CH=AC﹣AH=2x+9﹣x=x+9在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2,即(2x+9)2=()2﹣x2+(x+9)2,整理得2x2+9x﹣45=0,(x﹣3)(2x+15)=0解得x=3(负值舍去),BC=2x+9=15,CH=x+9=12∵∠ADB=∠BCH,∴sin∠ADB=sin∠BCH===.即sin∠ADB的值为.13.证明:(1)连接DO,如图,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切线,∴∠CDO=90°,∴OD⊥CE,又∵点D在⊙O上,∴CD是⊙O的切线;(2)设圆O的半径为R,则OD=R,OE=R+1,∵CD是圆O的切线,∴∠EDO=90°,∴ED2+OD2=OE2,∴9+R2=(R+1)2,∴R=4,∴圆O的半径为4;(3)∵∠ABD=30°,AB=2R=8,∴AD=4,∴BD扫过的图形的面积==16π.14.(1)证明:连接CP,∵AP=CP,∴∠PAC=∠PCA,∵AC平分∠OAB,∴∠PAC=∠EAC,∴∠PCA=∠EAC,∴PC∥AE,∵CE⊥AB,∴CP⊥EF,即EF是⊙P的切线;(2)∵AC平分∠OAB,∴∠BAC=∠OAC,∵PA=PC,∴∠BAC=∠ACP,∴PC∥AB,∴△OPC∽△OAB,∴=,∵A(﹣8,0),B(0,),∴OA=8,OB=,∴AB=,∴=,∴PC=5,∴⊙P的半径为5.15.(1)证明:如图1,连接AC、BF、CF,∵AB为⊙O的直径,∴∠AFB=90°,∵∠AEC=∠BED,∠AEC=∠BEF,∴∠BEF=∠BED,∵ED⊥AB,∴∠BDE=∠AFB=90°,又∵BE=BE,∴△BDE≌△BFE(AAS),∴∠ABC=∠FBC,∵,∴∠ABC=∠AFC,∵,∴∠CAF=∠FBC,∴∠CAF=∠AFC,∴AC=CF,∴;(2)证明:如图2,连接OF、BF,作AS⊥AF于点A,交FG的延长线于点S,∵,∴AOC=∠FOC,∵AO=OF,∴OC⊥AF,∴AH=HF=AF,∵∠BAF=45°,∴AF=BF,∵FG⊥BH,AS⊥AF,∴∠S=∠BHF,又∵∠SAF=∠HFB=90°,∴△FSA≌△BHF(AAS),∴AS=HF=AH,∵∠SAG=∠GAH=45°,AG=AG,∴△SAG≌△HAG(SAS),∴∠SGA=∠AGH,∴∠AGH=∠BGF;(3)解:如图3,过点O作OR⊥HP于点R,OT⊥BH于点T,∵△SAG≌△HAG,∴∠AHG=∠S=∠BHF,∵OH⊥AF,∴∠OHG=∠OHB,∵∠ORH=∠OTH=90°,OH=OH,∴△ORH≌△OTH(AAS),∴RH=TH,OR=OT,又∵OP=OB,∠ORP=∠OTB=90°,∴Rt△ORP≌Rt△OTB(HL),∴PR=BT,∴PR+RH=BT+TH,即PH=BH,∴∠HPB=∠HBP,设∠OPR=∠OBT=α,∵∠AOH=∠A=45°,∴∠PHO=∠BHO=∠AOH﹣∠OBH=45°﹣α,∴∠PHB=90°﹣2α,∴∠HPB=∠HBP=45°+α,∴∠PBO=45°,∵PO=BO,∴∠OPB=∠OBP=45°,∴PO⊥AB,∵PK⊥BH,GF⊥BH,∴PK∥GF,∴∠PMG=∠BGF,∵∠PGM=∠AGH,∴∠PGM=∠PMG,∴PG=PM,∴OG=OM,过点M作ML⊥BP于点L,∵∠PBH=∠BHF=45°+α,∴tan∠PBH=tan∠BHF==2,∵∠MPL=∠BPK,∴∠PML=∠PBH,∴tan∠PML=tan∠PBH=2,设BM=4a,则BL=ML=2a,∴PL=4a,∴PB=6a,∴PO=BO=6a,∴OM=OG=2a,∴GM=4a,∴GM=BM,∵N为BH的中点,∴MN为中位线,∴GH=2MN=,过点G作GU⊥OH于点U,则tan∠GHO=tan∠OHB=tan∠FBH=,在Rt△GUH中,设GU=b,则UH=2b,GH=b,∴GU=,∴GO=2=2a,∴a=1,∴OB=6a=6,即⊙O的半径为6.。

2020年九年级中考数学压轴题专项训练:圆的综合卷(附答案)

2020年九年级中考数学压轴题专项训练:圆的综合卷(附答案)

2020年九年级中考数学压轴题专项训练:圆的综合卷(含答案)1.如图,点O为Rt△ABC斜边AB上的一点,∠C=90°,以OA为半径的⊙O与BC交于点D,与AC交于点E,连接AD且AD平分∠BAC.(1)求证:BC是⊙O的切线;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π)(1)证明:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵∠ACD=90°,∴OD⊥BC,∴BC与⊙O相切;(2)解:连接OE,ED,∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°,又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴四边形OAED是菱形,∴OE⊥AD,且AM=DM,EM=OM,∴S△AED =S△AOD,∴阴影部分的面积=S扇形ODE==π.2.如图,已知AB是⊙O的直径,AC是⊙O的弦,点E在⊙O外,连接CE,∠ACB的平分线交⊙O于点D.(1)若∠BCE=∠BAC,求证:CE是⊙O的切线;(2)若AD=4,BC=3,求弦AC的长.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∴∠OAC=∠OCA,∵∠BAC=∠BCE,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切线;(2)解:连接BD,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴=,∴AD=BD,∵AB是⊙O的直径,∴∠ADB=90°,∴△ADB是等腰直角三角形,∴AB=AD=4,∵BC=3,∴AC===.3.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.(1)证明:连接OE .∵OA =OE ,∴∠OAE =∠OEA ,又∵∠DAE =∠OAE ,∴∠OEA =∠DAE ,∴OE ∥AD ,∴∠ADC =∠OEC ,∵AD ⊥CD ,∴∠ADC =90°,故∠OEC =90°.∴OE ⊥CD ,∴CD 是⊙O 的切线;(2)解:∵∠C =45°,∴△OCE 是等腰直角三角形,∴CE =OE =2,∠COE =45°,∴阴影部分面积=S △OCE ﹣S 扇形OBE =2×2﹣=2﹣.4.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.解:(1)△FAG等腰三角形;理由:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(2)成立;∵BC为直径,∴∠BAC=90°∴∠ABE+∠AGB=90°∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,又∵AF=FG,∴F为BG的中点∵△BAG为直角三角形,∴AF=BF=BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD==12,∴在Rt△BDA中,AB==4,∵∠ABC=∠DBA,∠BAC=∠ADB=90°∴△ABC∽△DBA,∴=,∴=,∴BC=,∴⊙O的直径BC=.5.如图,已知矩形ABCD的边AB=6,BC=4,点P、Q分别是AB、BC边上的动点.(1)连接AQ、PQ,以PQ为直径的⊙O交AQ于点E.①若点E恰好是AQ的中点,则∠QPB与∠AQP的数量关系是∠QPB=2∠AQP;②若BE=BQ=3,求BP的长;(2)已知AP=3,BQ=1,⊙O是以PQ为弦的圆.①若圆心O恰好在CB边的延长线上,求⊙O的半径;②若⊙O与矩形ABCD的一边相切,求⊙O的半径.解:(1)①∵点E恰好是AQ的中点,∠ABQ=90°,∴BE=AE=EQ,∴∠EAB=∠EBA,∴∠QEB=2∠EBP,∵以PQ为直径的⊙O交AQ于点E,∴∠QPB=∠QEB,∠PBE=∠PQA,∴∠QPB=2∠AQP,故答案为:∠QPB=2∠AQP;②∵BE=BQ,∴∠BEQ=∠BQE,且∠BPQ=∠BEQ,∴∠BPQ=∠BQE,∴tan∠BPQ=tan∠BPQ,∴,∴,∴BP=(2)①如图1,过点O作OE⊥PQ,∵AP=3,AB=6,∴BP=3,∴PQ===,∵OE⊥PQ,∴QE=PE=,∵cos∠PQB==,∴=∴OQ=5,∴⊙O的半径为5;②如图2,若⊙O与BC相切于点Q,连接OQ,过点O作OE⊥PQ于E,∴EQ=PE=,∵BC是⊙O切线,∴OQ⊥BC,且AB⊥BC,∴OQ∥AB,∴∠OQP=∠BPQ,∴cos∠OQP=cos∠BPQ,∴,∴∴OQ=;如图3,若⊙O与AB相切于点P,连接OP,过点O作OE⊥PQ于E,∴EQ=PE=,∵AB是⊙O切线,∴OP⊥AB,且AB⊥BC,∴OP∥BC,∴∠OPQ=∠PQB,∴cos∠OPQ=cos∠PQB,∴∴,∴OP=5;如图4,若⊙O与AD相切于点M,连接OM,OQ,OP,延长MO交BC于F,作OH⊥AB于H 点,∴OM⊥AD,且BC∥AD,∴OF⊥BC,∵∠A=∠B=∠AMO=∠OFB=∠OHB=90°,∴四边形AHOM,OHBF是矩形,∴OM=AH,OH=BF,∵OQ2=OF2+FQ2,OP2=OH2+PH2,∴OQ2=(6﹣OQ)2+(BF﹣1)2,OQ2=BF2+(OQ﹣3)2,∴OQ=5﹣若图5,若⊙O与CD相切于点N,连接ON,OQ,OP,延长NO交BC于E,作OH⊥BC于H 点,同理可得:OP2=PE2+OE2,OQ2=OH2+QH2,∴OQ2=(3﹣OH)2+(4﹣OQ)2,OQ2=OH2+(4﹣OQ﹣1)2,∴OQ=35﹣6.6.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB =6,BC=,(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.(1)证明:由折叠的性质可知,AF=AB=6,在Rt△ADF中,DF===3,∴CF=DC﹣DF=3,∴DF=FC,即F是CD的中点;(2)证明:在Rt△ADF中,DF=3,AF=6,∴∠DAF=30◦,∴∠BAF=60◦,由折叠的性质可知,∠EAF=∠EAB,∠AFE=∠B=90°,∴∠EAF=∠EAB=30°,∴AE=2EF,∠EFC=180°﹣∠AFD﹣∠AFE=30◦,∴EF=2CE,∴AE=4CE;(3)解:连接OP、OH、PH,∵⊙O与AD相切于点P,∴OP⊥AD,∴OP∥DF,∵∠DAF=30°,∴∠AOP=90°﹣∠DAF=60°,OF=OP=OA,∴∠OFH=∠AOP=60°,OP=OF=2,∴AP==2,∴DP=AD﹣AP=,∵∠OFH=60°,OH=OF,∴△OHF为等边三角形,∴∠FOH=∠OHF=60°,HF=OF=2,∴DH=DF﹣HF=1,∵OP∥DF,∴∠POH=∠OHF=60°,∴∠POH=∠HOF,∴=,∴阴影部分的面积=△PDH的面积=×DH×DP=.7.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.(1)求证:∠A=∠CBD.(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O 相切,并说明理由.(1)证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如图,连接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中点M,连接DM、OD,如图,∵DM为Rt△BCD斜边BC的中线,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM为⊙O的切线,此时BM=BC=.8.如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.(1)求证:AC是∠DAB的平分线;(2)若AB=10,AC=4,求AE的长.(1)证明:连接OC,∵直线MC与⊙O相切于点C,∴∠OCM=90°,∵AD⊥CD,∴∠ADM=90°,∴∠OCM=∠ADM,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAB,即AC是∠DAB的平分线;(2)解:连接BC,连接BE交OC于点F,∵AB是⊙O的直径,∴∠ACB=∠AEB=90°,∵AB=10,AC=4,∴BC===2,∵OC∥AD,∴∠BFO=∠AEB=90°,∴∠CFB=90°,F为线段BE中点,∵∠CBE=∠EAC=∠CAB,∠CFB=∠ACB,∴△CFB∽△BCA.∴=,即=,解得,CF=2,∴OF=OC﹣CF=3.∵O为直径AB中点,F为线段BE中点,∴AE=2OF=6.9.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.(1)证明:如图,连接OD.∵点D是半圆的中点,∴∠AOD=∠BOD=90°,∴∠ODC+∠OED=90°,∵OD=OC,∴∠ODC=∠OCD.又∵CF=EF,∴∠FCE=∠FEC.∵∠FEC=∠OED,∴∠FCE=∠OED.∴∠FCE+∠OCD=∠OED+∠ODC=90°,即FC⊥OC,∴FC是⊙O的切线;(2)解:∵tan A=,∴在Rt△ABC中,=,∵∠ACB=∠OCF=90°,∴∠ACO=∠BCF=∠A,∵△ACF∽△CBF,∴===.∴AF=10,∴CF2=BF•AF.∴BF=.∴AO==.10.如图,AB是⊙O的直径,弦DE垂直半径OA,C为垂足,DE=6,连接DB,∠B=30°,过点E作EM∥BD,交BA的延长线于点M.(1)求的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.解:(1)连结OE,∵DE垂直OA,∠B=30°,∴CE=DE=3,,∴∠AOE=2∠B=60°,∴∠CEO=30°,OC=OE,由勾股定理得OE=2;(2)∵EM∥BD,∴∠M=∠B=30°,∠M+∠AOE=90°,∴∠OEM=90°,即OE⊥ME,∴EM是⊙O的切线;(3)再连结OF,当∠APD=45°时,∠EDF=45°,∴∠EOF=90°,S=π(2)2﹣(2)2=3π﹣6.阴影11.如图,Rt△ABC中,∠C=90°.BE平分∠ABC交AC于点D,交△ABC的外接圆于点E,过点E作EF⊥BC交BC的延长线于点F.请补全图形后完成下面的问题:(1)求证:EF是△ABC外接圆的切线;(2)若BC=5,sin∠ABC=,求EF的长.(1)证明:补全图形如图所示,∵△ABC是直角三角形,∴△ABC的外接圆圆心O是斜边AB的中点.连接OE,∴OE=OB.∴∠2=∠3,∵BE平分∠ABC,∴∠1=∠2,∴∠1=∠3.∴OE∥BF.∵EF⊥BF,∴EF⊥OE,∴EF是△ABC外接圆的切线;(2)解:在Rt△ABC中,BC=5,sin∠ABC=,∴=.∵AC2+BC2=AB2,∴AC=12.∵∠ACF=∠CFE=∠FEH=90°,∴四边形C FEH是矩形.∴EF=HC,∠EHC=90°.∴EF=HC=AC=6.12.我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知⊙O的两条弦AB⊥CD,则AB、CD互为“十字弦”,AB是CD的“十字弦”,CD也是AB的“十字弦”.(1)若⊙O的半径为5,一条弦AB=8,则弦AB的“十字弦”CD的最大值为10 ,最小值为 6 .(2)如图1,若⊙O的弦CD恰好是⊙O的直径,弦AB与CD相交于H,连接AC,若AC=12,DH=7,CH=9,求证:AB、CD互为“十字弦”;(3)如图2,若⊙O的半径为5,一条弦AB=8,弦CD是AB的“十字弦”,连接AD,若∠ADC=60°,求弦CD的长.解:(1)如图a,当CD是直径时,CD的长最大,则CD的最大值为10;如图b,当点D与点A重合时,CD有最小值,过点O作OE⊥CD于E,OF⊥AB于F,∴AF=BF=4,DE=CE,∴OF===3,∵OE⊥CD,OF⊥AB,∠CDB=90°,∴四边形CEOF是矩形,∴CE=OF=3,∴CD=6,∴CD最小值为6,故答案为:10,6;(2)如图1,连接AD,∵DH=7,CH=9,∴CD=16,∵CD是直径,∴∠CAD=90°,∴AD===4,∵,=,∴,∠ADH=∠ADC,∴△ADH∽△CDA,∴∠AHD=∠CAD=90°,∴AB⊥CD,∴AB、CD互为“十字弦”;(3)如图2,过点O作OE⊥CD于E,过点O作OF⊥AB于点F,连接AO,CO,过点O作ON⊥AC于N,∵∠ADC=60°,AB⊥CD,∴AF=DF,∵OE⊥CD,OF⊥AB,AB⊥CD,∴四边形OEHF是矩形,AF=BF=4,CE=ED,∴OF=EH,∵OF===3,∴EH=3,∴ED=CE=3+DH,∴CF=3+2DH,∵∠AOC=2∠ADC=120°,且AO=CO=5,ON⊥AC,∴∠CAO=30°,AN=CN,∴NO=,AN=,∴AC=5,∵AH2+CH2=AC2,∴75=3DH2+(3+2DH)2,∴DH=2﹣,∴CD=2CE=2(3+2﹣)=.13.如图,AB是⊙O的弦,AB=4,点P在上运动(点P不与点A、B重合),且∠APB =30°,设图中阴影部分的面积为y.(1)⊙O的半径为 4 ;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.解:(1)∵∠AOB=2∠APB=2×30°=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=4,即⊙O的半径为4;故答案为4;(2)过点O作OH⊥AB,垂足为H,如图,则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°,∵OA=OB,OH⊥AB,∴AH=BH=AB=2,在Rt△AHO中,∠AHO=90°,AO=4,AH=2,∴OH==2,∴y=﹣×4×2+×4×x=2x+π﹣4(0<x≤2+4).14.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=,AB=6,求⊙O的半径.(1)解:结论:DE与⊙O相切证:连接OD在⊙O中,∵D为的中点,∴=,∴AD=DC,∵AD=DC,点O是AC的中点,∴OD⊥AC,∴∠DOA=∠DOC=90°,∵DE∥AC,∴∠DOA=∠ODE=90°,∵∠ODE=90°,∴OD⊥DE,∵OD⊥DE,DE经过半径OD的外端点D,∴DE与⊙O相切.(2)解:连接BD.∵四边形ABCD是⊙O的内接四边形,∴∠DAB+∠DCB=180°,又∵∠DCE+∠DCB=180°,∴∠DAB=∠DCE,∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°,∵=,∴∠ABD=∠CBD=45°,∵AD=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∵DE∥AC,∴∠DCA=∠CDE=45°,在△ABD和△CDE中,∵∠DAB=∠DCE,∠ABD=∠CDE=45°,∴△ABD∽△CDE,∴=,∴=,∴AD=DC=4,在Rt△ADC中,∠ADC=90°,AD=DC=4,∴AC===8,∴⊙O的半径为4.15.(1)如图①,点A,B,C在⊙O上,点D在⊙O外,比较∠A与∠BDC的大小,并说明理由;(2)如图②,点A,B,C在⊙O上,点D在⊙O内,比较∠A与∠BDC的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点M(1,0),N(4,0),点P在y轴上,试求当∠MPN度数最大时点P的坐标.解:(1)∠A>∠BDC,理由如下:设CD交⊙O于E,连接BE,如图1所示:∠BEC=∠BDC+∠DBE,∴∠BEC>∠BDC,∵∠A=∠BEC,∴∠A>∠BDC;(2)∠A<∠BDC,理由如下:延长CD交⊙O于点F,连接BF,如图2所示:∵∠BDC=∠BFC+∠FBD,∴∠BDC>∠BFC,又∵∠A=∠BFC,∴∠A<∠BDC;(3)由(1)、(2)可得:当点P是经过M、N两点的圆和y轴相切的切点时,∠MPN度数最大,①当点P在y轴的正半轴上时,如图3所示:设⊙O′为点P是经过M、N两点的圆和y轴相切的切点的圆,连接O′P、O′M、O′N,作O′H⊥MN于H,则四边形OPO′H是矩形,MH=HN,∴OP=O′H,O′P=OH=O′M,∵M(1,0),N(4,0),∴OM=1,MN=3,∴MH=HN=MN=,设O′P=OH=O′M=x,MH=OH﹣OM=x﹣1,∴x﹣1=,∴x=,∴O′H===2,∴OP=2,∴点P的坐标为(0,2);②当点P在y轴的负半轴上时,如图4所示:同理可得O′H=OP=2,∴点P的坐标为(0,﹣2);综上所述,当∠MPN度数最大时点P的坐标为(0,2)或(0,﹣2).。

2020年九年级数学典型中考压轴题专练:圆有关题型(含答案)

2020年九年级数学典型中考压轴题专练:圆有关题型(含答案)

2020年九年级数学典型中考压轴题专练:圆有关题型1、如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC 交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.2、如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=2,OP=1,求线段BF的长.3、如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.4、如图,在四边形ABCD 中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD 为直径作圆O ,过点D 作DE ∥AB 交圆O 于点E(1)证明点C 在圆O 上;(2)求tan ∠CDE 的值;(3)求圆心O 到弦ED 的距离.5、如图,AB 是半圆O 的直径,点P 是BA 延长线上一点,PC 是⊙O 的切线,切点为C. 过点B 作BD ⊥PC 交PC 的延长线于点D ,连接BC. 求证:(1)∠PBC =∠CBD;(2)BC 2=AB ·BD6、如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P 作PE ⊥AB,垂足为E ,弧AC 射线EP 交于点F ,交过点C 的切线于点D.(1)求证DC=DP(2)若∠CAB=30°,当F 是 的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由;7、如图,在△ABC 中,∠C=90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF .AC(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.8、如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.9、如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.10、如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD 到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.11、已知:如图,⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.12、如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x 的取值范围.(2)当BP=2时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE=S△ABC,求BP的长.13、如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.(1)判断BD与⊙O的位置关系,并说明理由;(2)若CD=15,BE=10,tanA=,求⊙O的直径.14、如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;(2)求CD的长.15、如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?16、在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.答案:1、【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.2、【解答】(1)证明:∵∠AFB=∠ABC,∠ABC=∠ADC,∴∠AFB=∠ADC,∴CD∥BF,∴∠AFD=∠ABF,∵CD⊥AB,∴AB⊥BF,∴直线BF是⊙O的切线.(2)解:连接OD,∵CD⊥AB,∴PD=CD=,∵OP=1,∴OD=2,∵∠PAD=∠BAF,∠APO=∠ABF,∴△APD∽△ABF,∴=,∴=,∴BF=.3、【解答】(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD;(2)解:∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD:CA=CE:CD,∴CD2=CA•CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,设⊙O的半径为x,则OA=OD=x,则Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,解得:x=.∴⊙O的半径为.4、【解答】(1)证明:如图1,连结CO.∵AB=6,BC=8,∠B=90°,∴AC=10.又∵CD=24,AD=26,102+242=262,∴△ACD是直角三角形,∠C=90°.∵AD为⊙O的直径,∴AO=OD,OC为Rt△ACD斜边上的中线,∴OC=AD=r,∴点C在圆O上;(2)解:如图2,延长BC、DE交于点F,∠BFD=90°.∵∠BFD=90°,∴∠CDE+∠FCD=90°,又∵∠ACD=90°,∴∠ACB+∠FCD=90°,∴∠CDE=∠ACB.在Rt△ABC中,tan∠ACB==,∴tan∠CDE=tan∠ACB=;(3)解:如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,∴=,即=,∴CF=,∴BF=BC+CF=8+=.∵∠B=∠F=∠AE D=90°,∴四边形ABFE是矩形,∴AE=BF=,∴OG=AE=,即圆心O到弦ED的距离为.5、【解答】证明:(1)连接OC,∵PC是⊙O的切线,∴∠OCD=90°.又∵BD⊥PC∴∠BDP=90°∴OC∥BD.∴∠CBD=∠OCB.∴OB=OC .∴∠OCB=∠PBC.∴∠PBC=∠CBD.(2)连接AC∵AB 是直径,∴∠BDP=90°.又∵∠BDC=90°,∴∠ACB=∠BDC.∵∠PBC=∠CBD,∴△ABC ∽△CBD. ∴BC AB =BD BC .∴BC 2=AB ·BD6、【解析】 (1) 如图连接OC, ∵CD 是⊙O 的切线,∴ OC ⊥CD ∴∠OCD=90º,∴∠DCA= 90º-∠OCA .又PE⊥AB ,点D在EP的延长线上,∴∠DEA=90º,∴∠DPC=∠APE=90º-∠OAC.∵OA=OC , ∴∠OCA=∠OAC.∴∠DCA=∠DPC ,∴DC=DP.(2) 如图四边形AOCF是菱形.连接CF、AF,∵F是弧AC的中点,∴弧AF=弧CF ∴ AF=FC .∵∠BAC=30º,∴弧BC =60º,又AB是⊙O的直径,∴弧ACB =120º,∴弧AF=弧CF= 60º,∴∠ACF=∠FAC =30º .∵OA=OC, ∴∠OCA=∠BAC=30º,∴⊿OAC≌⊿FAC (ASA) , ∴AF=OA ,∴AF=FC=OC=OA , ∴四边形AOCF是菱形.7、【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.8、【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.9、【解答】(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴=,设EC=CF=x,∴=,∴x=.∴CE=.10、【解答】解:如图,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,[来源:学科网]∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴,∴,∵R>0,∴R=3,∵BE是⊙O的切线,∴BE===.11、【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.12、【解答】解:(1)过A作AF⊥BC于F,过P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=AC•cos30°=6×=3,∴∠ADE=30°,∴∠DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y,∴PC==,∵BC=6,∴PB+CP=x+=6,∴y=﹣x+3,∵BD=2BH=x<6,∴x<2,∴x的取值范围是0<x<2;(2)∵BP=2,∴CP=4,∴PE=PC=2=PB,∴射线CA与⊙P相切;(3)当D点在线段BA上时,连接AP,∵S△ABC=BC•AF=××3=9,∵S△APE=AE•PE=y•×(6+y)=S△ABC=,解得:y=,代入y=﹣x+3得x=4﹣.当D点BA延长线上时,PC=EC=(6﹣y),∴PB+CP=x+(6﹣y)=6,∴y=x﹣3,∵∠PEC=90°,∴PE===(6﹣y),∴S△APE=AE•PE=x•=y•(6﹣y)=S△ABC=,解得y=或,代入y=x﹣3得x=3或5.综上可得,BP的长为4﹣或3或5.13、【解答】(1)证明:连接OB,∵OB=OA,DE=DB,∴∠A=∠OBA,∠DEB=∠ABD,又∵CD⊥OA,∴∠A+∠AEC=∠A+∠DEB=90°,∴∠OBA+∠ABD=90°,∴OB⊥BD,∴BD是⊙O的切线;(2)如图,过点D作DG⊥BE于G,∵DE=DB,∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED,∴∠GDE=∠A,∴△ACE∽△DGE,∴sin∠EDG=sinA==,即CE=13,在Rt△ECG中,∵DG==12,∵CD=15,DE=13,∴DE=2,∵△ACE∽△DGE,∴=,∴AC=•DG=,∴⊙O的直径2OA=4AD=.4、【解答】(1)①证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.②证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(2)作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=3,在RT△ODN中,∵∠OND=90°,OD=5,DN=3,∴ON==4,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,∴CD===4.15、【解答】解:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,FH1=r﹣r,∴d=(r﹣r)=r,(2)假设C n D n与点E间的距离能等于d,由题意•r=r,这个方程n没有整数解,所以假设不成立.∵r÷r=2+2≈4.8,∴n=6,此时C n D n与点E间的距离=r﹣4×r=r.16、【解答】解:(1)连接BD,∵B(,0),C(0,3),∴OB=,OC=3,∴tan∠CBO==,∴∠CBO=60°∵点D是△ABC的内心,∴BD平分∠CBO,∴∠DBO=30°,∴tan∠DBO=,∴OD=1,∴△ABC内切圆⊙D的半径为1;(2)连接DF,过点F作FG⊥y轴于点G,∵E(0,﹣1)∴OE=1,DE=2,∵直线EF与⊙D相切,∴∠DFE=90°,DF=1,∴sin∠DEF=,∴∠DEF=30°,∴∠GDF=60°,∴在Rt△DGF中,∠DFG=30°,∴DG=,由勾股定理可求得:GF=,∴F(,),设直线EF的解析式为:y=kx+b,∴,∴直线EF的解析式为:y=x﹣1;(3)∵⊙P上存在一点到△ABC三个顶点的距离相等,∴该点必为△ABC外接圆的圆心,由(1)可知:△ABC是等边三角形,∴△ABC外接圆的圆心为点D∴DP=2,设直线EF与x轴交于点H,∴令y=0代入y=x﹣1,∴x=,∴H(,0),∴FH=,当P在x轴上方时,过点P1作P1M⊥x轴于M,由勾股定理可求得:P1F=3,∴P1H=P1F+FH=,∵∠DEF=∠HP1M=30°,∴HM=P1H=,P1M=5,∴OM=2,∴P1(2,5),当P在x轴下方时,过点P2作P2N⊥x轴于点N,由勾股定理可求得:P2F=3,∴P2H=P2F﹣FH=,∴∠DEF=30°∴∠OHE=60°∴sin∠OHE=,∴P2N=4,令y=﹣4代入y=x﹣1,∴x=﹣,∴P2(﹣,﹣4),综上所述,若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为(2,5)或(﹣,﹣4).。

