动能动能定理单个物体多过程问题
动能定理在多过程问题中的应用(含解析)
![动能定理在多过程问题中的应用(含解析)](https://img.taocdn.com/s3/m/eb6fa8f8d05abe23482fb4daa58da0116d171f5e.png)
动能定理在多过程问题中的应用类型一动能定理在多过程问题中的应用1.运用动能定理解决多过程问题,有两种思路:(1)可分段应用动能定理求解;(2)全过程应用动能定理:所求解的问题不涉及中间的速度时,全过程应用动能定理求解更简便.2.全过程列式时,涉及重力、弹簧弹力、大小恒定的阻力或摩擦力做功时,要注意它们的特点.(1)重力、弹簧弹力做功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力做功的数值等于力的大小与路程的乘积.例1(2016·浙江10月选考·20)如图甲所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图乙所示的模型.倾角为45°的直轨道AB、半径R=10 m的光滑竖直圆轨道和倾角为37°的直轨道EF,分别通过水平光滑衔接轨道BC、C′E平滑连接,另有水平减速直轨道FG与EF平滑连接,EG间的水平距离l=40 m.现有质量m=500 kg的过山车,从高h=40 m处的A点由静止下滑,经BCDC′EF最终停在G点.过山车与轨道AB、EF 间的动摩擦因数均为μ1=0.2,与减速直轨道FG间的动摩擦因数μ2=0.75.过山车可视为质点,运动中不脱离轨道,g取10 m/s2.求:(1)过山车运动至圆轨道最低点C时的速度大小;(2)过山车运动至圆轨道最高点D时对轨道的作用力大小;(3)减速直轨道FG的长度x.(已知sin 37°=0.6,cos 37°=0.8)【答案】(1)810 m/s(2)7×103 N(3)30 m【解析】(1)设过山车在C点的速度大小为v C,由动能定理得mgh-μ1mg cos 45°·hsin 45°=12m v C2代入数据得v C=810 m/s(2)设过山车在D点速度大小为v D,由动能定理得mg (h -2R )-μ1mg cos 45°·h sin 45°=12m v D 2F +mg =m v D 2R,解得F =7×103 N由牛顿第三定律知,过山车在D 点对轨道的作用力大小为7×103 N (3)全程应用动能定理mg [h -(l -x )tan 37°]-μ1mg cos 45°·hsin 45°-μ1mg cos 37°·l -xcos 37°-μ2mgx =0解得x =30 m.变式训练1 (动能定理在多过程问题中的应用)(2020·河南信阳市罗山高三一模)如图甲所示,一倾角为37°,长L =3.75 m 的斜面AB 上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B 处,C 为圆弧轨道的最高点.t =0时刻有一质量m =1 kg 的物块沿斜面上滑,其在斜面上运动的v -t 图象如图乙所示.已知圆轨道的半径R =0.5 m .(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C 点时对轨道的压力的大小F N ;(3)试通过计算分析是否可能存在物块以一定的初速度从A 点滑上轨道,通过C 点后恰好能落在A 点.如果能,请计算出物块从A 点滑出的初速度大小;如果不能请说明理由. 【答案】(1)0.5 (2)4 N (3)见解析【解析】(1)由题图乙可知物块上滑时的加速度大小为a =10 m/s 2① 根据牛顿第二定律有:mg sin 37°+μmg cos 37°=ma ② 由①②联立解得μ=0.5③(2)设物块到达C 点时的速度大小为v C ,由动能定理得: -mg (L sin 37°+R +R cos 37°)-μmgL cos 37°=12m v C 2-12m v 02④在C 点,根据牛顿第二定律有:mg +F N ′=m v C 2R ⑤联立③④⑤解得:F N ′=4 N ⑥根据牛顿第三定律得:F N =F N ′=4 N ⑦ 物块在C 点时对轨道的压力大小为4 N(3)设物块以初速度v 1上滑,最后恰好落到A 点 物块从C 到A ,做平抛运动,竖直方向:L sin 37°+R (1+cos 37°)=12gt 2⑧水平方向:L cos 37°-R sin 37°=v C ′t ⑨ 解得v C ′=977 m/s>gR = 5 m/s ,⑩所以物块能通过C 点落到A 点 物块从A 到C ,由动能定理得:-mg (L sin 37°+1.8R )-μmgL cos 37°=12m v C ′2-12m v 12⑪联立解得:v 1=21837m/s ⑫ 类型二 动能定理在往复运动问题中的应用在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.求解这类问题时若运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出.由于动能定理只涉及物体的初、末状态而不计运动过程的细节,此类问题多涉及滑动摩擦力,或其他阻力做功,其做功的特点与路程有关,求路程对应的是摩擦力做功,所以用动能定理分析这类问题可使解题过程简化.例2 如图所示,竖直面内有一粗糙斜面AB ,BCD 部分是一个光滑的圆弧面,C 为圆弧的最低点,AB 正好是圆弧在B 点的切线,圆心O 与A 、D 点在同一高度,θ=37°,圆弧面的半径R =3.6 m ,一滑块质量m =5 kg ,与AB 斜面间的动摩擦因数μ=0.45,将滑块从A 点由静止释放(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2).求在此后的运动过程中:(1)滑块在AB 段上运动的总路程;(2)在滑块运动过程中,C 点受到的压力的最大值和最小值. 【答案】(1)8 m (2)102 N 70 N【解析】 (1)由题意可知斜面AB 与水平面的夹角为θ=37°, 知mg sin θ>μmg cos θ,故滑块最终不会停留在斜面上, 由于滑块在AB 段受摩擦力作用,则滑块做往复运动的高度将越来越低,最终以B 点为最高点在光滑的圆弧面上往复运动. 设滑块在AB 段上运动的总路程为s ,滑块在AB 段上所受摩擦力大小F f =μF N =μmg cos θ, 从A 点出发到最终以B 点为最高点做往复运动, 由动能定理得mgR cos θ-F f s =0,解得s =Rμ=8 m.(2)滑块第一次过C 点时,速度最大,设为v 1,分析受力知此时滑块所受轨道支持力最大,设为F max ,从A 到C 的过程,由动能定理得mgR -F f l AB =12m v 12-0,斜面AB 的长度l AB =Rtan θ,由牛顿第二定律得F max -mg =m v 12R ,解得F max =102 N.滑块以B 为最高点做往复运动的过程中过C 点时,速度最小,设为v 2,此时滑块所受轨道支持力最小,设为F min ,从B 到C , 由动能定理得mgR (1-cos θ)=12m v 22-0,由牛顿第二定律得F min -mg =m v 22R ,解得F min =70 N ,根据牛顿第三定律可知C 点受到的压力最大值为102 N ,最小值为70 N.变式训练2 (动能定理在往复运动中的应用)(2020·浙江高三开学考试)如图所示,有一圆弧形的槽ABC ,槽底B 放在水平地面上,槽的两侧A 、C 与光滑斜坡aa ′、bb ′分别相切,相切处a 、b 位于同一水平面内,距水平地面高度为h .一质量为m 的小物块从斜坡aa ′上距水平面ab 的高度为2h 处沿斜坡自由滑下,并自a 处进入槽内,到达b 处后沿斜坡bb ′向上滑行,到达的最高处距水平面ab 的高度为h ,若槽内的动摩擦因数处处相同,不考虑空气阻力,且重力加速度为g ,则( )A .小物块第一次从a 处运动到b 处的过程中克服摩擦力做功mghB .小物块第一次经过B 点时的动能等于2.5mghC .小物块第二次运动到a 处时速度为零D .经过足够长的时间后,小物块最终一定停在B 处 【答案】 A【解析】在第一次运动过程中,小物块克服摩擦力做功,根据动能定理可知mgh -W f =0-0,解得W f =mgh ,故A 正确;因为小物块从右侧到最低点的过程中对轨道的压力较大,所受的摩擦力较大,所以小物块从右侧到最低点的过程中克服摩擦力做的功W f1>12W f =12mgh ,设小物块第1次通过最低点的速度为v ,从自由滑下到最低点的过程,由动能定理得3mgh -W f1=E k -0,解得E k <2.5mgh ,故B 错误;由于在AC 段,小物块与轨道间有摩擦力,故小物块在某一位置的速度大小要减小,故与轨道间的摩擦力减小,第二次在AC 段运动时克服摩擦力做功比第一次要少,故第二次到达a (A )点时,有一定的速度,故C 错误;由于在AC 段存在摩擦力,故小物块在B 点两侧某一位置可能处于静止状态,故D 错误. 故选A 。
应用动能定理求解多过程问题
![应用动能定理求解多过程问题](https://img.taocdn.com/s3/m/9ae69a4831b765ce0408142d.png)
应用动能定理求解多过程问题作者:赵紫军来源:《卷宗》2017年第10期摘要:动能定理反映的是物体两个状态的动能变化与这两个状态之间外力所做总功的量值关系,应用动能定理解答运动问题时,只需要考虑力在整个过程内做的功和这个过程始末两个状态动能的变化,无需注意物体的运动性质、运动轨迹及运动状态变化等细节。
若过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑。
求合外力做功时,注意物体受力情况的变化,对那些不是全过程都存在的力,应根据不同的情况分别求出各力的总功。
关键词:动能定理;动摩擦因数;合外力;总功1 概述动能定理是高中物理学中一条重要的定理,它是力学中一种典型的功能关系,正确理解并掌握动能定理对于理解做功与能量转换、能的转化与守恒定律具有非常重要的意义。
(1)动能定理的表述做功可以改变物体的能量,一切外力对物体做功的代数和等于物体动能的增加量,表达式为:W1+W2+W3+……=½mv末2-½mv初2(2)应用动能定理解题的基本步骤动能定理的应用涉及一个或多个物理过程,两个状态。
过程是指力对物体做功的过程,必须明确这个过程合外力对物体所做的总功,两个状态是指初末位置物体的动能。
应用动能定理解题的基本步骤是:①确定研究对象和研究过程。
②对研究对象进行受力分析。
③计算该过程中合外力做的功,或分别计算出每个力做的功(注意功的正负)。
④计算出物体的初、末动能。
⑤按照动能定理列式求解。
(3)应用动能定理可解决的问题应用动能定理可以解决多过程问题、变力做功、曲线运动以及不涉及到加速度和时间的力学问题。
在解决不涉及到加速度和时间的力学问题时利用动能定理求解比用运动学公式及牛顿定律求解要简单的多。
(4)应用动能定理的优越性(1)动能定理是两个状态的动能变化量与合外力做功的关系,与运动过程中物体受的是恒力还是变力,物体的运动性质,运动轨迹等很多问题没关系,所以应用动能定理解题时不受这些问题的限制。
(我用)利用动能定理求解多过程问题
![(我用)利用动能定理求解多过程问题](https://img.taocdn.com/s3/m/8dea1bc0a1c7aa00b52acba0.png)
利用动能定理求解多过程问题例1、以10m/s的初速度竖直向上抛出一个质量为0.5kg的物体,它上升的最大高度为4m,设空气对物体的阻力大小不变,求物体落回抛出点时的动能。
利用动能定理求变力做的功例2、如图所示,一球从高出地面H米处由静止自由落下,忽略空气阻力,落至地面后并深入地下h米处停止,设球质量为m,求球在落入地面以下过程中受到的平均阻力利用动能定理求解多个力做功的问题例3、如图所示,物体置于倾角为37度的斜面的底端,在恒定的沿斜面向上的拉力的作用下,由静止开始沿斜面向上运动。
F大小为2倍物重,斜面与物体的动摩擦因数为0.5,求物体运动5m时速度的大小。
