大学物理学第二版第章习题解答精编
大学物理学第二版第章习题解答
(9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?
(10)质点沿圆周运动,且速率随时间均匀增大, 、 、 三者的大小是否随时间改变?
(11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?
。
在离船的高度为 的岸边,一人以恒定的速率 收绳,求当船头与岸的水平距离为 时,船的速度和加速度。
解:建立坐标系如题图所示,船沿 轴方向作直线运动,欲求速度,应先建立运动方程,由图题,可得出
习题图
两边求微分,则有
船速为
按题意 (负号表示绳随时间 缩短),所以船速为
负号表明船速与 轴正向反向,船速与 有关,说明船作变速运动。将上式对时间求导,可得船的加速度为
终了在 点时, ,
由功能原理知:
经比较可知,用功能原理求最简捷。
墙壁上固定一弹簧,弹簧另一端连接一个物体,弹簧的劲度系数为 ,物体 与桌面间的摩擦因素为 ,若以恒力 将物体自平衡点向右拉动,试求到达最远时,系统的势能。
习题图
解:物体水平受力如图,其中 , 。物体到达最远时, 。设此时物体的位移为 ,由动能定理有
(3)物体受到了几个力的作用,是否一定产生加速度?
(4)物体运动的速率不变,所受合外力是否一定为零?
(5)物体速度很大,所受到的合外力是否也很大?
(6)为什么重力势能有正负,弹性势能只有正值,而引力势能只有负值?
(7)合外力对物体所做的功等于物体动能的增量,而其中某一分力做的功,能否大于物体动能的增量?
解
大学物理(第二版)第一章习题答案
第一章习题1.1 一人自愿点出发,25s 内向东走了30m ,又10s 内向南走了10m ,再15s 内向正西北走了18m 。
求:⑴ 位移和平均速度 ⑵ 路程和平均速率 解:由图所示,人的移动曲线是从O 点出发,到A 点,再到B 点,C 点。
⑴ 位移:OC30OA m = ,10AB m =,18BC m =由于是正西北方向,所以45ABD ADB ∠=∠=︒BD =(()(()222222cos 4518301021830102OC CD OD OD CD =+-︒=-+--⨯-⨯-⨯1324305.92=-≈ 17.5OC m ≈平均速度的大小为:()17.50.35m 50r v t ∆===∆ ⑵ 路程应为:58m s OA AB BC =++=平均速率为1.16m s 1.2有一质点沿着x 轴作直线运动,t 时刻的坐标为234.52x t t =-,试求:⑴ 第2秒内的平均速度 ⑵ 第2秒末的瞬时速度 ⑶ 第2秒内的路程。
解:⑴ 当1t s =时,1 2.5x m = 当2t s =时,218162x m =-=平均速度为 ()212 2.50.5m s v x x =-=-=- ⑵ 第2秒末的瞬时速度为 ()22966m t dxv t t dt===-=-⑶ 第2秒内的路程:(在此问题中必须注意有往回走的现象) 当 1.5t s =时,速度0v =,2 3.375x m = 当1t s =时,1 2.5x m = 当2t s =时,32x m =所以路程为:3.375 2.5 3.3752 2.25m -+-= 1.3质点作直线运动,其运动方程为2126x t t =-,采用国际单位制,求:⑴ 4t s =时,质点的位置,速度和加速度⑵ 质点通过原点时的速度 ⑶ 质点速度为零时的位置⑷ 作位移,速度以及加速度随着时间变化的曲线图。
解:⑴ 由运动方程2126x t t =-,可得速度,加速度的表达式分别为1212dx v t dt ==- 12dv a dt==- 所以当4t s =时,质点的位置,速度和加速度分别为48m x =-;36m s v =-;212m a =-⑵ 质点经过原点的时刻12s t =,20s t =此时的速度分别为 ()112m v =- ()212m s v =⑶ 质点速度为零对应的1s t =,位置为6m x = 1.4质点沿直线运动,速度()3222m v t t =++,如果当2s t =时,4m x =,求3st =时质点的位置,速度和加速度。
《大学物理学》第二版上册课后答案
大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dvdt =和0d v dt=各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出22r x y =+drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。
大学物理教程第二版-第1章答案
大学物理教程第二版-第1章答案1 -5 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ?+?=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.题 1-5 图解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=?-==t t xv2s0.422m.s 36d d -=-==t t x a1 -6 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图1 -9 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和txd d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知,应有=tt a 0d d 0vv v得 03314v v +-=t t (1)由=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分.解选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有=-t t B A 0d d d 0v vvvv得石子速度 )e 1(Bt BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt BAt y --==v 并考虑初始条件有 t BA y t Bt y d )e 1(d 00??--= 得石子运动方程)1(e 2-+=-Bt BAt B A y 1 -12 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr=v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t和a n ,前者只反映质点在切线方向速度大小的变化率,即tt te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ.解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ12-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-?-=+=tyt x t则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t ttt e e e a 222s1s m 58.3)(d d d d -=?=+==v v v n n t n a a e e a 222s m 79.1-?=-=(4) t =1.0s质点的速度大小为122s m 47.4-?=+=y x v v v则m 17.112==na ρv1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tω==.在t =2 s时,法向加速度和切向加速度的数值分别为22s2s m 30.2-=?==ωr a t n2s2s m 80.4d d -=?==tωra t t(2) 当22212/t n t a a a a +==时,有223nt a a =,即 ()()422212243t r rt =得 3213=t此时刻的角位置为rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt =t =0.55s。
新编基础物理学第二版第二章习题解答
习题二2-1.两质量分别为m 和M ()M m ≠的物体并排放在光滑的水平桌面上,现有一水平力F 作用在物体m 上,使两物体一起向右运动,如题图2-1所示,求两物体间的相互作用力。
若水平力F 作用在M 上,使两物体一起向左运动,则两物体间相互作用力的大小是否发生变化?解:以m 、M 整体为研究对象,有()F m M a =+…①以m 为研究对象,如解图2-1(a ),有Mm F F ma -=…②由①、②两式,得相互作用力大小Mm MFF m M=+若F 作用在M 上,以m 为研究对象,如题图2-1(b )有Mm F ma =…………③由①、③两式,得相互作用力大小Mm mFF m M=+发生变化。
2-2. 在一条跨过轻滑轮的细绳的两端各系一物体,两物体的质量分别为M 1和M 2 ,在M 2上再放一质量为m 的小物体,如题图2-2所示,若M 1=M 2=4m ,求m 和M 2之间的相互作用力,若M 1=5m ,M 2=3m ,则m 与M 2之间的作用力是否发生变化?解: 受力图如解图2-2,分别以M 1、M 2和m 为研究对象,有111T M g M a -=222()()M m g T M m a +-=+2 M m mg F ma -=又12T T =,则2M mF=1122M mgM M m++当124M M m ==时289M mmg F= 当125,3M m M m ==时2109M mmgF=,发生变化。
题图2-2题图2-1解图2-1解图2-22-3.质量为M 的气球以加速度a 匀加速上升,突然一只质量为m 的小鸟飞到气球上,并停留在气球上。
若气球仍能向上加速,求气球的加速度减少了多少?解:设f 为空气对气球的浮力,取向上为正。
分别由解图2-3(a )、(b)可得Ma Mg f =-1)()(a m M g m M f +=+-由此解得1Ma mga m M-=+()1m a g a a a m M+∆=-=+2-4.如题图2-4所示,人的质量为60kg ,底板的质量为40kg 。
大学物理学第二版 习题解答
大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等 (2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么 (4) 质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) r ∆v 和r ∆v 有区别吗v ∆v 和v ∆v有区别吗0dv dt =v 和0d v dt=v 各代表什么运动 (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变 (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。
大学物理第二版答案(北京邮电大学出版社)
大 学 物 理 习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:(m)j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(2) 第一秒内位移jy y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V (4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V (5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txvc t t t c t v x x +++=+==⎰⎰241d d 34当t =2时x =4代入求证 c =-12即1224134-++=t t t x tt tv a t t v 63d d 23223+==++=将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x 1-3 (1) 由运动方程消去t 得轨迹方程⎩⎨⎧+==ty t x 2342)3(2=--y x (2) 1秒时间坐标和位矢方向为 my mx 5411== [4,5]m:︒===3.51,25.1ααxytg (3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V (4) 质点的速度与加速度分别为 itVa j i tr V8d d ,28d d ==+== 故t =1s 时的速度和加速度分别为2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯即该星云是年前和我们银河系分离的.101009.2⨯1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s 1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -=代入已知数得,,如图所示,相对南面,小球开始下落时,它和电2m/s 2.1=a s 5.00=t h 梯的速度为m/s)0v 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为习题1-9图 习题1-10图习题1-12图习题1-13图习题2-1图2m/s 0.17=三物体只有水平方向的运动,只须列出水平方向的牛顿方程及相关方程:习题2-3图习题2-2图)4(:)3(0cos )2(sin :)1(:322211MaN F M g m T a m T m am T m =-⎩⎨⎧=-==水平αα为绳中的雨拉力在水平向的合力水平3N )5(sin 3αT T N +=水平联立(1),(2),(3),(4),(5)解得)N (78480)(2221212==-++=g m m g m m m m F (因为三个物体有同一加速度a ,且在水平方向只受外力F 的作同,所以,可将三个物体看作一个物体:aM m m F )(21++=再与(1),(2),(3)式联立求解即可。
《大学物理学》第二版上册课后答案
《大学物理学》第二版上册课后答案大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ?和r ?有区别吗?v ?和v ?有区别吗?0dv dt =和0d v dt=各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出22r x y =+ dr v dt= 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ?===? t 时刻的瞬时速度为:()44dx v t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-?=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ?---====-? (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。
《大学物理学》(赵近芳主编)第二版课后习题答案物理答案第二单元