2020年九年级数学典型中考压轴题训练:《圆的综合》(含答案)

2020年九年级数学典型中考压轴题训练:《圆的综合》(含答案)

2020年九年级数学典型中考压轴题训练:《圆的综合》1.如图,在等边△ABC中,已知AB=8cm,线段AM为BC边上的中线.点N在线段AM上,且MN=3cm,动点D在直线AM上运动,连接CD,△CBE是由△CAD旋转得到的.以点C 圆心,以CN为半径作⊙C与直线BE相交于点P、Q两点.(1)填空:∠DCE=60 度,CN= 5 cm,AM=4cm.(2)如图1当点D在线段AM上运动时,求出PQ的长.(3)当点D在MA的延长线上时,请在图2中画出示意图,并直接写出PQ= 6 cm.当点D在AM的延长线上时,请在图3中画出示意图,并直接写出PQ= 6 cm.解:(1)∵△CBE是由△CAD旋转得到,∴∠ACD=∠BCE,∴∠DCE=∠BCD+∠BCE=∠BCD+∠CAD=∠ACB,∵△ABC是等边三角形,∴∠ACB=60°,∴∠DCE=60°;∵△ABC是等边三角形,AM为BC边上的中线,∴BC=AB=8cm,CM=BC=×8=4cm,在Rt△CMN中,CN===5cm;在Rt△ACM中,AM===4cm;(2)过点C作CF⊥PQ于F,∵△ABC是等边三角形,AM为BC边上的中线,∴∠CAD=∠BAC=×60°=30°,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD=30°,∴CF=BC=×8=4cm,连接CP,则PC=CN=5cm,在Rt△PCF中,PF===3cm,由垂径定理得,PQ=2PF=2×3=6cm;(3)①如图,点D在MA的延长线上时,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD,∴∠CBQ=∠CAM=30°,与(2)同理可求PQ=6cm,②如图,点D在AM的延长线上时,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD=30°,与(2)同理可求PQ=6cm,综上所述,PQ的长度不变都是6cm.故答案为:(1)60,5,4;(3)6,6.2.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BD于点F,交⊙O于点D,AC 与BD交于点G,点E为OC的延长线上一点,且∠OEB=∠ACD.(1)求证:BE是⊙O的切线;(2)求证:CD2=CG•CA;(3)若⊙O的半径为,BG的长为,求tan∠CAB.解:(1)∵∠OEB=∠ACD,∠ACD=∠ABD,∴∠OEB=∠ABD,∵OF⊥BD,∴∠BFE=90°,∴∠OEB+∠EBF=90°,∴∠ABD+∠EBF=90°,即∠OBE=90°,∴BE⊥OB,∴BE是⊙O的切线;(2)连接AD,∵OF⊥BD,∴=,∴∠DAC=∠CDB,∵∠DCG=∠ACD,∴△DCG∽△ACD,∴=,∴CD2=AC•CG;(3)∵OA=OB,∴∠CAO=∠ACO,∵∠CDB=∠CAO,∴∠ACO=∠CDB,而∠CFD=∠GFC,∴△CDF∽△GCF,∴=,又∵∠CDB=∠CAB,∠DCA=∠DBA,∴△DCG∽△ABG,∴=,∴=,∵r=,BG=,∴AB=2r=5,∴tan∠CAB=tan∠ACO===.3.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,∴DE=DH,在Rt△BDE与Rt△BDH中,,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵D是弧AC的中点,∴AD=DC,在Rt△ADE与Rt△CDH中,,∴Rt△ADE≌Rt△CDH(HL).∴AE=CH.∴BE=AB﹣AE=BC+CH=BH,即5﹣AE=3+AE,∴AE=1.4.如图,在Rt△ABC中,∠ACB=90°,O是线段BC上一点,以O为圆心,OC为半径作⊙O,AB与⊙O相切于点F,直线AO交⊙O于点E,D.(1)求证:AO是△ABC的角平分线;(2)若tan∠D=,求的值;(3)如图2,在(2)条件下,连接CF交AD于点G,⊙O的半径为3,求CF的长.(1)证明:连接OF,∵AB与⊙O相切于点F,∴OF⊥AB,∵∠ACB=90°,OC=OF,∴∠OAF=∠OAC,即AO是△ABC的角平分线;(2)如图2,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴,∴;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,∴AO=AE+OE=2+3=5,如图3,连接CF交AD于点G,∵AC,AF是⊙O的切线,∴AC=AF,∠CAO=∠OAF,∴CF⊥AO,∴∠ACO=∠CGO=90°,∵∠COG=∠AOC,∴△CGO∽△ACO,∴,∴OG=,∴CG===,∴CF=2CG=.5.如图1,已知AB是⊙O的直径,点D是弧AB上一点,AD的延长线交⊙O的切线BM于点C,点E为BC的中点,(1)求证:DE是⊙O的切线;(2)如图2,若DC=4,tan∠A=,延长OD交切线BM于点H,求DH的值;(3)如图3,若AB=8,点F是弧AB的中点,当点D在弧AB上运动时,过F作FG⊥AD 于G,连接BG,求BG的最小值.(1)证明:如图,连接OD,BD,∵AB是⊙O的直径,∴∠ADB=∠CDB=90°,∵BM是⊙O的切线,∴∠ABC=90°,∵点E是BC的中点,∴DE=BC=BE=CE,∴∠EDB=∠EBD,又∵OD=OB,∴∠ODB=∠OBD,∴∠ODB+∠EDB=∠OBD+∠EBD=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:如图2,连接BD,∵∠A+∠ABD=∠ABD+∠CBD=90°,∴∠A=∠CBD,∵DC=4,tan∠A=,∴tan∠CBD=tan∠A=,∴BD=8,∴BC==4,∴DE=,∴AB=,∴BO=OD=4,又∵DE是⊙O的切线,∴∠HDE=90°,∴tan∠DHE==,设DH=x,则,∴BH=2x,在Rt△BOH中,OB2+BH2=OH2,即,解得:x=或x=0(舍去),∴DH=;(3)解:如图3,连接BF,取AF中点N,构造圆N,连接NG,∵FG⊥AD于点G,∴当点D在弧AB上运动时,点G在圆N上运动,∴当点N、G、B三点共线时,BG有最小值,∵AB=8,点F是弧AB的中点,∴∠AFB=90°,AF=BF=,∴NG=NF=,BN===2,∴BG=BN﹣NG=2.6.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB =6,BC=,(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.(1)证明:由折叠的性质可知,AF=AB=6,在Rt△ADF中,DF===3,∴CF=DC﹣DF=3,∴DF=FC,即F是CD的中点;(2)证明:在Rt△ADF中,DF=3,AF=6,∴∠DAF=30◦,∴∠BAF=60◦,由折叠的性质可知,∠EAF=∠EAB,∠AFE=∠B=90°,∴∠EAF=∠EAB=30°,∴AE=2EF,∠EFC=180°﹣∠AFD﹣∠AFE=30◦,∴EF=2CE,∴AE=4CE;(3)解:连接OP、OH、PH,∵⊙O与AD相切于点P,∴OP⊥AD,∴OP∥DF,∵∠DAF=30°,∴∠AOP=90°﹣∠DAF=60°,OF=OP=OA,∴∠OFH=∠AOP=60°,OP=OF=2,∴AP==2,∴DP=AD﹣AP=,∵∠OFH=60°,OH=OF,∴△OHF为等边三角形,∴∠FOH=∠OHF=60°,HF=OF=2,∴DH=DF﹣HF=1,∵OP∥DF,∴∠POH=∠OHF=60°,∴∠POH=∠HOF,∴=,∴阴影部分的面积=△PDH的面积=×DH×DP=.7.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=9 .证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,∴S△OBE由勾股定理得OP===9.故答案为:9.8.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是的中点,求DF的长为4﹣2;②取的中点H,当∠EAB的度数为30°时,求证:四边形OBEH为菱形.解:(1)证明:如图1,∵BA=BC,∠ABC=90°,∴∠BAC=45°∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠ADF=∠BDG=90°∴∠DAF+∠BGD=∠DBG+∠BGD=90°∴∠DAF=∠DBG∵∠ABD+∠BAC=90°∴∠ABD=∠BAC=45°∴AD=BD∴△ADF≌△BDG(ASA);(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE∵FD⊥AD,FH⊥AB∴FH=DF,∵sin∠ABD==sin45°=,∴,即BF=FD,∵AB=4,∴BD=4cos45°=2,即BF+FD=2,∴,∴=4﹣2.故答案为:4﹣2.②证明:如图3,连接OH,EH,OE,∵∠AEB=90°,∠EAB=30°,∴∠ABE=60°,∵点H是的中点,∴∠AOH=∠HOE=60°,∴△OEH和△OBE都是等边三角形,∴OB=OH=HE=BE,∴四边形OBEH为菱形.9.已知:AB为⊙O的直径,,D为AC上一动点(不与A、C重合).(1)如图1,若BD平分∠CBA,连接OC交BD于点E.①求证:CE=CD;②若OE=1,求AD的长;(2)如图2,若BD绕点D顺时针旋转90°得DF,连接AF.求证:AF为⊙O的切线.(1)①证明:∵AB为⊙O的直径,∴∠BCA=90°,∵,∴∠CBA=∠BAC=45°,∠BOC=90°,∴∠BCO=45°,∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠CED=∠CBD+∠BCE,∠CDE=∠ABD+∠BAC,∴∠CED=∠CDE,∴CE=CD;②解:如图1,取BD中点G,连接OG,∵O为AB的中点,∴AD=2OG,OG∥AD,∴∠OGE=∠CDE,∵∠OEG=∠CED,∠CED=∠CDE,∴OG=OE=1,∴AD=2OG=2;(2)证明:如图2,在BC上截取BP=AD,连接DP,∵∠CBA=∠BAC=45°,∴BC=AC,∴CP=CD,∴∠CPD=45°,∴∠BPD=135°.,由旋转性质得,∠BDF=90°,BD=FD,∴∠BDC+∠FDA=90°,∵∠BDC+∠CBD=90°,∴∠CBD=∠ADF,∴△DFA≌△BDP(SAS),∴∠FAD=∠DBO=135°,∴∠FAB=∠FAD﹣∠BAC=135°﹣45°=90°,∴OA⊥AF,∴AF为⊙O的切线.10.若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.解:(Ⅰ)∵四边形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,∴∠CAC′=60°,∴的长度==2π,线段AC扫过的扇形面积==12π;(Ⅱ)解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=6,在Rt△AB′C′中,AC′==6,∴BC′=6﹣6,∵∠C′BE=180°﹣∠ABC=90°,∠BC′E=90°﹣45°=45°,∴△BC′E是等腰直角三角形,∴C′E=BC′=12﹣6,∴D′E=C′D′﹣EC′=6﹣(12﹣6)=6﹣6;(Ⅲ)如图3,连接DB,AC相交于点O,则O是DB的中点,∵F为线段BC′的中点,∴FO=AB′=3,∴F在以O为圆心,3为半径的圆上运动,∵DO=3,∴DF最大值为3+3,DF的最小值为3﹣3,∴DF长的取值范围为3﹣3≤DF≤3+3.11.如图所示,A是线段BF延长线上的点,矩形BCDF的外接圆⊙O过AC的中点E.(1)求证:BD=AF;(2)若BC=4,DC=3,求tan∠BAC的值;(3)若AD是⊙O的切线,求的值.解:(1)在矩形BCDF中,BD=FC,BF=DC,∠FDC=90°,∴FC为圆O的直径,∴∠FEC=∠FDC=90°,即FE⊥AC,∵E是AC的中点,∴AF=FC,∴BD=AF;(2)在Rt△BCD中,BC=4,DC=3,根据勾股定理得:BD===5=AF,BF=DC=3,∴AB=AF+BF=5+3=8,∴在Rt△ABC中,tan∠BAC===;(3)∵∠BCD=90°,∴BD是⊙O的直径,∵AD是⊙O的切线,∴∠ADB=90°=∠BCD,∵∠ABD=∠BDC,∴△ABD∽△BDC,设DC=BF=a,AF=FC=c,∵=,∴a2+ac﹣c2=0,解得:a=c,(负值舍去),∴=.12.如图,在Rt△ABC中,以BC为直径的⊙O交AC于点D,过点D作⊙O的切线交AB于点M,交CB延长线于点N,连接OM,OC=1.(1)求证:AM=MD;(2)填空:①若DN=,则△ABC的面积为;②当四边形COMD为平行四边形时,∠C的度数为45°.(1)证明:连接OD,∵DN为⊙O的切线,∴∠ODM=∠ABC=90°,在Rt△BOM与Rt△DOM中,,∴Rt△BOM≌Rt△DOM(HL),∴BM=DM,∠DOM=∠BOM=,∵∠C=,∴∠BOM=∠C,∴OM∥AC,∵BO=OC,∴BM=AM,∴AM=DM;(2)解:①∵OD=OC=1,DN=,∴tan∠DON==,∴∠DON=60°,∴∠C=30°,∵BC=2OC=2,∴AB=BC=,∴△ABC的面积为AB•BC=×2=;②当四边形COMD为平行四边形时,∠C的度数为45°,理由:∵四边形COMD为平行四边形,∴DN∥BC,∴∠DON=∠NDO=90°,∴∠C=DON=45°,故答案为:,45°.13.如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A 作⊙O 切CP 于点P ,设BP =x .(1)如图1,x 为何值时,圆心O 落在AP 上?若此时⊙O 交AD 于点E ,直接指出PE 与BC 的位置关系;(2)当x =4时,如图2,⊙O 与AC 交于点Q ,求∠CAP 的度数,并通过计算比较弦AP 与劣弧长度的大小;(3)当⊙O 与线段AD 只有一个公共点时,直接写出x 的取值范围.解:(1)如图1,AP 经过圆心O ,∵CP 与⊙O 相切于P ,∴∠APC =90°,∵▱ABCD ,∴AD ∥BC ,∴∠PBC =∠DAB ∴=tan ∠PBC =tan ∠DAB =,设CP =4k ,BP =3k ,由CP 2+BP 2=BC 2,得(4k )2+(3k )2=152,解得k 1=﹣3(舍去),k 2=3,∴x =BP =3×3=9,故当x =9时,圆心O 落在AP 上;∵AP 是⊙O 的直径,∴∠AEP =90°,∴PE ⊥AD ,∵▱ABCD ,∴BC ∥AD∴PE ⊥BC(2)如图2,过点C 作CG ⊥AP 于G ,∵▱ABCD ,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1814.如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=15.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD 的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:△KGD∽△KEG;②若cos C=,AK=,求BF的长.解:(1)如图,连接OG.∵EG=EK,∴∠KGE=∠GKE=∠AKH,又OA=OG,∴∠OGA=∠OAG,∵CD⊥AB,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF是⊙O的切线.(2)①∵AC∥EF,∴∠E=∠C,又∠C=∠AGD,∴∠E=∠AGD,又∠DKG=∠GKE,∴△KGD∽△KEG;②连接OG,∵,AK=,设,∴CH=4k,AC=5k,则AH=3k∵KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK﹣CH=k.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即,解得k=1,∴CH=4,AC=5,则AH=3,设⊙O半径为R,在Rt△OCH中,OC=R,OH=R﹣3k,CH=4k,由勾股定理得:OH2+CH2=OC2,即(R﹣3)2+42=R2,∴,在Rt△OGF中,,∴,∴.16.如图,AB是⊙O的直径,AB=4,M为弧AB的中点,正方形OCGD绕点O旋转与△AMB 的两边分别交于E、F(点E、F与点A、B、M均不重合),与⊙O分别交于P、Q两点.(1)求证:△AMB为等腰直角三角形:(2)求证:OE=OF;(3)连接EF,试探究:在正方形OCGD绕点O旋转的过程中,△EMF的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.解(1)证明:∵AB是⊙O的直径,∴∠AMB=90°,∵M是弧AB的中点,∴=,∴MA=MB,∴△AMB为等腰直角三角形.(2)连接OM,由(1)得:∠ABM=∠BAM=45°,∠OMA=∠OMB=45°,∴,∴∠MOE+∠BOE=90°,∵∠COD=90°,∴∠MOE+∠MOF=90°,∴∠BOE=∠MOF,在△OBE和△OMF中,,△OBE≌△OMF(ASA),∴OE=OF(3)解:△EFM的周长有最小值.∵OE=OF,∴△OEF为等腰直角三角形,∴,∵△OBE≌△OMF,∴BE=MF,∴△EFM的周长=EF+MF+ME=EF+BE+ME=EF+MB=当OE⊥BM时,OE最小,此时,∴△EFM的周长的最小值为.。

2020-2021中考数学——圆的综合的综合压轴题专题复习含详细答案

2020-2021中考数学——圆的综合的综合压轴题专题复习含详细答案

2020-2021中考数学——圆的综合的综合压轴题专题复习含详细答案一、圆的综合1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明:连接CE ,如图1所示:∵BC 是直径,∴∠BEC =90°,∴CE ⊥AB ;又∵AC =BC ,∴AE =BE .(2)证明:连接OE ,如图2所示:∵BE =AE ,OB =OC ,∴OE 是△ABC 的中位线,∴OE ∥AC ,AC =2OE =6.又∵EG ⊥AC ,∴FE ⊥OE ,∴FE 是⊙O 的切线.(3)解:∵EF 是⊙O 的切线,∴FE 2=FC •FB .设FC =x ,则有2FB =16,∴FB =8,∴BC =FB ﹣FC =8﹣2=6,∴OB =OC =3,即⊙O 的半径为3;∴OE =3.∵OE ∥AC ,∴△FCG ∽△FOE ,∴ ,即 ,解得:CG = .点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.3.在⊙O 中,点C 是AB u u u r上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD .(2)猜想线段AB 与DI 的数量关系,并说明理由.(3)若⊙O 的半径为2,点E ,F 是»AB 的三等分点,当点C 从点E 运动到点F 时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI ,理由见解析(323 【解析】分析:(1)根据内心的定义可得CI 平分∠ACB ,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.4.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=52AD,∶DE=4∶1,求DE的长.【答案】(1)见解析;(2)5【解析】分析:(1)直接利用直角三角形的性质得出DF=CF=EF,再求出∠FDO=∠FCO=90°,得出答案即可;(2)首先得出AB=BC即可得出它们的长,再利用△ADC~△ACE,得出AC2=AD•AE,进而得出答案.详解:(1)连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.∵DB平分∠ADC,∴∠ADB=∠CDB,∴¶AB=¶BC,∴BC=AB=52.在Rt△ABC中,AC2=AB2+BC2=100.又∵AC⊥CE,∴∠ACE=90°,∴△ADC~△ACE,∴ACAD =AEAC,∴AC2=AD•AE.设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,∴100=4x•5x,∴x=5,∴DE=5.点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.5.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线;(2)若AE=4,tan∠ACD=3,求FC的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE3∠==设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+32,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.6.已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC画图操作:(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)理解应用:(2)在(1)的条件下,①若tan∠APB12=,求点P的坐标②当点P的坐标为时,∠APB最大拓展延伸:(3)若在直线y43=x+4上存在点P,使得∠APB最大,求点P的坐标【答案】(1)图形见解析(2)(0,2),(0,4)(0,33953-,1255)【解析】试题分析:(1)以AC为直径画圆交y轴于P,连接PA、PB,∠PAB即为所求;(2)①由题意AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6);②当⊙K与y轴相切时,∠APB的值最大,(3)如图3中,当经过AB的园与直线相切时,∠APB最大.想办法求出点P坐标即可解决问题;试题解析:解:(1)∠APB如图所示;(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB=12=ABBC.∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,∴BC=22AC AB=43,∴C(6,43),∴K(4,22),∴P(0,23).故答案为:(0,23).(3)如图3中,当经过AB的园与直线相切时,∠APB最大.∵直线y=43x+4交x轴于M(﹣3,0),交y轴于N(0,4).∵MP是切线,∴MP2=MA•MB,∴MP=35,作PK⊥OA于K.∵ON∥PK,∴ONPK=OMMK=NMMP,∴4PK=3MK=35,∴PK=125,MK=95,∴OK=95﹣3,∴P(95﹣3,125).点睛:本题考查了一次函数综合题、直线与圆的位置关系、平行线的性质、切线的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,学会构造辅助圆解决最大角问题,属于中考压轴题.7.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