(g=10m/s2)1.如图1所示,一木块放在光滑水平面上,一子弹水平射入木块中,射入深度为d,平均阻力为f.设木块离原点s远时开始匀速前进,下列判断正确的是[] A.功fs量度子弹损失的动能B.f(s+d)量度子弹损失的动能C.fd量度子弹损失的动能D.fd量度子弹、木块系统总机械能的损失2.关于做功和物体动能变化的关系,不正确的是[]A.只要动力对物体做功,物体的动能就增加B.只要物体克服阻力做功,它的动能就减少C.外力对物体做功的代数和等于物体的末动能与初动能之差D.动力和阻力都对物体做功,物体的动能一定变化4.一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度2m/s,则下列说法正确的是[]A.手对物体做功12J B.合外力对物体做功12JC.合外力对物体做功2J D.物体克服重力做功10J 4.一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度2m/s,则下列说法正确的是[]A.手对物体做功12J B.合外力对物体做功12JC.合外力对物体做功2J D.物体克服重力做功10J2.电磁感应中的能量问题电磁感应的过程是能量的转化和守恒的过程,导体切割磁感线或磁通量发生变化在回路中产生感应电流,机械能或其他形式的能便转化为电能;感应电流做功,又可使电能转化为机械能或电阻的内能等,电磁感应的过程总是伴随着能量转化的过程,因此在分析问题时,应牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,然后借助于动能定理或能量守恒定律等规律求解.需要说明的是克服安培力做了多少功,就有多少其他形式的能转化为了电能.1、如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里.线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场.整个运动过程中始终存在着大小恒定的空气阻力f且线框不发生转动.求:(1)线框在下落阶段匀速进入磁场时的速度v2;(2)线框在上升阶段刚离开磁场时的速度v1;(3)线框在上升阶段通过磁场过程中产生的焦耳热Q.如图所示,MN、PQ两条平行的光滑金属轨道与水平面成θ角固定,轨距为d.空间存在匀强磁场.磁场方向垂直于轨道平面向上,磁感应强度为B,P、M间接阻值为R的电阻.质量为m的金属杆ab水平放置在轨道上,其有效电阻为r.现从静止释放ab,当它沿轨道下滑距离x时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g.求:(1)金属杆ab运动的最大速度;(2)金属杆ab运动的加速度为1/2gsinθ时,电阻R上的电功率;(3)金属杆ab从静止到具有最大速度的过程中,克服安培力所做的功.(1)从静止释放ab,ab棒切割磁感线产生感应电动势,相当于电源,当ab棒匀速运动时,速度达到最大,根据平衡条件和安培力公式,求解金属杆ab运动的最大速度;(2)金属杆ab运动的加速度为gsinθ时,根据牛顿第二定律求得此时金属杆ab运动的速度,得到感应电流,即可求得金属杆ab消耗的电功率;(3)金属杆ab从静止到具有最大速度的过程中,重力做正功,安培力做负功,根据动能定理求得导体棒ab克服安培力做功.L L L B L B 0)V /L (t ⨯)BL (2⨯Φ12 4 2 20、(12分)如图所示,一有界匀强磁场,磁感应强度大小均为B ,方向分别垂直纸面向里和向外,磁场宽度均为L ,在磁场区域的左侧相距为L 处,有一边长为L 的正方形导体线框,总电阻为R ,且线框平面与磁场方向垂直。
高中物理压轴题:用力学三大观点处理多过程问题(解析版)
![高中物理压轴题:用力学三大观点处理多过程问题(解析版)](https://img.taocdn.com/s3/m/8a1e379588eb172ded630b1c59eef8c75fbf95d6.png)
压轴题用力学三大观点处理多过程问题1.用力学三大观点(动力学观点、能量观点和动量观点)处理多过程问题在高考物理中占据核心地位,是检验学生物理思维能力和综合运用知识解决实际问题能力的重要标准。
2.在命题方式上,高考通常会通过设计包含多个物理过程、涉及多个力学观点的复杂问题来考查学生的综合能力。
这些问题可能涉及物体的运动状态变化、能量转换和守恒、动量变化等多个方面,要求考生能够灵活运用力学三大观点进行分析和解答。
3.备考时,学生应首先深入理解力学三大观点的基本原理和应用方法,掌握相关的物理公式和定理。
其次,要通过大量的练习来提高自己分析和解决问题的能力,特别是要注重对多过程问题的训练,学会将复杂问题分解为多个简单过程进行分析和处理。
考向一:三大观点及相互联系考向二:三大观点的选用原则力学中首先考虑使用两个守恒定律。
从两个守恒定律的表达式看出多项都是状态量(如速度、位置),所以守恒定律能解决状态问题,不能解决过程(如位移x,时间t)问题,不能解决力(F)的问题。
(1)若是多个物体组成的系统,优先考虑使用两个守恒定律。
(2)若物体(或系统)涉及速度和时间,应考虑使用动量定理。
(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑使用牛顿运动定律。
(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,动能定理解决曲线运动和变加速运动特别方便。
考向三:用三大观点的解物理题要掌握的科学思维方法1.多体问题--要正确选取研究对象,善于寻找相互联系选取研究对象和寻找相互联系是求解多体问题的两个关键。
选取研究对象后需根据不同的条件采用隔离法,即把研究对象从其所在的系统中抽离出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体进行研究;或将隔离法与整体法交叉使用。
通常,符合守恒定律的系统或各部分运动状态相同的系统,宜采用整体法;在需讨论系统各部分间的相互作用时,宜采用隔离法;对于各部分运动状态不同的系统,应慎用整体法。
利用动能定理求解多过程问题
![利用动能定理求解多过程问题](https://img.taocdn.com/s3/m/20968e73a21614791611280c.png)
利用动能定理求解多过程问题动能定理作为能量这一部分的起始内容,在历年高考中的再现率是非常高的,密切联系生活、生产实际、联系现代科学技术的新情境信息题已经成为取代传统纯模型题目的首选。
下面仅就动能定理的应用来做一些简单的探讨:例1、(2009年宁夏卷)24.冰壶比赛是在水平冰面上进行的体育项目,比赛场地示意如图。
比赛时,运动员从起滑架处推着冰壶出发,在投掷线AB 处放手让冰壶以一定的速度滑出,使冰壶的停止位置尽量靠近圆心O 。
为使冰壶滑行得更远,运动员可以用毛刷擦冰壶运行前方的冰面,使冰壶与冰面间的动摩擦因数减小。
设冰壶与冰面间的动摩擦因数为μ1=0.008,用毛刷擦冰面后动摩擦因数减少至μ2=0.004.在某次比赛中,运动员使冰壶C 在投掷线中点处以2m/s 的速度沿虚线滑出。
为使冰壶C 能够沿虚线恰好到达圆心O 点,运动员用毛刷擦冰面的长度应为多少?(g 取10m/s2)【解析】设冰壶在未被毛刷擦过的冰面上滑行的距离为1S ,所受摩擦力的大小为1f :在 被毛刷擦过的冰面上滑行的距离为2S ,所受摩擦力的大小为2f 。
则有1S +2S =S ①式中S 为投掷线到圆心O 的距离。
11f mg μ= ② 22f mg μ= ③设冰壶的初速度为0v ,由动能定理,得202211210mv s f s f -=-⋅-⋅ ④ 联立以上各式,解得21021222()gS v S g μμμ-=- 代入数据得210S m = ⑥例2、(2009年安徽卷)24.过山车是游乐场中常见的设施。
下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径R 1=2.0m 、R 2=1.4m 。
一个质量为m =1.0kg 的小球(视为质点),从轨道的左侧A 点以v 0=12.0m/s 的初速度沿轨道向右运动,A 、B 间距L 1=6.0m 。
应用动能定理处理多过程问题
![应用动能定理处理多过程问题](https://img.taocdn.com/s3/m/7c21dbc7bcd126fff6050b96.png)
1 /6专题:应用动能定理处理多过程问题1一.利用动能定理解题的方法和步骤1、明确研究对象、研究过程,找出初、末状态的速度情况.2、要对物体进行正确受力分析(包括重力),明确各力的做功大小及正负情况.有些力在运动过程中不是始终存在,若物体运动过程中包含几个物理过程,物体运动状态受力情况均发生变化,因而在考虑外力做功时,必须根据不同情况分别对待. 3、明确物体在过程的起始状态动能和末状态的动能.4、列出动能定理的方程 ,及其它必要的解题方程进行求解. 二.应用动能定理巧解多过程问题。
物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,如能对整个过程利用动能定理列式则使问题简化。
1:如图所示,质量为m 的钢珠从高出地面h 处由静止自由下落,落到地面进入沙坑10h停止, 则:(1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若要使钢珠陷入沙坑h8,则钢珠在h 处的动能应为多少?(设钢珠在沙坑中所受平均阻力大小不随深度改变)2:如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道的动摩擦因素都是μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在A B 段克服摩擦力做功为( )A.12μmgRB.12mgR C .mgR D .(1-μ)mgR 3:一小物体从高h 的斜面上无初速滑下, 在水平面上滑行一段静止,水平方向的总位移为s,设斜面和水平面的动摩擦因数相同,求摩擦因数为多少?4.: 质量为80kg 的跳伞运动员从离地500m 的直升机上跳下,经过2s 拉开绳索开启降落伞,如图是跳伞过程的v-t 图像,g 取10m/s2,根据图像求:(1) t=1s 时运动员的加速度和所受的阻力?(2) 14s 内运动员下落的高度及克服阻力做的功?5.质量为m 的物体从地面上方H 高处无初速释放,落到地面后出现一个深为h 的坑,如图所示,在此过程中( )2 / 6A 、 重力对物体做功mgHB 、 物体重力势能减少mg (H-h )C 、 合力对物体做的总功为零D 、 地面对物体的平均阻力为hmgH6.一物体静止在不光滑的水平面上,已知m =1 kg,μ=0.1,现用水平外力F =2 N 拉其运动5 m ,然后立即撤去水平外力F ,求:该物体在水平面上运动的总路程?(g 取10 m/s 2)7.质量为m 的球在距地面高度H 处无初速度下落,运动过程中空气阻力大小恒为重力的0.2倍,球与地面碰撞时无机械能量损失而向上弹起,求:该球停止前通过的总路程是多少?8.如图示,一质量为2kg 的铅球从离地面2m 高处自由下落,陷入沙坑2cm 深处,求:沙子对铅球的平均阻力。
2025《高中物理总复习》6.2动能定理及其应用
![2025《高中物理总复习》6.2动能定理及其应用](https://img.taocdn.com/s3/m/435ae141c381e53a580216fc700abb68a982ad39.png)