《大学物理学》(赵近芳主编)第二版课后习题答案物理答案第二单元习题二2-1因绳不可伸长,故滑轮两边绳子的加速度均为a 1,其对于m 2则为牵连加速度,又知m 2对绳子的相对加速度为a ′,故m 2对地加速度,由图(b)可知,为a 2=a 1-a ′ ①又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有m 1g-T=m 1a 1 ②T-m 2g=m 2a 2 ③ 联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若a ′=0,则a 1=a 2表示柱体与绳之间无相对滑动.(2)若a ′=2g ,则T=f=0,表示柱体与绳之间无任何作用力,此时m 1,m 2均作自由落体运动.题2-1图2-2以梯子为对象,其受力图如图(b)所示,则在竖直方向上,N B -mg=0 ①又因梯无转动,以B 点为转动点,设梯子长为l ,则N A lsin θ-mg2lcos θ=0 ② 在水平方向因其有加速度a ,故有f+N A =ma ③题2-2图式中f 为梯子受到的摩擦力,其方向有两种可能,即f=±μ0mg ④ 联立①、②、③、④式得)(2tan ,)(2tan 00g a gg a g M m μθμθ-=+=2-3 283166-?===s m m f a x x2167-?-==s m mf a y y(1)--?-=?-=+=?-=?+-=+=20101200872167452832s m dt a v v s m dt a v v y y y x x x于是质点在2s 时的速度18745-?--=s m ji v(2)mj i j i j t a i t a t v r y x 874134)167(21)4832122(21)21(220--=?-+??+?-=++=2-4 (1)∵dtdvm kv a =-= 分离变量,得m kdt v dv -=即??-=v v t m kdt v dv 00 kt e v v -=ln ln 0 ∴ tk e v v -=0(2)??---===tttm k m ke kmv dt ev vdt x 000)1((3)质点停止运动时速度为零,即t →∞,故有? ∞-=='00kmv dt ev x tk (4)当t=km时,其速度为ev e v ev v km m k 0100===-?- 即速度减至v 0的e1. 2-5分别以m 1,m 2为研究对象,其受力图如图(b)所示.(1)设m 2相对滑轮(即升降机)的加速度为a ′,则m 2对地加速度a 2=a ′-a ;因绳不可伸长,故m 1对滑轮的加速度亦为a ′,又m 1在水平方向上没有受牵连运动的影响,所以m 1在水平方向对地加速度亦为a ′,由牛顿定律,有m 2g-T=m 2(a ′-a)T=m 1a ′题2-5图联立,解得a ′=g 方向向下 (2) m 2对地加速度为a 2=a ′-a=2g方向向上m 1在水面方向有相对加速度,竖直方向有牵连加速度,即a 绝=a 相′+a 牵∴g g g a a a 25422221=+=+'= θ=arctana a '=arctan 21=26.6°,左偏上. 2-6依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为30°,则动量的增量为Δp=mv-mv 0由矢量图知,动量增量大小为|mv 0|,方向竖直向下.2-7由题知,小球落地时间为0.5s .因小球为平抛运动,故小球落地的瞬时向下的速度大小为v 1=gt=0.5g ,小球上跳速度的大小亦为v 2=0.5g .设向上为y 轴正向,则动量的增量Δp=mv 2-mv 1 方向竖直向上,大小|Δp |=mv 2-(-mv 1)=mg碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-8 (1)若物体原来静止,则Δp 1==+=tidt t Fdt 0456)210( i kg 2m 2s -1,沿x 轴正向,111111566.5--??=?=?=?=s m kg ip I s m i m p v若物体原来具有-6 m 2s -1初速,则+-=+-=-=t tFdt mv dt m Fv m p mv p 000000)(,于是 ??==-=?t p Fdt p p p 0102,同理,Δv 2=Δv 1,I 2=I 1这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即+=+=tt t dt t I 0210)210(亦即t 2+10t-200=0解得t=10 s ,(t ′=-20 s 舍去) 2-9 质点的动量为p=mv=m ω(-asin ωti+bcos ωtj) 将t=0和t=ωπ2分别代入上式,得p 1=m ωbj,p 2=-m ωai,则动量的增量亦即质点所受外力的冲量为I=Δp=p 2-p 1=-m ω(ai+bj)2-10 (1)由题意,子弹到枪口时,有 F=(a-bt)=0,得t=ba (2)子弹所受的冲量-=-=t bt at dt bt a I 0221)(将t=ba代入,得ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==2-11设一块为m 1,则另一块为m 2,m 1=km 2及m 1+m 2=m 于是得 1,121+=+=k mm k km m ① 又设m 1的速度为v 1,m 2的速度为v 2,则有2222211212121mv v m v m T -+=② mv=m 1v 1+m 2v 2 ③ 联立①、③解得v 2=(k+1)v-kv 1 ④将④代入②,并整理得21)(2v v kmT-= 于是有kmT v v 21±= 将其代入④式,有mkTv v 22±= 又,题述爆炸后,两弹片仍沿原方向飞行,故只能取kmTv v m kT v v 2,221-=+= 证毕.2-12 (1)由题知,F 合为恒力,∴ A 合=F 2r=(7i-6j)2(-3i+4j+16k)=-21-24=-45 J (2)w t A N 756.045==?=(3)由动能定理,ΔE k =A=-45 J2-13 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图 f=-ky第一锤外力的功为A 1==-='=sskkydy fdy dy f A 112① 式中f ′是铁锤作用于钉上的力,f 是木板作用于钉上的力,在dt →0时,f ′=-f .设第二锤外力的功为A 2,则同理,有-==21222221y kky kydy A ② 由题意,有)21(212kmv A A =?== ③即222122kk ky =- 所以,22=y于是钉子第二次能进入的深度为Δy=y 2-y 1=2-1=0.414 cm 2-14 1)()(+-==n rnkdr r dE r F 方向与位矢r 的方向相反,即指向力心.2-15 弹簧A 、B 及重物C 受力如题2-15图所示平衡时,有题2-15图 F A =F B =Mg 又F A =k 1Δx 1 F B =k 2Δx 2所以静止时两弹簧伸长量之比为1221k k x x =?? 弹性势能之比为12222211121212k kx k x k E E p p =??= 2-16 (1)设在距月球中心为r 处F 月引=F 地引,由万有引力定律,有G2r mM 月=G2r R mM -地经整理,得 r=R M M M 月地月+=2224221035.71098.51035.7?+??81048.3??=38.32?106 m则p 点处至月球表面的距离为h=r-r 月 =(38.32-1.74)3106=3.663107m (2)质量为1 kg 的物体在p 点的引力势能为()r R M GrM GE P ---=地月=()72411722111083.34.381098.51067.61083.31035.71067.6?--?--=-1.28J 6102-17 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有 -μm 2gh=21 (m 1+m 2)v 2-[m 1gh+21k(Δl)2]式中Δl 为弹簧在A 点时比原长的伸长量,则Δl=AC-BC=(2-1)h 联立上述两式,得 v=()()212221122m m kh gh m m +-+υ题2-17图2-18 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点则由功能原理,有 -f r s=+-37sin 212122mgs mv kx k=222137sin 21kx sf mgs mv r -?+式中 s=4.8+0.2=5 m ,x=0.2 m ,再代入有关数据,解得k=1390 N 2m -1题2-18图再次运用功能原理,求木块弹回的高度h ′-f t s ′=mgs ′sin37°-21kx 3代入有关数据,得s ′=1.4 m, 则木块弹回高度h ′=s ′sin37°=0.84 m题2-19图2-19 m 从M 上下滑的过程中,机械能守恒,以m ,M 地球为系统,以最低点为重力势能零点,则有mgR=222121MV mv + 又下滑过程,动量守恒,以m,M 为系统则在m 脱离M 瞬间,水平方向有mv-MV=0联立,以上两式,得 v=()M m MgR+22-20 两小球碰撞过程中,机械能守恒,有222120212121mv mv mv += 即 222120v v v += ①题2-20图(a) 题2-20图(b) 又碰撞过程中,动量守恒,即有m v 0=m v 1+m v 2亦即v 0=v 1+v 2 ②由②可作出矢量三角形如图(b),又由①式可知三矢量之间满足勾股定理,且以v 0为斜边,故知v 1与v 2是互相垂直的. 2-21 由题知,质点的位矢为r=x 1i+y 1j作用在质点上的力为f=-fi所以,质点对原点的角动量为 L 0=r 3mv=(x 1i+y 1j)3m(v x i+v y j) =(x 1mv y -y 1mv x )k作用在质点上的力的力矩为 M 0=r 3f=(x 1i+y 1j)3(-fi)=y 1fk2-22 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 r 1mv 1=r 2mv 2∴m v v r r 12241021121026.51008.91046.51075.8?===2-23 (1) ??-??===31155s m kg jjdt fdt p(2)解(一) x=x 0+v 0x t=4+3=7j at t v y y 5.25335213621220=??+?=+=即r 1=4i,r 2=7i+25.5jv x =v 0x =11133560=?+=+=at v v y y即v 1=i 1+6j, v 2=i+11j∴ L 1=r 13mv 1=4i 33(i+6j)=72kL 2=r 23mv 2=(7i+25.5j)33(i+11j)=154.5k∴ΔL=L 2-L 1=82.5k kg 2m 22s -1解(二) ∵dtdz M =∴ =?=t tdt F r dt M L 0)(-??=+=+++=3130225.82)4(55)35)216()4(s m kg kkdt t jdt j t t i t题2-24图2-24 在只挂重物M 1时,小球作圆周运动的向心力为M 1g ,即M 1g=mr 0ω20 ①挂上M 2后,则有(M 1+M 2)g=mr ′ω′2②重力对圆心的力矩为零,故小球对圆心的角动量守恒.即r 0mv 0=r ′mv ′22020ωω''=?r r ③联立①、②、③得322110213212101010)()(M M M mM g r g m M M r M M M mr g M mr g M +='+='+='=ωωω2-25 (1)先作闸杆和飞轮的受力分析图(如图(b)).图中N 、N ′是正压力,F r 、F ′r 是摩擦力,F x 和F y 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.题2-25图(a )题2-25图(b)杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有F l l l N l N l l F 1211210)(+='='-+ 对飞轮,按转动定律有β=-F r R/I ,式中负号表示β与角速度ω方向相反.∵ F r =μN N=N ′ ∴ F l l l N F r 121+='=μμ 又∵ ,212mR I = ∴F mRl l l I R F r 121)(2+-=-=μβ ① 以F=100 N 等代入上式,得234010050.025.060)75.050.0(40.02-?-=+??-=s rad β由此可算出自施加制动闸开始到飞轮停止转动的时间为s t 06.74060329000==-=πβω这段时间内飞轮的角位移为radt t ππππβωφ21.53)49(340214960290021220?=??-??=+= 可知在这段时间里,飞轮转了53.1转.(2)ω0=9003(2π)/60 rad 2s -1,要求飞轮转速在t=2 s 内减少一半,可知200021522-?-=-=-=s rad ttπωωωβ用上面式(1)所示的关系,可求出所需的制动力为Nl l mRl F 1772)75.050.0(40.021550.025.060) (2211=?+=+-=πμβ2-26 设a ,a 2和β分别为m 1m 2和柱体的加速度及角加速度,方向如图(如图b).题2-26(a)图题2-26(b)图 (1) m 1,m 2和柱体的运动方程如下:='-'=-=-3212111112222βI r T R T a m T g m a m g m T 式中T 1′=T 1,T 2′=T 2,a 2=r β,a 1=R β而 I=(1/2)MR 2+(1/2)mr 2由上式求得2222222212113.68.910.0220.0210.042120.0102121.022.0-?=??+?+??+-?=++-=s rad grm R m I rm Rm β(2)由①式T 2=m 2r β+m 2g=230.1036.13+239.8=20.8 N 由②式T 1=m 1g-m 1R β=239.8-230.2036.13=17.1 N2-27 分别以m 1,m 2滑轮为研究对象,受力图如图(b)所示.对m 1,m 2运用牛顿定律,有m 2g-T 2=m 2a ① T 1=m 1a ②对滑轮运用转动定律,有T 2r-T 1r=(1/2Mr 2)β ③ 又,a=r β ④联立以上4个方程,得22126.721520058.92002-?=++?=++=s m M m m g m a题2-27(a)图题2-27(b)图题2-28图题2-29图 2-29 (1)设小球的初速度为v 0,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mv 0l=I ω+mvl ①(1/2)mv 20=(1/2)I ω2+(1/2)mv 2②上两式中I=1/3Ml 2,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度θ=30°,按机械能守恒定律可列式:)30cos 1(2212?-=lMg I ω ③ 由③式得121)231(3)30cos 1(-=-=lg I Mgl ω由①式mlI v v ω-=0 ④ 由②式mI v v 2202ω-= ⑤ 所以22001)(2ωωm v ml I v -=-求得glmM m m M l mlI l v +-=+=+=31232(6)311(2)1(220ωω(2)相碰时小球受到的冲量为∫Fdt=Δmv=mv-mv 0 由①式求得∫Fdt=mv-mv 0=-(I ω)/l=(-1/3)Ml ω=-gl M 6)32(6-负号说明所受冲量的方向与初速度方向相反.题2-30图2-30 (1)碎片离盘瞬时的线速度即是它上升的初速度v 0=R ω设碎片上升高度h 时的速度为v ,则有 v 2=v 20-2gh令v=0,可求出上升最大高度为2220212ωR gg v H ==(2)圆盘的转动惯量I=(1/2)MR 2,碎片抛出后圆盘的转动惯量I ′=(1/2)MR 2-mR 2,碎片脱离前,盘的角动量为I ω,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即I ω=I ′ω′+mv 0R式中ω′为破盘的角速度.于是(1/2)MR 2ω=[(1/2)MR 2-mR 2]ω′+mv 0R[(1/2)MR 2-mR 2]ω=[(1/2)MR 2-mR 2]ω′ 得ω′=ω(角速度不变) 圆盘余下部分的角动量为[(1/2)MR 2-mR 2]ω 转动动能为题2-31图E k =(1/2)[(1/2)MR 2-mR 2]ω22-31 (1)射入的过程对O 轴的角动量守恒Rsin θm 0v 0=(m+m 0)R 2ω ∴ω=Rm m v m )(sin 000+θ(2)020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ 2-32 以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力势能零点,弹簧原长为弹性势能零点,则有mgh=(1/2)mv 2+(1/2)I ω2+(1/2)kh 2又ω=v/R 故有ImR k kh mgh v +-=222)2( 12220.25.03.00.63.0)4.00.24.08.90.62(-?=+-=s m题2-32图题2-33图2-33 (1)小球与圆环系统对竖直轴的角动量守恒,当小球滑至B 点时,有I 0ω0=(I 0+mR 2)ω ①该系统在转动过程中,机械能守恒,设小球相对于圆环的速率为v B ,以B 点为重力势能零点,则有(1/2)I 0ω20+mgR=(1/2)(I 0+mR 2)ω2+(1/2)mv 2B ②联立①、②两式,得2022002mR I RI gR v B ++=ω(2)当小球滑至C 点时,∵I c =I 0 ∴ωc =ω0 故由机械能守恒,有mg(2R)=(1/2)mv 2c ∴v c =2gR请读者求出上述两种情况下,小球对地速度.。
物理学教程(第二版)上册课后习题答案详解