2020年人教版数学中考二轮复习:《圆的综合》压轴题专题训练

2020年人教版数学中考二轮复习:《圆的综合》压轴题专题训练

《圆的综合》压轴题专题训练1.如图,已知AB为⊙O的直径,AC为⊙O的切线,连结CO,过B作BD∥OC交⊙O于D,连结AD交OC于G,延长AB、CD交于点E.(1)求证:CD是⊙O的切线;(2)若BE=2,DE=4,求CD的长;(3)在(2)的条件下,连结BC交AD于F,求的值.2.如图,AB为⊙O的直径,点C在⊙O上,连接AC、BC,D为AC的中点,过点C作⊙O的切线与射线OD交于点E.(1)求证:∠E=∠A;(2)若延长EC与AB交于点F,若⊙O的半径为3,sin F=,求DE的长.3.如图,△ABC中,以AB为直径作⊙O,交BC于点D,E为弧BD上一点,连接AD、DE、AE,交BD于点F.(1)若∠CAD=∠AED,求证:AC为⊙O的切线;(2)若DE2=EF•EA,求证:AE平分∠BAD;(3)在(2)的条件下,若AD=4,DF=2,求⊙O的半径.4.如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△PAB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.5.如图,AB是⊙O的直径,点C、D在⊙O上,AD与BC相交于点E.连接BD,作∠BDF=∠BAD,DF与AB的延长线相交于点F.(1)求证:DF是⊙O的切线;(2)若DF∥BC,求证:AD平分∠BAC;(3)在(2)的条件下,若AB=10,BD=6,求CE的长.6.如图,平行四边形ABCD中,以B为坐标原点建立如图所示直角坐标系,AB⊥AC,AB=3,AD=5,点P在边AD上运动(点P不与A重合,但可以与D点重合),以P为圆心,PA 为半径的⊙P与对角线AC交于A,E两点.(1)设AP为x,P点坐标为(,)(用含x的代数式表示)(2)当⊙P与边CD相切于点F时,求P点的坐标;(3)随着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围.7.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB延长线于点F.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若⊙O半径为5,CD=6,求DE的长;(3)求证:BC2=4CE•AB.8.如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D(点D不与点A重合),交边BC于点E,过点E作EF⊥AC,垂足为F.(1)求证:EF是⊙O的切线;(2)连接DE,求证:△DEC是等腰三角形;(3)若CD=2,BE=3,求⊙O的半径.9.如图,在Rt△ABC中,∠C=90°,点D是AB上一点,以AD为直径作⊙O交AC于E,与BC相切于点F,连接AF.(1)求证:∠BAF=∠CAF;(2)若AC=3,BC=4,求BD和CE的长;(3)在(2)的条件下,若AF与DE交于H,求FH•FA的值.10.如图,已知AB为⊙O的直径,C、D为⊙O上的两点,且BC=CD=2,延长AB与直线CD交于点P,且BP=AB,过点A作AF⊥CD,垂足为F.(1)求证:AD平分∠CAF;(2)求AB的长度;(3)求DF的长度.11.如图,⊙O的直径AB=10,点P为BA的延长线上一点,直线PD切⊙O于点D,过点B 作BH⊥PD,垂足为H,BH交⊙O于点C,BC=6,连接BD.(1)求证:BD平分∠ABH;(2)求PA的长;(3)E是上的一动点,DE交AB于点F,连接AD,AE.是否存在点E,使得△ADE∽△FDB?如果存在,请证明你的结论,并求弧AE的长;如果不存在,请说明理由.12.如图,在平面直角坐标系xOy中,A(8,0)、B(0,6),以AB为直径画圆⊙P,点C 为⊙P上一动点,(1)判断坐标原点O在⊙P的位置关系是.(2)若点C在第一象限,过点C作CD⊥y轴,垂足为D,连接BC,且∠DBC=∠ABC,①求证:CD与⊙P相切;②求线段BC的长(3)若PD∥AO交⊙P于点D,点C在劣弧BD上,Q是劣弧BC的中点,OQ、DC交于点K,当点C在劣弧BD上运动时(不包括B、D两点),线段DK的长度是否发生变化?若变化,请指出其变化范围;若不变化,请求出其值.13.如图,AB为⊙O的直径,D为的中点,AC、BD交于点E,P为BD延长线上一点,且PD=DE.(1)试判断PA与⊙O的位置关系,并说明理由.(2)若E为BD的中点,求tan∠DBC的值.(3)若AB=10,=,求四边形ABCD的面积.14.如图示,AB是⊙O的直径,点F是半圆上的一动点(F不与A,B重合),弦AD平分∠BAF,过点D作DE⊥AF交射线AF于点AF.(1)求证:DE与⊙O相切:(2)若AE=8,AB=10,求DE长;(3)若AB=10,AF长记为x,EF长记为y,求y与x之间的函数关系式,并求出AF•EF 的最大值.15.如图,在Rt△ABC中,∠BAC=90°,点G是BC中点.连接AG.作BD⊥AG,垂足为F,△ABD的外接圆⊙O交BC于点E,连接AE.(1)求证:AB=AE;(2)过点D作圆O的切线,交BC于点M.若,求tan∠ABC的值;(3)在(2)的条件下,当DF=1时,求BG的长.参考答案1.证明:(1)如图,连接OD,∵AC为⊙O的切线,AB为⊙O的直径,∴∠CAB=90°=∠ADB,∵OD=OB,∴∠DBO=∠BDO,∵CO∥BD,∴∠AOC=∠OBD,∠COD=∠ODB,∴∠AOC=∠COD,且AO=OD,CO=CO,∴△AOC≌△DOC(SAS)∴∠CAO=∠CDO=90°,∴OD⊥CD,且OD是半径,∴CD是⊙O的切线;(2)设⊙O半径为r,则OD=OB=r,在Rt△ODE中,∵OD2+DE2=OE2,∴r2+42=(r+2)2,解得r=3,∴OB=3,∵DB∥OC,∴即∴CD=6;(3)由(1)得△CDO≌△CAO,∴AC=CD=6,在Rt△AOC中,OC===3,∵∠AOG=∠COA,∴Rt△OAG∽△OCA,∴,即=,∴OG=,∴CG=OC﹣OG=3﹣=,∵OG∥BD,OA=OB,∴OG为△ABD的中位线,∴BD=2OG=,∵CG∥BD,∴∴=.2.(1)证明:连接OC,∵D为AC的中点,AO=CO,∴OD⊥AC,∠AOD=∠COD,∵根据圆周角定理得:∠CBA=∠AOC,∴∠CBA=∠COD,∵AB为⊙O的直径,EF切⊙O于C,∴∠ECO=∠OCF=∠ACB=90°,∵∠E+∠COD+∠ECO=180°,∠A+∠ACB+∠CBA=180°,∴∠E=∠A;(2)解:过C作CM⊥AB于M,∵⊙O的半径为3,sin F==,∴OF=5,在Rt△OCF中,由勾股定理得:CF==4,=×,由三角形面积公式得:S△OCF即 3×4=5×CM,解得:CM=2.4,由勾股定理得:OM===1.8,∴BM=3﹣1.8=1.2,由勾股定理得:BC===1.2,AC===2.4,∵D为AC的中点,∴CD=AC=1.2,∵∠A=∠E,∴tan A=tan E,∴=,∴=,∴DE=2.4=.3.证明:(1)∵AB是直径,∴∠BDA=90°,∴∠DBA+∠DAB=90°,∵∠CAD=∠AED,∠AED=∠ABD,∴∠CAD=∠ABD,∴∠CAD+∠DAB=90°,∴∠BAC=90°,即AB⊥AC,且AO是半径,∴AC为⊙O的切线;(2)∵DE2=EF•EA,∴,且∠DEF=∠DEA,∴△DEF∽△AED,∴∠EDF=∠DAE,∵∠EDF=∠BAE,∴∠BAE=∠DAE,∴AE平分∠BAD;(3)如图,过点F作FH⊥AB,垂足为H,∵AE平分∠BAD,FH⊥AB,∠BDA=90°,∴DF=FH=2,∵S=AB×FH=×BF×AD,△ABF∴2AB=4BF,∴AB=2BF,在Rt△ABD中,AB2=BD2+AD2,∴(2BF)2=(2+BF)2+16,∴BF=,BF=﹣2(不合题意舍去)∴AB=,∴⊙O的半径为.4.解:(1)如图1,∵A(0,8),B(6,0),C(0,3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴,∴∴CD的=,∴⊙P的半径为;(2)在Rt△AOB中,OA=8,OB=6,∴==10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,即,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90°,∠PCE=∠ACD,∴△CPE∽△CAD,∴,即,∴,∴,∴△POB的面积==;(3)①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,∴△PAB的面积=.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=,则PG为△DCF的中位线,PG=,∴△PAB的面积==.综上所述,在整个运动过程中,△PAB的面积是定值,定值为.5.解:(1)连接OD,CD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∵OA=OD,∴∠BAD=∠ADO,∵∠BDF=∠BAD,∴∠BDF+∠ODB=90°,∴∠ODF=90°,∴OD⊥DF,∴DF是⊙O的切线;(2)∵DF∥BC,∴∠FDB=∠CBD,∵=,∴∠CAD=∠CBD,且∠BDF=∠BAD,∴∠CAD=∠BAD=∠CBD=∠BDF,∴AD平分∠BAC;(3)∵AB=10,BD=6,∴AD===8,∵∠CBD=∠BAD,∠ADB=∠BDE=90°,∴△BDE∽△ADB,∴,∴,∴DE=,∴AE=AD﹣DE=,∵∠CAD=∠BAD,∴sin∠CAD=sin∠BAD∴∴∴CE=6.解:(1)如图,过点A作AN⊥BC于点N,∵AB⊥AC,AB=3,BC=AD=5,∴AC===4,∵S=AB×AC=BC×AN,△ABC∴3×4=5AN,∴AN=,∴BN===,∴点A坐标为(,)∵AP=x,∴点P坐标为(+x,),故答案为:+x,;(2)如图,连接PF∵⊙P与边CD相切于点F∴PF⊥CD∵四边形ABCD是平行四边形∴AB∥CD,且AB⊥AC∴AC⊥CD∴PF∥AC∴△DPF∽△DAC∴,∴,∴AP=,∴点P坐标为(,);(3)当<AP<或AP=时,⊙P与平行四边形ABCD的边有4个公共点,如图所示,7.解:(1)EF与⊙O相切,理由如下:连接AD,OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∴EF与⊙O相切.(2)解:由(1)知∠ADC=90°,AC=AB=10,在Rt△ADC中,由勾股定理得:AD===8.∵S ACD=AD•CD=AC•DE,∴×8×6=×10×DE.∴DE=.(3)证明:由(1)得:CD=BC,AD⊥BC,∴∠ADC=90°,∵EF⊥AC,∴∠DEC=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴=,∴CD2=CE•AB,∵AB=AC,∴BC2=CE•AB,∴BC2=4CE•AB.8.证明:(1)连接OE.∵在△ABC中,AB=AC,∴∠B=∠C.∵OB=OE,∴∠OBE=∠OEB.∴∠OEB=∠C,∴OE∥AC.∴∠OEF+∠AFE=180°.∵EF⊥AC于点F,∴∠EFA=90°.∴∠OEF=90°,∴OE⊥EF.∵OE⊥EF于点E,OE是⊙O的半径,∴EF是⊙O的切线;(2)如图2,连接DE,∵四边形ABED是圆内接四边形,∴∠EDF=∠B,且∠B=∠C,∴∠EDF=∠C,∴DE=EC,∴△DEC是等腰三角形;(3)如图3,连接AE,∵AB是直径,∴∠AEB=90°,且AB=AC,∴BE=CE=3,∵EC=DE,EF⊥AC,∴CF=DF=CD=1,∵∠B=∠C,∠AEB=∠EFC=90°,∴△ABE∽△ECF,∴,∴∴AB=9,∴⊙O的半径OA=.9.证明:(1)连结OF,如图,∵⊙O与BC相切于点F,∴OF⊥BC,∵∠ACB=90°,∴OF∥AC,∴∠OFA=∠CAF,而OA=OF,∴∠OAF=∠OFA,∴∠BAF=∠CAF;(2)解:设⊙O的半径为r,OF与DE交于点P,如图,在Rt△ABC中,∵AC=3,BC=4,∴AB===5,∵OF∥AC,∴△BOF∽△BAC,∴∴∴r=∴BD=AB﹣AD=5﹣2×=,∵AD为⊙O的直径,∴∠AED=90°,而∠C=90°,∴DE∥BC,∴,∴∴CE=,(3)∵OF∥AC,∴,∴∴CF=,∴AF===∵DE∥BC,∴,∴∴FH=∴FH•FA==10.证明:(1)连接BD,∵BC=CD,∴,∴∠CBD=∠CDB,且∠CBD=∠CAD,∴∠CDB=∠CAD,∵AB是⊙O的直径,∴∠BDA=90°,∴∠CDB+∠FDA=90°,∵∠F=90°,∴∠FDA+∠FAD=90°,∴∠FAD=∠CDB,∴∠FAD=∠CAD,∴AD平分∠CAF;(2)连接OC,∵CO=AO,∴∠OAC=∠OCA,∵∴∠OAC=∠CAD,∴∠OCA=∠DAC,∴OC∥AD,∴△PCO∽△PDA,∴,且BC=CD=2,BP=AB=2BO,∴∴PC=6,∴PD=8,∵四边形BCDA是圆内接四边形,∴∠PCB=∠PAD,且∠P=∠P,∴△PBC∽△PDA,∴,∴,∴PB=4,∴AB=PB=4;(3)∵AB是直径,∴∠ACB=90°,∴AC===2,在Rt△ACF中,AF2=AC2﹣CF2,在Rt△PAF中,AF2=AP2﹣PF2,∴AC2﹣CF2=AP2﹣PF2,∴40﹣(2+DF)2=48×4﹣(8+DF)2,∴DF=.11.(1)证明:连接OD.如图1所示:∵PD是⊙O的切线,∴OD⊥PD.又∵BH⊥PD,∴∠PDO=∠PHB=90°,∴OD∥BH,∴∠ODB=∠DBH.∵OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠DBH,∴BD平分∠ABH.(2)解:过点O作OG⊥BC,G为垂足,如图2所示:则BG=CG=BC=3,在Rt△OBG中,OG===4.∵∠ODH=∠DHG=∠HGO=90°,∴四边形ODHG是矩形.∴OD=GH=5,DH=OG=4,BH=BG+GH=3+5=8.∵OD∥BH,∴△POD∽△PBH,∴=,即=,解得:PA=;(3)解:存在,当点E为AB弧的中点时,△ADE∽△FDB,理由如下:连接OE,如图3所示:∵E是的中点,∴,∴∠AOE=∠BOE=90°,∠ADE=∠EDB,又∵∠AED=∠ABD,∴△ADE∽△FDB,的长==π.12.解:(1)∵以AB为直径画圆⊙P,∠AOB=90°,∴坐标原点O在⊙P上;故答案为:坐标原点O在⊙P上;(2)如图1,连接BC,过点P作PE⊥OB,∵CD⊥OB,∴∠DCB+∠DBC=90°,∵BP=CP,∴∠ABC=∠PCB,∵∠DBC=∠ABC,∴∠DBC=∠ABC=∠PCB,∴∠DCB+∠PCB=90°,∴∠DCP=90°,且CP为半径,∴DC与⊙P相切;②∵A(8,0)、B(0,6),∴OA=8,OB=6,∴AB===10,∴AP=BP=CP=5,∵PE⊥OB,AO⊥OB,∴PE∥AO,∴△BEP∽△BOA,∴,∴PE=4,BE=3,∵PE⊥BO,CD⊥OB,∠PCD=90°,∴四边形CDEP是矩形,∴CD=PE=4,PC=DE=5,∴DB=2,∴BC===2,(3)线段DK的长度不发生变化,如图2,连接BD,DO,∵PD∥OA,∴∠DEB=∠AOB=90°,,∴BE=3=EO,EP=4,∴DE=9,∴BD===3,∵Q是劣弧BC的中点,∴=,∴∠QDB=∠QDC,∵BE=EO,DE⊥OB,∴BO=DO,∴∠DBO=∠DOB,且∠DBO=∠DQO,∴∠DQO=∠DOB∵四边形BODQ是圆内接四边形,∴∠BOD+∠BQD=180°,且∠DQO+∠KQD=180°,∴∠BQD=∠KQD,且QD=QD,∠QDB=∠QDC,∴△QDB≌△QDK(ASA)∴KD=BD=3,∴线段DK的长度不发生变化.13.解:(1)PA是⊙O的切线,理由如下:如图1,连接AD、BC.∵AB是直径,∴∠ADB=90°,∴AD⊥PE,∵DP=DE,∴AP=AE,∴∠PAD=∠DAE,∵D为的中点,∴,∴∠DAC=∠ABD,∵∠ABD+∠DAB=90°,∴∠PAD+∠DAB=90°,∴∠PAB=90°,∴OA⊥PA,∴PA是⊙O的切线;(2)如图2,连接BC,∵E为BD的中点,∴DE=BE=BD,∵∠ADE=∠ADB,∠DAE=∠DBA,∴△DAE∽△DBA,∴AD2=DE•DB=2DE2,∴AD=DE,∴tan∠DBC=tan∠DAC=;(3)过点C作CF⊥BE于F,∵=,∴设BE=7k,DE=9k,∵∠ADE=∠ADB,∠DAE=∠DBA,∴△DAE∽△DBA,∴AD2=DE•DB=144k2,∴AD=12k,在Rt△ADB中,∵AD2+BD2=AB2,∴144k2+256k2=100,∴k=,∴AD=6,DE=,BE=,BD=BE+DE=8,∴AE===,∵∠ADE=∠ECB,∠DEA=∠CEB,∴△DEA∽△CEB,∴,∴CE==,∵sin∠AED=sin∠CEF=,∴CF==,∴四边形ABCD的面积=S△ABD +S△BCD=×6×8+×8×=30.14.(1)证明:连接OD,如图1所示:∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAF,∴∠OAD=∠FAD,∴∠ODA=∠FAD,∴OD∥AF,∵DE⊥AF,∴DE⊥OD,又∵OD是⊙O的半径,∴DE与⊙O相切:(2)解:连接BD,如图2所示:∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AF,∴∠AED=90°=∠ADB,又∵∠EAD=∠DAB,∴△AED∽△ADB,∴AD:AB=AE:AD,∴AD2=AB×AE=10×8=80,在Rt△AED中,由勾股定理得:DE===4;(3)连接DF,过点D作DG⊥AB于G,如图3所示:在△AED和△AGD中,,∴△AED≌△AGD(AAS),∴AE=AG,DE=DG,∵∠FAD=∠DAB,∴=,∴DF=DB,在Rt△DEF和Rt△DGB中,,∴Rt△DEF≌Rt△DGB(HL),∴EF=BG,∴AB=AG+BG=AF+EF=AF+EF+EF=AF+2EF,即:x+2y=10,∴y=﹣x+5,∴AE•EF=﹣x2+5x=﹣(x﹣5)2+,∴AF•EF有最大值,当x=5时,AF•EF的最大值为.15.证明:(1)∵∠BAC=90°,点G是BC的中点,∴AG=BG=GC,∴∠ABG=∠BAG,又∵BD⊥AG,∴∠BAG+∠DAF=∠ADF+∠DAF=90°,∴∠ADB=∠BAG,∵,∴∠ADB=∠AEB,∴∠ABE=∠AEB,∴AB=AE,(2)∵⊙O是△ABD的外接圆,且∠BAD=90°,∴BD是直径,∵DM是⊙O切线,∴DM⊥BD,且BD⊥AG,∴DM∥AG,∴∵=,∴,设CD=3k,AC=4k,∴AD=k,∵∠BDA=∠ABC,∠BAD=∠CAB,∴△ABD∽△ACB,∴,∴AB2=AD•AC=4k2,∴AB=2k,∴tan∠ABC=;(3)∵DF=1,tan∠ABC=tan∠ADF=tan∠BAF===2,∴AF=2,BF=4,∴AB===2,∴AC=4,∴BC===10,∴BG=5,。

2020-2021中考数学压轴题之圆的综合(中考题型整理,突破提升)含答案

2020-2021中考数学压轴题之圆的综合(中考题型整理,突破提升)含答案

2020-2021中考数学压轴题之圆的综合(中考题型整理,突破提升)含答案一、圆的综合1.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tan A=12,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.【答案】(1)答案见解析;(2)AB=3BE;(3)3.【解析】试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x,进而得出OE=1+2x,最后用勾股定理即可得出结论.试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BDAE DE AD==.∵Rt△ABD中,tan A=BDAD=12,∴DE BEAE DE==12,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(32x)2+(2x)2=(1+2x)2,∴x=﹣29(舍)或x=2,∴圆O的半径为3.点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.2.如图,A、B两点的坐标分别为(0,6),(0,3),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;(2)当⊙M与x轴相切时,求点Q的坐标;(3)当点P从点(2,0)运动到点(3,0)时,请直接写出线段QM扫过图形的面积.【答案】(1)见解析;(2) Q的坐标为(32,9);(3)63 8.【解析】(1)解:连接AM、BM,∵AQ⊥AP,BQ⊥BP∵△APQ和△BPQ都是直角三角形,M是斜边PQ的中点∴AM=BM=PM=QM= 12 PQ,∴A、B、P、Q四点在以M为圆心的同一个圆上。

2020年中考数学压轴题训练-圆的综合(学案)

2020年中考数学压轴题训练-圆的综合(学案)

第03讲中考压轴题-圆的综合考点梳理一.近5年中考双压轴之圆的综合考点归纳二.题型概述几何综合题是中考必考固定题型,考察知识点多,条件隐秘,要求学生有较强的理解能力,分析问题和解决问题的能力,对数学知识,数学方法有较强的驾驭能力,并有较强的创新意识与创新能力。

它常用相似图形与圆的知识为考察重点,并贯彻其他几何,代数,三角函数等知识,多以证明,计算等题型出现。

三.解题策略1.要点:解几何综合题应注意观察,分析图形,把复杂的图形分解为几个基本图形,通过添加辅助线补全或构造基本图形,掌握常规的证题方法和思路,运用转化的思想解决几何证明问题,运用方程思想解决几何计算问题(还要灵活运用数学思想方法,数行结合,分类讨论)2.一般策略:①认真分析题意,从已知条件出发逐步推理分析到结论的演绎推理法;②也可由结论逆向分析获得问题突破的逆向分析法;③还可以是双向的综合分析策略。

年份知识点2015考察圆切线的性质求边长,相似三角形的判定与性质、等腰直角三角形的性质等知识2016考察圆的切线证明,翻折变换的性质,垂径定理,勾股定理及逆定理,,相似三角形的判定与性质.2017考察圆垂径定理求半径、勾股定理、相似三角形的判定和性质、相交弦定理、锐角三角函数等知识2018考察圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质2019考察圆的切线证明,三角函数,相似三角形,二次函数最值问题3.中考试题中与圆有关的证明及计算,都与圆的切线有关,属于中档题,只要熟悉切线的性质与判定,特别是掌握如何判定切线很重要,需要指出的是,与圆有关的证明题,往往是以圆为载体,考查时往往还涉及特殊三角形的识别或构造,这些识别策略,构造策略靠的是对圆中常用的辅助线的熟悉,比如连半径,作垂直于弦的垂线段等,根据具体情况来决定。

感悟实践1、(2015年深圳中考第22题)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.2、(2016年深圳中考第22题)如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.3、(2017年深圳中考第22题)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.上的动点,且cos∠4、(2018年深圳中考第22题)如图,△ABC内接于⊙O,BC=2,AB=AC,点D为 晦ABC(1)求AB的长度;(2)在点D的运动过程中,弦AD的延长线交BC延长线于点E,问AD•AE的值是否变化?若不变,请求出AD•AE的值;若变化,请说明理由;(3)在点D的运动过程中,过A点作AH⊥BD,求证:BH=CD+DH.5、(2019年深圳中考第22题)闯关练习1.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.2.如图,A(﹣5,0),B(﹣3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P 从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.3.如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.4.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.5.己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)若⊙O的半径为5,AF=,求tan∠ABF的值.考场直播1.如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.2.如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若=4,求△ABC的周长.能力平台1.如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.2.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;(3)若tan∠CED=,⊙O的半径为3,求OA的长.3.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?4.如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D 两点,且C为的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8.(1)求点C的坐标;(2)连接MG、BC,求证:MG∥BC;(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.5.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直径BD=6,连接CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.6.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.7.如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(,),抛物线的表达式为;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.8.如图,在平面直角坐标系中,直线l:y=﹣2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b=时,直线l:y=﹣2x+b(b≥0)经过圆心M;当b=时,直线l:y=﹣2x+b(b≥0)与⊙M相切;(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.21。

中考数学几何综合圆的综合大题压轴题

中考数学几何综合圆的综合大题压轴题

中考数学几何综合圆的综合大题压轴题(总34页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--圆的综合大题1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP.(1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由;(2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);(2)与是否相等?请你说明理由;(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.(I)如图①,若∠F=50°,求∠BGF的大小;(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.7.如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=,OB交⊙O于点D,作AC⊥OB,垂足为M,并交⊙O于点C,连接BC.(1)求证:BC是⊙O的切线;(2)过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.8.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若cos∠BAD=,BE=,求OE的长.9.已知:如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,PA是⊙O的切线,A为切点,割线PBD过圆心,交⊙O于另一点D,连接CD.(1)求证:PA∥BC;(2)求⊙O的半径及CD的长.10.如图,已知△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,过D作⊙O的切线与AC的延长线交于点E.(1)求证:BC∥DE;(2)若AB=3,BD=2,求CE的长;(3)在题设条件下,为使BDEC是平行四边形,△ABC应满足怎样的条件(不要求证明).11.如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.(1)判断△OBC的形状,并证明你的结论;(2)求BC的长;(3)求⊙O的半径OF的长.12.已知:以Rt△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,过点D 作⊙O的切线交BC边于点E.(1)如图,求证:EB=EC=ED;(2)试问在线段DC上是否存在点F,满足BC2=4DF•DC若存在,作出点F,并予以证明;若不存在,请说明理由.13.如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E;(1)求证:BE=CE;(2)若以O、D、E、C为顶点的四边形是正方形,⊙O的半径为r,求△ABC 的面积;(3)若EC=4,BD=,求⊙O的半径OC的长.14.已知:如图,PA、PB是⊙O的切线;A、B是切点;连接OA、OB、OP,(1)若∠AOP=60°,求∠OPB的度数;(2)过O作OC、OD分别交AP、BP于C、D两点,①若∠COP=∠DOP,求证:AC=BD;②连接CD,设△PCD的周长为l,若l=2AP,判断直线CD与⊙O的位置关系,并说明理由.15.如图1,已知正方形ABCD的边长为,点M是AD的中点,P是线段MD 上的一动点(P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E.(1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线);(2)求四边形CDPF的周长;(3)延长CD,FP相交于点G,如图2所示.是否存在点P,使BF•FG=CF •OF如果存在,试求此时AP的长;如果不存在,请说明理由.16.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直径BD=6,连接CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.17.如图1,A为⊙O的弦EF上的一点,OB是和这条弦垂直的半径,垂足为H,BA的延长线交⊙O于点C,过点C作⊙O的切线与EF的延长线相交于点D.(1)求证:DA=DC;(2)当DF:EF=1:8,且DF=时,求AB•AC的值;(3)将图1中的EF所在直线往上平行移动到⊙O外,如图2的位置,使EF 与OB,延长线垂直,垂足为H,A为EF上异于H的一点,且AH小于⊙O的半径,AB的延长线交⊙O于C,过C作⊙O的切线交EF于D.试猜想DA=DC 是否仍然成立?并证明你的结论.18.如图,圆O是以AB为直径的△ABC的外接圆,D是劣弧的中点,连AD 并延长与过C点的切线交于点P,OD与BC相交于E;(1)求证:OE=AC;(2)求证:;(3)当AC=6,AB=10时,求切线PC的长.19.如图,已知AB是⊙O的直径,PC切⊙O于C,AD⊥PD,CM⊥AB,垂足分别为D,M.(1)求证:CB平分∠PCM;(2)若∠CBA=60°,求证:△ADM为等边三角形;(3)若PO=5,PC=a,⊙O的半径为r,且a,r是关于x的方程x2﹣(2m+1)x+4m=0的两根,求m的值.20.已知:在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、D、B三点,CB的延长线交⊙O于点E(如图1).在满足上述条件的情况下,当∠CAB的大小变化时,图形也随着改变(如图2),在这个变化过程中,有些线段总保持着相等的关系.(1)观察上述图形,连接图2中已标明字母的某两点,得到一条新线段与线段CE相等,请说明理由;(2)在图2中,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD,求sin∠CAB的值;②若=n(n>0),试用含n的代数式表示sin∠CAB(直接写出结果).21.如图,OA和OB是⊙O的半径,并且OA⊥OB.P是OA上的任意一点,BP的延长线交⊙O于点Q,点R在OA的延长线上,且RP=RQ.(1)求证:RQ是⊙O的切线;(2)求证:OB2=PB•PQ+OP2;(3)当RA≤OA时,试确定∠B的取值范围.22.如图,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF并延长交EC 的延长线于点G.ⅰ)试探究线段CF与CD之间满足的数量关系;ⅱ)若CD=4,tan∠BCE=,求线段FG的长.23.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是的中点.(1)求证:AC是⊙O的切线;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;(3)在(2)的条件下,连接CD,若tan∠HDC=,CG=4,求OP的长.24.如图,CD为⊙O的直径,直线AB与⊙O相切于点D,过C作CA⊥CB,分别交直线AB于点A和B,CA交⊙O于点E,连接DE,且AE=CD.(1)如图1,求证:△AED≌△CDB;(2)如图2,连接BE分别交CD和⊙O于点F,G,连接CG,DG.i)试探究线段DG与BF之间满足的等量关系,并说明理由.ii)若DG=,求⊙O的周长(结果保留π)25.在矩形ABCD中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放在点P处,三角板的两直角边分别能与AB、BC边相交于点E、F,连接EF.(1)如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;(2)将三角板从(1)中的位置开始,绕点P顺时针旋转,当点E与点A重合时停止,在这个过程中,请你观察、探究并解答:①∠PEF的大小是否发生变化?请说明理由;②求从开始到停止,线段EF的中点所经过的路线长.26.如图,△ABC内接于⊙O,AB是⊙O的直径,点D是劣弧AC上的一点,连结AD并延长与BC的延长线交于点E,AC、BD相交于点M.(1)求证:BC•CE=AC•MC;(2)若点D是劣弧AC的中点,tan∠ACD=,MD•BD=10,求⊙O的半径.(3)若CD∥AB,过点A作AF∥BC,交CD的延长线于点F,求﹣的值.27.如图,⊙O是△ABC的外接圆,AB为直径,过点O作OM∥BC,交AC于点M.(1)求∠AMO;(2)延长OM交⊙O于点E,过E作⊙O的切线,交BC延长线于点F,连接FM,并延长FM交AB于点G.①试判断四边形CFEM的形状,并说明理由;②若AG=2,CM=3,求四边形CFEM的面积.28.如图1,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作DP∥BA交CA的延长线于点P;(1)求证:PD是⊙O的切线;(2)如图2,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)在(2)的条件下,如图2,若AC=6,tan∠CAB=,求线段PC的长.29.如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO 的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=,求cos∠ACB的值.30.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连接CF.(1)当∠AOB=30°时,求弧AB的长度;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.31.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)32.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.33.⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC 于点D,连接AG、CP、PB.(1)如图1,若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC 是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.34.如图1,点O和矩形CDEF的边CD都在直线l上,以点O为圆心,以24为半径作半圆,分别交直线l于A,B两点.已知:CD=18,CF=24,矩形自右向左在直线l上平移,当点D到达点A时,矩形停止运动.在平移过程中,设矩形对角线DF与半圆的交点为P(点P为半圆上远离点B的交点).(1)如图2,若FD与半圆相切,求OD的值;(2)如图3,当DF与半圆有两个交点时,求线段PD的取值范围;(3)若线段PD的长为20,直接写出此时OD的值.35.图1和图2中,优弧纸片所在⊙O的半径为2,AB=2,点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.发现:(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′=;(2)当BA′与⊙O相切时,如图2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN剪裁,得到半圆形纸片,点P(不与点M,N重合)为半圆上一点,将圆形沿NP折叠,分别得到点M,O的对称点A′,O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图3,判断A′C与半圆O的位置关系,并说明理由;(2)如图4,当α=°时,NA′与半圆O相切,当α=°时,点O′落在上.(3)当线段NO′与半圆O只有一个公共点N时,直接写出α的取值范围.36.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.37.如图,点B,C为⊙O上两定点,点A为⊙O上一动点,过点B作BE∥AC,交⊙O于点E,点D为射线BC上一动点,且AC平分∠BAD,连接CE.(1)求证:AD∥EC;(2)连接EA,若BC=CD,试判断四边形EBCA的形状,并说明理由.38.(1)特例探究.如图(1),在等边三角形ABC中,BD是∠ABC的平分线,AE是BC边上的高线,BD和AE相交于点F.请你探究=是否成立,请说明理由;请你探究=是否成立,并说明理由.(2)归纳证明.如图(2),若△ABC为任意三角形,BD是三角形的一条内角平分线,请问=一定成立吗?并证明你的判断.(3)拓展应用.如图(3),BC是△ABC外接圆⊙O的直径,BD是∠ABC的平分线,交⊙O于点E,过点E作AB的垂线,交BA的延长线于点F,连接OF,交BD于点G,连接CG,其中cos∠ACB=,请直接写出的值;若△BGF的面积为S,请求出△COG的面积(用含S的代数式表示).39.已知:AB是⊙O直径,C是⊙O外一点,连接BC交⊙O于点D,BD=CD,连接AD、AC.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,过点C作CF⊥AB于点F,交⊙O于点E,延长CF交⊙O于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF;(3)如图3,在(2)的条件下,EH交AD于点L,若OK=1,AC=CG,求线段AL的长.40.如图,以△ABC的AB边为直径作⊙O交BC于点D,过点D作⊙O切线交AC 于点E,AB=AC.(1)如图1,求证:DE⊥AC;(2)如图2,设CA的延长线交⊙O于点F,点G在上,=,连接BG,求证:AF=BG;(3)在(2)的条件下,如图3,点M为BG中点,MD的延长线交CE于点N,连接DF交AB于点H,若AH:BH=3:8,AN=7,求DE长.41.已知AB,CD都是⊙O的直径,连接DB,过点C的切线交DB的延长线于点E.(1)如图1,求证:∠AOD+2∠E=180°;(2)如图2,过点A作AF⊥EC交EC的延长线于点F,过点D作DG⊥AB,垂足为点G,求证:DG=CF;(3)如图3,在(2)的条件下,当=时,在⊙O外取一点H,连接CH、DH分别交⊙O于点M、N,且∠HDE=∠HCE,点P在HD的延长线上,连接PO并延长交CM于点Q,若PD=11,DN=14,MQ=OB,求线段HM的长.42.已知△ABC内接于⊙O,AD平分∠BAC.(1)如图1,求证:=;(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE =AF;(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.43.已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;(3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.44.已知:⊙O是△ABC的外接圆,点D在上,连接AD,BD,AD的延长线交BC的延长线于点E,点F在BD上,连接EF,∠ACB=2∠DEF.(1)如图1,求证:∠DEF=∠DFE;(2)如图2,延长EF交AB于点G,若AE=BF,求证:AG=BG;(3)如图3,在(2)的条件下,连接OG,若cos∠AGE=,S△BEF=60,AD=BD,求线段OG的长.45.已知AB为⊙O的直径,CD为⊙O的弦,CD∥AB,过点B的切线与射线AD 交于点M,连接AC、BD.(1)如图l,求证:AC=BD;(2)如图2,延长AC、BD交于点F,作直径DE,连接AE、CE,CE与AB交于点N,求证:∠AFB=2∠AEN;(3)如图3,在(2)的条件下,过点M作MQ⊥AF于点Q,若MQ:QC=3:2,NE=2,求QF的长.46.如图1,△ABC内接于圆O,点D为弧BC上一点,连接AD交BC于点E,∠ACD﹣∠B=2∠BAD.(1)求证:AE=AC;(2)如图2,连接CO并延长交圆O于点F,连接AF,∠DAF=2∠BCD,求证:AF=AE;(3)如图3,在(2)条件下,过点F作FH∥BC交AB于点H,连接CH,过点A作AK∥BF交CH于点K,当AK=EC,AB=3时,求线段AD的长度.47.如图1,⊙O中,AB为直径,弧BC=弧AC,点P在⊙O上,连接PC交AB 于点E,过C作PC的垂线交⊙O于点Q(1)求证:弧AP=弧BQ;(2)如图2,点F在弧AC上,∠FEA=∠QEB=30°,连接PF,求证:PF=AO;(3)在(2)的条件下,如图3,过E作EG⊥FP于点G,若EG=6,求OE的长.48.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆与AC相切于点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G.(1)求证:D是弧EC的中点;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点K,连接CF,求证:CF=OK+DO;(3)如图3,在(2)的条件下,延长DB交⊙O于点Q,连接QH,若DO=,KG=2,求QH.49.如图,在Rt△ACB中,∠C=90°,D是AB上一点,以BD为直径的⊙O切AC于点E,交BC于点F,连接DF,OP⊥AB交⊙O于点P,连接ED、EP,过点A作DQ⊥PE于点Q,(1)求证:DF=2CE;(2)求证:∠A=2∠P;(3)在(2)的条件下:若BC=6,sin B=,连接OQ,求线段OQ的长.50.已知:AD、DE是⊙O的弦,DB平分∠ADE交⊙O于B,(1)求证:=;(2)连接AB、AE、DB,若DE是⊙O的直径,AE、BD交于C,CD=2AB,求∠E的度数;(3)在(2)的条件下,K是弧AE上一点,连接OK,交AE于点G,F是AD 上一点,连接AK、KE,FG,若∠AFG=4∠KAE,FG=5,DE=6,求KG 长.。