第2讲动能定理及其应用课程标准素养目标1.理解动能和动能定理.2.能用动能定理解释生产生活中的现象.物理观念:了解动能的概念和动能定理的内容.科学思维:会用动能定理分析曲线运动、多过程运动问题.返回导航考点一动能、动能定理的理解【必备知识•自主落实】1.动能动能是标量(1)定义:物体由于运动而具有的能.(2)公式:E k=^mv2v是瞬时速度(3)单位:焦耳,1J=1N m=l kg m2/s2.(气)动能]的变化:物体末动能与初动能之差,即AEk=答案返回导航2.动能定理“力”指的是物体受到的合力(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.合力所做的总功1719(2)表达式:W=(3)物理意义:合外力的功是物体动能变化的量度.答案返回导航【关键能力.思维进阶]1.甲、乙两物体的质量分别用m甲、m乙表示,甲、乙两物体的速度大小分别用v甲、v乙表示,则下列说法正确的是()A.如果m乙=2m甲,v甲=2v乙,则甲、乙两物体的动能相等B.如果m甲=2m乙,v乙=2v甲,则甲、乙两物体的动能相等C.如果m乙=2m甲,v乙=2v甲,则甲、乙两物体的动能相等D.如果111甲=111乙,v¥=v^,两物体的速度方向相反,此时两物体的动能相等答案:D解析:由动能的表达式氏=fl"”?可知,A、B、C错误;动能是标量,只与物体的质量和速度的大小有关,与速度方向无关,D正确.解析■答案返回导航2.(多选)如图所示,电梯质量为M,在它的水平底板上放置一质量为m 的物体.电梯在钢索的拉力作用下做竖直向上的加速运动,当电梯的速度由V|增大到V2时,上升高度为H.则在这个过程中,下列说法正确的是(重力加速度为g)()A.对物体,动能定理的表达式为W=:mv专-:mv,,其中W为支持力做的功B.对物体,动能定理的表达式为W合=0,其中W合为合力做的功C.对物体,动能定理的表达式为W—mgH=:mv芸一?mv,,其中W为支持力做的功|D.对电梯,其所受合力做功为!Mv专一I—―I答案:CD解析■答案胃返回导航思维提升有能与动能变化的区别(1)动能与动能的变化是两个不同的概念,动能是状态量,动能的变化是过程量.(2)动能没苔负值,而动能变化量有正负之分.JE,>0表示物体的动能增加,/E r VO表示物体的动能减少.返回导航2.对动能定理的理解做功的过程就是能量转化的过程,动能定理表达式中的意义是一种因果关系在数值上相等的符号.因果关系一合力做功是物体动能变化的原因数量关系一合力做的功与动能变化可以等量代换单位关系一国际单位都是焦耳返回导航返回导航考点二动能定理的基本应用【关键能力•思维进阶】应用动能定理的注意事项(1)方法的选择:动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)过程的选择:物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段应用动能定理,也可以对全过程应用动能定理.如果对整个过程应用动能定理,往往能使问题简化.(3)规律的应用:动能定理表达式是一个标量式,不能在某个方向上应用动能定理.返回导航考向1应用动能定理求变力的功例1承德的转盘滑雪机为我国自主原创、世界首例的专利产品.一名运 动员的某次训练过程中,转盘滑雪机绕垂直于盘面的固定转轴以角速度3 = 0.5,以〃s 顺时针匀速转动,质量为60 kg 的运动员在盘面上离转轴10 m 半 径上滑行,滑行方向与转盘转动方向相反,在最低点的速度大小为10 m/s, 滑行半周到最高点的速度大小为8 m/s,该过程中,运动员所做的功为6 500 J,巳知盘面与水平面夹角为18° , g 取10 mis 1, sin 18° =0.31, cos 18° =0.95,则该过程中运动员克服阻力做的功为( )A. 4 240 J C. 3 860JB. 3740 JD. 2 300 J 答案:c解析■答案返回导航考向2应用动能定理求解直线运动问题例2如图所示,一斜面体ABC 固定在水平地面上,斜面AD 段粗糙、DC 段光 滑,在斜面底端C 点固定一轻弹簧,弹簧原长等于CD 段长度.一质量m = 0.1 蚀的小物块(可视为质点)从斜面顶端A 以初速度v 0=2力/s 沿斜面下滑,当弹簧 第一次被压缩至最短时,其长度恰好为原长的一半,物块沿斜面下滑后又沿 斜面向上返回,第一次恰能返回到最高点A.己知弹簧的原长L o = O.2 m,物块 与斜面AD 段间的动摩擦因数p=g 斜面倾角0=30° ,重力加速度g=10 tn/s 2,6弹簧始终处于弹性旭度范围内.下列说法中正确的是()A. A 、D 间的足巨鬲X n )=0.2 m%B. 物块第一次运动到D 点时的速度大小为匝m/sC. 弹簧第一次被压缩到最短时的弹性势能为0.3 Jn D. 物块在斜面AD 段能滑行的总路程为1.6 mCB 答案:D 解析■答案返回导航考向3应用动能定理求解曲线运动问题例3[2023-湖北卷]如图为某游戏装置原理示意图.水平桌面上固定一半圆形竖直挡板,其半径为2R、内表面光滑,挡板的两端A、B在桌面边缘,B与半径为R的固定光滑圆弧轨道COE在同一竖直平面内,过C点的轨道半径与竖直方向的夹角为60°.小物块以某一水平初速度由A点切入挡板内侧,从B点飞出桌面后,在C点沿圆弧切线方向进入轨道CDE内侧,并恰好能到达轨道的最高点D.小物块与桌面之间的动摩擦因数为重力加速度大小21T为g,忽略空气阻力,小物块可视为质点.求:a A(1)小物块到达D点的速度大小;(2)B和D两点的高度差;(寻f(3)小物块在A点的初速度大小.芯夕次答案返回导航思维提升求解多过程问题抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况;“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息.返回导航考向4动能定理在往复运动问题中的应用1.往复运动问题:在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.2.解题策略:此类问题多涉及滑动摩擦力或其他阻力做功,其做功的特点是与路程有关,运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出,由于动能定理只涉及物体的初、末状态,所以用动能定理分析这类问题可使解题过程简化.返回导航例4(多选)[2024-山东模拟预测]如图,左侧光滑曲面轨道与右侧倾角a= 37°的斜面在底部平滑连接且均固定在水平地面上,质量为m的小滑块从斜面上离斜面底边高为H处由静止释放,滑到斜面底端然后滑上左侧曲面轨道,再从曲面轨道滑上斜面,滑块第一次沿斜面上滑的最大高度为&H,多次往复运动.不计空气阻力,重力加速度为g,sin37°=0.6.返回导航下列说法正确的是()A.滑块第一次下滑过程,克服摩擦力做的功为土mgHB.滑块第1次下滑的时间与第1次上滑的时间之比为:4C.滑块与斜面间的动摩擦因数为寿D.滑块从静止释放到第n次上滑到斜面最高点的过程中,系统产生的热量为(l—*)mgH答案:BCD解析■答案返回导航返回导航考点三动能定理与图像结合问题【关键能力•思维进阶】考向1E r x(W-x)图像问题例5(多选)一滑块从某固定粗糙斜面底端在沿斜面向上的恒力作用下由静止开始沿斜面向上运动,某时刻撤去恒力,上升过程中滑块的动能和重力势能随位移变化的图像如图所示,图中E和、So为已知量,滑块与斜面间的动摩擦因数为0.5,重力加速度为g,下列说法正确的是()A.恒力的大小为譬酮三B.斜面倾角的正饥值为0.75C.滑块下滑到斜面底端时的速度大小为玄笋D.滑块的质量可表示为竺剪\gs。
高中物理:巧用动能定理求解多过程问题
![高中物理:巧用动能定理求解多过程问题](https://img.taocdn.com/s3/m/6165ba64e53a580217fcfe5b.png)
动能定理揭示了物体外力的总功与其动能变化间的关系。
可表示为W=E k2-E k1=△E k,在所研究的问题中,如果物体受外力作用而运动状态变化时,巧妙运用动能定理,往往能使解决问题的途径简捷明快,事半功倍。
例1.质量m=1.5kg的物块(可视为质点)在水平恒力F作用下,从水平面上A点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=2.0 s停在B点,已知A、B两点的距离x=5.0 m,物块与水平面间的动摩擦因数μ=0.20,求恒力F多大?(g=10m/s2)解析:设撤去力F前、后物体的位移分别为x1、x2物块受到的滑动摩擦力为F f=μmg=0.2×1.5×10N=3N.撤去力F后物块的加速度大小为最后2s内,物体的位移为故力F作用的位移x1=x-x2=1.0m对物块运动的全过程应用动能定理:得本题应用牛顿第二定律也可求解,但比较繁琐,应用动能定理求解则简捷得多,求解时一定要注意两个力作用的位移是不同的。
例2.如图1所示,一物体质量m=2kg,从倾角θ=37°的斜面上的A点以初速度v0=3m/s下滑,A点距弹簧上的挡板位置B的距离AB=4 m,当物体到达B后,将弹簧压缩到C点,最大压缩量BC=0.2 m,然后物体又被弹簧弹上去,弹到最高位置D点,D点距A点为AD=3 m,求物体跟斜面间的动摩擦因数.(g=10m/s2,弹簧及挡板质量不计)解析:在该题中,物体的运动过程分成了几个阶段,若用牛顿运动定律解决,要分几个过程来处理,考虑到全过程始末状态动能都是零,用动能定理解决就方便多了。
对A→B→C→D全过程,由动能定律得:F f=μmgcosθ两式联立得:当物体运动是由几个物理过程组成,又不需要研究过程的中间状态时,可以把几个物理过程看做一个整体来研究,从而避免每个运动过程的具体细节,大大简化运算。
例3.如图2所示,在一个固定盒子里有一个质量为m的滑块,它与盒子底面的动摩擦因数为μ开始滑块在盒子中央以足够大的初速度v0向右运动,与盒子两壁碰撞若干次后速度减为零,若盒子长为L,滑块与盒壁碰撞没有能量损失,求整个过程中物体与两壁碰撞的次数。
微专题:利用动能定理分析变力做功和多过程问题
![微专题:利用动能定理分析变力做功和多过程问题](https://img.taocdn.com/s3/m/45cb53d40740be1e640e9aa5.png)
专题:利用动能定理分析变力做功和多过程问题[学习目标] 1.进一步理解动能定理,领会应用动能定理解题的优越性.2.会利用动能定理分析变力做功、曲线运动以及多过程问题.一、利用动能定理求变力的功1.动能定理不仅适用于求恒力做的功,也适用于求变力做的功,同时因为不涉及变力作用的过程分析,应用非常方便.2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和几个恒力作用时,可以用动能定理间接求变力做的功,即W 变+W 其他=ΔE k .例1 如图1所示,质量为m 的小球自由下落d 后,沿竖直面内的固定轨道ABC 运动,AB 是半径为d 的14光滑圆弧,BC 是直径为d 的粗糙半圆弧(B 是轨道的最低点).小球恰能通过圆弧轨道的最高点C .重力加速度为g ,求:图1(1)小球运动到B 处时对轨道的压力大小; (2)小球在BC 运动过程中,摩擦力对小球做的功. 答案 (1)5mg (2)-34mgd解析 (1)小球运动到B 点的过程由动能定理得2mgd =12m v 2,在B 点:F N -mg =m v 2d,得:F N =5mg ,根据牛顿第三定律:小球在B 处对轨道的压力F N ′= F N =5mg . (2)小球恰好通过C 点,则mg =m v C 2d 2.小球从B 运动到C 的过程:-mgd +W f =12m v C 2-12m v 2,得W f =-34mgd .【考点】应用动能定理求变力的功 【题点】应用动能定理求变力的功B 至C 的过程中摩擦力为变力(大小方向都变),求变力的功不能直接根据功的公式,通常用动能定理求解.针对训练1 如图2所示,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高;质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )图2A.14mgR B.13mgR C.12mgR D.π4mgR 答案 C解析 质点经过Q 点时,由重力和轨道支持力的合力提供向心力,由牛顿第二定律得F N -mg =m v Q 2R ,由题意及牛顿第三定律知F N =2mg ,可得v Q =gR ,质点自P 滑到Q 的过程中,由动能定理得mgR -W f =12m v Q 2,得克服摩擦力所做的功为W f =12mgR ,选项C 正确.【考点】应用动能定理进行有关的计算 【题点】应用动能定理求功 二、利用动能定理分析多过程问题一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.(1)分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.