物理学教程(第二版)上册习题答案第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ r ,即|v |≠v .但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;0td d r 表示速度矢量;在自然坐标系中速度大小可用公式ts d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解 td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -5 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =t x 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t = s 时质点速度和加速度可用tx d d 和22d d t x 两式计算.题 1-5 图解 (1) 质点在 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在 s 时间间隔内的路程为m 48ΔΔ21=+=x x s (3) t = s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -6 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析). 解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图1 -7 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v 0x =-10 m ·s-1 , v 0y =15 m ·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v 0与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a 设a 与x 轴的夹角为β,则32tan -==x y a a β β=-33°41′(或326°19′)1 -8 一升降机以加速度 m ·s-2上升,当上升速度为 m ·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d题 1-8 图1 -9 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m ·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m ·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1) 由 ⎰⎰=tx x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m ·s-1代入(1)、(2)得v 0=-1 m ·s-1, x 0= m于是可得质点运动方程为75.0121242+-=t t x 1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v得石子速度 )e 1(Bt BA --=v由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt BA t y --==v 并考虑初始条件有 t BA y t Bt y d )e 1(d 00⎰⎰--= 得石子运动方程)1(e 2-+=-Bt B A t B A y 1 -11 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m ·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2)质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.题 1-11 图分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得⎰⎰⎰+==tt r r t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -12 质点在Oxy 平面内运动,其运动方程为r = + )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1= 到t 2 = 时间内的平均速度;(3) t 1 =s时的速度及切向和法向加速度;(4) t = 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =, y =消去t 得质点的轨迹方程:y =(2) 在t 1 =s 到t 2 =s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v vj j i a 22222s m 0.4d d d d )(-⋅-=+=ty t x t 则t 1 =s时的速度v (t )|t =1s=切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv 1 -13 飞机以100 m ·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远 (2) 投放物品时,驾驶员看目标的视线和水平线成何角度(3) 物品投出s后,它的法向加速度和切向加速度各为多少题 1-13 图分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m ·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==g y x v (2) 视线和水平线的夹角为 o 5.12arctan==x y θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g g a n α 1 -14 为迎接香港回归,特技演员柯受良在1997年6月1日驾车飞越黄河壶口,如图所示,柯驾车从跑道东端启动,到达跑道终端时速度大小为1500=v h km 1-⋅,他随即以仰角 5=α冲出,飞越跨度达57 m ,安全着陆在西岸木桥上,求:题 1-14 图(1) 柯飞车跨越黄河用了多长时间(2) 若起飞点高出河面10 m ,柯驾车飞行的最高点距河面为几米(3) 西岸木桥和起飞点的高度差为多少分析 由题意知,飞车作斜上抛运动,对包含抛体在内的一般曲线运动来说,运用叠加原理是求解此类问题的普适方法,操作程序是:建立一个恰当的直角坐标系,将运动分解为两个相互正交的直线运动,由于在抛体运动中,质点的加速度恒为g ,故两个分运动均为匀变速直线运动或其中一个为匀速直线运动,直接列出相关运动规律方程即可求解,本题可建立图示坐标系,图中m m x y 和分别表示飞车的最大高度和飞跃跨度.解 在图示坐标系中,有t v x )cos (0α= (1)2021sin (gt t v y -=)α (2)gt v v y -=αsin 0 (3)(1) 由式(1),令57m ==x x m ,得飞跃时间37.1cos 0mm ==αv x t s(2)由式(3),令0=y v ,得飞行到最大高度所需时间g v t αsin 0m =’将’m t 代入式(2),得飞行最大高度67.02sin 220m ==g v y αm则飞车在最高点时距河面距离为10m +=y h m 67.10= m(3)将37.1m =t s 代入式(2),得西岸木桥位置为y = - m“-”号表示木桥在飞车起飞点的下方.讨论 本题也可以水面为坐标系原点,则飞车在 y 方向上的运动方程应为10=y m + 2021)sin (gt t v -α 1 -15 如图所示,从山坡底端将小球抛出,已知该山坡有恒定倾角 30=α,球的抛射角 60=β,设球被抛出时的速率v 0 = m ·s-1,忽略空气阻力,问球落在山坡上处离山坡底端的距离为多少此过程经历多长时间题 1-15 图分析 求解方法与上题类似,但本题可将运动按两种方式分解,如图(a )和图(b )所示.在图(a )坐标系中,两个分运动均为匀减速直线运动,加速度大小分别为-g αcos 和-g αsin ,看似复杂,但求解本题确较方便,因为落地时有y =0,对应的时间t 和x 的值即为本题所求.在图(b )坐标系中,分运动看似简单,但求解本题还需将落地点P 的坐标y 与x 的关系列出来.解 1 由分析知,在图(a )坐标系中,有20)sin (21)]cos([t g t v x ααβ-+-= (1) 20)cos (21)]sin([t g t v y ααβ-+-= (2)落地时,有y =0,由式(2)解得飞行时间为31.230tan 20== gv t s将 t 值代入式(1),得1.263220===gv x OP m解 2 由分析知,在图(b )坐标系中,对小球 t v x )cos (0β= (1) 2021)sin (gt t v y -=β (2) 对点P αtan x y =' (3) 由式(1)、(2)可得球的轨道方程为ββ2202cos 2tan v gx x y -= (4) 落地时,应有y y '=,即60cos 260tan 30tan 2202v gx x x -= 解之得落地点P 的x 坐标为 gv x 3320= (5) 则 1.263230cos 20===gv x OP m 联解式(1)和式(5)可得飞行时间31.2=t s讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会1 -16 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b (3) 当加速度达到b 时,质点已沿圆周运行了多少圈分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -17 一半径为 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =s 时测得轮缘一点的速度值为 m ·s-1.求:(1) 该轮在t ′=s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在s内所转过的角度. 分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移. 解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω==则t ′=s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -18 一质点在半径为 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少(3) t 为多少时,法向加速度和切向加速度的值相等分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t t θω==.在t =2 s 时,法向加速度和切向加速度的数值分别为22s 2s m 30.2-=⋅==ωr a t n2s2s m 80.4d d -=⋅==t ωr a t t (2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =s1 -19 一无风的下雨天,一列火车以v 1= m ·s-1的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v 2 .(设下降的雨滴作匀速运动)题 1-19 图分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -20 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.题 1-20 图解 由122v v v -='[图(b)],有 θθcos sin arctan 221v v v -=α 而要使h l αarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N逐渐增大时,物体所受的静摩擦力F f的大小( )(A) 不为零,但保持不变(B) 随F N成正比地增大(C) 开始随F N增大,达到某一最大值后,就保持不变(D) 无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N范围内取值.当F N增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gRμ(B) 必须等于gRμ(C) 不得大于gRμ (D) 还应由汽车的质量m决定分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程R m θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,ma 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l = m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=.试问,当α为何值时,物体在斜面上下滑的时间最短 其数值为多少分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin (1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg l t cos sin cos 2-= (2) 为使下滑的时间最短,可令0d d =αt ,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o 49=α 此时 ()s 99.0cos sin cos 2min =-=αμααg l t 2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m 1 = ×102 kg,乙块质量为m 2 = ×102 kg .设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以m ·s-2 的加速度上升;(2) 两物块以 m ·s-2 的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗题 2-7 图分析预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a 上升时,有FT-( m1+m2 )g =(m1+m2 )a (1)FN2- m2g =m2a (2)解上述方程,得FT=(m1+m2 )(g +a) (3)FN2=m2(g +a) (4)(1) 当整个装置以加速度a=10 m·s-2上升时,由式(3)可得绳所受张力的值为FT=×103 N乙对甲的作用力为F′N2=-F N2=-m2 (g +a)=×103 N(2) 当整个装置以加速度a=1 m·s-2上升时,得绳张力的值为FT=×103 N此时,乙对甲的作用力则为F′N2=×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 如图(a)所示,已知两物体A、B 的质量均为m=物体A 以加速度a = m·s-2运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有m A g -F T =m A a (1)F ′T1 -F f =m B a ′ (2)F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F ′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力 ()N 2.724f =+-=a m m mg F题 2-8 图讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.2 -9 质量为m ′的长平板A 以速度v ′在光滑平面上作直线运动,现将质量为m的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.。
物理学教程(第二版)第1~5章答案