中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案

中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案

中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴¶¶BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH=33,∴HC=43,在Rt△HOC中,∵OC=r,OH=r﹣33,HC=43,∴222(33)(43)r r-+=,∴r=2536,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HCEM OE=,∴33432536=,∴EM=253.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.3.如图,在锐角△ABC中,AC是最短边.以AC为直径的⊙O,交BC于D,过O作OE∥BC,交OD于E,连接AD、AE、CE.(1)求证:∠ACE=∠DCE;(2)若∠B=45°,∠BAE=15°,求∠EAO的度数;(3)若AC=4,23CDFCOESS∆∆=,求CF的长.【答案】(1)证明见解析,(2)60°;(3)433 【解析】 【分析】 (1)易证∠OEC =∠OCE ,∠OEC =∠ECD ,从而可知∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G ,易证∠AGC =∠B +∠BAG =60°,由于OE ∥BC ,所以∠AEO =∠AGC =60°,所以∠EAO =∠AEO =60°;(3)易证12COE CAE S S =V V ,由于23CDF COE S S =V V ,所以CDF CAE S S V V =13,由圆周角定理可知∠AEC =∠FDC =90°,从而可证明△CDF ∽△CEA ,利用三角形相似的性质即可求出答案.【详解】(1)∵OC =OE ,∴∠OEC =∠OCE .∵OE ∥BC ,∴∠OEC =∠ECD ,∴∠OCE =∠ECD ,即∠ACE =∠DCE ;(2)延长AE 交BC 于点G .∵∠AGC 是△ABG 的外角,∴∠AGC =∠B +∠BAG =60°.∵OE ∥BC ,∴∠AEO =∠AGC =60°.∵OA =OE ,∴∠EAO =∠AEO =60°.(3)∵O 是AC 中点,∴12COE CAE S S =V V . 23CDF COE S S =V V Q ,∴CDF CAE S S V V =13. ∵AC 是直径,∴∠AEC =∠FDC =90°.∵∠ACE =∠FCD ,∴△CDF ∽△CEA ,∴CF CA =3,∴CF =3CA =43.【点睛】本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.4.在⊙O 中,点C 是AB u u u r上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是»AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.5.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.(1)如图1,求⊙O1半径及点E的坐标.(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF 与AC之间是否存在某种等量关系?请写出你的结论,并证明.(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG 的长(不写过程),若变化自画图说明理由.【答案】(1)r=5 E(4,5)(2)BF+CF=AC (3)弦BG的长度不变,等于2【解析】分析:(1)连接ED、EC、EO1、MO1,如图1,可以证到∠ECD=∠SME=∠EMC=∠EDC,从而可以证到∠EO1D=∠EO1C=90°.由直线DM的解析式为y=3x+3可得OD=1,OM=3.设⊙O1的半径为r.在Rt△MOO1中利用勾股定理就可解决问题.(2)过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.由AB∥DC可证到BD=AC,易证四边形O1PFQ是矩形,从而有O1P=FQ,∠PO1Q=90°,进而有∠EO1P=∠CO1Q,从而可以证到△EPO1≌△CQO1,则有PO1=QO1.根据三角形中位线定理可得FQ=12BD.从而可以得到BF+CF=2FQ=AC.(3)连接EO1,ED,EB,BG,如图3.易证EF∥BD,则有∠GEB=∠EBD,从而有¶BG=¶ED,也就有BG=DE.在Rt△EO1D中运用勾股定理求出ED,就可解决问题.详解:(1)连接ED、EC、EO1、MO1,如图1.∵ME平分∠SMC,∴∠SME=∠EMC.∵∠SME=∠ECD,∠EMC=∠EDC,∴∠ECD=∠EDC,∴∠EO1D=∠EO1C.∵∠EO1D+∠EO1C=180°,∴∠EO1D=∠EO1C=90°.∵直线DM的解析式为y=3x+3,∴点M的坐标为(0,3),点D的坐标为(﹣1,0),∴OD=1,OM=3.设⊙O1的半径为r,则MO1=DO1=r.在Rt△MOO1中,(r﹣1)2+32=r2.解得:r=5,∴OO1=4,EO1=5,∴⊙O1半径为5,点E的坐标为(4,5).(2)BF+CF=AC.理由如下:过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.∵AB∥DC,∴∠DCA=∠BAC,∴¶AD=¶¶BC BD∴,=¶AC,∴BD=AC.∵O1P⊥EG,O1Q⊥BC,EF⊥BF,∴∠O1PF=∠PFQ=∠O1QF=90°,∴四边形O1PFQ是矩形,∴O1P=FQ,∠PO1Q=90°,∴∠EO1P=90°﹣∠PO1C=∠CO1Q.在△EPO1和△CQO1中,111111EO P CO QEPO CQOO E O C∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EPO1≌△CQO1,∴PO1=QO1,∴FQ=QO1.∵QO1⊥BC,∴BQ=CQ.∵CO1=DO1,∴O1Q=12 BD,∴FQ=12BD.∵BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴BF+CF=BD=AC.(3)连接EO1,ED,EB,BG,如图3.∵DC是⊙O1的直径,∴∠DBC=90°,∴∠DBC+∠EFB=180°,∴EF∥BD,∴∠GEB=∠EBD,∴¶BG=¶ED,∴BG=DE.∵DO1=EO1=5,EO1⊥DO1,∴DE=52,∴BG=52,∴弦BG的长度不变,等于52.点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥DC证到AC=BD是解决第(2)小题的关键,由EG∥DB证到BG=DE是解决第(3)小题的关键.6.等腰Rt△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O 与直线AB的距离为5.(1)若△ABC以每秒2个单位的速度向右移动,⊙O不动,则经过多少时间△ABC的边与圆第一次相切?(2)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,则经过多少时间△ABC的边与圆第一次相切?(3)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,同时△ABC的边长AB、BC都以每秒0.5个单位沿BA、BC方向增大.△ABC的边与圆第一次相切时,点B运动了多少距离?【答案】(1)522-;(2)52-;(3)20423-【解析】分析:(1)分析易得,第一次相切时,与斜边相切,假设此时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′于F.由切线长定理易得CC′的长,进而由三角形运动的速度可得答案;(2)设运动的时间为t秒,根据题意得:CC′=2t,DD′=t,则C′D′=CD+DD′-CC′=4+t-2t=4-t,由第(1)的结论列式得出结果;(3)求出相切的时间,进而得出B点移动的距离.详解:(1)假设第一次相切时,△ABC移至△A′B′C′处,如图1,A′C′与⊙O切于点E,连接OE并延长,交B′C′于F,设⊙O与直线l切于点D,连接OD,则OE⊥A′C′,OD⊥直线l,由切线长定理可知C′E=C′D,设C′D=x,则C′E=x,∵△ABC是等腰直角三角形,∴∠A=∠ACB=45°,∴∠A′C′B′=∠ACB=45°,∴△EFC′是等腰直角三角形,∴2x,∠OFD=45°,∴△OFD也是等腰直角三角形,∴OD=DF , ∴2x+x=1,则x=2-1, ∴CC′=BD -BC-C′D=5-1-(2-1)=5-2,∴点C 运动的时间为522-; 则经过522-秒,△ABC 的边与圆第一次相切; (2)如图2,设经过t 秒△ABC 的边与圆第一次相切,△ABC 移至△A′B′C′处,⊙O 与BC 所在直线的切点D 移至D′处,A′C′与⊙O 切于点E ,连OE 并延长,交B′C′于F ,∵CC′=2t ,DD′=t ,∴C′D′=CD+DD′-CC′=4+t -2t=4-t ,由切线长定理得C′E=C′D′=4-t ,由(1)得:4-t=2-1,解得:t=5-2,答:经过5-2秒△ABC 的边与圆第一次相切;(3)由(2)得CC′=(2+0.5)t=2.5t ,DD′=t ,则C′D′=CD+DD′-CC′=4+t -2.5t=4-1.5t ,由切线长定理得C′E=C′D′=4-1.5t ,由(1)得:4-1.5t=2-1,解得:t=10223-, ∴点B 运动的距离为2×10223-=20423-.点睛:本题要求学生熟练掌握圆与直线的位置关系,并结合动点问题进行综合分析,比较复杂,难度较大,考查了学生数形结合的分析能力.7.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。

2020-2021中考数学压轴题专题复习—圆的综合的综合附答案解析

2020-2021中考数学压轴题专题复习—圆的综合的综合附答案解析

2020-2021中考数学压轴题专题复习—圆的综合的综合附答案解析一、圆的综合1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2tan 3B =,求半圆的半径.【答案】(1)见解析;(2)413 【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径, ∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=.∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴AC AOAB AD=. ∵1132OA AB x ==,AD =2x +10, ∴113221013xx x =+. 解得 x =8. ∴138413OA =⨯=. 则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.2.如图1O e ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC o ,∠=,过点P 作PD OP ⊥交O e 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当»»DC AC=时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O e 的切线;②求PC 的长.【答案】(1)262)333①见解析,②. 【解析】分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长;()2①首先得出OBD V 是等边三角形,进而得出ODE OFB 90∠∠==o ,求出答案即可;②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.详解:()1如图2,连接OD ,//OP PD PD AB ⊥Q ,,90POB ∴∠=o ,O Q e 的直径12AB =,6OB OD ∴==,在Rt POB V 中,30ABC o ∠=,3tan30623OP OB ∴=⋅=⨯=o , 在Rt POD V 中,22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,»»DC AC =Q ,30DBC ABC ∴∠=∠=o , 60ABD o ∴∠=,OB OD =Q , OBD ∴V 是等边三角形, OD FB ∴⊥,12BE AB =Q ,OB BE ∴=, //BF ED ∴,90ODE OFB o ∴∠=∠=,DE ∴是O e 的切线; ②由①知,OD BC ⊥,3cos30633CF FB OB ∴==⋅=⨯=o , 在Rt POD V 中,OF DF =,13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD V 是等边三角形是解题关键.3.矩形ABCD 中,点C (3,8),E 、F 为AB 、CD 边上的中点,如图1,点A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若点A 从原点出发,沿x 轴向右以每秒1个单位长度的速度运动,点B 随之沿y 轴下滑,并带动矩形ABCD 在平面内滑动,如图2,设运动时间表示为t 秒,当点B 到达原点时停止运动. (1)当t =0时,点F 的坐标为 ; (2)当t =4时,求OE 的长及点B 下滑的距离; (3)求运动过程中,点F 到点O 的最大距离;(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.【答案】(1)F (3,4);(2)8-33)7;(4)t 的值为245或325. 【解析】试题分析:(1)先确定出DF ,进而得出点F 的坐标; (2)利用直角三角形的性质得出∠ABO =30°,即可得出结论;(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论; (4)分两种情况,利用相似三角形的性质建立方程求解即可.试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°,∴∠ABO =30°,点E 是AB 的中点,OE =12AB =4,BO =43,∴点B 下滑的距离为843-.(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF =22FD AD +=5,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853t=,∴t 1=245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=325. 综上所述:当以点F 为圆心,FA 为半径的圆与坐标轴相切时,t 的值为245或325. 点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO =30°,解(3)的关键是判断出当O 、E 、F 三点共线时,点F 到点O 的距离最大,解(4)的关键是判断出Rt △FAE ∽Rt △ABD ,是一道中等难度的中考常考题.4.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=22 2 9?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.5.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.6.解决问题:()1如图①,半径为4的Oe上,则PA的最大值和e外有一点P,且7PO=,点A在O最小值分别是______和______.()2如图②,扇形AOB的半径为4,45∠=o,P为弧AB上一点,分别在OA边找AOBV周长的最小,请在图②中确定点E、F的位置并直点E,在OB边上找一点F,使得PEFV周长的最小值;接写出PEF拓展应用()3如图③,正方形ABCD 的边长为42;E 是CD 上一点(不与D 、C 重合),CF BE ⊥于F ,P 在BE 上,且PF CF =,M 、N 分别是AB 、AC 上动点,求PMN V 周长的最小值.【答案】(1)11,3;(2)图见解析,PEF V 周长最小值为423)41042. 【解析】 【分析】()1根据圆外一点P 到这个圆上所有点的距离中,最远是和最近的点是过圆心和该点的直线与圆的交点,容易求出最大值与最小值分别为11和3;()2作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求,此时PEF V 周长最小,然后根据等腰直角三角形求解即可;()3类似()2题作对称点,PMN V 周长最小12PP =,然后由三角形相似和勾股定理求解.【详解】解:()1如图①,Q 圆外一点P 到这个圆上所有点的距离中,最大距离是和最小距离都在过圆心的直线OP 上,此直线与圆有两个交点,圆外一点与这两个交点的距离个分别最大距离和最小距离.PA ∴的最大值227411PA PO OA ==+=+=,PA 的最小值11743PA PO OA ==-=-=, 故答案为11和3;()2如图②,以O 为圆心,OA 为半径,画弧AB 和弧BD ,作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求.连接1OP 、2OP 、OP 、PE 、PF ,由对称知识可知,1AOP AOP ∠∠=,2BOP BOP ∠∠=,1PE PE =,2PF P F = ∴1245AOP BOP AOP BOP AOB ∠∠∠∠∠+=+==o , 12454590POP o o o ∠=+=, 12POP ∴V 为等腰直角三角形,121PP ∴==PEF V 周长1212PE PF EF PE P F EF PP =++=++=,此时PEF V 周长最小.故答案为;()3作点P 关于直线AB 的对称1P ,连接1AP 、1BP ,作点P 关于直线AC 的对称2P ,连接1P 、2P ,与AB 、AC 分别交于点M 、N .如图③ 由对称知识可知,1PM PM =,2PN P N =,PMN V 周长1212PM PN MN PM P N MN PP =++=++=,此时,PMN V 周长最小12PP =.由对称性可知,1BAP BAP ∠∠=,2EAP EAP ∠∠=,12APAP AP ==, ∴1245BAP EAP BAP EAP BAC o∠∠∠∠∠+=+== 12454590P AP ∠=+=o o o ,12P AP V ∴为等腰直角三角形,PMN ∴V 周长最小值12PP =,当AP 最短时,周长最小. 连接DF .CF BE Q ⊥,且PF CF =,45PCF ∠∴=o ,PCCF=45ACD ∠=o Q ,PCF ACD ∠∠∴=,PCA FCD ∠∠=,又ACCD=, ∴在APC V 与DFC V 中,AC PCCD CF=,PCA FCD ∠∠=C AP ∴V ∽DFC V ,AP AC DF CD∴== ∴AP =90BFC ∠=o Q ,取AB 中点O .∴点F 在以BC 为直径的圆上运动,当D 、F 、O 三点在同一直线上时,DF 最短.DF DO FO OC =-===AP ∴最小值为AP = ∴此时,PMN V 周长最小值12PP ====.【点睛】本题考查圆以及正方形的性质,运用圆的对称性和正方形的对称性是解答本题的关键.7.已知,ABC ∆内接于O e ,点P 是弧AB 的中点,连接PA 、PB ; (1)如图1,若AC BC =,求证:AB PC ⊥; (2)如图2,若PA 平分CPM ∠,求证:AB AC =; (3)在(2)的条件下,若24sin 25BPC ∠=,8AC =,求AP 的值.【答案】(1)见解析;(2)见解析5 【解析】 【分析】(1)由点P 是弧AB 的中点,可得出AP=BP , 通过证明APC BPC ∆≅∆ ,ACE BCE ∆≅∆可得出AEC BEC ∠=∠进而证明AB ⊥ PC.(2)由PA 是∠CPM 的角平分线,得到∠MPA=∠APC, 等量代换得到∠ABC=∠ACB, 根据等腰三角形的判定定理即可证得AB=AC.(3)过A 点作AD ⊥BC,有三线合一可知AD 平分BC,点O 在AD 上,连结OB ,则∠BOD =∠BAC ,根据圆周角定理可知∠BOD=∠BAC, ∠BPC=∠BAC ,由∠BOD=∠BPC 可得sin sin BDBOD BPC OB∠=∠=,设OB=25x ,根据勾股定理可算出OB 、BD 、OD 、AD 的长,再次利用勾股定理即可求得AP 的值. 【详解】解:(1)∵点P 是弧AB 的中点,如图1, ∴AP =BP , 在△APC 和△BPC 中AP BP AC BC PC PC =⎧⎪=⎨⎪=⎩, ∴△APC ≌△BPC (SSS ), ∴∠ACP =∠BCP , 在△ACE 和△BCE 中AC BC ACP BCP CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△BCE (SAS ), ∴∠AEC =∠BEC , ∵∠AEC +∠BEC =180°, ∴∠AEC =90°, ∴AB ⊥PC ;(2)∵PA 平分∠CPM , ∴∠MPA =∠APC ,∵∠APC +∠BPC +∠ACB =180°,∠MPA +∠APC +∠BPC =180°, ∴∠ACB =∠MPA =∠APC , ∵∠APC =∠ABC , ∴∠ABC =∠ACB , ∴AB =AC ;(3)过A 点作AD ⊥BC 交BC 于D ,连结OP 交AB 于E ,如图2,由(2)得出AB =AC , ∴AD 平分BC , ∴点O 在AD 上,连结OB ,则∠BOD =∠BAC ,∵∠BPC =∠BAC , ∴sin sin BOD BPC ∠=∠=2425BDOB=, 设OB =25x ,则BD =24x , ∴OD =22OB BD -=7x ,在Rt ABD V 中,AD =25x +7x =32x ,BD =24x , ∴AB =22AD BD +=40x ,∵AC =8, ∴AB =40x =8, 解得:x =0.2,∴OB =5,BD =4.8,OD =1.4,AD =6.4, ∵点P 是¶AB 的中点, ∴OP 垂直平分AB , ∴AE =12AB =4,∠AEP =∠AEO =90°, 在Rt AEO ∆中,OE =223AO AE -=,∴PE =OP ﹣OE =5﹣3=2,在Rt APE ∆中,AP =22222425PE AE +=+=. 【点睛】本题是一道有关圆的综合题,考查了圆周角定理、勾股定理、等腰三角形的判定定理和三线合一,是初中数学的重点和难点,一般以压轴题形出现,难度较大.8.已知P 是O e 的直径BA 延长线上的一个动点,∠P 的另一边交O e 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O e 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n- ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH V =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =Q 中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m Q 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O e 、1O e 的半径的和,就有O e 、1O e 外切不合题意舍去.ii )11O P OO =,由22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.9.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解: ⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为“智慧三角形”,并说明理由;运用:⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.【答案】(1)详见解析;(2)详见解析;(3)P 的坐标(223-,13),(223,13).【解析】试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.试题解析:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ=,PM=1×2÷3=,由勾股定理可求得OM=,故点P的坐标(﹣,),(,).考点:圆的综合题.10.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++(3)505-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=5tan∠CAB=2,BP228+(4)x-2880x x-+DA 25x,则BD=525x,如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ=5,sinβ=5, EB =BDcosβ=(45﹣25x )×5=4﹣25x , ∴PD ∥BE , ∴EB BF PD PF =,即:2024588x y x xx y -+--=, 整理得:y =25x x 8x 803x 20-++; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦,∵点Q 是弧GD 的中点,∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA =90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG =EP =BD ,∴AB =DB+AD =AG+AD =5设圆的半径为r ,在△ADG 中,AD =2rcosβ=5,DG =5,AG =2r , 5+2r =45,解得:2r =51+, 则:DG =5=50﹣105, 相交所得的公共弦的长为50﹣105.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.12.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径,»»BD AD =,DE ⊥BC ,垂足为E .(1)判断直线ED 与⊙O 的位置关系,并说明理由;(2)若CE =1,AC =4,求阴影部分的面积.【答案】(1)ED 与O e 相切.理由见解析;(2)2=33S π-阴影 【解析】【分析】 (1)连结OD ,如图,根据圆周角定理,由»»BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可.【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵»»BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC .∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•22 23=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.13.如图①,已知Rt ABC ∆中,90ACB ∠=o ,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作O e ,过C 作CE 切O e 于E ,交AB 于F .(1)若O e 的半径为2,求线段CE 的长;(2)若AF BF =,求O e 的半径;(3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)42CE =(2)O e 的半径为3;(3)G 、E 两点之间的距离为9.6.【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE BC =OC BA ,即r 8-r =610,解得即可; (3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC=,即12108GE =,解得即可. 【详解】(1)如图,连结OE .∵CE 切O e 于E ,∴90OEC ∠=︒.∵8AC =,O e 半径为2,∴6OC =,2OE =.∴2242CE OC OE =-=;(2)设O e 半径为r .在Rt ABC ∆中,90ACB ∠=︒,10AB =,8AC =, ∴226BC AB AC -=. ∵AF BF =, ∴AF CF BF ==. ∴ACF CAF ∠=∠. ∵CE 切O e 于E ,∴90OEC ∠=︒.∴OEC ACB ∠=∠,∴OEC BCA ∆~∆.∴OE OC BC BA =, ∴8610r r -=, 解得3r =.∴O e 的半径为3;(3)连结EG 、OE ,设EG 交AC 于点M ,由对称性可知,CB CG =.又CE CB =,∴CE CG =.∴EGC GEC ∠=∠.∵CE 切O e 于E ,∴90GEC OEG ∠+∠=︒.又90EGC GMC ∠+∠=︒,∴OEG GMC ∠=∠.又GMC OME ∠=∠,∴OEG OME ∠=∠.∴OE OM =.∴点M 与点D 重合.∴G 、D 、E 三点在同一条直线上.连结AE 、BE ,∵AD 是直径,∴90AED ∠=︒,即90AEG ∠=︒.又CE CB CG ==,∴90BEG ∠=︒.∴180AEB AEG BEG ∠=∠+∠=︒,∴A 、E 、B 三点在同一条直线上.∴E 、F 两点重合.∵90GEB ACB ∠=∠=︒,B B ∠=∠,∴GBE ABC ∆~∆. ∴GB GE AB AC =,即12108GE =. ∴9.6GE =.故G 、E 两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.14.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E .(1)求OE 的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果保留π)【答案】(1)OE的长为32;(2)阴影部分的面积为3 2π【解析】(1)OE=32(2)S=32π15.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•co s60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.。