(2)全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单,更方便.注意:当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移.计算总功时,应计算整个过程中出现过的各力做功的代数和.例2 如图3所示,右端连有一个光滑弧形槽的水平桌面AB 长L =1.5 m ,一个质量为m =0.5 kg 的木块在F =1.5 N 的水平拉力作用下,从桌面上的A 端由静止开始向右运动,木块到达B 端时撤去拉力F ,木块与水平桌面间的动摩擦因数μ=0.2,取g =10 m/s 2.求:图3(1)木块沿弧形槽上升的最大高度(木块未离开弧形槽); (2)木块沿弧形槽滑回B 端后,在水平桌面上滑行的最大距离. 答案 (1)0.15 m (2)0.75 m解析 (1)设木块沿弧形槽上升的最大高度为h ,木块在最高点时的速度为零.从木块开始运动到沿弧形槽上升到最大高度处,由动能定理得: FL -F f L -mgh =0其中F f =μF N =μmg =0.2×0.5×10 N =1.0 N 所以h =FL -F f Lmg=(1.5-1.0)×1.50.5×10m =0.15 m(2)设木块离开B 点后沿桌面滑行的最大距离为x .由动能定理得: mgh -F f x =0所以:x =mgh F f =0.5×10×0.151.0 m =0.75 m【考点】应用动能定理处理多过程问题【题点】应用动能定理处理含曲线运动的多过程问题针对训练2 如图4所示,质量m =1 kg 的木块静止在高h =1.2 m 的平台上,木块与平台间的动摩擦因数μ=0.2,用水平推力F =20 N ,使木块产生位移l 1=3 m 时撤去,木块又滑行l 2=1 m 后飞出平台,求木块落地时速度的大小.(g 取10 m/s 2)图4答案 11.3 m/s解析 解法一 取木块为研究对象,其运动分三个过程,先匀加速前进l 1,后匀减速前进l 2,再做平抛运动,对每一过程,分别由动能定理得 Fl 1-μmgl 1=12m v 12-μmgl 2=12m v 22-12m v 12mgh =12m v 32-12m v 22解得v 3≈11.3 m/s解法二 对全过程由动能定理得 Fl 1-μmg (l 1+l 2)+mgh =12m v 2-0代入数据解得v ≈11.3 m/s【考点】应用动能定理处理多过程问题【题点】应用动能定理处理含曲线运动的多过程问题 三、动能定理在平抛、圆周运动中的应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:①有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =0. ②没有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =gR . 例3 如图5所示,一可以看成质点的质量m =2 kg 的小球以初速度v 0沿光滑的水平桌面飞出后,恰好从A 点沿切线方向进入圆弧轨道,BC 为圆弧竖直直径,其中B 为轨道的最低点,C 为最高点且与水平桌面等高,圆弧AB 对应的圆心角θ=53°,轨道半径R =0.5 m.已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g 取10 m/s 2.图5(1)求小球的初速度v 0的大小;(2)若小球恰好能通过最高点C ,求在圆弧轨道上摩擦力对小球做的功. 答案 (1)3 m/s (2)-4 J解析 (1)在A 点由平抛运动规律得: v A =v 0cos 53°=53v 0.①小球由桌面到A 点的过程中,由动能定理得 mg (R +R cos θ)=12m v A 2-12m v 02②由①②得:v 0=3 m/s.(2)若小球恰好通过最高点C ,在最高点C 处有mg =m v C 2R ,小球从桌面运动到C 点的过程中,由动能定理得W f =12m v C 2-12m v 02,代入数据解得W f =-4 J.【考点】应用动能定理处理多过程问题【题点】应用动能定理处理含曲线运动的多过程问题 四、动能定理在多过程往复运动中的应用例4 某游乐场的滑梯可以简化为如图6所示竖直面内的ABCD 轨道,AB 为长L =6 m 、倾角α=37°的斜轨道,BC 为水平轨道,CD 为半径R =15 m 、圆心角β=37°的圆弧轨道,轨道AB 段粗糙,其余各段均光滑.一小孩(可视为质点)从A 点以初速度v 0=2 3 m/s 下滑,沿轨道运动到D 点时的速度恰好为零(不计经过B 点时的能量损失).已知该小孩的质量m =30 kg ,取sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,不计空气阻力,设最大静摩擦力等于滑动摩擦力,求:图6(1)该小孩第一次经过圆弧轨道C 点时,对圆弧轨道的压力; (2)该小孩与AB 段的动摩擦因数; (3)该小孩在轨道AB 上运动的总路程s . 答案 (1)420 N ,方向向下 (2)0.25 (3)21 m 解析 (1)由C 到D 速度减为0,由动能定理可得 -mg (R -R cos 37°)=0-12m v C 2,v C =215 m/s在C 点,由牛顿第二定律得 F N -mg =m v C 2R,F N =420 N根据牛顿第三定律,小孩对轨道的压力为420 N ,方向向下(2)小孩从A 运动到D 的过程中,由动能定理得:mgL sin α-μmgL cos α-mgR (1-cos β)=0-12m v 02 可得:μ=0.25(3)在AB 斜轨上,μmg cos α<mg sin α,小孩不能静止在斜轨上,则小孩从A 点以初速度v 0滑下,最后静止在BC 轨道B 处.由动能定理:mgL sin α-μmgs cos α=0-12m v 02解得s =21 m.1.在含有摩擦力的往复运动过程中,注意两种力做功的区别: (1)重力做功只与初末位置有关,而与路径无关;(2)滑动摩擦力(或全部阻力)做功与路径有关,克服摩擦力(或全部阻力)做的功W =F f s (s 为路程).2.由于动能定理解题的优越性,求多过程往复运动问题中的路程,一般应用动能定理.1.(用动能定理求变力的功)如图7所示,质量为m 的物体与水平转台间的动摩擦因数为μ,物体与转轴相距R ,物体随转台由静止开始转动.当转速增至某一值时,物体即将在转台上滑动,此时转台开始匀速转动.设物体的最大静摩擦力近似等于滑动摩擦力,则在整个过程中摩擦力对物体做的功是( )图7A.0B.2μmgRC.2πμmgRD.μmgR 2答案 D解析 物体即将在转台上滑动但还未滑动时,转台对物体的最大静摩擦力恰好提供向心力,设此时物体做圆周运动的线速度为v ,则有μmg =m v 2R.①在物体由静止到获得速度v 的过程中,物体受到的重力和支持力不做功,只有摩擦力对物体做功,由动能定理得:W =12m v 2-0.②联立①②解得W =12μmgR .【考点】应用动能定理求变力的功 【题点】应用动能定理求变力的功2.(用动能定理求变力的功)质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图8所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为( )图8A.12m v 02-μmg (s +x ) B.12m v 02-μmgx C.μmgs D.μmg (s +x )答案 A解析 由动能定理得-W -μmg (s +x )=0-12m v 02,W =12m v 02-μmg (s +x ).【考点】应用动能定理求变力的功 【题点】应用动能定理求变力的功3.(利用动能定理分析多过程往复运动问题)如图9所示,ABCD 为一竖直平面内的轨道,其中BC 水平,A 点比BC 高出10 m ,BC 长1 m ,AB 和CD 轨道光滑.一质量为1 kg 的物体,从A 点以4 m/s 的速度开始运动,经过BC 后滑到高出C 点10.3 m 的D 点速度为0.求:(g 取10 m/s 2)图9(1)物体与BC 轨道间的动摩擦因数; (2)物体第5次经过B 点时的速度; (3)物体最后停止的位置(距B 点多少米). 答案 (1)0.5 (2)13.3 m/s (3)距B 点0.4 m 解析 (1)由动能定理得-mg (h -H )-μmgs BC =0-12m v 12,解得μ=0.5.(2)物体第5次经过B 点时,物体在BC 上滑动了4次,由动能定理得mgH -μmg ·4s BC =12m v 22-12m v 12, 解得v 2=411 m/s ≈13.3 m/s.(3)分析整个过程,由动能定理得 mgH -μmgs =0-12m v 12,解得s =21.6 m.所以物体在轨道上来回运动了10次后,还有1.6 m ,故最后停止的位置与B 点的距离为2 m -1.6 m =0.4 m.【考点】应用动能定理处理多过程问题【题点】应用运动定理处理含曲线运动的多过程问题4.(动能定理在平抛、圆周运动中的应用)如图10所示,一个质量为m =0.6 kg 的小球以初速度v 0=2 m/s 从P 点水平抛出,从粗糙圆弧ABC 的A 点沿切线方向进入(不计空气阻力,进入圆弧时无动能损失)且恰好沿圆弧通过最高点C ,已知圆弧的圆心为O ,半径R =0.3 m ,θ=60°,g =10 m/s 2.求:图10(1)小球到达A 点的速度v A 的大小; (2)P 点到A 点的竖直高度H ;(3)小球从圆弧A 点运动到最高点C 的过程中克服摩擦力所做的功W . 答案 (1)4 m/s (2)0.6 m (3)1.2 J解析 (1)在A 点由速度的合成得v A =v 0cos θ,代入数据解得v A =4 m/s(2)从P 点到A 点小球做平抛运动,竖直分速度v y =v 0tan θ 由运动学规律有v y 2=2gH 解得H =0.6 m(3)恰好过C 点满足mg =m v C 2R由A 点到C 点由动能定理得 -mgR (1+cos θ)-W =12m v C 2-12m v A 2代入数据解得W =1.2 J.【考点】应用动能定理处理多过程问题【题点】应用运动定理处理含曲线运动的多过程问题一、选择题考点一 利用动能定理求变力的功1.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A.mgh -12m v 2-12m v 02B.12m v 2-12m v 02-mgh C.mgh +12m v 02-12m v 2D.mgh +12m v 2-12m v 02答案 C解析 选取物块从刚抛出到落地时的过程,由动能定理可得: mgh -W f 克=12m v 2-12m v 02解得:W f 克=mgh +12m v 02-12m v 2.【考点】应用动能定理求变力的功 【题点】应用动能定理求变力的功2.如图1所示,AB 为四分之一圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,它由轨道顶端A 从静止开始下滑,恰好运动到C 处停止,不计空气阻力,那么物体在AB 段克服摩擦力所做的功为( )图1A.12μmgR B.12mgR C.mgR D.(1-μ)mgR答案 D解析 设物体在AB 段克服摩擦力所做的功为W AB ,对物体从A 到C 的全过程,由动能定理得mgR -W AB -μmgR =0,故W AB =mgR -μmgR =(1-μ)mgR . 【考点】应用动能定理进行有关的计算【题点】应用动能定理求功3.一质量为m的小球,用长为l的轻绳悬挂于O点,小球在水平拉力F作用下,从平衡位置P点很缓慢地移动到Q点,如图2所示,则拉力F所做的功为()图2A.mgl cos θB.mgl(1-cos θ)C.Fl cos θD.Fl sin θ答案 B解析小球缓慢移动,时时都处于平衡状态,由平衡条件可知,F=mg tan θ,随着θ的增大,F也在增大,是一个变化的力,不能直接用功的公式求它所做的功,所以这道题要考虑用动能定理求解.由于物体缓慢移动,动能保持不变,由动能定理得:-mgl(1-cos θ)+W=0,所以W=mgl(1-cos θ).【考点】应用动能定理求变力的功【题点】应用动能定理求变力的功4.