第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gR μ (B) 必须等于gR μ (C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程R m θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B). *2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin(1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg l t cos sin cos 2-= (2) 为使下滑的时间最短,可令0d d =αt ,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o 49=α 此时 ()s 99.0cos sin cos 2min =-=αμααg l t 2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m 1 =2.00 ×102 kg,乙块质量为m 2 =1.00 ×102 kg .设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2 的加速度上升;(2) 两物块以1.0 m·s-2 的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?题 2-7 图分析 预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有F T-( m 1 +m 2 )g =(m 1 +m 2 )a (1)F N2 - m 2 g =m 2 a (2)解上述方程,得F T =(m 1 +m 2 )(g +a) (3)F N2 =m 2 (g +a) (4)(1) 当整个装置以加速度a =10 m·s-2 上升时,由式(3)可得绳所受张力的值为F T =5.94 ×103 N乙对甲的作用力为F ′N2 =-F N2 =-m 2 (g +a) =-1.98 ×103 N(2) 当整个装置以加速度a =1 m·s-2 上升时,得绳张力的值为F T =3.24 ×103 N此时,乙对甲的作用力则为F ′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 如图(a)所示,已知两物体A 、B 的质量均为m =3.0kg 物体A 以加速度a =1.0 m·s-2 运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析 该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的. 解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有m A g -F T =m A a (1)F ′T1 -F f =m B a ′ (2)F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N 2.724f =+-=a m m mg F题 2-8 图讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来. 2 -9 质量为m ′的长平板A 以速度v ′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1 以地面为参考系,在摩擦力f F =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程f F =μmg =ma 1f F =-f F =m ′a 2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有- v ′2 =2as由上述各式可得木块相对于平板所移动的距离为解2 以木块和平板为系统,它们之间一对摩擦力作的总功为mgs l F l s F W μ=-+=f f )( 式中l 为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m ′v ′=(m ′+m ) v ″由系统的动能定理,有()222121v v ''+'-''=m m m mgs μ 由上述各式可得()m m g μm s +'''=22v 2 -10 如图(a)所示,在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?题 2-10 图分析 维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力F N 的分力来提供的,由于支持力F N 始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度.解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程θωmR ma θF n N sin sin 2== (1)mg θF N =cos (2) 且有()Rh R θ-=cos (3) 由上述各式可解得钢球距碗底的高度为 2ωg R h -=可见,h 随ω的变化而变化.2 -11 在如图(a )所示的轻滑轮上跨有一轻绳,绳的两端连接着质量分别为1 kg 和2 kg 的物体A 和B ,现以50 N 的恒力F 向上提滑轮的轴,不计滑轮质量及滑轮与绳间摩擦,求A 和B 的加速度各为多少?题 2-11 图分析 在上提物体过程中,由于滑轮可以转动,所以A 、B 两物体对地加速度并不相同,故应将A 、B 和滑轮分别隔离后,运用牛顿定律求解,本题中因滑轮质量可以不计,故两边绳子张力相等,且有T 2F F =.解 隔离后,各物体受力如图(b )所示,有滑轮02T =-F F AA A A T a m g m F =- BB B B T a m g m F =- 联立三式,得2.15A =a 7.2s m B 2=⋅-a ,2s m -⋅ 讨论 如由式a m m g m m F )()(B A B A +=+-求解,所得a 是A 、B 两物体构成的质点系的质心加速度,并不是A 、B 两物体的加速度.上式叫质心运动定理.2 -12 一质量为50 g 的物体挂在一弹簧末端后伸长一段距离后静止,经扰动后物体作上下振动,若以物体静平衡位置为原点,向下为y 轴正向.测得其运动规律按余弦形式即)2/5cos(20.0π+=t y ,式中t 以s 计,y 以m 计,试求:(1)作用于该物体上的合外力的大小;(2)证明作用在物体上的合外力大小与物体离开平衡位置的y 距离成正比.分析 本题可直接用22d /d t y m ma F ==求解,y 为物体的运动方程,F 即为作用于物体上的合外力(实为重力与弹簧力之和)的表达式,本题显示了物体作简谐运动时的动力学特征.解 (1)由分析知F )(2/5cos 25.0d /d 22π+-===t t y ma (N )该式表示作用于物体上的合外力随时间t 按余弦作用周期性变化,F >0表示合力外力向下,F <0表示合外力向上.(2) F y t t 25.1)]2/5(cos 20.0[25.1)2/5cos(25.0-=+-=+-=ππ.由上式知,合外力F 的大小与物体离开平衡位置距离y 的大小成正比.“-”号表示与位移的方向相反.2 -13 一质量为10 kg 的质点在力F 的作用下沿x 轴作直线运动,已知F =120t +40,式中F 的单位为N, t的单位的s.在t =0时,质点位于x =5.0 m 处,其速度v 0=6.0 m·1s -.求质点在任意时刻的速度和位置.分析 这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a =d v /d t ,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t );由速度的定义v =d x /d t ,用积分的方法可求出质点的位置.解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有tm t d d 40120v =+ 依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m·s-1 ,运用分离变量法对上式积分,得()⎰⎰+=tt t 0d 0.40.12d 0v v v v =6.0+4.0t+6.0t 2又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时 x 0 =5.0 m,对上式分离变量后积分,有()⎰⎰++=t xx t t t x 020d 0.60.40.6d x =5.0+6.0t+2.0t 2 +2.0t 32 -14 轻型飞机连同驾驶员总质量为1.0 ×103 kg .飞机以55.0 m·s-1 的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0 ×102 N·s-1 ,空气对飞机升力不计,求:(1) 10s后飞机的速率;(2) 飞机着陆后10s内滑行的距离.分析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F 为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有t αt m ma F -===d d v ⎰⎰-=t t m t α0d d 0v v v 得 202t mα-=v v 因此,飞机着陆10s后的速率为v =30 m·s-1 又 ⎰⎰⎪⎭⎫ ⎝⎛-=t xx t t m αx 0200d 2d v 故飞机着陆后10s内所滑行的距离m 4676300=-=-=t mαt x x s v 2 -15 质量为m 的跳水运动员,从10.0 m 高台上由静止跳下落入水中.高台距水面距离为h .把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为b v 2 ,其中b 为一常量.若以水面上一点为坐标原点O ,竖直向下为Oy 轴,求:(1) 运动员在水中的速率v 与y 的函数关系;(2) 如b /m =0.40m -1 ,跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0 的1/10? (假定跳水运动员在水中的浮力与所受的重力大小恰好相等)题 2-15 图分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P 、浮力F 和水的阻力f F 的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为gh 20=v运动员入水后,由牛顿定律得P -f F -F =ma由题意P =F 、f F =b v 2 ,而a =d v /d t =v (d v /d y ),代入上式后得-b v 2= m v (d v /d y )考虑到初始条件y 0 =0 时, gh 20=v ,对上式积分,有⎰⎰=⎪⎭⎫ ⎝⎛-v v v v 0d d 0ty b m m by m by e gh e //02--==v v(2) 将已知条件b/m =0.4 m -1 ,v =0.1v 0 代入上式,则得m 76.5ln 0=-=v v b m y 2 -16 一质量为m 的小球最初位于如图(a)所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑.试求小球到达点C 时的角速度和对圆轨道的作用力.题 2-16 图分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度a t,与其相对应的外力F t是重力的切向分量mg sin α,而与法向加速度a n 相对应的外力是支持力F N 和重力的法向分量mg cos α.由此,可分别列出切向和法向的动力学方程F t=m d v /d t 和F n =ma n .由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得tm αmg F t d d sin v =-= (1) Rm m αmg F F N n 2cos v =-= (2) 由tαr t s d d d d ==v ,得v αr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有 ()⎰⎰-=απαα2/sin 0d rg d v v v v 得αrg cos 2=v则小球在点C 的角速度为r αg r ω/cos 2==v 由式(2)得 αmg αmg rm m F N cos 3cos 2=+=v 由此可得小球对圆轨道的作用力为αmg F F N N cos 3-=-=' 负号表示F ′N 与e n 反向.2 -17 光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v 0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v 0减少2/0v 时,物体所经历的时间及经过的路程.题 2-17 图分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力F N 和环与物体之间的摩擦力F f ,而摩擦力大小与正压力F N ′成正比,且F N 与F N ′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有Rm ma F n N 2v == tma F t d d f v -=-= 由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得 tR μd d 2v v -= 取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v 020d d μR t tt μR R 00v v v +=(2) 当物体的速率从v 0 减少到2/0v 时,由上式可得所需的时间为v μR t ='物体在这段时间内所经过的路程⎰⎰''+==t t t tμR R t s 000d d v v v2ln μR s =2 -18 一物体自地球表面以速率v 0 竖直上抛.假定空气对物体阻力的值为F r =km v 2 ,其中m 为物体的质量,k 为常量.试求:(1) 该物体能上升的高度;(2)物体返回地面时速度的值.(设重力加速度为常量.)题 2-18 图分析 由于空气对物体的阻力始终与物体运动的方向相反,因此,物体在上抛过程中所受重力P 和阻力F r 的方向相同;而下落过程中,所受重力P 和阻力F r 的方向则相反.又因阻力是变力,在解动力学方程时,需用积分的方法.解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示).(1) 物体在上抛过程中,根据牛顿定律有ym t mkm mg d d d d 2v v v v ==-- 依据初始条件对上式积分,有⎰⎰+-=02d d v v v v k g y y⎪⎪⎭⎫⎝⎛++-=202ln 21v v k g k g k y 物体到达最高处时, v =0,故有⎪⎪⎭⎫ ⎝⎛+==g k g k y h 20max ln 21v(2) 物体下落过程中,有yvmkm mg d d 2v v =+- 对上式积分,有⎰⎰--=02d d v v v v k g y y则2/1201-⎪⎪⎭⎫ ⎝⎛+=g k v v v2 -19 质量为m 的摩托车,在恒定的牵引力F 的作用下工作,它所受的阻力与其速率的平方成正比,它能达到的最大速率是v m .试计算从静止加速到v m /2所需的时间以及所走过的路程.分析 该题依然是运用动力学方程求解变力作用下的速度和位置的问题,求解方法与前两题相似,只是在解题过程中必须设法求出阻力系数k .由于阻力F r =k v 2 ,且F r 又与恒力F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加速度为零,此时速度达到最大.因此,根据速度最大值可求出阻力系数来.但在求摩托车所走路程时,需对变量作变换.解 设摩托车沿x 轴正方向运动,在牵引力F 和阻力F r 同时作用下,由牛顿定律有tmk F d d 2vv =- (1) 当加速度a =d v /d t =0 时,摩托车的速率最大,因此可得k =F/v m 2 (2)由式(1)和式(2)可得t m F m d d 122vv v =⎪⎪⎭⎫ ⎝⎛- (3) 根据始末条件对式(3)积分,有⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m tF mt v v v v 2101220d 1d则 3ln 2Fm t mv =又因式(3)中xm t md d d d vv v =,再利用始末条件对式(3)积分,有 ⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m xF mx v v v v 2101220d 1d则Fm F m x m m 22144.034ln 2v v ≈=*2 -20 在卡车车厢底板上放一木箱,该木箱距车箱前沿挡板的距离L =2.0 m,已知制动时卡车的加速度a=7.0 m·s-2 ,设制动一开始木箱就开始滑动.求该木箱撞上挡板时相对卡车的速率为多大?设木箱与底板间滑动摩擦因数μ=0.50.分析 如同习题2 -5 分析中指出的那样,可对木箱加上惯性力F 0 后,以车厢为参考系进行求解,如图所示,此时木箱在水平方向受到惯性力和摩擦力作用,图中a ′为木箱相对车厢的加速度. 解 由牛顿第二定律和相关运动学规律有F 0 -f F =ma -μmg =ma′ (1) v ′ 2 =2a′L (2)联立解(1)(2)两式并代入题给数据,得木箱撞上车厢挡板时的速度为()L g a μ-='2v =1s m 9.2-⋅=第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( ) (A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( ) (A) 不为零,但保持不变 (B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( ) (A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C). 2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( ) (A) 它的加速度方向永远指向圆心,其速率保持不变 (B) 它受到的轨道的作用力的大小不断增加 (C) 它受到的合外力大小变化,方向永远指向圆心 (D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rmθmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( ) (A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin(1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -==则()αμααg lt cos sin cos 2-=(2)。