2020-2021中考数学压轴题专题圆的综合的经典综合题及详细答案.doc

2020-2021中考数学压轴题专题圆的综合的经典综合题及详细答案.doc

2020-2021 中考数学压轴题专题圆的综合的经典综合题及详细答案一、圆的综合1.如图 1,以边长为 4 的正方形纸片ABCD的边 AB 为直径作⊙ O,交对角线AC 于点 E.(1)图 1 中,线段AE=;(2)如图 2,在图 1 的基础上,以点 A 为端点作∠ DAM=30°,交 CD 于点 M ,沿 AM 将四边形 ABCM 剪掉,使Rt△ADM 绕点 A 逆时针旋转(如图3),设旋转角为α(0°<α<150 °),在旋转过程中AD 与⊙O 交于点 F.①当α =30时°,请求出线段AF 的长;②当α =60时°,求出线段AF 的长;判断此时DM 与⊙ O 的位置关系,并说明理由;③当α=°时,DM与⊙ O相切.【答案】( 1) 2(2)①2②2,相离③当α=90°时,DM与⊙O相切AEB 是等腰直【解析】( 1)连接 BE,∵ AC是正方形ABCD的对角线,∴ ∠BAC=45°,∴△角三角形,又∵ AB=8,∴ AE=4;(2)①连接 OA、OF,由题意得,∠NAD=30°,∠ DAM=30°,故可得∠ OAM=30°,∠DAM=30 °则,∠ OAF=60 ,°又∵ OA=OF,∴ △ OAF是等边三角形,∵OA=4,∴ AF=OA=4;②连接 B'F,此时∠ NAD=60 °,∵ AB'=8,∠DAM=30 °,∴ AF=AB'cos∠ DAM=8×=4;此时 DM 与⊙ O 的位置关系是相离;③ ∵AD=8,直径的长度相等,∴当 DM 与⊙ O 相切时,点 D 在⊙O 上,故此时可得α=∠ NAD=90 °.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点 D 的位置,有一定难度.2.已知⊙ O 中,弦 AB=AC,点 P 是∠ BAC所对弧上一动点,连接PA, PB.(1)如图①,把△ ABP 绕点 A 逆时针旋转到△ ACQ,连接PC,求证:∠A CP+∠ ACQ=180 ;°(2)如图②,若∠ BAC=60°,试探究 PA、 PB、 PC 之间的关系.(3)若∠ BAC=120°时,( 2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.【答案】( 1)证明见解析;(2) PA=PB+PC .理由见解析;( 3)若 ∠ BAC=120°时,( 2)中的结论不成立,3 【解析】试题分析:( 1)如图 ① ,连接 PC .根据 “内接四边形的对角互补的性质”即可证得结论;( 2)如图 ② ,通过作辅助线 BC 、 PE 、 CE (连接 BC ,延长 BP 至 E ,使 PE=PC ,连接 CE )构建等边 △ PCE 和全等三角形 △ BEC ≌ △ APC ;然后利用全等三角形的对应边相等和线段间 的和差关系可以求得 PA=PB+PC ;( 3)如图 ③ ,在线段 PC 上截取 PQ ,使 PQ=PB ,过点 A 作 AG ⊥ PC 于点 G .利用全等三角形 △ ABP ≌△ AQP ( SAS )的对应边相等推知 AB=AQ , PB=PG ,将 PA 、 PB 、 PC 的数量关系转化到 △ APC 中来求即可. 试题解析:( 1)如图 ① ,连接 PC .∵△ ACQ 是由 △ABP 绕点 A 逆时针旋转得到的, ∴∠ ABP=∠ ACQ .由图 ① 知,点 A 、 B 、 P 、C 四点共圆,∴∠ ACP+∠ABP=180 (°圆内接四边形的对角互补), ∴∠ ACP+∠ACQ=180 (°等量代换); ( 2) PA=PB+PC .理由如下:如图 ② ,连接 BC BP 至 E PE=PC CE,延长 ,使 ,连接 . ∵弦 AB=弦 AC , ∠ BAC=60 ,° ∴△ ABC 是等边三角形(有一内角为60 °的等腰三角形是等边三角形).∵A 、B 、 P 、C 四点共圆, ∴ ∠ BAC+∠ BPC=180 (°圆内接四边形的对角互补), ∵∠ BPC+∠ EPC=180,°∴ ∠BAC=∠ CPE=60,°∵ PE=PC ,∴ △ PCE 是等边三角形, ∴ CE=PC ,∠ E=∠ ECP=∠ EPC=60;°又∵ ∠ BCE=60°+∠BCP ,∠ ACP=60°+∠ BCP , ∴ ∠ BCE=∠ ACP (等量代换) ,在△ BEC 和△ APC 中,CE PCBCEACPAC BC, ∴ △ BEC ≌ △ APC ( SAS ), ∴ BE=PA ,∴ P A=BE=PB+PC ;(3)若 ∠ BAC=120°时,( 2)中的结论不成立, 3 PA=PB+PC .理由如下:如图 ③ ,在线段 PC 上截取 PQ ,使 PQ=PB ,过点 A 作 AG ⊥ PC 于点 G . ∵∠ BAC=120 ,°∠ BAC+∠ BPC=180 ,°∴ ∠BPC=60 .°(PA=PB+PC .∵弦 AB=弦 AC,∴ ∠ APB=∠ APQ=30 .°PB PQ在△ ABP 和△ AQP中,APB APQ ,∴ △ABP≌ △AQP(SAS),AP AP∴AB=AQ, PB=PQ(全等三角形的对应边相等),∴ AQ=AC(等量代换).在等腰△ AQC中, QG=CG.在Rt△ APG中,∠ APG=30°,则 AP=2AG, PG= 3 AG,∴PB+PC=PG﹣ QG+PG+CG=PG﹣ QG+PG+QG=2PG=2 3 AG,∴ 3 PA=2 3 AG,即 3 PA=PB+PC.【点睛】本题考查了圆的综合题,解题的关键要能掌握和灵活运用圆心角、弧、弦间的关系,全等三角形的判定与性质,圆内接四边形的性质等.3.如图,已知 BC 是⊙ O 的弦, A 是⊙ O 外一点,△ ABC 为正三角形, D 为 BC的中点, M 为⊙ O 上一点,并且∠ BMC=60°.(1)求证: AB 是⊙ O 的切线;(2)若 E, F 分别是边 AB, AC 上的两个动点,且∠EDF=120°,⊙ O 的半径为 2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】( 1)证明见试题解析;(2) BE+CF的值是定值,为等边△ ABC边长的一半.【解析】试题分析:( 1)连结 OB、 OD,如图 1,由于 D 为 BC的中点,由垂径定理的推理得OD⊥ BC,∠ BOD=∠ COD,即可得到∠ BOD=∠ M=60°,则∠ OBD=30°,所以∠ABO=90°,于是得到 AB 是⊙ O 的切线;(2)作 DM⊥ AB 于 M , DN⊥ AC 于 N,连结 AD,如图 2,由△ ABC为正三角形, D 为 BC的中点,得到AD 平分∠ BAC,∠BAC=60°,利用角平分线性质得DM=DN,得∠MDN=120 °,由∠ EDF=120 ,°得到∠ MDE=∠NDF,于是有△ DME≌ △ DNF,得到 ME=NF,1 1 1 B C,即可判断 BE+CF的值是得到 BE+CF=BM+CN,由 BM= BD, CN= OC,得到 BE+CF=2 2 2定值,为等边△ ABC 边长的一半.试题解析:( 1)连结 OB、 OD,如图 1,∵ D 为 BC 的中点,∴ OD⊥ BC,∠ BOD=∠ COD,1∴∠ ODB=90 ,°∵∠ BMC=∠BOC,∴∠ BOD=∠ M=60°,∴∠ OBD=30,°∵△ABC为正三2角形,∴ ∠ABC=60°,∴ ∠ ABO=60°+30°=90°,∴ AB⊥OB,∴ AB 是⊙O 的切线;(2) BE+CF的值是为定值.作DM ⊥ AB 于 M, DN⊥ AC 于 N,连结 AD,如图 2,∵ △ABC 为正三角形, D 为 BC 的中点,∴ AD 平分∠ BAC,∠BAC=60°,∴ DM=DN,∠ MDN=120°,∵ ∠ EDF=120°,∴∠ MDE=∠ NDF,在△ DME 和△DNF 中,∵ ∠ DME=∠ DNF. DM=DN,∠MDE=∠ NDF,∴△ DME≌ △DNF,∴ ME=NF,∴ BE+CF=BM﹣EM+CN+NF=BM+CN,在 Rt△ DMB 中,∵∠ DBM=60 ° ∴ BM= 1 1 1 1 1,BD,同理可得 CN=2 2 22 OC,∴ BE+CF= OB+ 2 OC= BC,∴BE+CF 的值是定值,为等边△ ABC边长的一半.考点: 1.切线的判定;2.等边三角形的性质;3.定值问题; 4.探究型; 5.综合题;6.压轴题.4.已知: BD 为⊙O 的直径, O 为圆心,点 A 为圆上一点,过点 B 作⊙ O 的切线交 DA 的延长线于点 F,点 C 为⊙ O 上一点,且 AB= AC,连接 BC 交 AD 于点 E,连接 AC.(1)如图 1,求证:∠ABF=∠ ABC;(2)如图 2,点 H 为⊙ O 内部一点,连接OH, CH若∠ OHC=∠ HCA=90°时,求证: CH=1DA;2(3)在 (2)的条件下,若OH= 6,⊙ O 的半径为10,求 CE 的长.【答案】 (1)见解析;( 2)见解析;( 3)21.5【解析】【分析】1 由BD为 e O 的直径,得到D ABD 90o,根据切线的性质得到FBA ABD 90o,根据等腰三角形的性质得到 C ABC ,等量代换即可得到结论;2 如图2,连接OC,根据平行线的判定和性质得到ACO COH ,根据等腰三角形的性质得到OBC OCB ,ABC CBO ACB OCB ,根据相似三角形的性质即可得到结论;AB BD2 ,根据勾股定理得到3 根据相似三角形的性质得到OCOHAD BD 2 AB 2 16 ,根据全等三角形的性质得到BF BE ,AF AE,根据射影定理得到AF 1229 ,根据相交弦定理即可得到结论.16【详解】1 Q BD 为 e O 的直径,BAD 90o,D ABD90o,Q FB 是 e O 的切线,FBD 90o,FBA ABD 90o,FBA D ,Q AB AC ,C ABC ,Q C D ,ABF ABC ;2 如图2,连接OC,Q OHCHCA 90o ,AC / / OH ,ACOCOH , Q OB OC ,OBC OCB , ABCCBOACBOCB ,即ABD ACO ,ABCCOH ,Q HBAD 90o ,VABD ∽ VHOC ,AD BD2 ,CHOCCH1DA ;23 由 2 知, VABC ∽ VHOC ,AB BD 2,OHOCQ OH 6 , e O 的半径为 10,AB 2OH 12 , BD 20,AD BD 2 AB 2 16,在 VABF 与 VABE 中,ABF ABEAB AB,BAFBAE 90oVABF ≌ VABE ,BF BE , AFAE ,Q FBDBAD90o ,AB 2AF AD,1229 ,AF16AE AF 9 ,DE 7 , BEAB 2AE215,Q AD ,BC 交于 E ,AE DE BE CE ,AE DE 9 7 21 CE15.BE5【点睛】本题考查了切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,勾股定理,射影定理,相交弦定理,正确的识别图形是解题的关键.5.如图 1,已知 AB 是 ⊙O 的直径, AC 是 ⊙O 的弦,过 O 点作 OF ⊥ AB 交⊙ O 于点 D ,交AC 于点 E ,交 BC 的延长线于点 F ,点 G 是 EF 的中点,连接 CG (1)判断 CG 与⊙ O 的位置关系,并说明理由; (2)求证: 2OB 2=BC?BF ;(3)如图 2,当 ∠ DCE = 2∠ F , CE = 3,DG = 2.5 时,求 DE 的长.【答案】( 1) CG 与 ⊙ O 相切,理由见解析;( 2)见解析;( 3) DE = 2【解析】【分析】(1)连接 CE ,由 AB 是直径知 △ ECF 是直角三角形,结合 G 为 EF 中点知 ∠ AEO = ∠GEC =∠GCE ,再由 OA = OC 知 ∠ OCA = ∠OAC ,根据 OF ⊥ AB 可得 ∠ OCA+∠ GCE = 90 °,即OC ⊥ GC ,据此即可得证;( 2)证 △ ABC ∽△ FBO 得BC AB ,结合 AB =2BO 即可得;BOBF(3)证 ECD ∽ △ EGC 得EC ED,根据 CE = 3, DG = 2.5 知3 DE,解之可EGECDE 2.53得.【详解】解:( 1) CG 与⊙ O 相切,理由如下:如图 1,连接 CE ,∵AB 是⊙ O 的直径,∴∠ ACB=∠ ACF= 90 °,∵点 G 是 EF 的中点,∴GF= GE= GC,∴∠ AEO=∠GEC=∠ GCE,∵OA=OC,∴∠ OCA=∠ OAC,∵OF⊥ AB,∴∠ OAC+∠ AEO=90 °,∴∠ OCA+∠ GCE= 90 °,即 OC⊥ GC,∴CG 与⊙ O 相切;(2)∵ ∠ AOE=∠ FCE= 90°,∠AEO=∠ FEC,∴∠ OAE=∠ F,又∵∠ B=∠ B,∴△ ABC∽ △ FBO,BC AB∴,即 BO?AB= BC?BF,BO BF∵AB= 2BO,∴2OB2=BC?BF;(3)由( 1)知 GC= GE= GF,∴∠ F=∠ GCF,∴∠ EGC= 2∠F,又∵∠ DCE= 2∠ F,∴∠ EGC=∠DCE,∵∠ DEC=∠ CEG,∴△ ECD∽ △ EGC,∴EC ED ,EG EC∵CE= 3, DG= 2.5,∴3DE ,DE 2.5 3整理,得: DE2+2.5DE﹣ 9= 0,解得: DE= 2 或 DE=﹣ 4.5(舍),故DE=2.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.6.如图,□ ABCD的边 AD 是△ ABC外接圆⊙ O 的切线,切点为 A,连接 AO 并延长交 BC于点 E,交⊙O 于点 F,过点 C 作直线 CP 交 AO 的延长线于点 P,且∠ BCP=∠ ACD.(1)求证: PC是⊙O 的切线;(2)若∠ B= 67.5 °, BC=2,求线段PC, PF与弧 CF所围成的阴影部分的面积S.【答案】( 1)见解析;(2)14【解析】【分析】( 1)过 C 点作直径 CM,连接 MB,根据 CM 为直径,可得∠ M+ ∠ BCM=90°,再根据 AB∥ DC 可得∠ ACD=∠ BAC,由圆周角定理可得∠ BAC=∠ M,∠ BCP=∠ACD,从而可推导得出∠ PCM= 90°,根据切线的判定即可得;(2)连接 OB,由 AD 是⊙O 的切线,可得∠ PAD= 90°,再由 BC∥ AD,可得 AP⊥ BC,从而得 BE=CE=1BC=1 ,继而可得到∠ ABC=∠ACB= 67.5 ,°从而得到∠ BAC= 45°,由圆周2角定理可得∠ BOC=90°,从而可得∠ BOE=∠ COE=∠ OCE= 45 °,根据已知条件可推导得出OE= CE=1, PC=OC=OE2 CE2 2 ,根据三角形面积以及扇形面积即可求得阴影部分的面积 .【详解】( 1)过 C 点作直径CM,连接 MB,∵CM 为直径,∴∠ MBC=90 °,即∠ M+∠ BCM= 90 °,∵四边形 ABCD是平行四边形,∴AB∥ DC, AD∥ BC,∴∠ ACD=∠ BAC,∵∠ BAC=∠M ,∠BCP=∠ ACD,∴∠ M =∠ BCP,∴∠ BCP+∠ BCM= 90 °,即∠ PCM=90 °,∴CM⊥ PC,∴PC 与⊙ O 相切;(2)连接 OB,∵AD 是⊙ O 的切线,切点为A,∴OA⊥AD,即∠ PAD= 90 °,∵BC∥ AD,∠AEB=∠PAD= 90 °,∴AP⊥ BC.∴ BE= CE=1BC= 1,2∴AB= AC,∴ ∠ ABC=∠ ACB= 67.5 ,°∴∠ BAC= 180 -°∠ABC-∠ ACB= 45 °,∴∠ BOC= 2∠ BAC=90 °,∵OB= OC,AP⊥BC,∴ ∠ BOE=∠ COE=∠ OCE= 45 ,°∵∠ PCM= 90 °,∴ ∠ CPO=∠ COE=∠ OCE= 45 ,°∴OE=CE= 1, PC= OC=OE2 CE2 2 ,2∴S=S△POC- S 扇形OFC=1245π 2π.2 12 360 4【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.7.如图所示,AB 是半圆O 的直径,AC是弦,点P 沿BA 方向,从点 B 运动到点A,速度为 1cm/s ,若AB 10cm,点O 到AC 的距离为4cm .(1)求弦 AC的长;(2)问经过多长时间后,△ APC是等腰三角形.【答案】( 1) AC=6;( 2) t=4 或 5 或14s 时,△APC 是等腰三角形;5【解析】【分析】(1)过O 作OD⊥ AC于D,根据勾股定理求得AD 的长,再利用垂径定理即可求得AC 的长;( 2)分 AC=PC、 AP=AC、 AP=CP三种情况求t值即可 .【详解】(1)如图 1,过 O 作 OD⊥ AC 于 D,易知 AO=5, OD=4,从而 AD= =3,∴A C=2AD=6;(2)设经过t 秒△ APC是等腰三角形,则AP=10﹣ t ①如图 2,若 AC=PC,过点 C 作 CH⊥ AB 于 H,∵∠ A=∠ A,∠AHC=∠ODA=90 ,°∴△ AHC∽ △ ADO,∴AC:AH=OA:AD,即 AC:=5: 3,解得 t= s,∴经过s 后△APC 是等腰三角形;②如图 3,若 AP=AC,由PB=x,AB=10,得到 AP=10﹣ x,又∵ AC=6,则 10﹣ t=6 ,解得 t=4s,∴经过 4s 后△ APC是等腰三角形;③如图 4,若 AP=CP, P 与 O 重合,则AP=BP=5,∴经过 5s 后△ APC是等腰三角形.综上可知当t=4 或 5 或s 时,△ APC是等腰三角形.【点睛】本题是圆的综合题,解决问题利用了垂径定理,勾股定理等知识点,解题时要注意当△BPC 是等腰三角形时,点P 的位置有三种情况.8.如图 1,是用量角器一个角的操作示意图,量角器的读数从M 点开始(即M 点的读数为 0),如图2,把这个量角器与一块30°(∠ CAB=30°)角的三角板拼在一起,三角板的斜边AB 与量角器所在圆的直径MN 重合,现有射线 C 绕点 C 从CA 开始沿顺时针方向以每秒 2°的速度旋转到与CB,在旋转过程中,射线CP 与量角器的半圆弧交于E.连接(1)当射线CP经过 AB 的中点时,点 E 处的读数是,此时△BCE的形状是BE.;(2)设旋转 x 秒后,点 E 处的读数为 y,求 y 与 x 的函数关系式;(3)当 CP旋转多少秒时,△BCE是等腰三角形?【答案】( 1) 60°,直角三角形;(2) y= 4x(0≤x≤45);( 3) 7.5 秒或 30 秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图 2﹣2 中,由题意∠ ACE=2x,∠ AOE= y,根据圆周角定理可知∠AOE= 2∠ ACE,可得 y= 2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:( 1)如图 2﹣ 1 中,∵∠ ACB= 90 °, OA=OB,∴OA=OB= OC,∴∠ OCA=∠ OAC= 30 °,∴∠ AOE= 60 °,∴点 E 处的读数是60 °,∵∠ E=∠BAC=30 °,OE= OB,∴∠ OBE=∠E= 30 °,∴∠ EBC=∠ OBE+∠ABC= 90 °,∴△ EBC是直角三角形;故答案为 60°,直角三角形;(2)如图 2﹣2 中,∵∠ ACE= 2x,∠ AOE= y,∵∠ AOE= 2∠ACE,∴y= 4x( 0 ≤x≤ 45).(3)①如图 2﹣ 3 中,当 EB=EC时, EO垂直平分线段BC,∵AC⊥ BC,∵EO∥ AC,∴∠ AOE=∠BAC=30 °,1∴∠ ECA=∠ AOE=15°,2∴x= 7.5.②若 2﹣ 4 中,当 BE=BC时,易知∠ BEC=∠ BAC=∠ BCE= 30°,∴∠ OBE=∠OBC= 60 °,∵OE= OB,∴△ OBE是等边三角形,∴∠ BOE=60 °,∴∠ AOB=120 °,1∴∠ ACE=∠ACB=60°,2∴x= 30,综上所述,当CP 旋转 7.5 秒或 30 秒时,△ BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.9.在直角坐标系中, O 为坐标原点,点 A 坐标为( 2, 0),以 OA 为边在第一象限内作等边△OAB, C 为 x 轴正半轴上的一个动点( OC> 2),连接 BC,以 BC 为边在第一象限内作等边△ BCD,直线 DA 交 y 轴于 E 点.(1)求证:△ OBC≌ △ ABD(2)随着 C 点的变化,直线 AE 的位置变化吗?若变化,请说明理由;若不变,请求出直线AE 的解析式.(3)以线段BC为直径作圆,圆心为点F,当 C 点运动到何处时,直线EF∥直线 BO;这时⊙F 和直线 BO 的位置关系如何?请给予说明.【答案】(1)见解析;(2 AE的位置不变,AE的解析式为: y 3x 2 3 ;)直线(3) C 点运动到(4,0)处时,直线EF∥直线 BO;此时直线BO 与⊙F 相切,理由见解析. 【解析】【分析】(1)由等边三角形的性质可得到 OB=AB, BC=BD,∠ OBA=∠ DBC,等号两边都加上∠ABC,得到∠OBC=∠ABD,根据“ SAS得”到△ OBC≌ △ ABD.(2)先由三角形全等,得到∠BAD=∠ BOC=60 ,°由等边△BCD,得到∠ BAO=60 ,°根据平角定义及对顶角相等得到∠OAE=60 ,°在直角三角形 OAE中,由 OA 的长,根据 tan60 的°定义求出 OE的长,确定出点 E 的坐标,设出直线AE 的方程,把点 A 和 E 的坐标代入即可确定出解析式.( 3)由EA∥ OB, EF∥OB,根据过直线外一点作已知直线的平行线有且只有一条,得到EF与 EA重合,所以 F 为 BC 与 AE 的交点,又 F 为 BC 的中点,得到 A 为 OC 中点,由 A 的坐标即可求出 C 的坐标;相切理由是由 F 为等边三角形BC边的中点,根据“三线合一”得到DF与BC 垂直,由EF 与 OB 平行得到BF 与 OB 垂直,得证 .【详解】(1)证明:∵ △ OAB 和△ BCD都为等边三角形,∴OB=AB, BC=BD,∠OBA=∠DBC=60 ,°∴∠ OBA+∠ ABC=∠DBC+∠ ABC,即∠ OBC=∠ ABD,在△ OBC和△ ABD 中,OB ABOBC ABD ,BC BD∴△ OBC≌△ ABD.(2)随着 C 点的变化,直线 AE 的位置不变,∵△ OBC≌△ ABD,∴∠ BAD=∠ BOC=60 ,°又∵ ∠ BAO=60°,∴∠ DAC=60 ,°∴∠ OAE=60 ,°又 OA=2,在Rt△ AOE中, tan60 °= OE,OA则OE=2 3,∴点 E 坐标为( 0, -2 3 ),设直线 AE 解析式为 y=kx+b,把 E 和 A 的坐标代入得:0 2k b,2 3 bk 3解得,,b2 3∴直线 AE 的解析式为:y3x 2 3 .(3) C 点运动到(4,0)处时,直线EF∥直线 BO;此时直线BO 与⊙F 相切,理由如下:∵∠ BOA=∠ DAC=60 ,°EA∥ OB,又 EF∥ OB,则 EF与 EA 所在的直线重合,∴点 F 为 DE 与 BC 的交点,又 F 为 BC中点,∴A 为 OC中点,又AO=2,则 OC=4,∴当 C 的坐标为( 4, 0)时, EF∥ OB,这时直线BO 与⊙ F 相切,理由如下:∵△ BCD为等边三角形, F 为 BC 中点,∴D F⊥ BC,又 EF∥ OB,∴F B⊥ OB,∴直线 BO 与⊙ F 相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.10. 如图,在 △ ABC 中, AB = AC ,以 AB 为直径的 ⊙ O 与边 BC 交于点 D , DE ⊥ AC ,垂足为E ,交 AB 的延长线于点 F .(1)求证: EF 是 ⊙ O 的切线;(2)若 ∠ C = 60°, AC =12,求 BD ? 的长. (3)若 tan C = 2, AE = 8,求 BF 的长.【答案】 (1)见解析 ;(2) 2 ;π(3)10.3【解析】分析:( 1)连接 OD ,根据等腰三角形的性质:等边对等角,得∠ABC=∠ C ,∠ABC=∠ ODB ,从而得到 ∠ C=∠ ODB ,根据同位角相等,两直线平行,得到 OD ∥ AC ,从而得证 OD ⊥ EF ,即 EF 是⊙ O 的切线;(2) 根据中点的性质,由AB=AC=12 ,求得 OB=OD=1AB =6,进而根据等边三角形的判2定得到 △ OBD 是等边三角形,即 ∠ BOD=600,从而根据弧长公式七届即可;(3)连接 AD ,根据直角三角形的性质,由在Rt △ DEC 中 , tanCDE 2 设 CE=x,则CEAE 2 ,求得 DE 、 CE 的长,然后根据相似三DE=2x ,然后由 Rt △ ADE 中 , tan ADEDE角形的判定与性质求解即可.详解:( 1)连接 OD ∵ AB=AC ∴ ∠ ABC=∠ C∵OD=OB ∴∠ ABC=∠ ODB∴∠ C=∠ ODB ∴ OD ∥ AC又∵ DE ⊥ AC ∴ OD ⊥ DE ,即 OD ⊥ EF ∴EF 是 ⊙ O 的切线1( 2) ∵ AB=AC=12 ∴ OB=OD= AB =62由( 1)得: ∠ C=∠ ODB=600∴△ OBD 是等边三角形∴∠ BOD=600∴ ?606? 的长22BD =180即BD( 3)连接 AD ∵DE ⊥AC ∠ DEC=∠ DEA=900在 Rt △ DEC 中, tanCDE 2 设 CE=x,则 DE=2x CE∵AB 是直径 ∴∠ ADB=∠ ADC=900∴∠ ADE+∠ CDE=90 在 Rt △ DEC 中 ,∠ C+∠ CDE=90AE 2∴∠ C=∠ ADE 在 Rt △ ADE 中 , tan ADE DE∵ AE=8,∴ DE=4 则 CE=2∴ A C=AE+CE=10即直径 AB=AC=10 则 OD=OB=5∵ O D//AE ∴ △ ODF ∽ △AEF∴OF OD 即: BF 5 5AF AEBF 10 8解得: BF=10即 BF 的长为 10 .33点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.11. 如图,等边 △ ABC 内接于 ⊙ O , P 是弧 AB 上任一点(点 P 不与 A 、B 重合),连 AP ,BP ,过 C 作 CM ∥BP 交 PA 的延长线于点 M ,( 1)求证: △ PCM 为等边三角形;( 2)若 PA = 1, PB = 2,求梯形 PBCM 的面积.【答案】( 1)见解析;( 2)1534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△ PCM为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH⊥ CM 于 H,∵△ ABC是等边三角形,∴∠ APC=∠ABC=60 ,°∠BAC=∠ BPC=60 ,°∵CM∥ BP,∴∠ BPC=∠ PCM=60 ,°∴△ PCM 为等边三角形;(2)解:∵ △ ABC是等边三角形,△ PCM 为等边三角形,∴∠ PCA+∠ ACM=∠ BCP+∠ PCA,∴∠ BCP=∠ ACM,在△ BCP和△ ACM 中,BC ACBCP ACM ,CP CM∴△ BCP≌ △ ACM(SAS),∴PB=AM,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在 Rt△ PMH 中,∠ MPH=30°,∴PH= 3 3 ,2梯形 PBCM =1 13 315∴S (PB+CM ×PH= 3 .)×( 2+3)×=2 2 2 4【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.12.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现如图1,当时,线段的长等于 _________,线段的长等于 _________.(2)探究证明如图2,当时,求证:,且.(3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】( 1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和 CE1的长;(2)根据旋转的性质得出,∠ D1AB=∠ E1 AC=135°,进而求出△ D1 AB≌ △ E1AC( SAS),即可得出答案;(3)首先作 PG⊥ AB,交 AB 所在直线于点 G,则 D1, E1在以 A 为圆心, AD 为半径的圆上,当 BD1所在直线与⊙ A 相切时,直线 BD1与 CE1的交点 P 到直线 AB 的距离最大,此时四边形 AD1PE1是正方形,进而求出PG 的长.【详解】(1)解:∵ ∠ A=90°, AC=AB=4, D, E 分别是边 AB,AC 的中点,∴A E=AD=2,∵等腰 Rt△ADE 绕点 A 逆时针旋转,得到等腰Rt△ AD1E1,设旋转角为α(0<α≤ 180)°,∴当α =90时°, AE1=2,∠ E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P 点的位置是解题关键.13.如图 , Rt △ABC 中,∠ B=90°,它的内切圆分别与边BC、 CA、AB 相切于点D、 E、 F, (1)设AB=c, BC=a, AC=b,求证 : 内切圆半径 r=1(a+b-c). 2(2)若 AD 交圆于 P, PC交圆于 H, FH//BC, 求∠ CPD;(3)若 r=3 10 , PD= 18, PC=27 2 . 求△ ABC各边长 .【答案】( 1)证明见解析( 2)45°(3)9 10,12 10,15 10【解析】【分析】(1)根据切线长定理,有AE=AF,BD=BF, CD=CE.易证四边形B DOF为正方形,BD=BF=r,用 r 表示 AF、 AE、 CD、 CE,利用 AE+CE=AC为等量关系列式.(2)∠ CPD为弧 DH 所对的圆周角,连接OD,易得弧DH 所对的圆心角∠ DOH=90°,所以∠C PD=45 .°(3)由 PD=18 和 r=310, 联想到垂径定理基本图形,故过圆心O 作 PD 的垂线 OM,求得弦心距 OM=3 ,进而得到∠ MOD 的正切值.延长 DO 得直径 DG,易证 PG∥ OM ,得到同位角∠ G=∠ MOD.又利用圆周角定理可证∠ADB=∠ G,即得到∠ ADB 的正切值,进而求得AB.再设 CE=CD=x,用 x 表示 BC、 AC,利用勾股定理列方程即求出 x.【详解】解:( 1)证明:设圆心为O,连接 OD、OE、 OF,∵⊙ O 分别与 BC、CA、 AB 相切于点D、 E、 F∴OD⊥BC, OE⊥ AC, OF⊥AB, AE=AF, BD=BF,CD=CE ∴∠ B=∠ODB=∠ OFB=90 °∴四边形 BDOF是矩形∵O D=OF=r∴矩形 BDOF是正方形∴B D=BF=r∴A E=AF=AB-BF=c-,r CE=CD=BC-BD=a-r∵A E+CE=AC∴c-r+a-r=b整理得: r= 1( a+b-c)2(2)取 FH 中点 O,连接 OD ∵F H∥ BC∴∠ AFH=∠ B=90 °∵AB 与圆相切于点F,∴F H 为圆的直径,即 O 为圆心∵FH∥ BC∴∠ DOH=∠ ODB=90 °1∴∠ CPD=∠ DOH=45°2(3)设圆心为 O,连接 DO 并延长交⊙ O 于点 G,连接 PG,过 O 作 OM⊥PD 于 M ∴∠ OMD=90 °∵P D=181∴DM= PD=92∵B F=BD=OD=r=3 10,∴OM= OD2 DM 2=(3 10) 2 92=90 81 =3∴t an ∠ MOD= DM= 3OM∵DG 为直径∴∠ DPG=90 °∴OM ∥ PG,∠G+∠ ODM=90 °∴∠ G=∠ MOD∵∠ ODB=∠ADB+∠ ODM=90 °∴∠ ADB=∠ G∴∠ ADB=∠ MODAB∴tan ∠ ADB==tan∠ MOD=3BD∴A B=3BD=3r=9 10∴A E=AF=AB-BF=9 10 - 3 10= 6 10设CE=CD=x,则 BC=3 10 +x, AC=6 10 +x∵AB2+BC2=AC2∴(910 )2.+(310+x)2=(610+x)2解得: x=910∴B C=12 10, AC=15 10∴△ ABC各边长 AB=910 ,AC=15 10 ,BC=12 10【点睛】本题考查切线的性质,切线长定理,正方形的判定,圆周角定理,垂径定理,勾股定理.切线长定理的运用是解决本题的关键,而在不能直接求得线段长的情况下,利用勾股定理作为等量关系列方程解决是常用做法.14.如图, AB 是⊙ O 的直径, AD 是⊙ O 的弦,点 F 是 DA 延长线上的一点,过⊙O上一点C 作⊙O 的切线交 DF 于点 E, CE⊥ DF.(1)求证: AC 平分∠ FAB;(2)若 AE=1, CE= 2,求⊙ O 的半径.【答案】( 1 )证明见解析;(2)52【解析】试题分析:(1)连接 OC,根据切线的性质和圆周角定理,得出∠ OCA=∠ OAC 与∠CAE=∠ OCA,然后根据角平分线的定义可证明;(2)由圆周角定理得到∠ BCA=90°,由垂直的定义,可求出∠CEA=90°,从而根据两角对应相等的两三角形相似可证明△ ACB∽△ AEC,再根据相似三角形的对应边成比例求得 AB 的长,从而得到圆的半径 .试题解析: (1)证明:连接OC.∵CE是⊙ O 的切线,∴ ∠ OCE=90°∵CE⊥ DF,∴∠ CEA=90 °,∴∠ ACE+∠CAE=∠ ACE+∠OCA=90 ,°∴ ∠CAE=∠ OCA∵OC= OA,∴ ∠ OCA=∠ OAC.∴∠ CAE=∠ OAC,即 AC 平分∠ FAB(2)连接 BC.∵AB 是⊙ O 的直径,∴ ∠ ACB =∠AEC =90 . °又∵∠ CAE=∠ OAC,∴△ ACB∽△ AEC,∴AB AC.AC AE∵AE = 1, CE =2, ∠ AEC =90 ,°∴ ACAE 2 CE 212 22525AC 255 , ∴⊙ O 的半径为.∴AB2AE115. 对于平面内的 ⊙ C 和 ⊙ C 外一点 Q ,给出如下定义:若过点 Q 的直线与 ⊙ C 存在公共 点,记为点 A ,B ,设 kAQBQ,则称点 A (或点 B )是 ⊙C 的 “K 相关依附点 ”,特别CQ地,当点 A 和点 B 重合时,规定 2 AQ (或2BQ).AQ=BQ , kCQCQ已知在平面直角坐标系 xoy 中, Q(-1,0), C(1,0), ⊙C 的半径为 r . (1)如图 1,当 r2 时,① 若 A 1(0,1)是 ⊙ C 的 “k 相关依附点 ”,求 k 的值.②A 2(1+2 , 0)是否为 ⊙ C 的 “2相关依附点 ”.(2)若 ⊙ C 上存在 “k 相关依附点 ”点 M ,① 当 r=1 ,直线 QM 与 ⊙C 相切时,求 k 的值. ② 当 k3 时,求 r 的取值范围.(3)若存在 r 的值使得直线 y 3x b 与⊙ C 有公共点,且公共点时⊙ C 的 “ 3 相关依附点 ”,直接写出 b 的取值范围.【答案】( 1) ①2 . ② 是;( 2) ① k3 ; ② r 的取值范围是 1≤ r 2 ;( 3)3 b 3 3 . 【解析】【分析】(1 ) ① 如图 1 中,连接 AC 、 QA 1 .首先证明 QA 1 是切线,根据 k2AQ计算即可解决CQ问题;② 根据定义求出 k 的值即可判断;(2 ) ① 如图,当 r 1时,不妨设直线QM 与 e C 相切的切点 M 在 x 轴上方(切点 M 在x 轴下方时同理),连接CM,则QM CM ,根据定义计算即可;②如图 3 中,若直线 QM 与e C不相切,设直线QM 与e C的另一个交点为N (不妨设QN QM ,点N,M在x轴下方时同理),作CD QM 于点D,则MD ND ,可得MQ NQ ( MN NQ) NQ 2ND 2NQ 2DQ ,CQ = 2,推出k MQ NQ 2 DQ3 时,DQ 3 ,此时 CD CQ2 DQ2 1,CQDQ ,可得当kCQ假设 e C 经过点 Q ,此时r = 2,因为点Q早e C外,推出 r 的取值范围是1, r 2 ;(3)如图 4 中,由( 2)可知:当k 3时,1, r 2 .当 r = 2 时, e C 经过点Q( 1,0) 或E(3,0),当直线y 3x b 经过点Q时, b 3 ,当直线 y 3x b 经过点E时, b 3 3 ,即可推出满足条件的b的取值范围为 3 b 3 3 .【详解】(1)①如图 1 中,连接AC、QA1.由题意: OC OQ OA1,△ QA1C是直角三角形,CA1Q 90 ,即CA1 QA1,QA1是e C的切线,k 2QA1 2 22 .QC 2② Q A2(1 2,0) 在e C2 2 1 2 1,A2是e C的“2相关依附上, k 2 2点”.故答案为:2 ,是;(2)①如图2,当r 1 时,不妨设直线QM 与e C相切的切点M在x轴上方(切点M 在 x 轴下方时同理),连接CM ,则QM CM .Q Q ( 1,0) , C (1,0) ,r 1 , CQ2 ,CM,MQ 3 ,此时12MQk 3 ;CQ②如图 3 中,若直线 QM 与e C不相切,设直线QM 与e C的另一个交点为N (不妨设QN QM ,点N,M在x轴下方时同理),作CD QM 于点D,则MD ND ,MQ NQ (MN NQ ) NQ 2ND 2NQ2DQ ,Q CQ 2 ,MQ NQ 2DQ 当k 3时,DQ 3 ,此时 CDCQ2 DQ 2 1 ,k DQ ,CQ CQ假设 e C 经过点 Q ,此时r = 2,Q点 Q 早 e C 外,r 的取值范围是1, r 2.(3)如图 4 中,由( 2)可知:当k 3时, 1, r 2 .当 r = 2 时,e C经过点Q( 1,0) 或E (3,0),当直线y 3x b 经过点Q时,b 3 ,当直线 y3x b 经过点 E 时, b 3 3 ,满足条件的 b 的取值范围为3 b 3 3 .【点睛】本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点 A (或点B)是 e C 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.。