如图3所示,一木块沿竖直放置的粗糙曲面从高处滑下,当它滑过A点的速度大小为5 m/s 时,滑到B点的速度大小也为5 m/s.若使它滑过A点的速度大小变为7 m/s,则它滑到B点的速度大小为()图3A.大于7 m/sB.等于7 m/sC.小于7 m/sD.无法确定答案 C解析第一次从A点到B点的过程中:mgh-W f1=ΔE k=0,W f1=mgh第二次速度增大,木块对轨道的压力增大,W f2>W f1,故mgh-W f2<0,B点动能小于A点动能,C正确.【考点】应用动能定理求变力的功【题点】应用动能定理求变力的功5.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如图4所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是( )图4A.14mgR B.13mgR C.12mgR D.mgR答案 C解析 小球通过最低点时,设绳的张力为F T ,则 F T -mg =m v 12R ,6mg =m v 12R①小球恰好过最高点,绳子拉力为零,这时mg =m v 22R ②小球从最低点运动到最高点的过程中,由动能定理得 -mg ·2R -W f =12m v 22-12m v 12③由①②③式联立解得W f =12mgR ,选C.【考点】应用动能定理求变力的功 【题点】应用动能定理求变力的功6.(多选)如图5所示,某中学科技小组制作的利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板,光电板中产生的电流经电动机带动小车前进.若太阳光照射到小车上方的光电板,小车在平直的水泥路上从静止开始加速行驶,经过时间t 前进距离s ,速度达到最大值v m ,设这一过程中电动机的功率恒为P ,小车所受阻力恒为F ,那么( )图5A.这段时间内电动机所做的功为PtB.这段时间内小车先加速运动,然后匀速运动C.这段时间内电动机所做的功为12m v m 2+FsD.这段时间内电动机所做的功为12m v m 2答案 AC解析 根据W =Pt 知,这段时间内电动机所做的功为Pt ,故A 正确;电动机的功率不变,速度增大,则牵引力减小,加速度减小,先做加速度减小的加速运动,当加速度减为零后,做匀速直线运动,而在t 时间内做加速运动,故B 错误;根据动能定理得,W -Fs =12m v m 2,则这段时间内电动机做的功W =Fs +12m v m 2,故C 正确,D 错误.【考点】应用动能定理求变力的功 【题点】应用动能定理求变力的功 考点二 利用动能定理分析多过程问题7.(多选)在平直公路上,汽车由静止开始做匀加速直线运动,当速度达到v max 后,立即关闭发动机直至静止,v -t 图象如图6所示,设汽车的牵引力为F ,受到的摩擦力为F f ,全过程中牵引力做功为W 1,克服摩擦力做功为W 2,则( )图6A.F ∶F f =1∶3B.W 1∶W 2=1∶1C.F ∶F f =4∶1D.W 1∶W 2=1∶3答案 BC解析 对汽车运动的全过程,由动能定理得:W 1-W 2=ΔE k =0,所以W 1=W 2,选项B 正确,D 错误;由动能定理得Fx 1-F f x 2=0,由图象知x 1∶x 2=1∶4.所以 F ∶F f =4∶1,选项A 错误,C 正确. 【考点】应用动能定理处理多过程问题【题点】应用动能定理处理仅含直线运动的多过程问题8.如图7所示,一薄木板斜搁在高度一定的平台和水平地板上,其顶端与平台相平,末端置于地板的P 处,并与地板平滑连接.将一可看成质点的滑块自木板顶端无初速度释放,沿木板下滑,接着在地板上滑动,最终停在Q 处.滑块和木板及地板之间的动摩擦因数相同.现将木板截短一半,仍按上述方式搁在该平台和水平地板上,再次将滑块自木板顶端无初速度释放(设滑块在木板和地面接触处平滑过渡),则滑块最终将停在( )图7A.P 处B.P 、Q 之间C.Q 处D.Q 的右侧答案 C【考点】应用动能定理处理多过程问题【题点】应用动能定理处理仅含直线运动的多过程问题9.(多选)如图8所示为一滑草场.某条滑道由上、下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin 37°=0.6,cos 37°=0.8).则( )图8A.动摩擦因数μ=67B.载人滑草车最大速度为2gh 7C.载人滑草克服摩擦力做功为mghD.载人滑草车在下段滑道上的加速度大小为35g答案 AB解析 根据动能定理有2mgh -W f =0,即2mgh -μmg cos 45°·h sin 45°-μmg cos 37°·hsin 37°=0,得动摩擦因数μ=67,则A 项正确;载人滑草车克服摩擦力做的功为W f =2mgh ,则C 项错误;载人滑草车在上、下两段的加速度分别为a 1=g (sin 45°-μcos 45°)=214g ,a 2=g (sin 37°-μcos 37°)=-335g ,则载人滑草车在上、下两段滑道上分别做加速运动和减速运动,因此在上段滑道底端时达到最大速度v ,由运动学公式有2a 1hsin 45°=v 2得,v =2a 1hsin 45°=27gh ,故B 项正确,D 项错误.【考点】应用动能定理处理多过程问题【题点】应用动能定理处理仅含直线运动的多过程问题二、非选择题10.(应用动能定理分析多过程问题)如图9所示,自然伸长的轻弹簧左端固定在竖直墙上,右端在O 位置,质量为m 的物块A (可视为质点)以初速度v 0从距O 点x 0的P 点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O ′点位置后,A 又被弹簧弹回.A 离开弹簧后,恰好回到P 点,物块A 与水平面间的动摩擦因数为μ,重力加速度为g .图9(1)求物块A 从P 点出发又回到P 点的过程中,克服摩擦力所做的功. (2)求O 点和O ′点间的距离x 1. 答案 (1)12m v 02 (2)v 024μg-x 0解析 (1)A 从P 开始运动,最后回到P 的过程,根据动能定理得:摩擦力所做的功为W f =0-12m v 02=-12m v 02,即克服摩擦力做功为12m v 02. (2)A 从P 开始运动,最后回到P 的全过程,根据动能定理,有-2μmg (x 1+x 0)=0-12m v 02,得x 1=v 024μg-x 0.【考点】应用动能定理处理多过程问题【题点】应用动能定理处理含弹力做功的多过程问题11.(应用动能定理分析多过程问题)如图10所示,光滑水平面AB 与一半圆形轨道在B 点平滑连接,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C 点,重力加速度为g .求:图10(1)弹簧弹力对物块做的功;(2)物块从B 到C 克服阻力所做的功;(3)物块离开C 点后,再落回到水平面上时的动能.答案 (1)3mgR (2)12mgR (3)52mgR解析 (1)由动能定理得W =12m v B 2在B 点由牛顿第二定律得7mg -mg =m v B 2R解得W =3mgR(2)物块从B 到C 由动能定理得 -2mgR +W ′=12m v C 2-12m v B 2物块在C 点时mg =m v C 2R解得W ′=-12mgR ,即物块从B 到C 克服阻力做功为12mgR .(3)物块从C 点平抛到水平面的过程中,由动能定理得 2mgR =E k -12m v C 2,解得E k =52mgR .【考点】应用动能定理处理多过程问题【题点】应用动能定理处理含弹力做功的多过程问题12.(应用动能定理分析多过程问题)如图11所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 长度l BC =1.1 m ,CD 为光滑的14圆弧,半径R =0.6 m.一个质量m =2 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.2,轨道在B 、C 两点平滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.2 m.不计空气阻力,sin 53°=0.8,cos 53°=0.6,g 取10 m/s 2.求:图11(1)物体运动到C 点时的速度大小v C ; (2)A 点距离水平面的高度H ;(3)物体最终停止的位置到C 点的距离s . 答案 (1)4 m/s (2)1.02 m (3)0.4 m解析 (1)物体由C 点运动到最高点,根据动能定理得: -mg (h +R )=0-12m v C 2代入数据解得:v C =4 m/s(2)物体由A 点运动到C 点,根据动能定理得:mgH -μmgl BC =12m v C 2-0代入数据解得:H =1.02 m(3)从物体开始下滑到停下,根据动能定理得: mgH -μmgs 1=0代入数据,解得s 1=5.1 m 由于s 1=4l BC +0.7 m所以,物体最终停止的位置到C 点的距离为:s =0.4 m. 【考点】应用动能定理处理多过程问题【题点】应用动能定理处理含曲线运动的多过程问题1.(应用动能定理分析多过程问题)2016年11月1日广东珠海开幕的第十一届中国国际航空航天博览会上,空军“八一”飞行表演队的6架歼-10战斗机为现场数千名观众带来了一场震撼表演.如图1所示,某次飞行表演中,飞行员驾驶飞机在竖直面内做半径为R 的圆周运动,在最高点时飞行员头朝下,已知飞行员质量为m 、重力加速度为g .图1(1)若飞行员在最高点座椅对他的弹力和飞机在地面上起飞前一样,求最高点的速度; (2)若这位飞行员以(1)中的速度从最高点加速飞到最低点,且他在最低点能承受的最大竖直加速度为5g ,求飞机在最低点的最大速度及这个过程中飞机对飞行员做的功. 答案 (1)2gR (2)5gR -12mgR解析 (1)最高点座椅对飞行员的弹力F N =mg由重力和弹力的合力提供向心力F N +mg =m v 12R,v 1=2gR(2)最低点向心加速度最大时速度也最大,a n =m v 22R=5g ,速度最大为v 2=5gR对最高点到最低点的过程运用动能定理,有mg ×2R +W =12m v 22-12m v 12,解得W =-12mgR .【考点】应用动能定理处理多过程问题【题点】应用动能定理处理含曲线运动的多过程问题2.(应用动能定理分析多过程问题)如图2所示是一种常见的圆桌,桌面中间嵌一半径为r =1.5 m 、可绕中心轴转动的圆盘,桌面与圆盘面在同一水平面内且两者间缝隙可不考虑.已知桌面离地高度为h =0.8 m ,将一可视为质点的小碟子放置在圆盘边缘,若缓慢增大圆盘的角速度,碟子将从圆盘上甩出并滑上桌面,再从桌面飞出,落地点与桌面飞出点的水平距离是0.4 m.已知碟子质量m =0.1 kg ,碟子与圆盘间的最大静摩擦力F fmax =0.6 N ,g 取10 m/s 2,求:(不计空气阻力)图2(1)碟子从桌面飞出时的速度大小;(2)碟子在桌面上运动时,桌面摩擦力对它做的功;(3)若碟子与桌面动摩擦因数为μ=0.225,要使碟子不滑出桌面,则桌面半径至少是多少? 答案 (1)1 m/s (2)-0.4 J (3)2.5 m解析 (1)根据平抛运动规律:h =12gt 2,x =v t ,得v =xg2h=1 m/s. (2)碟子从圆盘上甩出时的速度为v 0,则F fmax =m v 02r ,即v 0=3 m/s由动能定理得:W f =12m v 2-12m v 02,代入数据得:W f =-0.4 J.(3)当碟子滑到桌面边缘时速度恰好减为零,对应的桌子半径取最小值. 设碟子在桌子上滑动的位移为x ′,根据动能定理:-μmgx ′=0-12m v 02代入数据得:x ′=2 m由几何知识可得桌子半径的最小值为:R =r 2+x ′2=2.5 m. 【考点】应用动能定理处理多过程问题【题点】应用动能定理处理含曲线运动的多过程问题3.(应用动能定理分析多过程问题)如图3所示为一遥控电动赛车(可视为质点)和它的运动轨道示意图.假设在某次演示中,赛车从A 位置由静止开始运动,经2 s 后关闭电动机,赛车继续前进至B 点后水平飞出,赛车能从C 点无碰撞地进入竖直平面内的圆形光滑轨道,D 点和E 点分别为圆形轨道的最高点和最低点.