大学物理学第二版_第章习题解答
大学物理学习题答案习题一答案习题一1.1简要回答下列问题:(1) 位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等(2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又 是什么(4) 质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是 否一定保持不变⑹ 设质点的运动方程为:X 二xt , y = yt ,在计算质点的速度和加速度时,有人先求出x 2 y 2,然后根据dr v = dt 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即你认为两种方法哪一种正确两者区别何在⑺ 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(5) |酬和砒|有区别吗|话和纠V 有区别吗睿=0和響=0各代表什么运动d 2rdt 2(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向, 法向分速度恒为零,因此其法向加速度也一定为零•”这种说法正确吗(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么(10) 质点沿圆周运动,且速率随时间均匀增大,a n 、a t 、a 三者的大小是否随时间 改变(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的 手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为x=4t-,式中x,t 分别以m 、s 为 单位,试计算:(1)在最初2s 内的位移、平均速度和2s 末的瞬时速度;(2) 1s 末到3s 末 的平均加速度;(3) 3s 末的瞬时加速度。
解:(1) 最初 2s 内的位移为为: Ax = x(2) -x(0) =0 -O =O(m/s)最初2s 内的平均速度为: v av ^— =0(m/s)△t 2t 时刻的瞬时速度为:v(t)=生=4 - 4t dt2s 末的瞬时速度为: v(2)=4-4 2=-4m/s⑶3s 末的瞬时加速度为:a 烽咛=「4(m/s 2)1.3质点作直线运动,初速度为零,初始加速度为a o ,质点出发后,每经过•时间, 加速度均匀增加b 。
大学物理2习题册(含答案)
题1第⼀一章流体⼒力力学1、基本概念(3)理理想流体:完全不不可压缩,没有粘滞性的流体。
(4)连续性原理理:流管上⼀一节流速与截⾯面积的乘积是⼀一个常量量,截⾯面⼤大的流速⼩小,反之⼤大(6)伯努利利⽅方程:P 1+12ρv 12+ρg h 1=P 2+12ρv 22+ρg h 2=c(7)泊肃叶公式:2、从⽔水⻰龙头徐徐流出的⽔水流,下落时逐渐变细,其原因是(A )。
A.压强不不变,速度变⼤大; B.压强不不变,速度变⼩小;C.压强变⼩小,流速变⼤大;D.压强变⼤大,速度变⼤大。
3、如图所示,⼟土壤中的悬着⽔水,其上下两个液⾯面都与⼤大⽓气相同,如果两个⻚页⾯面的曲率半径分别为R A 和R B (R A <R B ),⽔水的表⾯面张⼒力力系数为α,密度为ρ,则悬着⽔水的⾼高度h 为_____。
4、已知动物的某根动脉的半径为R,⾎血管中通过的⾎血液流量量为Q ,单位⻓长度⾎血管两端的压强差为ΔP ,则在单位⻓长度的⾎血管中维持上述流量量需要的功率为ΔPQ 。
5、城市⾃自来⽔水管⽹网的供⽔水⽅方式为:⾃自来⽔水从主管道到⽚片区⽀支管道再到居⺠民家的进户管道。
⼀一般说来,进户管道的总横截⾯面积⼤大于⽚片区⽀支管的总横截⾯面积,主⽔水管道的横截⾯面积最⼩小。
不不考虑各类管道的海海拔⾼高差(即假设所有管道处于同⽔水平⾯面),假设所有管道均有⽔水流,则主⽔水管道中的⽔水流速度⼤大,进户管道中的⽔水流速度⼩小。
6、如图所示,虹吸管的粗细均匀,略略去⽔水的粘滞性,求⽔水流速度及A 、B 、C 三处的压强。
题1-10图解:在管外液⾯面上任选⼀一点D ,CD 两点:BC两点:AC两点:7、⼀一开⼝口容器器截⾯面积为S1,底部开⼀一截⾯面积为S2的孔。
当容器器内装的液体⾼高度为h时,液体从孔中喷出的速度为多⼤大?设液体为理理想流体且作定常流动。
解:由于液体为理理想流体且作定常流动,根据连续性原理理,有根据伯努利利⽅方程,有从上两式联⽴立解得8、⼀一圆筒中的⽔水深为H=0.70m,底⾯面积S1=0.06m2,桶底部有⼀一⾯面积为1.0×10-4m2的⼩小孔。
大学物理课后习题答案,大学物理第二版课后习题答案
解:vx?vx0?
?adt??3sint
z
t
vy?vy0??aydt?4?4cost0?4cost
t
t
则x?x0?
?
t
?3sintdt?3?3cost0?3cost
t
同理y?4sint
x2y2
所以有2?2?1质点的轨迹为一椭圆。
34
4、一质点沿着半径为R的圆周运动,在t=0时经过P点,此后的速率按
解:dvdt?0,即?0质点做匀速直线运动(包括静止)
?
?
dvdt?0,即at?0质点做匀速率运动(包括上一种及匀速圆周运动)
4、物体在某一时刻开始运动,在?t时间后,经任一路径回到出发点,此时的速度大小与开始时相同,但方向不同,试问:在?t时间内,平均速度是否为零?平均速率是否为零?平均加速度是否为零?
cos??cos??
?v2(sin??
L
cos?)H
车速至少如上时,货物刚好不会被雨水淋着。
6、如图1.5所示,在倾角为??30?的斜坡上,以初速度v0发射炮弹,设v0与斜坡的夹角为
??
??60?。求炮弹落地点离发射点的距离L。
解:
图1.5
12t2
12t
2
由上图可知?0t?方法一:由右图
12t2
?x?v0cos300t??y?vsin300t?1gt2
Bt2
?
?
雨滴下落的速度v2的方向与铅直方向夹角为θ,偏向于汽
车前进的方向,今在汽车后放一长方形物体(长为L)。问,车速v1为躲大时,此物体刚好不会被雨水淋着?解:
雨相对于车的速度2?2?1由右图可得:所以
大学物理习题册及解答(第二版)第二章 质点的运动定律
µgR
(D) 还应由汽车的质量M决定
解:汽车不发生侧向打滑的条件是,它所受的摩擦力 不得小于向心力,即有:
υ f = µN = µmg ≥ m R υ ≤ µgR
2
5.质量为m的质点,以不变速率v沿图中正三角形ABC 的水平光滑轨道运动.质点越过A角时,轨道作用于质 点的冲量的大小为 A
(A) mυ (C) 3mυ
M g =G R
E 2
F −m g a= m +m
2 1 2
v F
v T
m1 m2
m T= (F + m g) m +m
2 1 1 2
6.质量为m的小球自高为y0处沿水平方向以速率v0抛出, 与地面碰撞后跳起的最大高度为y0/2,水平速率为v0/2. 则碰撞过程中 (1)地面对小球的竖直冲量的大小为___________; (2) 地面对小球的水平冲量的大小为_________. 解:碰前小球沿x和y方向的速度分别为:
第二章 质点的运动定律(二) 质点的运动定律( 一 选择题
1. 一小珠可在半径为R竖直的圆环上无摩擦地滑动,且圆环能以 其竖直直径为轴转动.当圆环以一适当的恒定角速度ω转动,小珠 偏离圆环转轴而且相对圆环静止时,小珠所在处圆环半径偏离竖 直方向的角度为 g
Rω (C) θ = arctg( ) g
dυ k dυ = d υ ⋅ dx F =υ ∴a = = − 2 = dx dt mx dt m dx
k vdv = − dx 2 mx
k dx ∫ vdv = ∫ − 2 mx 0 x
v x
0
v2 k 1 1 = − 2 m x x0
v=
k 1 − 1 2 m x x 0
《大学物理学》(赵近芳 主编)第二版 课后习题答案(上下册)第一单元
习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即td d r==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即tva d d=,t v d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d tr而求得结果;又有人先计算速度和加速度v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d trt r 与误作速度与加速度的模。
《大学物理学》第二版上册课后答案
(1) t 时刻的速度为 v
kt m
v0e ;
(2)由 0 到 t 的时间内经过的距离为 x (mv0 k ) [1 e kt m] ;
kv( k 为常数) 作用,
(3)停止运动前经过的距离为 mv0 k 。
证明:
(1)
由 ma
dv m
F
dt
kv 分离变量得 dv v
k dt ,积分得 m
v dv v0 v
最初 2s 内的平均速度为: vave
x 0 0(m / s) t2
dx
t 时刻的瞬时速度为: v(t)
4 4t
dt
2s末的瞬时速度为: v(2) 4 4 2 4m / s
(2) 1s 末到 3s末的平均加速度为: aave
v v(3) v(1)
t
2
80 2
dv d(4 4t )
(3) 3s末的瞬时加速度为: a
a0t
b t2 2
再利用 dx vdt ,并取积分 [ 设 t 0 时 x0 0 ]得
x
dx
x0
t
vdt , x
0
1 a0 t2 2
b t3 6
1.4 一质点从位矢为 r (0) 4 j 的位置以初速度 v(0) 4i 开始运动, 其加速度与时间的关系
为 a (3t)i 2 j . 所有的长度以米计,时间以秒计 . 求:
dt x dt t 缩短 ),所以船速为
x 2 h2
v
v0
x
负号表明船速与 x 轴正向反向,船速与 x 有关,说明船作变速运动。将上式对时间求导,可
得船的加速度为
dv a
dt
h2v02 x3
负号表明船的加速度与 x 轴正方向相反, 与船速方向相同,加速度与 x 有关, 说明船作变加
《大学物理学》第二版上册习题解答
大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt =各代表什么运动?(6) 设质点的运动方程为:()x xt =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt =及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为:(2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dx v t tdt ==-s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆(3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。
物理学教程(第二版)上册课后习题答案详解
物理学教程〔第二版〕上册习题答案 第一章 质点运动学 1 -1分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如下图, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t st d d d d =r ,即|v |=v .由此可见,应选(C).1 -2 分析与解 t rd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t sd d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 分析与解 t d d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;trd d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B). 1 -5解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -6 解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r1 -7 .解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v 0x =-10 m ·s-1 , v 0y =15 m ·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v 0与x 轴的夹角为α,则23tan 00-==xy αv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==t a xx v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==xy a a β β=-33°41′(或326°19′)1 -8 解1 (1) 以地面为参考系,取如下图的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht(2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht(2) 由于升降机在t 时间内上升的高度为2021at t h +='v则m 716.0='-=h h d1 -9 解 由分析知,应有⎰⎰=tt a 0d d 0vv v得03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m ·s-1代入(1)、(2)得v 0=-1 m ·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知v vB A ta -==d d (1)用别离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度)e 1(Bt BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt BAt y --==v 并考虑初始条件有 t BAy tBt yd )e 1(d 00⎰⎰--= 得石子运动方程)1(e 2-+=-Bt BAt B A y 1 -11解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==tt t t 0)d 46(d d j i a vvj i t t 46+=v又由td d r=v 及初始条件t =0 时,r 0=(10 m)i ,积分可得⎰⎰⎰+==tt rr t t t t 0)d 46(d d 0j i r vj i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如下图. 1 -12 解 (1) 由参数方程xt , yt 2消去t 得质点的轨迹方程:y x 2(2) 在t 1 =1.00s 到t 2j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-⋅-=+=tyt x t则tv (t )|t =1si -j切向和法向加速度分别为t t y x t t ttt e e e a 222s1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv1 -13解 (1) 取如下图的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m ·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gyx v(2) 视线和水平线的夹角为o 5.12arctan==xyθ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gtαx y arctan arctan ==取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g g a n α1 -14解 在图示坐标系中,有t v x )cos (0α= 〔1〕2021sin (gt t v y -=)α 〔2〕 gt v v y -=αsin 0 〔3〕(1) 由式〔1〕,令57m ==x x m ,得飞跃时间37.1cos 0mm ==αv x t s〔2〕由式〔3〕,令0=y v ,得飞行到最大高度所需时间gv t αsin 0m =’将’m t 代入式〔2〕,得飞行最大高度67.02sin 220m ==gv y αm则飞车在最高点时距河面距离为10m +=y h m 67.10= m〔3〕将37.1m=t s 代入式〔2〕,得西岸木桥位置为y = - 4.22 m“-”号表示木桥在飞车起飞点的下方.