冲刺2020年全国中考数学选择压轴题专题训练:圆(含答案解析)

冲刺2020年全国中考数学选择压轴题专题训练:圆(含答案解析)

冲刺2020年全国中考数学选择压轴题专题训练:圆一.选择题1.已知如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC =45°,给出以下结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍.其中正确结论的序号是()A.①②③B.①②④C.①③④D.②③④2.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16B.14C.12D.103.如图,⊙A,⊙B,⊙C的半径都是2cm,则图中三个扇形(即阴影部分)面积之和是()A.2πB.πC.D.6π4.如图,四边形ABCD内接于⊙O,∠DAB=130°,连结OC,P是半径OC上的一个动点,连结PD、P B,则么∠DPB的大小可能为()A.40°B.80°C.110°D.130°5.如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D6.腰长为13cm,底长为1Ocm的等腰三角形,若以底边中点为圆心,6cm长为半径作圆,则顶角的顶点在()A.圆上B.圆内C.圆外D.无法确定7.如图,⊙O的半径为4,点P是⊙O外的一点,PO=10,点A是⊙O上的一个动点,连接P A,直线l垂直平分P A,当直线l与⊙O相切时,P A的长度为()A.10B.C.11D.8.如图,⊙O是△ABC的外接圆,弦BC的长为,∠A=45°,则⊙O的半径为()A.1B.2C.D.9.如图,在⊙O中,直径AB与弦MN相交于点P,∠NPB=45°,若AP=2,BP=6,则MN的长为()A.B.2C.2D.810.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,AE=2,则弦CD的长是()A.4B.6C.8D.1011.如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA=OB=OC =2,则这朵三叶花的面积为()A.3π﹣3B.3π﹣6C.6π﹣3D.6π﹣612.如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π13.如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A等于()A.33°B.57°C.67°D.66°14.如图,将等边△ABC的边AC逐渐变成以B为圆心、BA为半径的,长度不变,AB、BC的长度也不变,则∠ABC的度数大小由60°变为()A.()°B.()°C.()°D.()°15.如图,P A,PB分别切⊙O于点A,B,OP交⊙O于点C,连接AB,下列结论中,错误的是()A.∠1=∠2B.P A=PB C.AB⊥OP D.OP=2OA16.如图,P为⊙O外一点,P A、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交P A、PB于点C、D,若P A=6,则△PCD的周长为()A.8B.6C.12D.1017.在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则P A的最小值为()A.3B.2C.D.18.如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.C.D.19.如图,已知△ABC的外接圆⊙O的半径为1,D、E分别是AB、AC上的点,BD=2AD,EC=2AE,则sin∠BAC的值等于线段()A.DE的长B.BC的长C.的长D.的长20.如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N,P、Q分别是、上一点(不与端点重合).若∠MNP=∠MNQ,下面结论:①∠PNA=∠QNB;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.正确的结论有()A.2个B.3个C.4个D.5个参考答案一.选择题1.解:①∵∠A=45°,AB是直径,∴∠AEB=90°,∴∠ABE=45°,∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠EBC=67.5°﹣45°=22.5°,此选项正确;②连接AD,∵AB=AC,AB是直径,∴∠ADB=90°,∴BD=CD,此选项正确;③∵AB是直径,∴∠AEB=90°,由①知∠EBC=22.5°,∠C=67.5°,∴BE=tan67.5°•CE,∴BE≠2CE,在Rt△ABE中,∠AEB=90°,∠BAE=45°,∴∠ABE=45°,∴AE=BE,∴AE≠2CE,此选项错误;④∵∠ABE=45°,∠BAD=22.5°,∴劣弧AE=2劣弧BD,∵劣弧BD=劣弧DE,∴劣弧AE=2劣弧DE,此选项正确.正确的有①②④,故选:B.2.解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.3.解:∵∠A+∠B+∠C=180°,∴阴影部分的面积==2π.故选:A.4.解:连接OB、OD,∵四边形ABCD内接于⊙O,∠DAB=130°,∴∠DCB=180°﹣130°=50°,由圆周角定理得,∠DOB=2∠DCB=100°,∴∠DCB≤∠BPD∠DOB,即50°≤∠BPD≤100°,∴∠BPD可能为80°,故选:B.5.解:∵∠A与∠D都是所对的圆周角,∴∠D=∠A.6.解:如图:AB=AC=13cm,BC=10cm.△ABC中,AB=AC,AD⊥BC;∴BD=DC=BC=5cm;Rt△ABD中,AB=13cm,BD=5cm;由勾股定理,得:AD==12cm.所以底边中点到顶点的距离为12cm,因此顶角的顶点一定在圆的外部.故选:C.7.解:如图所示.连接OA、OC(C为切点),过点O作OB⊥AP.设AB的长为x,在Rt△AOB中,OB2=OA2﹣AB2=16﹣x2,∵l与圆相切,∴OC⊥l.∵∠OBD=∠OCD=∠CDB=90°,∴四边形BOCD为矩形.∴BD=OC=4.∵直线l垂直平分P A,∴PD=BD+AB=4+x.∴PB=8+x.在Rt△OBP中,OP2=OB2+PB2,即16﹣x2+(8+x)2=102,解得x=.P A=2AD=2×=.8.解:连接OB、OC,如图,∵∠BOC=2∠A=90°,∴△BOC为等腰直角三角形,∴OB=BC=×=1,即⊙O的半径为1.故选:A.9.解:过点O作OD⊥MN于点D,连接ON,则MN=2DN,∵AB是⊙O的直径,AP=2,BP=6,∴⊙O的半径=(2+6)=4,∴OP=4﹣AP=4﹣2=2,∵∠NPB=45゜,∴△OPD是等腰直角三角形,∴OD=,在Rt△ODN中,DN=,∴MN=2DN=2.故选:C.10.解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD,在Rt△OCE中,OC2=OE2+CE2,∵AE=2,AB=10,∴OC=5,OE=3,∴CE=4,∴CD=8,故选:C.11.解:如图所示:弧OA是⊙M上满足条件的一段弧,连接AM、MO,由题意知:∠AMO=90°,AM=OM∵AO=2,∴AM=.=×π×MA2=.∵S扇形AMOS=AM•MO=1,△AMO=﹣1,∴S弓形AO=6×(﹣1)∴S三叶花=3π﹣6.故选:B.12.解:∵△AOC≌△BOD,∴在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,故选:B.13.解:连结CD,如图,∵BD是⊙O的直径,∴∠BCD=90°,而∠DBC=33°,∴∠D=90°﹣33°=57°,∴∠A=∠D=57°.故选:B.14.设∠ABC的度数大小由60变为n,则AC=,由AC=AB,解得n=,故选:D.15.解:由切线长定理可得:∠1=∠2,P A=PB,从而AB⊥OP.因此A.B.C都正确.无法得出AB=P A=PB,可知:D是错误的.综上可知:只有D是错误的.故选:D.16.解:∵P A、PB分别切⊙O于点A、B,CD切⊙O于点E,∴P A=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=P A+AC+PD+BD=P A+PB=6+6=12,即△PCD的周长为12,故选:C.17.解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵P A为⊙O的切线,∴OA⊥P A,∴P A==,当OP的值最小时,P A的值最小,而OP的最小值为OH的长,∴P A的最小值为=.故选:D.18.解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠AOC=60°,∠B OC=120°,∵AB为半圆的直径,∴∠ACB=90°,∴BC===2,∴△BOC的面积=×△ABC的面积=××2×2=,扇形BOC的面积==π,则阴影部分的面积=π﹣,故选:A.19.解:如图,作直径CF,连接BF,在Rt△CBF中,sin∠F==;∵BD=2AD,EC=2AE,∴AD:AB=AE:AC=1:3,又∵∠EAD=∠CAB,∴△EAD∽△CAB,∴BC=3DE,∴sin∠A=sin∠F===DE.故选:D.20.解:延长QN交圆O于C,延长MN交圆O于D,如图:∵MN⊥AB,∴∠MNA=∠MNB=90°,∵∠MNP=∠MNQ,∴∠PNA=∠QNB,故①对;∵∠P+∠PMN<180°,∴∠P+∠Q<180°,故②错;因为AB是⊙O的直径,MN⊥AB,=,∵∠PNA=∠QNB,∠ANC=∠QNB,∴∠PNA=∠ANC,∴P,C关于AB对称,∴=,∴=,∴∠Q=∠PMN,故③对;∵∠MNP=∠MNQ,∠Q=∠PMN,∴△PMN∽△MQN,∴MN2=PN•QN,PM不一定等于MQ,所以④错误,⑤对.故选:B.。

2020-2021中考数学压轴题专题复习——圆的综合的综合附详细答案

2020-2021中考数学压轴题专题复习——圆的综合的综合附详细答案

2020-2021中考数学压轴题专题复习——圆的综合的综合附详细答案一、圆的综合1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.【答案】(1)4;(2)35;(3)点E的坐标为(1,2)、(53,103)、(4,2).【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH=BHHA=1,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).由(1)得:OH =2,BH =4. ∵OC 与⊙M 相切于N ,∴MN ⊥OC . 设圆的半径为r ,则MN =MB =MD =r . ∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA . ∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2. 解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD . ∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG . ∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB ,∴BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2, ∴(2﹣x 2=()2﹣(x )2.解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5.在Rt △ORB 中,sin ∠BOR =BR OB35.故答案为35. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2. 解得:t =1.则OP =CD =DB =1. ∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2). ②当∠BED =90°时,如图3.∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,∴BE =5t . ∵PE ∥OC ,∴∠OEP =∠BOC .∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,∴OEOB =25OPBC∴,=2t,∴OE=5t.∵OE+BE=OB=255,∴t+5t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=2,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.2.如图,已知△ABC 中,AC=BC ,以BC 为直径的⊙O 交AB 于E ,过点E 作EG ⊥AC 于G ,交BC 的延长线于F . (1)求证:AE=BE ; (2)求证:FE 是⊙O 的切线;(3)若FE=4,FC=2,求⊙O 的半径及CG 的长.【答案】(1)详见解析;(2)详见解析;(3). 【解析】(1)证明:连接CE ,如图1所示: ∵BC 是直径,∴∠BEC =90°,∴CE ⊥AB ; 又∵AC =BC ,∴AE =BE .(2)证明:连接OE ,如图2所示:∵BE =AE ,OB =OC ,∴OE 是△ABC 的中位线,∴OE ∥AC ,AC =2OE =6. 又∵EG ⊥AC ,∴FE ⊥OE ,∴FE 是⊙O 的切线. (3)解:∵EF 是⊙O 的切线,∴FE 2=FC •FB .设FC =x ,则有2FB =16,∴FB =8,∴BC =FB ﹣FC =8﹣2=6,∴OB =OC =3,即⊙O 的半径为3;∴OE =3.∵OE ∥AC ,∴△FCG ∽△FOE ,∴,即,解得:CG = .点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.3.如图,在ABC ∆中,90,BAC ∠=︒ 2,AB AC ==AD BC ⊥,垂足为D ,过,A D的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF . (1)求证:ADE ∆≌CDF ∆;(2)当BC 与⊙O 相切时,求⊙O 的面积.【答案】(1)见解析;(2)24π.【解析】分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;(2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC=2可得AD =1,利用圆的面积公式可得答案.详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.又∵AD ⊥BC ,AB =AC ,∴∠1=12∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD .又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°. 又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.∵123C AD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ).(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC =2,∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为24π.点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.4.已知A (2,0),B (6,0),CB ⊥x 轴于点B ,连接AC 画图操作:(1)在y 正半轴上求作点P ,使得∠APB=∠ACB (尺规作图,保留作图痕迹)理解应用:(2)在(1)的条件下,①若tan∠APB12=,求点P的坐标②当点P的坐标为时,∠APB最大拓展延伸:(3)若在直线y43=x+4上存在点P,使得∠APB最大,求点P的坐标【答案】(1)图形见解析(2)(0,2),(0,4)(0,23)(3)(953 5-,125)【解析】试题分析:(1)以AC为直径画圆交y轴于P,连接PA、PB,∠PAB即为所求;(2)①由题意AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6);②当⊙K与y轴相切时,∠APB的值最大,(3)如图3中,当经过AB的园与直线相切时,∠APB最大.想办法求出点P坐标即可解决问题;试题解析:解:(1)∠APB如图所示;(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB=12=ABBC.∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,∴BC=22AC AB-=43,∴C(6,43),∴K(4,22),∴P(0,23).故答案为:(0,23).(3)如图3中,当经过AB的园与直线相切时,∠APB最大.∵直线y=43x+4交x轴于M(﹣3,0),交y轴于N(0,4).∵MP是切线,∴MP2=MA•MB,∴MP=35,作PK⊥OA于K.∵ON∥PK,∴ONPK=OMMK=NMMP,∴4PK=3MK=35,∴PK=1255,MK=955,∴OK=955﹣3,∴P(955﹣3,1255).点睛:本题考查了一次函数综合题、直线与圆的位置关系、平行线的性质、切线的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,学会构造辅助圆解决最大角问题,属于中考压轴题.5.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连结AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若AC=24,AF=15,求sin B.【答案】(1) AF与⊙O相切理由见解析;(2)3 5【解析】试题分析:(1)连接OC,先证∠OCF=90°,再证明△OAF≌△OCF,得出∠OAF=∠OCF=90°即可;(2)先求出AE、EF,再证明△OAE∽△AFE,得出比例式OA AEAF EF=,可求出半径,进而求出直径,由三角函数的定义即可得出结论. 试题解析:解:(1)AF 与⊙O 相切.理由如下:连接OC .如图所示.∵PC 是⊙O 的切线,∴OC ⊥PC ,∴∠OCF =90°.∵OF ∥BC ,∴∠B =∠AOF ,∠OCB =∠COF .∵OB =OC ,∴∠B =∠OCB ,∴∠AOF =∠COF .在△OAF 和△OCF 中,∵OA =OC ,∠AOF =∠COF ,OF =OF ,∴△OAF ≌△OCF (SAS ),∴∠OAF =∠OCF =90°,∴AF 与⊙O 相切;(2)∵△OAF ≌△OCF ,∴∠OAE =∠COE ,∴OE ⊥AC ,AE =12AC =12,∴EF =2215129-=.∵∠OAF =90°,∴△OAE ∽△AFE ,∴OA AE AF EF =,即12159OA =,∴OA =20,∴AB =40,sin B =243405AC AB ==.点睛:本题考查了切线的性质与判定和全等三角形的判定与性质以及相似三角形的判定与性质;熟练掌握切线的证法和三角形相似是解题的关键.6.如图,△ABC 内接于⊙O ,弦AD ⊥BC,垂足为H ,连接OB . (1)如图1,求证:∠DAC=∠ABO;(2)如图2,在弧AC 上取点F,使∠CAF=∠BAD,在弧AB 取点G ,使AG ∥OB ,若∠BAC=600, 求证:GF=GD;(3)如图3,在(2)的条件下,AF 、BC 的延长线相交于点E,若AF :FE=1:9,求sin ∠ADG 的值。