已知赛车在水平轨道AB 段运动时受到的恒定阻力为0.4 N ,赛车质量为0.4 kg ,通电时赛车电动机的输出功率恒为2 W ,B 、C 两点间高度差为0.45 m ,C 与圆心O 的连线和竖直方向的夹角α=37°,空气阻力忽略不计, sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,求:图3(1)赛车通过C 点时的速度大小; (2)赛道AB 的长度;(3)要使赛车能通过圆轨道最高点D 后回到水平赛道EG ,其半径需要满足什么条件? 答案 (1)5 m/s (2)2 m (3)R ≤2546m解析 (1)赛车在BC 间做平抛运动,则v y =2gh =3 m/s由图可知:v C =v ysin 37°=5 m/s (2)由(1)可知B 点速度v 0=v C cos 37°=4 m/s 则根据动能定理:Pt -F f l AB =12m v 02,解得l AB =2 m.(3)当恰好通过最高点D 时,有:mg =m v D 2R从C 到D ,由动能定理可知:-mgR (1+cos 37°)=12m v D 2-12m v C 2,解得R =2546 m所以轨道半径R ≤2546m.【考点】应用动能定理处理多过程问题【题点】应用动能定理处理含曲线运动的多过程问题4.(应用动能定理分析多过程问题)如图4所示,在竖直平面内,长为L 、倾角θ=37°的粗糙斜面AB 下端与半径R =1 m 的光滑圆弧轨道BCDE 平滑相接于B 点,C 点是轨迹最低点,D 点与圆心O 等高.现有一质量m =0.1 kg 的小物体从斜面AB 上端的A 点无初速度下滑,恰能到达圆弧轨道的D 点.若物体与斜面之间的动摩擦因数μ=0.25,不计空气阻力,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,求:。
动能定理求解多过程问题(解析版)
![动能定理求解多过程问题(解析版)](https://img.taocdn.com/s3/m/e5588335f705cc1754270956.png)
动能定理求解多过程问题1. 由于多过程问题的受力情况、运动情况比较复杂,从动力学的角度分析往往比较复杂,利用动能定理分析此类问题,是从总体上把握研究对象运动状态的变化,并不需要从细节上了解。
2.运用动能定理解决问题时,有两种思路:一种是全过程列式,另一种是分段列式。
3.全过程列式时,涉及重力、弹簧弹力、大小恒定的阻力或摩擦力做功时,要注意运用它们的特点:(1) 重力、弹簧弹力做功取决于物体的初、末位置,与路径无关。
(2) 大小恒定的阻力或摩擦力做功等于力的大小与路程的乘积。
4. 利用动能定理求解多过程问题的基本思路(1) 弄清物体的运动由哪些过程组成。
(2) 分析每个过程中物体的受力情况。
(3) 各个力做功有何特点,对动能的变化有无影响。
(4) 从总体上把握全过程,写出总功表达式,找出初、末状态的动能。
(5) 对所研究的全过程运用动能定理列方程。
【典例1】如图所示,AB、CD 为两个对称斜面,其上部足够长,下部B、C 分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R为 2.0 m,一个物体在离弧底E高度为h=3.0 m 处,以初速度v =4.0 m/s 沿斜面运动,若物体与两斜面间的动摩擦因数均为0.02,则物体在两斜面上(不包括圆弧部分)一共对全过程应用动能定理得12mgh-R(1-cos 60 )°-μmgcsos 60 =°0-2mv2,解得s=280 m。
【典例2】如图所示,质量m=6.0 kg 的滑块(可视为质点),在F=60 N的水平拉力作用下从A点由静止开始运动,一段时间后撤去拉力F,当滑块由平台边缘 B 点飞出后,恰能从水平地面上的 C 点沿切线方向落入竖直圆弧轨道CDE,并从轨道边缘 E 点竖直向上飞出,经过0.4 s后落回E点。
已知A、B 间的距离L =2.3 m,滑块与平台间的动摩擦因数μ=0.5,平台离地面高度h=0.8 m,B、C 两点间水平距离x=1.2 m,圆弧轨道半径R=1.0 m。
动能定理习题
![动能定理习题](https://img.taocdn.com/s3/m/40dfd65c84868762cbaed57e.png)
动能定理习题课一、利用动能定理求解多过程问题例1、以10m/s的初速度竖直向上抛出一个质量为0.5kg的物体,它上升的最大高度为4m,设空气对物体的阻力大小不变,求物体落回抛出点时的动能。
二、利用动能定理求变力做的功例2、如图所示,一球从高出地面H米处由静止自由落下,忽略空气阻力,落至地面后并深入地下h米处停止,设球质量为m,求球在落入地面以下过程中受到的平均阻力。
三、利用动能定理求解多个力做功的问题例3、如图所示,物体置于倾角为37度的斜面的底端,在恒定的沿斜面向上的拉力的作用下,由静止开始沿斜面向上运动。
F大小为2倍物重,斜面与物体的动摩擦因数为0.5,求物体运动5m时速度的大小。
(g=10m/s2)课堂练习:1、一粒子弹以700m/s的速度射入一块木块,射穿后的速度降为500m/s,则这粒子弹能再穿过_____块同样的木块。
(设木块固定,子弹受到阻力恒定)。
2、细绳一端拴着一个小球,在光滑的水平桌面上做匀速圆周运动,则在运动中,绳的拉力对小球做的功为。
3、质量为m的滑块沿着高为h,长为L的粗糙斜面恰能匀速下滑,在滑块从斜面顶端下滑到底端的过程中:()A、重力对滑块所做的功为mghB、滑块克服阻力所做的功等于mghC、合力对滑块所做的功为mghD、合力对滑块所做的功不能确定4、从高h处以相同的速度先后抛出三个质量相同的球,其中一个上抛一个下抛,另一个平抛,不计空气阻力,则从抛出到落地()A、重力对它们做的功相同B、落地时它们的动能相同C、落地时它们的速度相同D、以上说法都不对5、一个质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度是2m/s,分别求手对物体做的功、合力对物体做的功和物体克服重力做的功为多少(g 取10m/s 2)6、质量为m 的物体从高为h 的斜面顶端自静止起下滑,最后停在平面上的B 点,如图所示,若该物体从斜面顶端以初速度0v 沿斜面滑下,则停在平面上的C 点,已知AB=BC ,则物体在斜面上克服摩擦力所做的功为多少?1.在同一高度处,将三个质量相同的球平抛,落在同一水平面上的过程中,A .W W W P P a b c b c a ==>>,a b c a b c C .W W W P P P a b c a b c >>>>, D .W W W P P P a b c a b c >><<, 2.a 、b 、c 三个物体质量分别为m 、2m 、3m ,它们在水平路面上某时刻运动的动能相等。
应用动能定理解决多过程问题
![应用动能定理解决多过程问题](https://img.taocdn.com/s3/m/a2b70aee58fb770bf68a55c6.png)
应用动能定理解决多过程问题江苏省射阳中学 赵海明 (224300)E ―mail:动能定理是高中物理的一个重要定理,也是高考中的一个热点。
对于每一个高中生来说,在物理的学习中,都必须能灵活地运用动能定理。
在高考中,经常会出现复杂的多过程问题,下面就通过例题谈谈如何应用动能定理解决多过程问题。
例1、如图所示,物体从高为h 的斜面体的顶端A 由静止开始滑下,滑到水平面上的B 点停止,A 到B 的水平距离为S ,已知:斜面体和水平面都由同种材料制成。
求:物体与接触面间的动摩擦因数解析:设物体质量为m ,斜面长为l ,物体与接触面间的动摩擦因数为μ ,斜面与水平面间的 夹角为θ,滑到C 点的速度为V ,法一:分段列式法物体从A 滑到C ,根据动能定理有: 物体从C 滑到B,根据动能定理得: 联立上式解得: 法二:全程列式法物体从A 滑到B,根据动能定理得:联立解得: 点评:对于本题物体的运动经历了两个过程:先匀加速运动,接着匀减速运动。
应用动能定理可以分段分析,也可以对全过程分析;分段分析法比较直观、容易理解,而对全程进行分析能够使问题变得简捷,提高解题效率。
例2、如图所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度V 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?解析: 滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底21cos 2cos DC mgh mgl mv l S μθθ-==212CB mgS mv μ-=-h S μ=cos 0cos CB CB mgh mgl mgS l S Sμθμθ--=+=h Sμ=端。
在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功。
7动能定理多过程问题
![7动能定理多过程问题](https://img.taocdn.com/s3/m/420967ffa98271fe910ef99e.png)
应用动能定理求解多过程问题考点规律分析(1)应用动能定理求解多过程问题的两种方法物体的运动过程可分为几个运动性质不同的阶段(如加速、减速的阶段)时,可以分段分析应用动能定理,也可以对全过程整体分析应用动能定理,但当题目不涉及中间量时,选择全过程整体分析应用动能定理会更简单、更方便。
(2)全过程应用动能定理时的注意事项①当物体的运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移。
计算总功时,应计算整个过程中出现过的各力做功的代数和。
②研究初、末动能时,只需关注初、末状态,不必关心运动过程的细节。
典型例题例 如图所示,物体在离斜面底端5 m 处由静止开始下滑,然后滑到由小圆弧连接的水平面上,若物体与斜面及水平面的动摩擦因数均为0.4,斜面倾角为37°。
求物体能在水平面上滑行多远。
[规范解答] 解法一:(分段法)对物体在斜面上和水平面上时受力分析,如图甲、乙所示。
物体下滑阶段F N1=mg cos37°,故F f1=μF N1=μmg cos37°。
由动能定理得mg sin37°·x 1-μmg cos37°·x 1=12m v 21-0①在水平面上运动过程中,F f2=μF N2=μmg由动能定理,得-μmgx 2=0-12m v 21 ②由①②两式可得x2=sin37°-μcos37°μx1=0.6-0.4×0.80.4×5 m=3.5 m。
解法二:(全程法)物体受力分析同解法一。
物体运动的全过程中,初、末状态的速度均为零,对全过程应用动能定理有mg sin37°·x1-μmg cos37°·x1-μmgx2=0-0得x2=sin37°-μcos37°μx1=0.6-0.4×0.80.4×5 m=3.5 m。
运用动能定理求解多过程问题
![运用动能定理求解多过程问题](https://img.taocdn.com/s3/m/656ef930f7ec4afe05a1df22.png)
V
F
s1
s
v
t
01 234
撤去F前,由动能定理得 撤去F后,由动能定理得
(F
–
f)s1
=
1 2
mV2
– f(s –s1) =
0
–
1 2
mV2
两式相加得 F s1 +( –fs)= 0
由解法1 知 F : f = 4 :1
创新微课
运用动能定理求解多过程问题
小结
分段研究 整体研究
动能定理应用
受力分析 分力做功 对应位移
F
s1
s
v
t
01 234
创新微课
运用动能定理求解多过程问题
解法1
由动能定理得 WF + Wf =0 v
F
s1
s
01
t
234
即:Fs1 +( –fs)=0 所以 F :f = s :s1
由V–t图线知 s :s1 = 4 :1
结果:F :f = 4 :1
创新微课
运用动能定理求解多过程问题
解法2 分段用动能定理
创新微课
同学,下节再见
创新微课 现在开始
运用动能定理求 解多过程问题
运用动能定理求解多过程问题
一、竖直方向上的全过程问题
创新微课
【例1】质量为m的小球从距沙坑表面h高 处自由落下,进入沙坑,小球在沙坑中运 动的最大深度为d,求小球在沙坑中运动 受到的平均阻力大小.