讨论 此题也可以水面为坐标系原点,则飞车在 y 方向上的运动方程应为10=y m + 2021)sin (gt t v -α 1 -15解 1 由分析知,在图〔a 〕坐标系中,有20)sin (21)]cos([t g t v x ααβ-+-= 〔1〕20)cos (21)]sin([t g t v y ααβ-+-= 〔2〕落地时,有y =0,由式〔2〕解得飞行时间为31.230tan 20==gv t s 将 t 值代入式〔1〕,得1.263220===gv x OP m解 2 由分析知,在图〔b 〕坐标系中,对小球t v x )cos (0β= 〔1〕2021)sin (gt t v y -=β 〔2〕对点Pαtan x y =' 〔3〕由式〔1〕、〔2〕可得球的轨道方程为ββ2202cos 2tan v gx x y -= 〔4〕落地时,应有y y '=,即60cos 260tan 30tan 2202v gx x x -=解之得落地点P 的x 坐标为gv x 3320=〔5〕则 1.263230cos 20===gv xOPm联解式〔1〕和式〔5〕可得飞行时间31.2=t s讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会?1 -16 解 (1) 质点作圆周运动的速率为bt ts-==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v故加速度的大小为R)(402222bt b a a a a t tn-+=+=v其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n20)(arctan arctan v(2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v =(3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为bs s s t 2200v =-=因此质点运行的圈数为bRR s n π4π22v ==1 -17 解 因ωR =v ,由题意ω∝t2 得比例系数322s rad 2-⋅===Rt t ωk v 所以22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω 2s rad 0.24d d -⋅='==t tωα2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αarad 33.532d 2d 2032220====-⎰⎰t t t t ωθθ1 -18 解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s2s m 80.4d d -=⋅==tωra t t(2) 当22212/t n t a a a a +==时,有223nt a a =,即 ()()422212243t r rt =得 3213=t此时刻的角位置为rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt =t1 -191'22v v v += (如下图),于是可得1o12s m 36.575tan -⋅==v v 1 -20 解 由122v v v -='[图(b)],有θθcos sin arctan221v v v -=α而要使hlαarctan≥,则 h lθθ≥-cos sin 221v v v⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v第二章 牛顿定律2 -1分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征. 2 -2 分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rm θmgF N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*2 -5 分析与解 此题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,ma 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).2 -6解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin (1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -==则()αμααg lt cos sin cos 2-=(2)为使下滑的时间最短,可令0d d =αt,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o49=α此时 ()s 99.0cos sin cos 2min =-=αμααg lt2 -7解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如下图).当框架以加速度a 上升时,有F T-( m 1 +m 2 )g =(m 1 +m 2 )a (1)F N2 - m 2 g =m 2 a (2)解上述方程,得F T =(m 1 +m 2 )(g +a) (3)F N2 =m 2 (g +a) (4)(1) 当整个装置以加速度a =10 m ·s-2上升时,由式(3)可得绳所受张力的值为F T =5.94 ×103 N乙对甲的作用力为F ′N2 =-F N2 =-m 2 (g +a) =-1.98 ×103 N(2) 当整个装置以加速度a =1 m ·s-2 上升时,得绳张力的值为F T =3.24 ×103 N此时,乙对甲的作用力则为F ′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有m A g -F T =m A a (1) F ′T1 -F f =m B a ′ (2) F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F ′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N 2.724f =+-=am m mg F2 -9解1 以地面为参考系,在摩擦力f F =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程f F =μmg =ma 1 f F =-f F =m ′a 2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.假设以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有- v ′2 =2as由上述各式可得木块相对于平板所移动的距离为解2 以木块和平板为系统,它们之间一对摩擦力作的总功为mgs l F l s F W μ=-+=f f )( 式中l 为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m ′v ′=(m ′+m ) v ″由系统的动能定理,有()222121v v ''+'-''=m m m mgs μ 由上述各式可得()m m g μm s +'''=22v 2 -10解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程θωmR ma θF n N sin sin 2== (1)mg θF N =cos (2)且有 ()Rh R θ-=cos (3)由上述各式可解得钢球距碗底的高度为2ωg R h -=可见,h 随ω的变化而变化. 2 -11解 隔离后,各物体受力如图〔b 〕所示,有滑轮 02T =-F FA A A A T a m g m F =-B B B B T a m g m F =-联立三式,得2.15A =a 7.2s m B 2=⋅-a ,2s m -⋅2 -12 解 〔1〕由分析知F)(2/5cos 25.0d /d 22π+-===t t y ma 〔N 〕 该式表示作用于物体上的合外力随时间t 按余弦作用周期性变化,F >0表示合力外力向下,F <0表示合外力向上. 〔2〕 Fy t t 25.1)]2/5(cos 20.0[25.1)2/5cos(25.0-=+-=+-=ππ.由上式知,合外力F 的大小与物体离开平衡位置距离y 的大小成正比.“-”号表示与位移的方向相反. 2 -13 解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有tmt d d 40120v=+ 依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m ·s-1 ,运用别离变量法对上式积分,得()⎰⎰+=tt t 0d 0.40.12d 0vv vvt+t 2又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时 x 0 =5.0 m,对上式别离变量后积分,有()⎰⎰++=t x x t t t x 020d 0.60.40.6dx +t+t 2t 32 -14 解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有t αtmma F -===d d v⎰⎰-=tt mt α0d d 0vv v 得202t mα-=v v 因此,飞机着陆10s后的速率为v =30 m ·s-1又⎰⎰⎪⎭⎫ ⎝⎛-=t xx t t m αx 0200d 2d v 故飞机着陆后10s内所滑行的距离m 4676300=-=-=t mαt x x s v 2 -15解 (1) 运发动入水前可视为自由落体运动,故入水时的速度为gh 20=v运发动入水后,由牛顿定律得P -fF -F =ma由题意P =F 、fF =bv 2 ,而a =d v /d t =v (d v /d y ),代入上式后得-bv 2= mv (d v /d y )考虑到初始条件y 0 =0 时,gh 20=v ,对上式积分,有⎰⎰=⎪⎭⎫⎝⎛-v v v v 0d d 0ty b m m by m by e gh e //02--==v v(2) 将已知条件b/m =0.4 m -1 ,v v 0 代入上式,则得m 76.5ln 0=-=v vb m y 2 -16解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得t mαmg F t d d sin v=-= (1) R m m αmg F F N n 2cos v =-= (2)由tαr t s d d d d ==v ,得vαr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有 ()⎰⎰-=απαα2/sin 0d rg d vv v v得αrg cos 2=v则小球在点C 的角速度为r αg rω/cos 2==v由式(2)得αmg αmg rm m F N cos 3cos 2=+=v由此可得小球对圆轨道的作用力为αmg F F N Ncos 3-=-=' 负号表示F ′N 与e n 反向. 2 -17解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有R m ma F n N 2v ==tma F t d d f v-=-=由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得tR μd d 2v v -=取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v 020d d μR t ttμR R 00v v v +=(2) 当物体的速率从v 0 减少到2/0v 时,由上式可得所需的时间为v μR t ='物体在这段时间内所经过的路程⎰⎰''+==t t t tμR R t s 000d d v v v2ln μR s =2 -18解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如下图).(1) 物体在上抛过程中,根据牛顿定律有ymt mkm mg d d d d 2vv v v ==-- 依据初始条件对上式积分,有⎰⎰+-=02d d v v v v k g y y⎪⎪⎭⎫⎝⎛++-=202ln 21v v k g k g k y 物体到达最高处时, v =0,故有⎪⎪⎭⎫ ⎝⎛+==g k g k y h 20maxln 21v(2) 物体下落过程中,有yvmkm m g d d 2v v =+- 对上式积分,有⎰⎰--=02d d v v vv k g y y则 2/1201-⎪⎪⎭⎫⎝⎛+=g k v v v2 -19 解 设摩托车沿x 轴正方向运动,在牵引力F 和阻力F r 同时作用下,由牛顿定律有tmk F d d 2vv =- (1) 当加速度a =d v /d t =0 时,摩托车的速率最大,因此可得k =F/v m 2 (2)由式(1)和式(2)可得t m F m d d 122vv v =⎪⎪⎭⎫ ⎝⎛- (3) 根据始末条件对式(3)积分,有⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m tF mt v v v v 2101220d 1d则3ln 2Fm t mv =又因式(3)中xm t m d d d d v v v =,再利用始末条件对式(3)积分,有 ⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m xF m x v v v v 2101220d 1d则Fm F m x m m 22144.034ln 2v v ≈=*2 -20 解 由牛顿第二定律和相关运动学规律有F 0 -fF =ma -μmg =ma ′ (1)v ′ 2 =2a ′L (2)联立解(1)(2)两式并代入题给数据,得木箱撞上车厢挡板时的速度为()L g a μ-='2v =1s m 9.2-⋅=第三章 动量守恒定律和能量守恒定律3 -1 分析与解 在质点组中内力总是成对出现的,它们是作用力与反作用力.由于一对内力的冲量恒为零,故内力不会改变质点组的总动量.但由于相互有作用力的两个质点的位移大小以及位移与力的夹角一般不同,故一对内力所作功之和不一定为零,应作具体分析,如一对弹性内力的功的代数和一般为零,一对摩擦内力的功代数和一般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质点组的动能,但也不可能改变质点组的机械能.综上所述(1)(3)说法是正确的.故选(C).3 -2 分析与解 对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守恒.