2020-2021中考数学—圆的综合的综合压轴题专题复习及答案解析

2020-2021中考数学—圆的综合的综合压轴题专题复习及答案解析

2020-2021中考数学—圆的综合的综合压轴题专题复习及答案解析一、圆的综合1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD是直径,∴∠DBC=90°,∵CD=4,B为弧CD中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB,∵∠DBE=∠DBA,∴△DBE∽△ABD,∴,∴BE•AB=BD•BD=.考点:1.切线的判定;2.相似三角形的判定与性质.2.如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).(1)当G(4,8)时,则∠FGE= °(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).【答案】(1)90;(2)作图见解析,P(7,7),PH是分割线.【解析】试题分析:(1)根据勾股定理求出△FEG的三边长,根据勾股定理逆定理可判定△FEG是直角三角形,且∠FGE="90" °.(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.试题解析:(1)连接FE,∵E(8,0),F(0 , 6),G(4,8),∴根据勾股定理,得FG=,EG=,FE=10.∵,即.∴△FEG是直角三角形,且∠FGE=90 °.(2)作图如下:P(7,7),PH是分割线.考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.3.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=5△APM与△PCN是否相似,并说明理由.【答案】(1)半径为35;(2)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P与边AC相切,∴BD就是⊙P的半径,在Rt△ABD中,tanA= 1BD2AD =,设BD=x,则AD=2x,∴x2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,∴PH垂直平分MN,∴PM=PN,在Rt△AHP中,tanA=12PHAH =,设PH=y,AH=2y,y2+(2y)2=(52解得:y=6(取正数),∴PH=6,AH=12,在Rt△MPH中,()22356-,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5, ∴935535AM MP ==,355PN NC =, ∴AM MP =PNNC , 又∵PM=PN ,∴∠PMN=∠PNM , ∴∠AMP=∠PNC , ∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.4.如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB , DF . (1)求证:DF 是⊙O 的切线;(2)若DB 平分∠ADC ,AB =52AD ,∶DE =4∶1,求DE 的长.【答案】(1)见解析5 【解析】分析:(1)直接利用直角三角形的性质得出DF =CF =EF ,再求出∠FDO =∠FCO =90°,得出答案即可;(2)首先得出AB =BC 即可得出它们的长,再利用△ADC ~△ACE ,得出AC 2=AD •AE ,进而得出答案. 详解:(1)连接OD . ∵OD =CD ,∴∠ODC =∠OCD .∵AC 为⊙O 的直径,∴∠ADC =∠EDC =90°.∵点F 为CE 的中点,∴DF =CF =EF ,∴∠FDC =∠FCD ,∴∠FDO =∠FCO .又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.∵DB平分∠ADC,∴∠ADB=∠CDB,∴¶AB=¶BC,∴BC=AB=52.在Rt△ABC中,AC2=AB2+BC2=100.又∵AC⊥CE,∴∠ACE=90°,∴△ADC~△ACE,∴ACAD =AEAC,∴AC2=AD•AE.设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,∴100=4x•5x,∴x=5,∴DE=5.点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.5.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.6.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t ≤5时,12t +3t =15,解得:t =307,此时S =100cm 2,当5<t <20时,12t +20﹣t =15,解得:t =10,此时S =100.综上所述:当⊙C 与GH 所在的直线相切时,求此时S 的值为100cm 2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.7.如图,Rt ABC ∆内接于⊙O ,AC BC =,BAC ∠的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD ,G 是CD 的中点,连接OG .(1)判断OG 与CD 的位置关系,写出你的结论并证明; (2)求证:AE BF =;(3)若3(22)OG DE =-g ,求⊙O 的面积.【答案】(1)OG ⊥CD (2)证明见解析(3)6π 【解析】试题分析:(1)根据G 是CD 的中点,利用垂径定理证明即可; (2)先证明△ACE 与△BCF 全等,再利用全等三角形的性质即可证明; (3)构造等弦的弦心距,运用相似三角形以及勾股定理进行求解. 试题解析:(1)解:猜想OG ⊥CD .证明如下:如图1,连接OC 、OD .∵OC =OD ,G 是CD 的中点,∴由等腰三角形的性质,有OG ⊥CD .(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,而∠CAE =∠CBF (同弧所对的圆周角相等).在Rt △ACE 和Rt △BCF 中,∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF ,∴Rt △ACE ≌Rt △BCF (ASA ),∴AE =BF .(3)解:如图2,过点O 作BD 的垂线,垂足为H ,则H 为BD 的中点,∴OH =12AD ,即AD =2OH ,又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG .在Rt △BDE 和Rt △ADB 中,∵∠DBE =∠DAC =∠BAD ,∴Rt △BDE ∽Rt △ADB ,∴BD DE AD DB=,即BD 2=AD •DE ,∴22622BD AD DE OG DE =⋅=⋅=-().又BD =FD ,∴BF =2BD ,∴2242422BF BD ==-()①,设AC =x ,则BC =x ,AB =2x .∵AD 是∠BAC 的平分线,∴∠FAD =∠BAD .在Rt △ABD 和Rt △AFD 中,∵∠ADB =∠ADF =90°,AD =AD ,∠FAD =∠BAD ,∴Rt △ABD ≌Rt △AFD (ASA ),∴AF =AB =2x ,BD =FD ,∴CF =AF ﹣AC =221x x x -=-().在Rt △BCF 中,由勾股定理,得:222222[21]222BF BC CF x x x =+=+-=-()()②,由①、②,得22222422x -=-()(),∴x 2=12,解得:23x =或23-(舍去),∴222326AB x ==⋅=,∴⊙O 的半径长为6,∴S ⊙O =π•(6)2=6π.点睛:本题是圆的综合题.解题的关键是熟练运用垂径定理、勾股定理、相似三角形的判定与性质.8.如图,AB 是圆O 的直径,射线AM ⊥AB ,点D 在AM 上,连接OD 交圆O 于点E ,过点D 作DC=DA 交圆O 于点C (A 、C 不重合),连接O C 、BC 、CE .(1)求证:CD 是⊙O 的切线;(2)若圆O 的直径等于2,填空:①当AD= 时,四边形OADC 是正方形;②当AD= 时,四边形OECB 是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.9.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 53,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=3m,可得AN=11m,利用直角n AGM,n AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG=∠AGE,∴AE=AG,∴EM=MG=1EG=1,2∴∠EAG=∠ECD=2α,∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,∵tan∠BAC53,∴设NG=3,可得AN=11m,AG22-14m,AG AM∵∠ACG=60°,∴CN=5m,AM3,MG22-m=1,AG AM∴m =12, ∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =22AM EM +=221+43()=7.10.如图,OB 是以(O ,a )为圆心,a 为半径的⊙O 1的弦,过B 点作⊙O 1的切线,P 为劣弧»OB上的任一点,且过P 作OB 、AB 、OA 的垂线,垂足分别是D 、E 、F . (1)求证:PD 2=PE•PF ;(2)当∠BOP=30°,P 点为OB 的中点时,求D 、E 、F 、P 四个点的坐标及S △DEF .【答案】(1)详见解析;(2)D (﹣34a ,34a ),E (﹣334a ,34a ),F (﹣32a ,0),P (﹣32a ,2a );S △DEF =3316a 2. 【解析】 试题分析:(1)连接PB ,OP ,利用AB 切⊙O 1于B 求证△PBE ∽△POD ,得出 PB PE OP PD = ,同理,△OPF ∽△BPD ,得出PB PD OP PF= ,然后利用等量代换即可. (2)连接O 1B ,O 1P ,得出△O 1BP 和△O 1PO 为等边三角形,根据直角三角形的性质即可解得D 、E 、F 、P 四个点的坐标.再利用三角形的面积公式可直接求出三角形DEF 的面积.试题解析:(1)证明:连接PB ,OP ,∵PE ⊥AB ,PD ⊥OB ,∴∠BEP=∠PDO=90°,∵AB 切⊙O 1于B ,∠ABP=∠BOP ,∴△PBE ∽△POD ,∴=,同理,△OPF ∽△BPD∴=, ∴=,∴PD 2=PE•PF ;(2)连接O 1B ,O 1P ,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a, a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a, a),∵E(﹣a, a),D(﹣a, a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为: a,∴S△DEF=×a×a=a2.故答案为:D(﹣a, a),E(﹣a, a),F(﹣a,0),P(﹣a,);S△DEF=a2.11.如图,在Rt△ABC中,∠ACB=60°,☉O是△ABC的外接圆,BC是☉O的直径,过点B作☉O 的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作☉O的切线AF,与直径BC的延长线交于点F.(1)连接EF,求证:EF是☉O的切线;(2)在圆上是否存在一点P,使点P与点A,B,F构成一个菱形?若存在,请说明理由.【答案】(1)见解析;(2)存在,理由见解析【解析】【分析】(1)过O作OM⊥EF于M,根据SAS证明△OAF≌△OBE,从而得到OE=OF,再证明EO平分∠BEF,从而得到结论;(2)存在,先证明△OAC为等边三角形,从而得出∠OAC=∠AOC=60°,再得到AB=AF,再证明AB=AF=FP=BP,从而得到结论.【详解】(1)证明:如图,过O作OM⊥EF于M,∵OA=OB,∠OAF=∠OBE=90°,∠BOE=∠AOF,∴△OAF≌△OBE,∴OE=OF,∵∠EOF=∠AOB=120°,∴∠OEM=∠OFM=30°,∴∠OEB=∠OEM=30°,即EO平分∠BEF,又∠OBE=∠OME=90°,∴OM=OB,∴EF为☉O的切线.(2)存在.∵BC为☉O的直径,∴∠BAC=90°,∵∠ACB=60°,∴∠ABC=30°,又∵∠ACB=60°,OA=OC,∴△OAC为等边三角形,即∠OAC=∠AOC=60°,∵AF为☉O的切线,∴∠OAF=90°,∴∠CAF=∠AFC=30°,∴∠ABC=∠AFC,∴AB=AF.当点P在(1)中的点M位置时,此时∠OPF=90°,∴∠OAF=∠OPF=90°,又∵OA=OP,OF为公共边,∴△OAF≌△OPF,∴AF=PF,∠BFE=∠AFC=30°.又∵∠FOP=∠OBP=∠OPB=30°,∴BP=FP,∴AB=AF=FP=BP,∴四边形AFPB是菱形.【点睛】考查了切线的判定定理和菱形的判定,经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.12.已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连结CB.[感知]如图①,点A、B在CD同侧,且点B在AC右侧,在射线AM上截取AE=BD,连结CE,可证△BCD≌△ECA,从而得出EC=BC,∠ECB=90°,进而得出∠ABC=度;[探究]如图②,当点A、B在CD异侧时,[感知]得出的∠ABC的大小是否改变?若不改变,给出证明;若改变,请求出∠ABC的大小.[应用]在直线MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的长.【答案】【感知】:45;【探究】:不改变,理由详见解析;【拓展】:BC的长为+1或﹣1.【解析】【分析】[感知]证明△BCD≌△ECA(SAS)即可解决问题;[探究]结论不变,证明△BCD≌△ECA(SAS)即可解决问题;[应用]分两种情形分别求解即可解决问题.【详解】解:【感知】,如图①中,在射线AM上截取AE=BD,连结CE.∵AC⊥DC,DB⊥MN,∴∠ACD=∠DBA=90°.∴∠CDB+∠CAB=180°,∵∠CAB+∠CAE=180°∴∠D=∠CAE,∵CD=AC,AE=BD,∴△BCD≌△ECA(SAS),∴BC=EC,∠BCD=∠ECA,∵∠ACE+∠ECD=90°,∴∠ECD+∠DCB=90°,即∠ECB=90°,∴∠ABC=45°.故答案为45【探究】不改变.理由如下:如图,如图②中,在射线AN上截取AE=BD,连接CE,设MN与CD交于点O.∵AC⊥DC,DB⊥MN,∴∠ACD=∠DBA=90°,∵∠AOC=∠DOB,∴∠D=∠EAC,CD=AC,∴△BCD≌△ECA(SAS),∴BC=EC,∠BCD=∠ECA,∵∠ACE+∠ECD=90°,∴∠ECD+∠DCB=90°,即∠ECB=90°,∴∠ABC=45°.【拓展】如图①﹣1中,连接AD.∴∠ACD+∠ABD=180°,∴A,C,D,B四点共圆,∴∠DAB=∠DCB=30°,∴AB=BD=,∴EB =AE+AB=+,∵△ECB是等腰直角三角形,如图②中,同法可得BC=﹣1.综上所述,BC的长为+1或﹣1.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.13.如图,已知△ABC,AB=2,3BC ,∠B=45°,点D在边BC上,联结AD,以点A 为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;(2)如果E是»DF的中点,求:BD CD的值;(3)联结CF,如果四边形ADCF是梯形,求BD的长.【答案】(1) 2442y x x=-+45; (3) BD的长是11+5.【解析】【分析】(1)过点A 作AH ⊥BC ,垂足为点H .构造直角三角形,利用解直角三角形和勾股定理求得AD 的长度.联结DF ,点D 、F 之间的距离y 即为DF 的长度,在Rt △ADF 中,利用锐角三角形函数的定义求得DF 的长度,易得函数关系式.(2)由勾股定理求得:AC=22AH DH +.设DF 与AE 相交于点Q ,通过解Rt △DCQ 和Rt △AHC 推知12DQ CQ =.故设DQ=k ,CQ=2k ,AQ=DQ=k ,所以再次利用勾股定理推知DC 的长度,结合图形求得线段BD 的长度,易得答案.(3)如果四边形ADCF 是梯形,则需要分类讨论:①当AF ∥DC 、②当AD ∥FC .根据相似三角形的判定与性质,结合图形解答.【详解】(1)过点A 作AH ⊥BC ,垂足为点H .∵∠B =45°,AB 2∴·cos 1BH AH AB B ===.∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+.联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒.在Rt △ADF 中,90DAF ∠=︒,∴2442cos AD DF x x ADF ==-+∠ ∴2442y x x =-+.()03x ≤≤ ;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF . ∵BC=3,∴312HC =-=.∴225AC AH HC +=.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQ DCQ CQ ∠=. 在Rt △AHC 中,90AHC ∠=︒,1tan 2AH ACH HC ∠==. ∵DCQ ACH ∠=∠,∴12DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==,∵35k =,53k =,∴2253DC DQ CQ =+=. ∵43BD BC DC =-=,∴4:5BD CD =. (3)如果四边形ADCF 是梯形 则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =.②当AD ∥FC 时,45ADF CFD ∠=∠=︒.∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠.∴ABD ∆∽DFC ∆.∴AB AD DF DC =. ∵2DF AD =,DC BC BD =-. ∴2AD BC BD =-.即()222-23x x x +=-,整理得 210x x --=,解得 15x ±=(负数舍去). 综上所述,如果四边形ADCF 是梯形,BD 的长是1或1+52. 【点睛】此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.14.如图,AB 是O e 的直径,DF 切O e 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交BD 的延长线于点C .(1)求证:ABC C ∠∠=;(2)设CA 的延长线交O e 于E BF ,交O e 于G ,若¼DG的度数等于60o ,试简要说明点D 和点E 关于直线AB 对称的理由.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;(2)连接OG,OD,AD,由BF∥OD,»GD=60°,可求证»BG=»»GD AD==60°,由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.【详解】(1)连接OD,∵DF为⊙O的切线,∴OD⊥DF.∵BF⊥DF,AC∥BF,∴OD∥AC∥BF.∴∠ODB=∠C.∵OB=OD,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,DE,DE交AB于H,∵BF∥OD,∴∠OBG=∠AOD,∠OGB=∠DOG,∴»»==»BG.GD AD∵»GD=60°,∴»BG=»»==60°,GD AD∴∠ABC=∠C=∠E=30°,∵OD//CE∴∠ODE=∠E=30°.在△ODH中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB⊥DE.∴点D和点E关于直线AB对称.【点睛】本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.15.如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=23,AC=2,求AD的长.【答案】(1)证明见解析;(2)23【解析】【分析】(1)根据题目中已出现切点可确定用“连半径,证垂直”的方法证明切线,连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,根据同弧所对的圆周角相等,则可得到∠BAE=∠F,既而得到AE与⊙O相切于点A.(2))连接OC,先由平行和已知可得∠ACB=∠ABC,所以AC=AB,则∠AOC=∠AOB,从而利用垂径定理可得AH=1,在Rt△OBH中,设OB=r,利用勾股定理解得r=2,在Rt△ABD中,即可求得AD的长为3【详解】解:(1)连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,∵»»,AB AB∴∠ACB=∠F,∵∠BAE=∠ACB,∴∠BAE=∠F,∵∠FAB+∠F=90°,∴∠FAB+∠BAE=90°,∴OA⊥AE,∴AE与⊙O相切于点A.(2)连接OC,∵AE∥BC,∴∠BAE=∠ABC,∵∠BAE=∠ACB,∴∠ACB=∠ABC,∴AC=AB=2,∴∠AOC=∠AOB,∵OC=OB,∴OA⊥BC,∴CH=BH=1BC=3,2在Rt△ABH中,AH=22-=1,AB BH在Rt△OBH中,设OB=r,∵OH2+BH2=OB2,∴(r﹣1)2+(3)2=r2,解得:r=2,∴DB=2r=4,在Rt△ABD中,AD=22-=22BD AB-=23,42∴AD的长为23.【点睛】本题考查了圆的综合问题,恰当的添加辅助线是解题关键.。

2020-2021中考数学压轴题专题复习——圆的综合的综合附答案解析

2020-2021中考数学压轴题专题复习——圆的综合的综合附答案解析

2020-2021中考数学压轴题专题复习——圆的综合的综合附答案解析一、圆的综合1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,»»BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵»»BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=12 AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△BOM中,tan∠MBO=122 MO aBM a==,∵EH∥DP,∴∠P=∠MBO,tanP=12 COPO=,设OC=k,则PC=2k,在Rt△POC中,,解得:在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.2.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数;(3)设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA 在旋转过程中所扫过的面积; (2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM 的度数; (3)利用全等把△MBN 的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A 点第一次落在直线y=x 上时停止旋转,直线y=x 与y 轴的夹角是45°,∴OA 旋转了45°.∴OA 在旋转过程中所扫过的面积为24523602ππ⨯=. (2)∵MN ∥AC ,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM .∴BM=BN .又∵BA=BC ,∴AM=CN .又∵OA=OC ,∠OAM=∠OCN ,∴△OAM ≌△OCN .∴∠AOM=∠CON=12(∠AOC-∠MON )=12(90°-45°)=22.5°. ∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45°-22.5°=22.5°. (3)在旋转正方形OABC 的过程中,p 值无变化.证明:延长BA 交y 轴于E 点,则∠AOE=45°-∠AOM ,∠CON=90°-45°-∠AOM=45°-∠AOM ,∴∠AOE=∠CON .又∵OA=OC ,∠OAE=180°-90°=90°=∠OCN .∴△OAE ≌△OCN .∴OE=ON ,AE=CN .又∵∠MOE=∠MON=45°,OM=OM ,∴△OME ≌△OMN .∴MN=ME=AM+AE .∴MN=AM+CN ,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC 的过程中,p 值无变化.考点:旋转的性质.3.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC 2﹣AC 2=AB•AC ;(3)已知⊙O 的半径为3.①若AB AC =53,求BC 的长; ②当AB AC为何值时,AB•AC 的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②32【解析】 分析:(1)由菱形知∠D=∠BEC ,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC ,据此得证;(2)以点C 为圆心,CE 长为半径作⊙C ,与BC 交于点F ,于BC 延长线交于点G ,则CF=CG=AC=CE=CD ,证△BEF ∽△BGA 得BE BG BF BA =,即BF•BG=BE•AB ,将BF=BC-CF=BC-AC 、BG=BC+CG=BC+AC 代入可得; (3)①设AB=5k 、AC=3k ,由BC 2-AC 2=AB•AC 知6k ,连接ED 交BC 于点M ,Rt △DMC 中由DC=AC=3k 、MC=126k 求得22CD CM -3,可知OM=OD-3,在Rt △COM 中,由OM 2+MC 2=OC 2可得答案.②设OM=d ,则MD=3-d ,MC 2=OC 2-OM 2=9-d 2,继而知BC 2=(2MC )2=36-4d 2、AC 2=DC 2=DM 2+CM 2=(3-d )2+9-d 2,由(2)得AB•AC=BC 2-AC 2,据此得出关于d 的二次函数,利用二次函数的性质可得答案. 详解:(1)∵四边形EBDC 为菱形,∴∠D=∠BEC ,∵四边形ABDC 是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=126k,∴223CD CM k-=,∴OM=OD﹣DM=33k,在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,解得:k=33或k=0(舍),∴BC=26k=42; ②设OM=d ,则MD=3﹣d ,MC 2=OC 2﹣OM 2=9﹣d 2,∴BC 2=(2MC )2=36﹣4d 2,AC 2=DC 2=DM 2+CM 2=(3﹣d )2+9﹣d 2,由(2)得AB•AC=BC 2﹣AC 2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272, ∴AC=DC=36, ∴AB=96,此时32AB AC =. 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.4.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,连结AC ,过»BD上一点E 作EG ∥AC 交CD 的延长线于点G ,连结AE 交CD 于点F ,且EG=FG ,连结CE .(1)求证:∠G=∠CEF ;(2)求证:EG 是⊙O 的切线;(3)延长AB 交GE 的延长线于点M ,若tanG =34,AH=33,求EM 的值.【答案】(1)证明见解析;(2)证明见解析;(3)38. 【解析】 试题分析:(1)由AC ∥EG ,推出∠G =∠ACG ,由AB ⊥CD 推出»»AD AC =,推出∠CEF =∠ACD ,推出∠G =∠CEF ,由此即可证明;(2)欲证明EG 是⊙O 的切线只要证明EG ⊥OE 即可;(3)连接OC .设⊙O 的半径为r .在Rt △OCH 中,利用勾股定理求出r ,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH=33∴HC=3Rt△HOC中,∵OC=r,OH=r﹣33HC=43∴222(33)(43)r r-+=,∴r=2536,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HCEM OE=,∴33432536=,∴EM253.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.5.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.6.如图,已知Rt△ABC中,C=90°,O在AC上,以OC为半径作⊙O,切AB于D点,且BC=BD.(1)求证:AB为⊙O的切线;(2)若BC=6,sinA=35,求⊙O的半径;(3)在(2)的条件下,P点在⊙O上为一动点,求BP的最大值与最小值.【答案】(1)连OD,证明略;(2)半径为3;(3)最大值35+3 ,35-3.【解析】分析:(1)连接OD,OB,证明△ODB≌△OCB即可.(2)由sinA=35且BC=6可知,AB=10且cosA=45,然后求出OD的长度即可.(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.详解:(1)如图:连接OD、OB.在△ODB和△OCB中:OD=OC,OB=OB,BC=BD;∴△ODB≌△OCB(SSS).∴∠ODB=∠C=90°.∴AB为⊙O的切线.(2)如图:∵sinA=35,∴CB3AB5=,∵BC=6,∴AB=10,∵BD=BC=6,∴AD=AB-BD=4,∵sinA=35,∴cosA=45,∴OA=5,∴OD=3,即⊙O的半径为:3.(3)如图:连接OB,交⊙O为点E、F,由三角形的三边关系可知:当P点与E点重合时,PB取最小值.由(2)可知:OD=3,DB=6,∴223635+=∴PB=OB-OE=353.当P点与F点重合时,PB去最大值,PB=OP+OB=3+35点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.7.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.8.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(3,﹣1),点A 的坐标为(﹣2,3),点B 的坐标为(﹣3,0),点C 在x 轴上,且点D 在点A 的左侧. (1)求菱形ABCD 的周长;(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,同时菱形ABCD 沿x 轴向右以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与BC 相切,且切点为BC 的中点时,连接BD ,求: ①t 的值; ②∠MBD 的度数;(3)在(2)的条件下,当点M 与BD 所在的直线的距离为1时,求t 的值.【答案】(1)8;(2)①7;②105°;(3)t=633 【解析】分析:(1)根据勾股定理求菱形的边长为2,所以可得周长为8;(2)①如图2,先根据坐标求EF 的长,由EE '﹣FE '=EF =7,列式得:3t ﹣2t =7,可得t 的值;②先求∠EBA =60°,则∠FBA =120°,再得∠MBF =45°,相加可得:∠MBD =∠MBF +∠FBD =45°+60°=105°;(3)分两种情况讨论:作出距离MN 和ME ,第一种情况:如图5由距离为1可知:BD 为⊙M 的切线,由BC 是⊙M 的切线,得∠MBE =30°,列式为3t 3=2t +6,解出即可; 第二种情况:如图6,同理可得t 的值. 详解:(1)如图1,过A 作AE ⊥BC 于E .∵点A 的坐标为(﹣23),点B 的坐标为(﹣3,0),∴AE 3,BE =3﹣2=1,∴AB 22AE BE +2231+()=2. ∵四边形ABCD 是菱形,∴AB =BC =CD =AD =2,∴菱形ABCD 的周长=2×4=8; (2)①如图2,⊙M 与x 轴的切点为F ,BC 的中点为E . ∵M (3,﹣1),∴F (3,0).∵BC =2,且E 为BC 的中点,∴E (﹣4,0),∴EF =7,即EE '﹣FE '=EF ,∴3t ﹣2t =7,t =7;②由(1)可知:BE =1,AE 3 ∴tan ∠EBA =AE BE =33,∴∠EBA =60°,如图4,∴∠FBA =120°.∵四边形ABCD是菱形,∴∠FBD=12∠FBA=11202⨯︒=60°.∵BC是⊙M的切线,∴MF⊥BC.∵F是BC的中点,∴BF=MF=1,∴△BFM是等腰直角三角形,∴∠MBF=45°,∴∠MBD=∠MBF+∠FBD=45°+60°=105°;(3)连接BM,过M作MN⊥BD,垂足为N,作ME⊥BC于E,分两种情况:第一种情况:如图5.∵四边形ABCD是菱形,∠ABC=120°,∴∠CBD=60°,∴∠NBE=60°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=30°.∵ME=1,∴EB=3,∴3t+3=2t+6,t=6﹣3;第二种情况:如图6.∵四边形ABCD是菱形,∠ABC=120°,∴∠DBC=60°,∴∠NBE=120°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=60°.∵ME=MN=1,∴Rt△BEM中,tan60°=MEBE,EB=160tan︒=33,∴3t=2t+6+3,t=6+3;综上所述:当点M与BD所在的直线的距离为1时,t=6﹣3或6+3.点睛:本题是四边形和圆的综合题,考查了菱形的性质、圆的切线的性质和判定、特殊的三角函数值、等腰直角三角形的性质、动点运动问题,此类问题比较复杂,弄清动点运动方向、速度、时间和路程的关系,并与方程相结合,找等量关系,求出时间t的值.9.如图.在△ABC中,∠C=90°,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P 出发沿线段PA以2c m/s的速度向点A运动,同时点F从点P出发沿线段PB以1c m/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t (s)(0<t<20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210) 240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.10.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