mg f
对全过程: W总=mg(h d ) fd
Ek1=Ek2 0
h
d mg
mg(h d) fd 0 0
运用动能定理求解多过程问题
高一物理必修2动能和动能定理--知识讲解有答案
![高一物理必修2动能和动能定理--知识讲解有答案](https://img.taocdn.com/s3/m/3dda996ced630b1c59eeb576.png)
动能和动能定理要点二、动能、动能的改变要点诠释:1.动能:(1)概念:物体由于运动而具有的能叫动能.物体的动能等于物体的质量与物体速度的二次方的乘积的一半.(2)定义式:212k E mv =,v 是瞬时速度. (3)单位:焦(J ).(4)动能概念的理解.①动能是标量,且只有正值.②动能具有瞬时性,在某一时刻,物体具有一定的速度,也就具有一定的动能.③动能具有相对性,对不同的参考系,物体速度有不同的瞬时值,也就具有不同的动能,一般都以地面为参考系研究物体的运动.2.动能的变化:动能只有正值,没有负值,但动能的变化却有正有负.“变化”是指末状态的物理量减去初状态的物理量.动能的变化量为正值,表示物体的动能增加了,对应于合力对物体做正功;动能的变化量为负值,表示物体的动能减小了,对应于合力对物体做负功,或者说物体克服合力做功.要点三、动能定理要点诠释:(1)内容表述:外力对物体所做的总功等于物体功能的变化.(2)表达式:21k k W E E =-,W 是外力所做的总功,1k E 、2k E 分别为初、末状态的动能.若初、末速度分别为v 1、v 2,则12112k E mv =,22212k E mv =. (3)物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化.变化的大小由做功的多少来量度.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.等号的意义是一种因果关系的数值上相等的符号,并不意味着“功就是动能增量”,也不是“功转变成动能”,而是“功引起物体动能的变化”.(4)动能定理的理解及应用要点.动能定理虽然可根据牛顿定律和运动学方程推出,但定理本身的意义及应用却具有广泛性和普遍性. ①动能定理既适用于恒力作用过程,也适用于变力作用过程.②动能定理既适用于物体做直线运动情况,也适用于物体做曲线运动情况.③动能定理的研究对象既可以是单个物体,也可以是几个物体所组成的一个系统.④动能定理的研究过程既可以是针对运动过程中的某个具体过程,也可以是针对运动的全过程. ⑤动能定理的计算式为标量式,v 为相对同一参考系的速度.⑥在21k k W E E =-中,W 为物体所受所有外力对物体所做功的代数和,正功取正值计算,负功取负值计算;21k k E E -为动能的增量,即为末状态的动能与初状态的动能之差,而与物体运动过程无关.要点四、应用动能定理解题的基本思路和应用技巧要点诠释:1.应用动能定理解题的基本思路(1)选取研究对象及运动过程;(2)分析研究对象的受力情况及各力对物体的做功情况:受哪些力?哪些力做了功?正功还是负功?然后写出各力做功的表达式并求其代数和;(3)明确研究对象所历经运动过程的初、末状态,并写出初、末状态的动能1K E 、2K E 的表达式;(4)列出动能定理的方程:21K K W E E =-合,且求解。
高中物理动能定理在多过程问题中的应用
![高中物理动能定理在多过程问题中的应用](https://img.taocdn.com/s3/m/029b76e69fc3d5bbfd0a79563c1ec5da50e2d6ee.png)
高中物理动能定理在多过程问题中的应用题型一动能定理在多过程问题中的应用1.运用动能定理解决多过程问题,有两种思路(1)分阶段应用动能定理①若题目需要求某一中间物理量,应分阶段应用动能定理.②物体在多个运动过程中,受到的弹力、摩擦力等力若发生了变化,力在各个过程中做功情况也不同,不宜全过程应用动能定理,可以研究其中一个或几个分过程,结合动能定理,各个击破.(2)全过程(多个过程)应用动能定理当物体运动过程包含几个不同的物理过程,又不需要研究过程的中间状态时,可以把几个运动过程看作一个整体,巧妙运用动能定理来研究,从而避开每个运动过程的具体细节,大大简化运算.2.全过程列式时要注意(1)重力、弹簧弹力做功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力做功的数值等于力的大小与路程的乘积.例1(多选)2022年北京和张家口将携手举办冬奥会,因此在张家口建造了高标准的滑雪跑道,来迎接冬奥会的到来。
如图所示,一个滑雪运动员从左侧斜坡距离坡底8 m处自由滑下,当下滑到距离坡底s1处时,动能和势能相等(以坡底为参考平面);到坡底后运动员又靠惯性冲上右侧斜坡(不计经过坡底时的机械能损失),当上滑到距离坡底s2处时,运动员的动能和势能又相等,上滑的最大距离为4 m。
关于这个过程,下列说法中正确的是( )A.摩擦力对运动员所做的功等于运动员动能的变化B.重力和摩擦力对运动员所做的总功等于运动员动能的变化C.s1<4 m,s2>2 mD.s1>4 m,s2<2 m答案:BC运动员在斜坡上滑行的过程中只有重力和摩擦力做功,由动能定理可知A项错,B 项对。
从左侧斜坡距离坡底s=8 m处滑至距离坡底s1处的过程中,由动能定理得mg(s-s1)sin α-W f=mv2-0①,因为下滑到距离坡底s1处时动能和势能相等,所以有mgs1sin α=mv2②,由①②两式联立得mg(s-s 1) si n α-W f =mgs 1 sin α,可知s-s 1>s 1,即s 1<=4 m 。
动能动能定理---单个物体多过程问题
![动能动能定理---单个物体多过程问题](https://img.taocdn.com/s3/m/1bd6ddc9d4d8d15abf234e18.png)
仙源学校高三分校物理讲学稿【课题】动能和动能定理———单个物体多过程问题第5节【考纲要求】动能和动能定理Ⅱ【本节重点】单个物体、多过程的动能定理的应用【方法指导】(1)明确研究对象和研究过程:研究对象一般取单个物体,可以对某个运动阶段应用动能定理,也可以对整个运动过程(全程)使用动能定理.(2)分析受力及各力做功的情况:①受哪些力?②每个力是否做功?③在哪段位移哪段过程中做功?④做正功还是负功?⑤用恒力功的公式列出各力做功的代数和,对变力功或要求的功用W表示.(3)明确过程始末状态的动能E k1和E k2.(4)列出动能定理方程式W1+W2+W3+…=12mv22-12mv21求解.【自主再现】完成《高考调研》P60“自主再现”内容,展台展示。
【互助探究】例1:如图所示,一小物块从倾角θ=37°的斜面上的A点由静止开始滑下,最后停在水平面上的C点.已知小物块的质量m= kg,小物块与斜面和水平面间的动摩擦因数均为μ=,A点到斜面底部B点的距离L= m,斜面与水平面平滑连接,小物块滑过斜面与水平面连接处时无机械能损失.求:(1)小物块在斜面上运动时的加速度大小;(2)BC间的距离;(3)若在C点给小物块一水平初速度使小物块恰能回到A点,此初速度为多大?(取g=10 m/s2)跟踪训练:如图所示装置由AB、BC、CD三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB、CD段是光滑的,水平轨道BC的长度s=5 m,轨道CD足够长且倾角θ=37°,A、D两点离轨道BC的高度分别为h1= m、h2= m.现让质量为m的小滑块自A点由静止释放.已知小滑块与轨道BC间的动摩擦因数μ=,重力加速度g 取10 m/s2,sin37°=、cos37°=.求:(1)小滑块第一次到达D点时的速度大小;(2)小滑块第一次与第二次通过C点的时间间隔;(3)小滑块最终停止的位置距B点的距离.诱思启导(1)从A到D的整个过程中,各个阶段各力做的功都可由功的公式表达,可对全程应用动能定理.(2)滑动摩擦力(大小一定)做的总功等于摩擦力与物体总路程的乘积.(3)涉及时间的问题不应考虑动能定理.题后反思【课堂训练】1.如图所示,让摆球从图中的A位置由静止开始下摆,正好摆到最低点B位置时线被拉断.已知OA与竖直方向的夹角为θ=600,摆线长l=1.6 m,悬点到地面的竖直高度为H= m, g取10 m/s2,不计空气阻力,求:(1)摆球落地时的速度。
应用动能定理解决多过程问题-高考物理复习
![应用动能定理解决多过程问题-高考物理复习](https://img.taocdn.com/s3/m/81941c311fb91a37f111f18583d049649a660e62.png)
A级 基础对点练 1.(2024·陕西宝鸡高三期末)如图1所示,ABCD是一条长轨道,其中AB段是倾角
为θ的斜面,CD段是水平的,BC段是与AB和CD都相切的一小段圆弧,其长度 可以略去不计。一质量为m的滑块(可看作质点)在A点由静止释放,沿轨道滑下, 最后停在D点,A点和D点的位置如图所示。现用一方向始终与轨道平行的力推 滑块,使它缓慢地由D点推回到A点。滑块与轨道间的动摩擦因数为μ,重力加
g,则滑块经过的总路程是( A )
Байду номын сангаас
A.1μ2gcvo20s θ+s0tan θ
B.μ12gsvi20n θ+s0tan θ
C.2μ2gcvo20s θ+s0tan θ
D.μ12gcvo20s
θ+tasn0
θ
图4
目录
研透核心考点
解析 滑块最终要停在斜面底部,设滑块经过的总路程为 s,对滑块运动的全程 应用动能定理得 mgs0sin θ-μmgscos θ=0-12mv20,解得 s=μ12gcvo20s θ+s0tan θ, 选项 A 正确。
目录
研透核心考点
1.如图2所示,水平桌面上的轻质弹簧左端固定,右端与静止在O点质量为m= 1 kg的小物块接触而不连接,此时弹簧无形变。现对小物块施加F=10 N的 水平向左的恒力,使其由静止开始向左运动。小物块在向左运动到A点前某 处速度最大时,弹簧的弹力为6 N,运动到A点时撤去推力F,小物块最终运 动到B点静止。图中OA=0.8 m,OB=0.2 m,重力加速度取g=10 m/s2。求 小物块: (1)与桌面间的动摩擦因数μ; 图2 (2)向右运动过程中经过O点的速度大小; (3)向左运动的过程中弹簧的最大压缩量。