物体在下滑过程中,一方面通过重力作功将势能转化为动能,另一方面通过物体与斜面之间的弹性内力作功将一部分能量转化为斜面的动能,其大小取决其中一个内力所作功.由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等.动量自然也就不等(动量方向也不同).故(A)(B)(C)三种说法均不正确.至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量的矢量和不可能为零.由此可知,此时向上的地面支持力并不等于物体与斜面向下的重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒.3 -3 分析与解 保守力作正功时,系统内相应势能应该减少.由于保守力作功与路径无关,而只与始末位置有关,如质点环绕一周过程中,保守力在一段过程中作正功,在另一段过程中必然作负功,两者之和必为零.至于一对作用力与反作用力分别作用于两个质点所作功之和未必为零(详见习题3 -2 分析),由此可见只有说法(2)正确,故选(C).3 -4 分析与解 由题意知,作用在题述系统上的合外力为零,故系统动量守恒,但机械能未必守恒,这取决于在A 、B 弹开过程中C 与A 或D 与B 之间有无相对滑动,如有则必然会因摩擦内力作功,而使一部分机械能转化为热能,故选(D).3 -5 分析与解 子弹-木块系统在子弹射入过程中,作用于系统的合外力为零,故系统动量守恒,但机械能并不守恒.这是因为子弹与木块作用的一对内力所作功的代数和不为零(这是因为子弹对地位移大于木块对地位移所致),子弹动能的减少等于子弹克服阻力所作功,子弹减少的动能中,一部分通过其反作用力对木块作正功而转移为木块的动能,另一部分则转化为热能(大小就等于这一对内力所作功的代数和).综上所述,只有说法(C)的表述是完全正确的.3 -6 解 以飞鸟为研究对象,取飞机运动方向为x 轴正向.由动量定理得Δ-='v m t F式中F '为飞机对鸟的平均冲力,而身长为20cm 的飞鸟与飞机碰撞时间约为Δt =l /v ,以此代入上式可得N 1055.252⨯=='lm F v鸟对飞机的平均冲力为N 1055.25⨯-='-=F F式中负号表示飞机受到的冲力与其飞行方向相反.从计算结果可知,2.25 ×105 N 的冲力大致相当于一个22 t 的物体所受的重力,可见,此冲力是相当大的.假设飞鸟与发动机叶片相碰,足以使发动机损坏,造成飞行事故. 3 -7 解1 物体从出发到达最高点所需的时间为gαt sin Δ01v =则物体落回地面的时间为gt t αsin Δ2Δ0122v ==于是,在相应的过程中重力的冲量分别为j j F I αsin Δd 011Δ1v m t mg t t -=-==⎰ j j F I αsin 2Δd 022Δ2v m t mg t t -=-==⎰解2 根据动量定理,物体由发射点O 运动到点A 、B 的过程中,重力的冲量分别为j j j I αm y m mv Ay sin 001v v -=-= j j j I αm y m mv By sin 2002v v -=-=3 -8 解 (1) 由分析知()s N 68230d 43020220⋅=+=+=⎰t t t t I(2) 由I =300 =30t +2t 2 ,解此方程可得t =6.86 s(另一解不合题意已舍去)(3) 由动量定理,有I =m v 2- m v 1由(2)可知t =6.86 s 时I =300 N ·s ,将I 、m 及v 1代入可得112s m 40-⋅=+=mm I v v3 -9 解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为gh 21=v (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12Δv v m m t -=+P F (2)由式(1)、(2)可得安全带对人的平均冲力大小为()N 1014.1Δ2ΔΔ3⨯=+=+=tgh mg t m Δmg F v解2 从整个过程来讨论.根据动量定理有N 1014.1/2Δ3⨯=+=mg g h tmg F3 -10 解 力F 的冲量为ωωωkAt t kA t kx t F I t t t t -=-=-==⎰⎰⎰2/π02121d cos d d即()ωkA m -=v Δ 3 -11 分析 第〔1〕问可对垒球运用动量定理,既可根据动量定理的矢量式,用几何法求解,如图〔b 〕所示;也可建立如图〔a 〕所示的坐标系,用动量定量的分量式求解,对打击、碰撞一类作用时间很短的过程来说,物体的重力一般可略去不计.解 〔1〕 解 1 由分析知,有12mv mv t F -=∆其矢量关系如图〔b 〕所示,则)60180cos())((2)()()(2122212 --+=∆mv mv mv mv t F解之得 N 9.197=F解 2 由图〔a 〕有x x x mv mv t F 12-=∆02-=∆y y mv t F将,则和代入解得及y x y x x F F v v v v v v 60sin 60cos ,22221=-==N 9.19722=+=yx F F F(2) 由质点动能定理,得J 7.4721212122=-=mv mv W3 -12 解 在Δt 时间内,从管一端流入(或流出) 水的质量为Δm =ρυS Δt ,弯曲部分AB 的水的动量的增量则为Δp =Δm (v B -v A ) =ρυS Δt (v B -v A )依据动量定理I =Δp ,得到管壁对这部分水的平均冲力()A B t S ρtv v v -==ΔΔIF 从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='v S ρF F作用力的方向则沿直角平分线指向弯管外侧.3 -13 解 设A 、B 两船原有的速度分别以v A 、v B 表示,传递重物后船的速度分别以v A ′ 、v B ′ 表示,被搬运重物的质量以m 表示.分别对上述系统Ⅰ、Ⅱ应用动量守恒定律,则有()A A B A A m m m m v v v '=+- (1)()''=+-B B A B B m m m m v v v (2)由题意知v A ′ =0, v B ′ =3.4 m ·s -1 代入数据后,可解得()()12s m 40.0-⋅-=---'-=mm m m m m m A B BB A v v ()()()12s m 6.3-⋅=---'-=mm m m m m m m B A BB A B v v也可以选择不同的系统,例如,把A 、B 两船(包括传递的物体在内)视为系统,同样能满足动量守恒,也可列出相对应的方程求解. 3 -14解 取如下图坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有()()u m m αm m -+'='+v v v cos 0式中v 为人抛物后相对地面的水平速率, v -u 为抛出物对地面的水平速率.得u mm mα'++=cos 00v v 人的水平速率的增量为u m m mα'+=-=cos Δ0v v v而人从最高点到地面的运动时间为g αt sin 0v =所以,人跳跃后增加的距离()gm m αm t x '+==sin ΔΔ0v v3 -15 解 由运动学方程x =ct 3 ,可得物体的速度23d d ct tx==v 按题意及上述关系,物体所受阻力的大小为3/43/242299x kc t kc k F ===v则阻力的功为⎰⋅=x F W d 3/73/23/403/20727d 9d 180cos d l kc x x kc x W ll -=-==⋅=⎰⎰⎰ x F 3 -16解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有F +P =0在图示所取坐标下,水桶重力随位置的变化关系为P =mg -αgy其中α=0.2 kg/m,人对水桶的拉力的功为()J 882d d 100100=-=⋅=⎰⎰y agy mg W y F3 -17解 (1) 如下图,重力对小球所作的功只与始末位置有关,即()J 53.0cos 1Δ=-==θmgl h P W P在小球摆动过程中,张力F T 的方向总是与运动方向垂直,所以,张力的功s F d T T ⋅=⎰W(2) 根据动能定理,小球摆动过程中,其动能的增量是由于重力对它作功的结果.初始时动能为零,因而,在最低位置时的动能为J 53.0k ==P W E小球在最低位置的速率为1PK s m 30.222-⋅===mW m E v(3) 当小球在最低位置时,由牛顿定律可得l m P F 2T v =-N 49.22T =+=lm mg F v3 -18 解 (1) 摩擦力作功为20202k0k 832121v v v m m m E E W -=-=-= (1) (2) 由于摩擦力是一恒力,且F f =μmg ,故有mg r s F W μπ2180cos o f -== (2)由式(1)、(2)可得动摩擦因数为rgπμ1632v =(3) 由于一周中损失的动能为2083v m ,则在静止前可运行的圈数为 34k0==W E n 圈3 -19解 选取如图(b)所示坐标,取原点O 处为重力势能和弹性势能零点.作各状态下物体的受力图.对A 板而言,当施以外力F 时,根据受力平衡有F 1 =P 1 +F (1)当外力撤除后,按分析中所选的系统,由机械能守恒定律可得2221212121mgy ky mgy ky +=- 式中y 1 、y 2 为M 、N 两点对原点O 的位移.因为F 1 =ky 1 ,F 2 =ky 2 及P 1 =m 1g ,上式可写为F 1 -F 2 =2P 1 (2)由式(1)、(2)可得F =P 1 +F 2 (3)当A 板跳到N 点时,B 板刚被提起,此时弹性力F ′2 =P 2 ,且F 2 =F ′2 .由式(3)可得F =P 1 +P 2 =(m 1 +m 2 )g应注意,势能的零点位置是可以任意选取的.为计算方便起见,通常取弹簧原长时的弹性势能为零点,也同时为重力势能的零点. 3 -20 解 〔1〕子弹-木块系统满足动量守恒,有v m m mv )2/(2/0+=解得共同速度031v v =对木块2022k 181021mv mv E =-=∆对子弹 202022k 92)2(21)2(21mv v m v m E -=-=∆ 〔2〕 对木块和子弹分别运用质点动能定理,则对木块 201k 1181mv E W =∆= 对子弹 202k 292mv E W -=∆= 〔3〕 设摩擦阻力大小为fF ,在两者取得共同速度时,木块对地位移为s ,则子弹对地位移为L +s ,有对木块 s F W f1=对子弹 )(f2s L F W +-=得 L F W W W f21-=+=式中L 即为子弹对木块的相对位移,“-”号表示这一对摩擦阻力〔非保守力〕所作功必定会使系统机械能减少.(4) 对木块 2f 121mv s F W ==对子弹 202f 2)2(21)2(21)(v m v m s L F W -=+-= 两式相加,得202221)2(21])2(2121[v m v m mv W W -+=+即 20f 183mv L F -=- 两式相加后实为子弹-木块系统作为质点系的动能定理表达式,左边为一对内力所作功,右边为系统动能的变化量.3 -21 解 因阻力与深度成正比,则有F =kx (k 为阻力系数).现令x 0=1.00 ×10 -2 m,第二次钉入的深度为Δx ,由于钉子两次所作功相等,可得⎰⎰+=xx x x x kx x kx Δ000d dΔx =0.41 ×10 -2 m3 -22 解 (1) 卫星与地球之间的万有引力提供卫星作圆周运动的向心力,由牛顿定律可得()E 22E E 33R m R m m G v = 则EE 2k 621R m m G m E ==v(2) 取卫星与地球相距无限远(r →∞)时的势能为零,则处在轨道上的卫星所具有的势能为EE P 3R mm GE -=(3) 卫星的机械能为EE E E E E P k 636R mm G R m m G R m m GE E E -=-=+=3 -23解 由系统的机械能守恒,有θmgR m mgR cos 212+=v (1) 根据牛顿定律,冰块沿径向的动力学方程为Rm F θmgR 2N cos v =- (2)冰块脱离球面时,支持力F N =0,由式(1)、(2)可得冰块的角位置o θ2.4832arccos== 冰块此时的速率为32cos Rg θgR ==vv 的方向与重力P 方向的夹角为α=90° - θ°3 -24 解 小球要刚好通过最高点C 时,轨道对小球支持力F N =0,因此,有rm m g c2v =(1)取小球开始时所在位置A 为重力势能的零点,由系统的机械能守恒定律,有()()22213Δ21c m r mg l k v += (2) 由式(1)、(2)可得()12m N 366Δ7-⋅==l mgrk 3 -25 解 设弹簧的最大压缩量为x 0 .小球与靶共同运动的速度为v 1 .由动量守恒定律,有()1v v m m m '+= (1)又由机械能守恒定律,有()20212212121kx m m m +'+=v v (2) 由式(1)、(2)可得()v m m k m m x '+'=0 3 -26 解 由水平方向的动量守恒定律,有v vv ''+=m mm 2(1) 为使摆锤恰好能在垂直平面内作圆周运动,在最高点时,摆线中的张力F T=0,则lm g m h2v ''=' (2)式中v ′h 为摆锤在圆周最高点的运动速率.又摆锤在垂直平面内作圆周运动的过程中,满足机械能守恒定律,故有221221h m gl m m v v ''+'='' (3) 解上述三个方程,可得弹丸所需速率的最小值为glm m 52'=v3 -27 解 〔1〕由动能守恒得mv i v mj mv i mv +-=+-200 碰撞后另一物体速度为j v i v v 002+-= 通过上式,读者还可求得速度大小和方向.(2)碰撞后另一物体速度大小为0202025)2(v v v v =+-=则 20202020241)2121(])2(2121[mv mv mv v m mv E -=+-+=∆“-”号表示碰撞后系统机械能减少了. 3 -28解 取如下图的坐标,由于粒子系统属于斜碰,在碰撞平面内根据系统动量守恒定律可取两个分量式,有αm βmm A B A cos cos 221v v v '+= (1) αm βmA B sin sin 20v v '-= (2)又由机械能守恒定律,有222212m 2121A B A m v v v '+⎪⎭⎫ ⎝⎛= (3) 解式(1)、(2)、(3)可得碰撞后B 粒子的速率为()1722s m 1069.42-⋅⨯='-=AA B v v v 各粒子相对原粒子方向的偏角分别为022243arccos o 22'=''+=AA AA αv v v v65443arccos o '==ABβv v 3 -29 解 在子弹与物块的撞击过程中,在沿斜面的方向上,根据动量守恒有()10cos v m m αmv '+= (1)在物块上滑的过程中,假设令物块刚滑出斜面顶端时的速度为v 2 ,并取A 点的重力势能为零.由系统的功能原理可得()αh αg m m μsin cos '+-()()()21222121v v m m gh m m m m '+-'++'+=(2) 由式(1)、(2)可得()1cot 2cos 202+-⎪⎭⎫⎝⎛'+=αμgh αm m m v v3 -30 题 3 解 根据水平方向动量守恒定律以及小球在下滑过程中机械能守恒定律可分别得0='-'m m m m v v (1)mgR m m m ='+'222121v v v (2) 式中v m 、v m ′分别表示小球、容器相对桌面的速度.由式(1)、(2)可得小球到达容器底部时小球、容器的速度大小分别为m m gR m m '+'=2vm m gR m m m m '+''='2v由于小球相对地面运动的轨迹比较复杂,为此,可改为以容器为参考系(非惯性系).在容器底部时,小球相对容器的运动速度为()gR m m m m m m m m 2⎪⎭⎫⎝⎛''+=+=--='''v v v v v (3)在容器底部,小球所受惯性力为零,其法向运动方程为Rm m g F mN 2v '=- (4)由式(3)、(4)可得小球此时所受到的支持力为第四章 刚体的转动4-1 分析与解 力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).4-2 分析与解 刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).4-3 分析与解 如下图,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(9)判断下列说法是否正确,并说明理由:
(a)不受外力作用的系统,它的动量和机械能都守恒.