2020-2021中考数学压轴题专题圆的综合的经典综合题含答案

2020-2021中考数学压轴题专题圆的综合的经典综合题含答案

2020-2021中考数学压轴题专题圆的综合的经典综合题含答案一、圆的综合1.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC 2﹣AC 2=AB•AC ;(3)已知⊙O 的半径为3.①若AB AC =53,求BC 的长; ②当AB AC为何值时,AB•AC 的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②32【解析】 分析:(1)由菱形知∠D=∠BEC ,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC ,据此得证;(2)以点C 为圆心,CE 长为半径作⊙C ,与BC 交于点F ,于BC 延长线交于点G ,则CF=CG=AC=CE=CD ,证△BEF ∽△BGA 得BE BG BF BA =,即BF•BG=BE•AB ,将BF=BC-CF=BC-AC 、BG=BC+CG=BC+AC 代入可得; (3)①设AB=5k 、AC=3k ,由BC 2-AC 2=AB•AC 知6k ,连接ED 交BC 于点M ,Rt △DMC 中由DC=AC=3k 、MC=126k 求得22CD CM -3,可知OM=OD-3,在Rt △COM 中,由OM 2+MC 2=OC 2可得答案.②设OM=d ,则MD=3-d ,MC 2=OC 2-OM 2=9-d 2,继而知BC 2=(2MC )2=36-4d 2、AC 2=DC 2=DM 2+CM 2=(3-d )2+9-d 2,由(2)得AB•AC=BC 2-AC 2,据此得出关于d 的二次函数,利用二次函数的性质可得答案. 详解:(1)∵四边形EBDC 为菱形,∴∠D=∠BEC ,∵四边形ABDC 是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC ,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=126k,∴223CD CM k-=,∴OM=OD﹣DM=33k,在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,解得:k=33或k=0(舍),∴62;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=36﹣4d2,AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣34)2+814,∴当d=34,即OM=34时,AB•AC最大,最大值为814,∴DC2=272,∴AC=DC=362,∴AB=964,此时32ABAC.点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.(1)若∠G=48°,求∠ACB的度数;(2)若AB=AE,求证:∠BAD=∠COF;(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若tan∠CAF=12,求12SS的值.【答案】(1)48°(2)证明见解析(3)3 4【解析】【分析】(1)连接CD,根据圆周角定理和垂直的定义可得结论;(2)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得»»»CD PB PD==,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=2x-a,根据勾股定理列方程得:(2x-a)2=x2+a2,则a=34x,代入面积公式可得结论.【详解】(1)连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(2)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴»»CD PB=,∵AD是⊙O的直径,AD⊥PC,∴»»CD PD=,∴»»»CD PB PD==,∴∠BAD=2∠DAC,∵∠COF=2∠DAC,∴∠BAD=∠COF;(3)过O作OG⊥AB于G,设CF=x,∵tan∠CAF=12=CF AF,∴AF=2x,∵OC=OA,由(2)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,设OF=a,则OA=OC=2x﹣a,Rt△COF中,CO2=CF2+OF2,∴(2x﹣a)2=x2+a2,a=34 x,∴OF=AG=34x,∵OA=OB,OG⊥AB,∴AB=2AG=32x,∴1213··3 22 1·24·2AB OG x xSS x xCF AF===.【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(2)根据外角的性质和圆的性质得:»»»CD PB PD==;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.3.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.4.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.(1)求证:BD平分∠ABC;(2)求证:BE=2AD;(3)求DEBE的值.【答案】(1)答案见解析(2)BE=AF=2AD(3)21 2 -【解析】试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得BE=AF=2AD;(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, 然后根据相似三角形的性质可求解.试题解析:(1)∵D是的中点∴AD=DC∴∠CBD=∠ABD∴BD平分∠ABC(2)提示:延长BC与AD相交于点F, 证明△BCE≌△ACF,BE=AF=2AD(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, DEBE=DHBCDE BE =212-5.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.【答案】画图见解析.【解析】【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线.【详解】解:画图如下:【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线.6.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(3,﹣1),点A 的坐标为(﹣2,3),点B 的坐标为(﹣3,0),点C 在x 轴上,且点D 在点A 的左侧. (1)求菱形ABCD 的周长;(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,同时菱形ABCD 沿x 轴向右以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与BC 相切,且切点为BC 的中点时,连接BD ,求:①t 的值;②∠MBD 的度数;(3)在(2)的条件下,当点M 与BD 所在的直线的距离为1时,求t 的值.【答案】(1)8;(2)①7;②105°;(3)t=633 【解析】 分析:(1)根据勾股定理求菱形的边长为2,所以可得周长为8;(2)①如图2,先根据坐标求EF 的长,由EE '﹣FE '=EF =7,列式得:3t ﹣2t =7,可得t 的值;②先求∠EBA =60°,则∠FBA =120°,再得∠MBF =45°,相加可得:∠MBD =∠MBF +∠FBD =45°+60°=105°;(3)分两种情况讨论:作出距离MN 和ME ,第一种情况:如图5由距离为1可知:BD 为⊙M 的切线,由BC 是⊙M 的切线,得∠MBE =30°,列式为3t 3=2t +6,解出即可; 第二种情况:如图6,同理可得t 的值.详解:(1)如图1,过A 作AE ⊥BC 于E .∵点A 的坐标为(﹣23),点B 的坐标为(﹣3,0),∴AE 3,BE =3﹣2=1,∴AB 22AE BE +2231+()=2. ∵四边形ABCD 是菱形,∴AB =BC =CD =AD =2,∴菱形ABCD 的周长=2×4=8;(2)①如图2,⊙M 与x 轴的切点为F ,BC 的中点为E .∵M (3,﹣1),∴F (3,0).∵BC =2,且E 为BC 的中点,∴E (﹣4,0),∴EF =7,即EE '﹣FE '=EF ,∴3t ﹣2t =7,t =7;②由(1)可知:BE =1,AE 3∴tan∠EBA=AEBE =31=3,∴∠EBA=60°,如图4,∴∠FBA=120°.∵四边形ABCD是菱形,∴∠FBD=12∠FBA=11202⨯︒=60°.∵BC是⊙M的切线,∴MF⊥BC.∵F是BC的中点,∴BF=MF=1,∴△BFM是等腰直角三角形,∴∠MBF=45°,∴∠MBD=∠MBF+∠FBD=45°+60°=105°;(3)连接BM,过M作MN⊥BD,垂足为N,作ME⊥BC于E,分两种情况:第一种情况:如图5.∵四边形ABCD是菱形,∠ABC=120°,∴∠CBD=60°,∴∠NBE=60°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=30°.∵ME=1,∴EB=3,∴3t+3=2t+6,t=6﹣3;第二种情况:如图6.∵四边形ABCD是菱形,∠ABC=120°,∴∠DBC=60°,∴∠NBE=120°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=60°.∵ME=MN=1,∴Rt△BEM中,tan60°=MEBE,EB=160tan︒=3,∴3t=2t+6+3,t=6+3;综上所述:当点M与BD所在的直线的距离为1时,t=6﹣3或6+33.点睛:本题是四边形和圆的综合题,考查了菱形的性质、圆的切线的性质和判定、特殊的三角函数值、等腰直角三角形的性质、动点运动问题,此类问题比较复杂,弄清动点运动方向、速度、时间和路程的关系,并与方程相结合,找等量关系,求出时间t的值.7.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 5311,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=53m,可得AN=11m,利用直角n AGM,n AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED =∠AEG ,∠CDE =∠AGE ,∠CED =∠CDE ,∴∠AEG =∠AGE ,∴AE =AG ,∴EM=MG =12EG =1, ∴∠EAG =∠ECD =2α,∴∠CAG =∠CAD +∠DAG =30°﹣α+2α=∠BAC ,∵tan ∠BAC =5311, ∴设NG=53m ,可得AN =11m ,AG =22AG AM -=14m , ∵∠ACG =60°,∴CN=5m ,AM =83m ,MG =22AG AM -=2m =1, ∴m =12, ∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =22AM EM +=221+43()=7.8.如图,AD 是△ABC 的角平分线,以AD 为弦的⊙O 交AB 、AC 于E 、F ,已知EF ∥BC . (1)求证:BC 是⊙O 的切线;(2)若已知AE=9,CF=4,求DE 长;(3)在(2)的条件下,若∠BAC=60°,求tan ∠AFE 的值及GD 长.【答案】(1)证明见解析(2)DE=6(3)375【解析】 试题分析:(1)连接OD ,由角平分线的定义得到∠1=∠2,得到»»DEDF =,根据垂径定理得到OD ⊥EF ,根据平行线的性质得到OD ⊥BC ,于是得到结论;(2)连接DE ,由»»DEDF =,得到DE=DF ,根据平行线的性质得到∠3=∠4,等量代换得到∠1=∠4,根据相似三角形的性质即可得到结论;(3)过F 作FH ⊥BC 于H ,由已知条件得到∠1=∠2=∠3=∠4=30°,解直角三角形得到FH=12DF=12×6=3,3227CF HF -=,根据三角函数的定义得到tan ∠AFE=tan ∠C=7HF CH =;根据相似三角形到现在即可得到结论. 试题解析:(1)连接OD ,∵AD 是△ABC 的角平分线,∴∠1=∠2,∴»»DEDF =, ∴OD ⊥EF ,∵EF ∥BC ,∴OD ⊥BC ,∴BC 是⊙O 的切线;(2)连接DE ,∵»»DEDF =, ∴DE=DF ,∵EF ∥BC ,∴∠3=∠4,∵∠1=∠3,∴∠1=∠4,∵∠DFC=∠AED ,∴△AED ∽△DFC , ∴AE DE DF CF =,即94DE DE =, ∴DE 2=36,∴DE=6;(3)过F 作FH ⊥BC 于H ,∵∠BAC=60°,∴∠1=∠2=∠3=∠4=30°, ∴FH=12DF=162⨯=3,∴=,∵EF ∥BC ,∴∠C=∠AFE ,∴tan ∠AFE=tan ∠C=7HF CH =; ∵∠4=∠2.∠C=∠C ,∴△ADC ∽△DFC , ∴AD CD DF CF=, ∵∠5=∠5,∠3=∠2,∴△ADF ∽△FDG , ∴AD DF DF DG =, ∴CD DF CF DG =,即33764DG+=, ∴DG=183675-.点睛:本题考查了切线的判定、圆周角定理、相似三角形的判定与性质、解直角三角形、平行线的性质,正确作出辅助线是解题的关键.9.如图,AB 是半圆O 的直径,半径OC ⊥AB ,OB =4,D 是OB 的中点,点E 是弧BC 上的动点,连接AE ,DE .(1)当点E 是弧BC 的中点时,求△ADE 的面积;(2)若3tan 2AED ∠= ,求AE 的长; (3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.【答案】(1)62ADE S =2)1655AE =3)23m =,22m =71m =.【解析】【分析】(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,根据Rt △AEB 中,EH 2=AH•BH ,即可求出a 的值,即可求出S △ADE 的值;(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故AF AD EF BD=,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长;(3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值.【详解】解:(1)如图,作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,∵点E 是弧BC 中点,∴∠COE =∠EOH =45°,∴EH =OH =2+a ,在Rt △AEB 中,EH 2=AH•BH ,(2+a )2=(6+a )(2﹣a ),解得a =222±-,∴a =222-,EH=22,S △ADE =1622AD EH =n n ;(2)如图,作DF ⊥AE ,垂足为F ,连接BE设EF =2x ,DF =3x∵DF ∥BE∴AF AD EF BD= ∴622AF x ==3 ∴AF =6x 在Rt △AFD 中,AF 2+DF 2=AD 2(6x )2+(3x )2=(6)2解得x 255AE =8x 1655(3)当点D 为等腰直角三角形直角顶点时,如图设DH=a由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH,∴∠DFO=∠EDH∴△ODF≌△HED∴OD=EH=2在Rt△ABE中,EH2=AH•BH(2)2=(6+a)•(2﹣a)-解得a=±232m=23当点E为等腰直角三角形直角顶点时,如图同理得△EFG≌△DEH设DH=a,则GE=a,EH=FG=2+a在Rt△ABE中,EH2=AH•BH(2+a)2=(6+a)(2﹣a)解得a=222±-∴m=22当点F为等腰直角三角形直角顶点时,如图同理得△EFM≌△FDO设OF=a,则ME=a,MF=OD=2∴EH=a+2在Rt△ABE中,EH2=AH•BH(a+2)2=(4+a)•(4﹣a)解得a=71m71【点睛】此题主要考查圆内综合问题,解题的关键是熟知全等三角形、等腰三角形、相似三角形的判定与性质.10.如图,已知在△ABC中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB、BC两边都相切.根据角平分线的性质可知要作∠ABC的角平分线,角平分线与AC的交点就是点P的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠ABC=60°,BP平分∠ABC,∴∠ABP=30°,∵∠A=90°,∴BP=2APRt△ABP中,AB=3,由勾股定理可得:3,∴S⊙P=3π11.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF 上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.【答案】(1)证明见解析;(2)35. 【解析】【分析】 (1)先判断出BD 是圆O 的直径,再判断出BD ⊥DE ,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F =∠EDF ,根据等腰三角形的判定得到DE =EF =3,根据勾股定理得到CD 225DE CE =-=,证明△CDE ∽△DBE ,根据相似三角形的性质即可得到结论.【详解】(1)如图,连接BD .∵∠BAD =90°,∴点O 必在BD 上,即:BD 是直径,∴∠BCD =90°,∴∠DEC +∠CDE =90°. ∵∠DEC =∠BAC ,∴∠BAC +∠CDE =90°.∵∠BAC =∠BDC ,∴∠BDC +∠CDE =90°,∴∠BDE =90°,即:BD ⊥DE .∵点D 在⊙O 上,∴DE 是⊙O 的切线;(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°.∵AB =AC ,∴∠ABC =∠ACB .∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3.∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD 225DE CE =-=∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°.∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 5335⨯==,∴⊙O 的半径35=.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE=EF是解答本题的关键.12.如图,点B在数轴上对应的数是﹣2,以原点O为原心、OB的长为半径作优弧AB,使点A在原点的左上方,且tan∠AOB=3,点C为OB的中点,点D在数轴上对应的数为4.(1)S扇形AOB=(大于半圆的扇形);(2)点P是优弧AB上任意一点,则∠PDB的最大值为°(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,将△OPD顺时针旋转α(0°≤α≤360°)①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②当PD∥AO时,求AD2的值;③直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.【答案】(1)103(2)30(3)①AD=2PC②20+83或20+83③1≤d≤3【解析】【分析】(1)利用扇形的面积公式计算即可.(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.解直角三角形即可解决问题.(3)①结论:AD=2PC.如图2中,连接AB,AC.证明△COP∽△AOD,即可解决问题.②分两种情形:如图3中,当PD∥OA时,设OD交⊙O于K,连接PK交OC于H.求出PC即可.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得.③判断出PC的取值范围即可解决问题.【详解】(1)∵tan∠AOB3,∴∠AOB=60°,∴S 扇形AOB =23002103603ππ⋅⋅= (大于半圆的扇形), (2)如图1中,当PD 与⊙O 相切时,∠PDB 的值最大.∵PD 是⊙O 的切线,∴OP ⊥PD ,∴∠OPD =90°, ∵21sin 42OP PDO OD ∠=== ∴∠PDB =30°, 同法当DP ′与⊙O 相切时,∠BDP ′=30°,∴∠PDB 的最大值为30°.故答案为30.(3)①结论:AD =2PC .理由:如图2中,连接AB ,AC .∵OA =OB ,∠AOB =60°,∴△AOB 是等边三角形,∵BC =OC ,∴AC ⊥OB ,∵∠AOC =∠DOP =60°,∴∠COP =∠AOD ,∵2AO OD OC OP==, ∴△COP ∽△AOD , ∴2AD AO PC OC==,∴AD=2PC.②如图3中,当PD∥OA时,设OD交⊙O于K,连接PK交OC于H.∵OP=OK,∠POK=60°,∴△OPK是等边三角形,∵PD∥OA,∴∠AOP=∠OPD=90°,∴∠POH+∠AOC=90°,∵∠AOC=60°,∴∠POH=30°,∴PH=1OP=1,OH=3PH=3,2∴PC=2222+=++=+,PH CH1(13)523∵AD=2PC,∴AD2=4(5+23)=20+83.如图④中,当PA∥OA时,作PK⊥OB于K,同法可得:PC2=12+(3﹣1)2=5﹣23,AD2=4PC2=20﹣83.③由题意1≤PC≤3,∴在旋转过程中,点C到PD所在直线的距离d的取值范围为1≤d≤3.【点睛】本题属于圆综合题,考查了切线的性质,相似三角形的判定和性质,旋转变换,勾股定理,等边三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=3.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为»»AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵»»,AG AG∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG,作FH⊥AG于H.∵BD=OE,∠CDB=∠AEO=90°,∠B=∠AOE,∴△CDB≌△AEO(AAS),∴CD=AE,∵EC=EA,∴AC=2CD.∴∠BAC=30°,∠ABC=60°,∴∠GFA=120°,∵OA=OB=2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 222213AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 60AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE 3. 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.14.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt △ABC 的内切圆与斜边AB 相切于点D ,AD=3,BD=4,求△ABC 的面积. 解:设△ABC 的内切圆分别与AC 、BC 相切于点E 、F ,CE 的长为x .根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x .根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x 2+7x=12.所以S △ABC =12AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=34[x2+(m+n)x+mn]=3×(3mn+mn)=3mn.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.15.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.(1)求证:AE是⊙O的切线;(2)若AB=AD,AC=32,tan∠ADC=3,求BE的长.【答案】(1)证明见解析;(2)52 BE=【解析】试题分析:(1)连接OA、OB,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A作AF⊥CD于点F,由AB=AD,得到∠ACD=∠ACB=45°,在Rt△AFC中可求得AF =3,在Rt△AFD中求得DF=1,所以AB=AD=10,CD= CF+DF=4,再证明△ABE∽△CDA,得出BE ABDA CD=,即可求出BE的长度;试题解析:(1)证明:连结OA,OB,∵∠ACB=45°,∴∠AOB=2∠ACB= 90°,∵OA=OB,∴∠OAB=∠OBA=45°,∵∠BAE=45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°. ∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =32,∠ACF =45°, ∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF =, ∴DF =1,∴223110AB AD ==+=,且CD = CF +DF =4,∵四边形ABCD 内接于⊙O ,∴∠ABE =∠CDA ,∵∠BAE =∠DCA ,∴△ABE ∽△CDA ,∴BE AB DA CD =, ∴1010=, ∴52BE =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年数学中考压轴题专项训练:圆的综合1.如图,点O为Rt△ABC斜边AB上的一点,∠C=90°,以OA为半径的⊙O与BC交于点D,与AC交于点E,连接AD且AD平分∠BAC.(1)求证:BC是⊙O的切线;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π)(1)证明:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵∠ACD=90°,∴OD⊥BC,∴BC与⊙O相切;(2)解:连接OE,ED,∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°,又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴四边形OAED是菱形,∴OE⊥AD,且AM=DM,EM=OM,∴S△AED=S△AOD,∴阴影部分的面积=S扇形ODE==π.2.如图,已知AB是⊙O的直径,AC是⊙O的弦,点E在⊙O外,连接CE,∠ACB的平分线交⊙O于点D.(1)若∠BCE=∠BAC,求证:CE是⊙O的切线;(2)若AD=4,BC=3,求弦AC的长.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∴∠OAC=∠OCA,∵∠BAC=∠BCE,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切线;(2)解:连接BD,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴=,∴AD=BD,∵AB是⊙O的直径,∴∠ADB=90°,∴△ADB是等腰直角三角形,∴AB=AD=4,∵BC=3,∴AC===.3.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.(1)证明:连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线;(2)解:∵∠C=45°,∴△OCE是等腰直角三角形,∴CE=OE=2,∠COE=45°,∴阴影部分面积=S△OCE﹣S扇形OBE=2×2﹣=2﹣.4.如图①,BC是⊙O的直径,点A在⊙O上,AD⊥BC垂足为D,弧AE=弧AB,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.解:(1)△FAG等腰三角形;理由:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(2)成立;∵BC为直径,∴∠BAC=90°∴∠ABE+∠AGB=90°∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,又∵AF=FG,∴F为BG的中点∵△BAG为直角三角形,∴AF=BF=BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD==12,∴在Rt△BDA中,AB==4,∵∠ABC=∠DBA,∠BAC=∠ADB=90°∴△ABC∽△DBA,∴=,∴=,∴BC=,∴⊙O的直径BC=.5.如图,已知矩形ABCD的边AB=6,BC=4,点P、Q分别是AB、BC边上的动点.(1)连接AQ、PQ,以PQ为直径的⊙O交AQ于点E.①若点E恰好是AQ的中点,则∠QPB与∠AQP的数量关系是∠QPB=2∠AQP;②若BE=BQ=3,求BP的长;(2)已知AP=3,BQ=1,⊙O是以PQ为弦的圆.①若圆心O恰好在CB边的延长线上,求⊙O的半径;②若⊙O与矩形ABCD的一边相切,求⊙O的半径.解:(1)①∵点E恰好是AQ的中点,∠ABQ=90°,∴BE=AE=EQ,∴∠EAB=∠EBA,∴∠QEB=2∠EBP,∵以PQ为直径的⊙O交AQ于点E,∴∠QPB=∠QEB,∠PBE=∠PQA,∴∠QPB=2∠AQP,故答案为:∠QPB=2∠AQP;②∵BE=BQ,∴∠BEQ=∠BQE,且∠BPQ=∠BEQ,∴∠BPQ=∠BQE,∴tan∠BPQ=tan∠BPQ,∴,∴,∴BP=(2)①如图1,过点O作OE⊥PQ,∵AP=3,AB=6,∴BP=3,∴PQ===,∵OE⊥PQ,∴QE=PE=,∵cos∠PQB==,∴=∴OQ=5,∴⊙O的半径为5;②如图2,若⊙O与BC相切于点Q,连接OQ,过点O作OE⊥PQ于E,∴EQ=PE=,∵BC是⊙O切线,∴OQ⊥BC,且AB⊥BC,∴OQ∥AB,∴∠OQP=∠BPQ,∴cos∠OQP=cos∠BPQ,∴,∴∴OQ=;如图3,若⊙O与AB相切于点P,连接OP,过点O作OE⊥PQ于E,∴EQ=PE=,∵AB是⊙O切线,∴OP⊥AB,且AB⊥BC,∴OP∥BC,∴∠OPQ=∠PQB,∴cos∠OPQ=cos∠PQB,∴∴,∴OP=5;如图4,若⊙O与AD相切于点M,连接OM,OQ,OP,延长MO交BC于F,作OH⊥AB于H 点,∴OM⊥AD,且BC∥AD,∴OF⊥BC,∵∠A=∠B=∠AMO=∠OFB=∠OHB=90°,∴四边形AHOM,OHBF是矩形,∴OM=AH,OH=BF,∵OQ2=OF2+FQ2,OP2=OH2+PH2,∴OQ2=(6﹣OQ)2+(BF﹣1)2,OQ2=BF2+(OQ﹣3)2,∴OQ=5﹣若图5,若⊙O与CD相切于点N,连接ON,OQ,OP,延长NO交BC于E,作OH⊥BC于H 点,同理可得:OP2=PE2+OE2,OQ2=OH2+QH2,∴OQ2=(3﹣OH)2+(4﹣OQ)2,OQ2=OH2+(4﹣OQ﹣1)2,∴OQ=35﹣6.6.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB =6,BC=,(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.(1)证明:由折叠的性质可知,AF=AB=6,在Rt△ADF中,DF===3,∴CF=DC﹣DF=3,∴DF=FC,即F是CD的中点;(2)证明:在Rt△ADF中,DF=3,AF=6,∴∠DAF=30◦,∴∠BAF=60◦,由折叠的性质可知,∠EAF=∠EAB,∠AFE=∠B=90°,∴∠EAF=∠EAB=30°,∴AE=2EF,∠EFC=180°﹣∠AFD﹣∠AFE=30◦,∴EF=2CE,∴AE=4CE;(3)解:连接OP、OH、PH,∵⊙O与AD相切于点P,∴OP⊥AD,∴OP∥DF,∵∠DAF=30°,∴∠AOP=90°﹣∠DAF=60°,OF=OP=OA,∴∠OFH=∠AOP=60°,OP=OF=2,∴AP==2,∴DP=AD﹣AP=,∵∠OFH=60°,OH=OF,∴△OHF为等边三角形,∴∠FOH=∠OHF=60°,HF=OF=2,∴DH=DF﹣HF=1,∵OP∥DF,∴∠POH=∠OHF=60°,∴∠POH=∠HOF,∴=,∴阴影部分的面积=△PDH的面积=×DH×DP=.7.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.(1)求证:∠A=∠CBD.(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O 相切,并说明理由.(1)证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如图,连接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中点M,连接DM、OD,如图,∵DM为Rt△BCD斜边BC的中线,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM为⊙O的切线,此时BM=BC=.8.如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.(1)求证:AC是∠DAB的平分线;(2)若AB=10,AC=4,求AE的长.(1)证明:连接OC,∵直线MC与⊙O相切于点C,∴∠OCM=90°,∵AD⊥CD,∴∠ADM=90°,∴∠OCM=∠ADM,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAB,即AC是∠DAB的平分线;(2)解:连接BC,连接BE交OC于点F,∵AB是⊙O的直径,∴∠ACB=∠AEB=90°,∵AB=10,AC=4,∴BC===2,∵OC∥AD,∴∠BFO=∠AEB=90°,∴∠CFB=90°,F为线段BE中点,∵∠CBE=∠EAC=∠CAB,∠CFB=∠ACB,∴△CFB∽△BCA.∴=,即=,解得,CF=2,∴OF=OC﹣CF=3.∵O为直径AB中点,F为线段BE中点,∴AE=2OF=6.9.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.(1)证明:如图,连接OD.∵点D是半圆的中点,∴∠AOD=∠BOD=90°,∴∠ODC+∠OED=90°,∵OD=OC,∴∠ODC=∠OCD.又∵CF=EF,∴∠FCE=∠FEC.∵∠FEC=∠OED,∴∠FCE=∠OED.∴∠FCE+∠OCD=∠OED+∠ODC=90°,即FC⊥OC,∴FC是⊙O的切线;(2)解:∵tan A=,∴在Rt△ABC中,=,∵∠ACB=∠OCF=90°,∴∠ACO=∠BCF=∠A,∵△ACF∽△CBF,∴===.∴AF=10,∴CF2=BF•AF.∴BF=.∴AO==.10.如图,AB是⊙O的直径,弦DE垂直半径OA,C为垂足,DE=6,连接DB,∠B=30°,过点E作EM∥BD,交BA的延长线于点M.(1)求的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.解:(1)连结OE,∵DE垂直OA,∠B=30°,∴CE=DE=3,,∴∠AOE=2∠B=60°,∴∠CEO=30°,OC=OE,由勾股定理得OE=2;(2)∵EM∥BD,∴∠M=∠B=30°,∠M+∠AOE=90°,∴∠OEM=90°,即OE⊥ME,∴EM是⊙O的切线;(3)再连结OF,当∠APD=45°时,∠EDF=45°,∴∠EOF=90°,S阴影=π(2)2﹣(2)2=3π﹣6.11.如图,Rt△ABC中,∠C=90°.BE平分∠ABC交AC于点D,交△ABC的外接圆于点E,过点E作EF⊥BC交BC的延长线于点F.请补全图形后完成下面的问题:(1)求证:EF是△ABC外接圆的切线;(2)若BC=5,sin∠ABC=,求EF的长.(1)证明:补全图形如图所示,∵△ABC是直角三角形,∴△ABC的外接圆圆心O是斜边AB的中点.连接OE,∴OE=OB.∴∠2=∠3,∵BE平分∠ABC,∴∠1=∠2,∴∠1=∠3.∴OE∥BF.∵EF⊥BF,∴EF⊥OE,∴EF是△ABC外接圆的切线;(2)解:在Rt△ABC中,BC=5,sin∠ABC=,∴=.∵AC2+BC2=AB2,∴AC=12.∵∠ACF=∠CFE=∠FEH=90°,∴四边形C FEH是矩形.∴EF=HC,∠EHC=90°.∴EF=HC=AC=6.12.我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知⊙O的两条弦AB⊥CD,则AB、CD互为“十字弦”,AB是CD的“十字弦”,CD也是AB的“十字弦”.(1)若⊙O的半径为5,一条弦AB=8,则弦AB的“十字弦”CD的最大值为10 ,最小值为 6 .(2)如图1,若⊙O的弦CD恰好是⊙O的直径,弦AB与CD相交于H,连接AC,若AC=12,DH=7,CH=9,求证:AB、CD互为“十字弦”;(3)如图2,若⊙O的半径为5,一条弦AB=8,弦CD是AB的“十字弦”,连接AD,若∠ADC=60°,求弦CD的长.解:(1)如图a,当CD是直径时,CD的长最大,则CD的最大值为10;如图b,当点D与点A重合时,CD有最小值,过点O作OE⊥CD于E,OF⊥AB于F,∴AF=BF=4,DE=CE,∴OF===3,∵OE⊥CD,OF⊥AB,∠CDB=90°,∴四边形CEOF是矩形,∴CE=OF=3,∴CD=6,∴CD最小值为6,故答案为:10,6;(2)如图1,连接AD,∵DH=7,CH=9,∴CD=16,∵CD是直径,∴∠CAD=90°,∴AD===4,∵,=,∴,∠ADH=∠ADC,∴△ADH∽△CDA,∴∠AHD=∠CAD=90°,∴AB⊥CD,∴AB、CD互为“十字弦”;(3)如图2,过点O作OE⊥CD于E,过点O作OF⊥AB于点F,连接AO,CO,过点O作ON⊥AC于N,∵∠ADC=60°,AB⊥CD,∴AF=DF,∵OE⊥CD,OF⊥AB,AB⊥CD,∴四边形OEHF是矩形,AF=BF=4,CE=ED,∴OF=EH,∵OF===3,∴EH=3,∴ED=CE=3+DH,∴CF=3+2DH,∵∠AOC=2∠ADC=120°,且AO=CO=5,ON⊥AC,∴∠CAO=30°,AN=CN,∴NO=,AN=,∴AC=5,∵AH2+CH2=AC2,∴75=3DH2+(3+2DH)2,∴DH=2﹣,∴CD=2CE=2(3+2﹣)=.13.如图,AB是⊙O的弦,AB=4,点P在上运动(点P不与点A、B重合),且∠APB =30°,设图中阴影部分的面积为y.(1)⊙O的半径为 4 ;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.解:(1)∵∠AOB=2∠APB=2×30°=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=4,即⊙O的半径为4;故答案为4;(2)过点O作OH⊥AB,垂足为H,如图,则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°,∵OA=OB,OH⊥AB,∴AH=BH=AB=2,在Rt△AHO中,∠AHO=90°,AO=4,AH=2,∴OH==2,∴y=﹣×4×2+×4×x=2x+π﹣4(0<x≤2+4).14.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=,AB=6,求⊙O的半径.(1)解:结论:DE与⊙O相切证:连接OD在⊙O中,∵D为的中点,∴=,∴AD=DC,∵AD=DC,点O是AC的中点,∴OD⊥AC,∴∠DOA=∠DOC=90°,∵DE∥AC,∴∠DOA=∠ODE=90°,∵∠ODE=90°,∴OD⊥DE,∵OD⊥DE,DE经过半径OD的外端点D,∴DE与⊙O相切.(2)解:连接BD.∵四边形ABCD是⊙O的内接四边形,∴∠DAB+∠DCB=180°,又∵∠DCE+∠DCB=180°,∴∠DAB=∠DCE,∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°,∵=,∴∠ABD=∠CBD=45°,∵AD=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∵DE∥AC,∴∠DCA=∠CDE=45°,在△ABD和△CDE中,∵∠DAB=∠DCE,∠ABD=∠CDE=45°,∴△ABD∽△CDE,∴=,∴=,∴AD=DC=4,在Rt△ADC中,∠ADC=90°,AD=DC=4,∴AC===8,∴⊙O的半径为4.15.(1)如图①,点A,B,C在⊙O上,点D在⊙O外,比较∠A与∠BDC的大小,并说明理由;(2)如图②,点A,B,C在⊙O上,点D在⊙O内,比较∠A与∠BDC的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点M(1,0),N(4,0),点P在y轴上,试求当∠MPN度数最大时点P的坐标.解:(1)∠A>∠BDC,理由如下:设CD交⊙O于E,连接BE,如图1所示:∠BEC=∠BDC+∠DBE,∴∠BEC>∠BDC,∵∠A=∠BEC,∴∠A>∠BDC;(2)∠A<∠BDC,理由如下:延长CD交⊙O于点F,连接BF,如图2所示:∵∠BDC=∠BFC+∠FBD,∴∠BDC>∠BFC,又∵∠A=∠BFC,∴∠A<∠BDC;(3)由(1)、(2)可得:当点P是经过M、N两点的圆和y轴相切的切点时,∠MPN度数最大,①当点P在y轴的正半轴上时,如图3所示:设⊙O′为点P是经过M、N两点的圆和y轴相切的切点的圆,连接O′P、O′M、O′N,作O′H⊥MN于H,则四边形OPO′H是矩形,MH=HN,∴OP=O′H,O′P=OH=O′M,∵M(1,0),N(4,0),∴OM=1,MN=3,∴MH=HN=MN=,设O′P=OH=O′M=x,MH=OH﹣OM=x﹣1,∴x﹣1=,∴x=,∴O′H===2,∴OP=2,∴点P的坐标为(0,2);②当点P在y轴的负半轴上时,如图4所示:同理可得O′H=OP=2,∴点P的坐标为(0,﹣2);综上所述,当∠MPN度数最大时点P的坐标为(0,2)或(0,﹣2).。

相关文档
最新文档