mg(s0+x)sin θ-μmg(s0+x)cos θ-Ep=12mv2m
《利用动能定理分析变力做功和多过程问题》解题技巧
![《利用动能定理分析变力做功和多过程问题》解题技巧](https://img.taocdn.com/s3/m/2999f252e53a580217fcfe5d.png)
《利用动能定理分析变力做功和多过程问题》解题技巧一、利用动能定理求变力做功1•动能定理不仅适用于求恒力做的功,也适用于求变力做的功,同时因为不涉及变力作用的过程分析,应用非常方便.2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和儿个恒力作用时,可以用动能定理间接求变力做的功,即/役+“1他=△瓦例❶如图1所示,质量为也的小球山静止自山下落孑后,沿竖直面内的固定轨道遊运动,月万是半径为〃的N光滑圆弧轨道,万C是直径为d的粗糙半圆弧轨道(万是轨道的最低点)•小球恰能通过圆弧轨道的最高点C.重力加速度为g, 求:⑴小球运动到万处时对轨道的压力大小(可认为此时小球处在轨道M上);(2)小球在庞运动过程中,摩擦力对小球做的功.3答案(1) 5zz7g (2)—孑聒孑解析⑴小球山静止运动到万点的过程,山动能定理得2驱/=尹几在万点,山牛顿第二定律得尺一碑=形,根据牛顿第三定律:小球在万处对轨道的压力大小(2)小球恰能通过C点,则mg—nr-^,2小球从万运动到c的过程:1 片1 . 3—/ngd+ ff;=^nv2—严V ,得―严如.针对训练1如图2所示,有一半径为r=0.5m的粗糙半圆轨道,貳与圆心 0等奇,有一质量为2z?=0・2kg的物块(可视为质点),从久点静止滑下,滑至最低点万时的速度为r=l m/s,取g =10 m/乳下列说法正确的是(A•物块过万点时,对轨道的压力大小是0.4 NB•物块过万点时,对轨道的压力大小是2,0 NC.S到万的过程中,克服摩擦力做的功为0.9 JD•貳到万的过程中,克服摩擦力做的功为0.1 J答案Cy解析在万点山牛顿第二定律可知尺一碑=k,解得:尺=2・4N,山牛顿r第三定律可知物块对轨道的压力大小为2.4 N,故A、B均错误;仏到万的过程, 山动能定理得驱卄他=尹〒一0,解得妮=一0・91,故克服摩擦力做功为0.9 J, 故C正确,D错误.二.利用动能定理分析多过程问题一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.(1)分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式, 然后联立求解.(2)全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动 能,针对整个过程利用动能定理列武求解.当题U 不涉及中间量时,选择全程应用动能定理更简单,更方便.注意:当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同, 汁算各力做功时,应注童各力对应的位移•计算总功时,应计算整个过程中出现 过的各力做功的代数和.例❷ 如图3所示,右端连有一个光滑弧形槽的水平桌面夕长Z=1.5 m, 一个质量为仍=0.5 kg 的木块在尸 =1.5 N 的水平拉力作用下,从桌面上的力端 山静止开始向右运动,木块到达万端时撤去拉力只 木块与水平桌面间的动摩擦 因数M =0・2,取g=10 m/sl 求:(1)木块沿弧形槽上升的最大高度(木块未离开弧形槽);(2)木块沿弧形槽滑回万端后,在水平桌面上滑行的最大距离.答案(1)0. 15 m (2)0. 75 m解析(1)设木块沿弧形槽上升的最大面度为力,木块在最高点时的速度为 零•从木块开始运动到沿弧形槽上升到最大高度处,山动能定理得:FL —E E L —mgh=0其中耳=“代=//驱=0・ 2X0. 5X10 N=L0 N(2)设木块离开万点后,在水平桌面上滑行的最大距离为X,由动能定理得: mgh —F 《x=0针对训练2图4中如?是一条长轨道,其中肋段是倾角为"的斜面,Q 段是水平的,庞段是与仏万段和d 段都相切的一小段圆弧,其长度可以略去 不计•一质量为屈的小滑块在力点从静止释放,沿轨道滑下,最后停在D 点,A 点和"点的位置如图4所示,现用一沿轨道方向的力推滑块,使它缓缓地山〃点 回到力点,设滑块与轨道间的动摩擦因数为M ,«力加速度为g,则推力对滑块 做的功等于( ___A 1 B所以〃口巴]"廿.]“ mg 0.5X10所以.戸燮=半譽』,=0.75 . 1.0图3D. “zpg(s+Acos ") 答案B 解析 滑块山力点运动至〃点,设克服摩擦力做功为他,山动能定理得驱力 一战>=0,即臥Fh …①,滑块从〃点回到£点,山于是缓慢推,说明动能变 化量为零,设克服摩擦力做功为伦,山动能定理知当滑块从〃点被推回£点有 呢一驱力一抵=0…②,山4点运动至〃点,克服摩擦力做的功为%= H/ngcos.h + sgs …③,从D-^A 的过程克服摩擦力做的功为%= Sgcos Sin e 0 • • " .+ mgs…④,③④联立得血>=他…⑤,①②⑤联立得朴=2圖 阪 sinA 、C 、D 错误,B 正确•三. 动能定理在平抛、圆周运动中的应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1) 与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位 移或分解速度求平抛运动的有关物理量.(2) 与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件: ①可捉供支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件 为仏h=0・②不可提供支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为例❸ 如图5所示,一可以看成质点的质量zz?=2kg 的小球以初速度%沿光A.mghB. 2mgh滑的水平桌面飞出后,恰好从/点沿切线方向进入圆弧轨道,万C为圆弧竖直直径,其中万为轨道的最低点,C为最高点且与水平桌面等高,圆弧初对应的圆心角"=53。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分校: _高三__ 学科: 物理 课型: 复习课 执笔人: 赵良奎 审核人: 胡圣山 仙源学校高三分校物理讲学稿
【课题】动能和动能定理———单个物体多过程问题 2013.10.31第5节
【考纲要求】动能和动能定理 Ⅱ
【本节重点】单个物体、多过程的动能定理的应用
【方法指导】
(1)明确研究对象和研究过程: 研究对象一般取单个物体,可以对某个运动阶段应用动能定理,也可以对整个运动过程(全程)使用动能定理. (2)分析受力及各力做功的情况: ①受哪些力? ②每个力是否做功? ③在哪段位移哪段过程中做功? ④做正功还是负功? ⑤用恒力功的公式列出各力做功的代数和,对变力功或要求的功用W 表示. (3)明确过程始末状态的动能E k1和E k2. (4)列出动能定理方程式W 1+W 2+W 3+…=12m v 22-12m v 21 求解. 【自主再现】 完成《高考调研》P 60“自主再现”内容,展台展示。
【互助探究】 例1:如图所示,一小物块从倾角θ=37°的斜面上的A 点由静止开始滑下,最后停在水平面上的C 点.已知小物块的质量m =0.10 kg ,小物块与斜面和水平面间的动摩擦因数均为μ=0.25,A 点到斜面底部B 点的距离L =0.50 m ,斜面与水平面平滑连接,小物块滑过斜面与水平面连接处时无机械能损失.求: (1)小物块在斜面上运动时的加速度大小; (2)BC 间的距离; (3)若在C 点给小物块一水平初速度使小物块恰能回到A 点,此初速度为多大?(取g =10 m/s 2)
跟踪训练:如图所示装置由AB 、BC 、CD 三段轨道组成,轨道交接处均由很小的圆
弧平滑连接,其中轨道AB、CD段是光滑的,水平轨道BC的长度s=5 m,轨道CD足够长且倾角θ=37°,A、D两点离轨道BC的高度分别为h1=4.30 m、h2=1.35 m.现让质量为m的小滑块自A点由静止释放.已知小滑块与轨道BC间的动摩擦因数μ=0.5,重力加速度g取10 m/s2,sin37°=0.6、cos37°=0.8.求:
(1)小滑块第一次到达D点时的速度大小;
(2)小滑块第一次与第二次通过C点的时间间隔;
(3)小滑块最终停止的位置距B点的距离.
诱思启导
(1)从A到D的整个过程中,各个阶段各力做的功都可由功的公式表达,可对全程应用动能定理.
(2)滑动摩擦力(大小一定)做的总功等于摩擦力与物体总路程的乘积.
(3)涉及时间的问题不应考虑动能定理.
题后反思
【课堂训练】
1.如图所示,让摆球从图中的A位置由静止开始下摆,正好摆
到最低点B位置时线被拉断.已知OA与竖直方向的夹角为θ=600,摆线长l=1.6 m,悬点到地面的竖直高度为H=6.6 m,g取10 m/s2,不计空气阻力,求:(1)摆球落地时的速度。
(2)落地点D到C点的距离。
2.如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道长为S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
求物体在轨道AB段所受的阻力对物体做的功。
3.如图所示,摩托车做特技表演时,以v0=10.0 m/s的初速度冲向高台,然后从高台水平飞出.若摩托车冲向高台的过程中以P=
4.0 kW的额定功率行驶,冲到高台上所用时
间t=3.0 s,人和车的总质量m=1.8×102 kg,台高h=5.0 m,摩托车的落地点到高台的水平距离x=10.0 m.不计空气阻力,取g=10 m/s2.求:
(1)摩托车从高台飞出到落地所用时间;
(2)摩托车落地时速度的大小;
(3)摩托车冲上高台过程中克服阻力所做的功.。