(b)内力都是保守力的系统,当它所受的合外力为零时,其机械能守恒.
(c)只有保守内力作用而没有外力作用的系统,它的动量和机械能都守恒.
(10)在弹性碰撞中,有哪些量保持不变,在非弹性碰撞中,又有哪些量保持不变?
(11)放焰火时,一朵五彩缤纷的焰火质心运动轨迹如何?为什么在空中焰火总是以球形逐渐扩大?(忽略空气阻力)
质量为 质点在流体中作直线运动,受与速度成正比的阻力 ( 为常数)作用, 时质点的速度为 ,证明:
(1) 时刻的速度为 ;
终了在 点时, ,
由功能原理知:
经比较可知,用功能原理求最简捷。
墙壁上固定一弹簧,弹簧另一端连接一个物体,弹簧的劲度系数为 ,物体 与桌面间的摩擦因素为 ,若以恒力 将物体自平衡点向右拉动,试求到达最远时,系统的势能。
习题图
解:物体水平受力如图,其中 , 。物体到达最远时, 。设此时物体的位移为 ,由动能定理有
解
而
所以
一地下蓄水池,面积为 ,水深度为 ,假定水的上表面低于地面的高度是 ,问欲将这池水全部抽到地面,需作功多少?
习题图
解:建坐标如习题图,图中 表示水面到地面的距离, 表示水深。水的密度为 ,对于坐标为 、厚度为 的一层水,其质量 ,将此层水抽到地面需作功
将蓄水池中的水全部抽到地面需作功
(J)
一炮弹质量为 ,以速度 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为 ,且一块的质量为另一块质量的 倍,如两者仍沿原方向飞行,试证其速率分别为 , 。
习题图
解方法一:当物体滑到与水平成任意 角的位置时,物体在切线方向的牛顿方程为
即
注意摩擦力 与位移 反向,且 ,因此摩擦力的功为
方法二:选 为研究对象,合外力的功为
考虑到 ,因而
由于动能增量为 ,因而按动能定理有
, 。
方法三:选物体、地球组成的系统为研究对象,以 点为重力势能零点。
初始在 点时, 、
得到法向加速度和切向加速度的表达式
,
在 时,法向加速度和切向加速度为:
,
(2)要使总加速度与半径成 角,必须有 ,即
解得 ,此时
甲乙两船,甲以 的速度向东行驶,乙以 的速度向南行驶。问坐在乙船上的人看来,甲船的速度如何?坐在甲船上的人看来乙船的速度又如何?
解:以地球为参照系,设 、 分别代表正东和正北方向,则甲乙两船速度分别为
(5) 和 有区别吗? 和 有区别吗? 和 各代表什么运动?
(6)设质点的运动方程为: , ,在计算质点的速度和加速度时,有人先求出 ,然后根据
及
而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即
及
你认为两种方法哪一种正确?两者区别何在?
(7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?
,
根据伽利略变换,当以乙船为参照物时,甲船速度为
,
即在乙船上看,甲船速度为 ,方向为东偏北
同理,在甲船上看,乙船速度为 ,方向为西偏南 。
有一水平飞行的飞机,速率为 ,在飞机上安置一门大炮,炮弹以水平速度 向前射击。略去空气阻力,
(1)以地球为参照系,求炮弹的轨迹方程;
(2)以飞机为参照系,求炮弹的轨迹方程;
(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量;
(2)为了使这力的冲量为200Ns,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 的物体,回答这两个问题。
解:(1)若物体原来静止,则
[ ],沿x轴正向,
若物体原来具有初速度 ,则
于是
同理,
这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.
(2)同上理,两种情况中的作用时间相同,即
令 ,解得 。
一小船质量为100kg,船头到船尾共长3.6m。现有一质量为50kg的人从船尾走到船头时,船头将移动多少距离?假定水的阻力不计。
习题图
解:由动量守恒
又 ,
,
如图,船的长度
所以
即船头相对岸边移动
质量 的质点,从静止出发沿 轴作直线运动,受力 (N),试求开始 内该力作的功。
(3)以炮弹为参照系,飞机的轨迹如何?
解:(1)以地球为参照系时,炮弹的初速度为 ,而 ,
消去时间参数 ,得到轨迹方程为:
(若以竖直向下为y轴正方向,则负号去掉,下同)
(2)以飞机为参照系时,炮弹的初速度为 ,同上可得轨迹方程为
(3)以炮弹为参照系,只需在(2)的求解过程中用 代替 , 代替 ,可得 .
(1)经过多长时间质点到达 轴;
(2)到达 轴时的位置。
解:
(1)当 ,即 时,到达 轴。
(2) 时到达 轴的位矢为:
即质点到达 轴时的位置为 。
一质点沿 轴运动,其加速度与坐标的关系为 ,式中 为常数,设 时刻的质点坐标为 、速度为 ,求质点的速度与坐标的关系。
解:按题意
由此有 ,
即 ,
两边取积分 ,
一质点沿 轴运动,坐标与时间的变化关系为 ,式中 分别以 、 为单位,试计算:(1)在最初 内的位移、平均速度和 末的瞬时速度;(2) 末到 末的平均加速度;(3) 末的瞬时加速度。
解:
(1)最初 内的位移为为:
最初 内的平均速度为:
时刻的瞬时速度为:
末的瞬时速度为:
(2) 末到 末的平均加速度为:
(2)子弹所受的冲量 ,将 代入,得
(3)由动量定理可求得子弹的质量
一质量为 的质点在xoy平面上运动,其位置矢量为 ,求质点的动量及 到 时间内质点所受的合力的冲量和质点动量的改变量。
解:质点的动量为
将 和 分别代入上式,得
,
动量的增量,亦即质点所受外力的冲量为
作用在质量为10kg的物体上的力为 ,式中 的单位是 。
证明:设一块的质量为 ,则另一块的质量为 。利用 ,有
, ①
又设 的速度为 , 的速度为 ,则有
②
[动量守恒]③
联立①、③解得
, ④
联立④、②解得
,于是有
将其代入④式,有
又因为爆炸后,两弹片仍沿原方向飞行,当 时只能取 。
一质量为 的子弹射入置于光滑水平面上质量为 并与劲度系数为 的轻弹簧连着的木块后使弹簧最大压缩了 ,求子弹射入前的速度 .
拦截条件为:
即
所以
,
取最大值的条件为: ,由此得到 ,相应地 。
因此 的最大值为
取最大值时对应的出发时间最迟。快艇截住这条船所需的时间为
。
习题二答案
习题二
简要回答下列问题:
(1)有人说:牛顿第一定律只是牛顿第二定律在合外力等于零情况下的一个特例,因而它是多余的.你的看法如何?
(2)物体的运动方向与合外力方向是否一定相同?
(3) 末的瞬时加速度为: 。
质点作直线运动,初速度为零,初始加速度为 ,质点出发后,每经过 时间,加速度均匀增加 。求经过 时间后,质点的速度和位移。
解:由题意知,加速度和时间的关系为
利用 ,并取积分得
,
再利用 ,并取积分[设 时 ]得
,
一质点从位矢为 的位置以初速度 开始运动,其加速度与时间的关系为 .所有的长度以米计,时间以秒计.求:
即
解出
系统的势能为
一双原子分子的势能函数为
式中 为二原子间的距离,试证明:
⑴ 为分子势能极小时的原子间距;
⑵分子势能的极小值为 ;
⑶当 时,原子间距离为 ;
证明:(1)当 、 时,势能有极小值 。由
得
所以 ,即 为分子势能取极值时的原子间距。另一方面,
当 时, ,所以 时, 取最小值。
(2)当 时,
解.根据质点动量定理,
,
根据牛顿第二定律,
(m/s2)
一颗子弹由枪口射出时速率为 ms-1,当子弹在枪筒内被加速时,它所受的合力为 N(a,b为常数),其中t以秒为单位:
(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;
(2)求子弹所受的冲量;
(3)求子弹的质量。
解:
(1)由题意,子弹到枪口时,有 ,得
, ,
可解得
, , 。
平板中央开一小孔,质量为 的小球用细线系住,细线穿过小孔后挂一质量为 的重物。小球作匀速圆周运动,当半径为 时重物达到平衡。今在 的下方再挂一质量为 的物体,如题2-15图。试问这时小球作匀速圆周运动的角速度 和半径 为多少?
(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?
(9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?
(10)质点沿圆周运动,且速率随时间均匀增大, 、 、 三者的大小是否随时间改变?
(11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?
。
在离船的高度为 的岸边,一人以恒定的速率 收绳,求当船头与岸的水平距离为 时,船的速度和加速度。
解:建立坐标系如题图所示,船沿 轴方向作直线运动,欲求速度,应先建立运动方程,由图题,可得出
习题图
两边求微分,则有
船速为
按题意 (负号表示绳随时间 缩短),所以船速为
负号表明船速与 轴正向反向,船速与 有关,说明船作变速运动。将上式对时间求导,可得船的加速度为