动能定理在多过程问题中的应用(含解析)
动能定理在多过程运动中的应用

《创新设计》65页 例3
《创新设计》65页 例3
练习1:如图所示,物体在离斜面底端5m处由静 止开始下滑,然后滑上由小圆弧与斜面连接的 水平面,若物体与斜面及水平面间的动摩擦因 数均为0.4,斜面倾角为37°。求物体能在水平 面上滑行的距离。(sin 37°=0.6,cos 37° =0.8)
《分层训练》125页 第1题
练习2:如图所示,假设在某次比赛中他从10m 高处的跳台跳下,设水的平均阻力约为其体重 的3倍,在粗略估算中,把运动员当作质点处 理,为了保证运动员的人身安全,池水深度至
少为C.7 m
B.3 m D.1 m
mg(H + h) - fh = 0 - 0
速下滑,到达C端时速度刚好为零。求物体与BC 段间的动摩擦因数μ。
l
A
WG Wf Ek 0
B
mg l sin mg cos 2l 0 C α
3
3 tan
2
《分层训练》125页 第4题
应用动能定理解题的一般步骤
1、确定研究对象及运动过程 2、分析物体受力情况,明确各个力做的功 3、明确初状态和末状态的动能 4、根据动能定理列方程求解。
第3课时
动能定理在多过程运动中的应用
动能定理
合力做 的功
末态的动能
W
=
1 2
mv22
-
1 2
mv12
初态的 动能
例1:一质量为m=1 kg的物体静止在粗糙的水 平面上,已知接触面动摩擦因数μ=0.1,现用 水平外力F=2N拉其运动了5 m后,立即撤去 水平外力F,求其还能滑多远?(g取10 m/s2)
小结
动能定理在多过程往复运动中的应用

动能定理在多过程往复运动中的应用运用动能定理解题时无需考虑中间过程的细节,只需考虑全过程中合外力做功的情况,以及初、末状态的动能,所以对于往复运动问题全过程运用动能定理比较简单.1.在含有摩擦力的多过程往复运动过程中,注意两种力做功的区别:(1)重力做功只与初、末位置有关,而与路径无关;(2)滑动摩擦力(或全部阻力)做功与路径有关,克服摩擦力(或全部阻力)做的功W=F f·s(s 为路程).2.由于动能定理解题的优越性,求多过程往复运动问题中的路程,一般应用动能定理.【题型1】如图所示,装置由AB、BC、CD三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB、CD段是光滑的,水平轨道BC的长度d = 5 m,轨道CD足够长且倾角θ = 37°,A、D两点离轨道BC的高度分别为h1 = 4.30 m、h2 = 1.35 m。
现让质量为m 的小滑块(可视为质点)自A点由静止释放。
已知小滑块与轨道BC间的动摩擦因数μ= 0.5,重力加速度g取10 m/s2。
求:(1)小滑块第一次到达D点时的速度大小;(2)小滑块第一次与第二次通过C点的时间间隔;(3)小滑块最终停止的位置距B点的距离。
【题型2】某游乐场的滑梯可以简化为如图所示竖直面内的ABCD轨道,AB为长L=6 m、倾角α=37°的斜轨道,BC为水平轨道,CD为半径R=15 m、圆心角β=37°的圆弧轨道,轨道AB段粗糙,其余各段均光滑.一小孩(可视为质点)从A点以初速度v0=2 3 m/s沿轨道下滑,运动到D点时的速度恰好为零(不计经过B点时的能量损失).已知该小孩的质量m=30 kg,取sin 37°=0.6,cos 37°=0.8,g=10 m/s2,不计空气阻力,设最大静摩擦力等于滑动摩擦力,求:(1)该小孩第一次经过圆弧轨道C点时,对圆弧轨道的压力;(2)该小孩与AB段的动摩擦因数;(3)该小孩在轨道AB上运动的总路程s.【题型3】如图所示,斜面的倾角为θ,质量为m 的滑块与挡板P 的距离为x 0,滑块以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力。
动能定理在多过程问题中的应用-(含答案)

动能定理在多过程问题中的应用-(含答案)动能定理在多过程问题中的应用模型特征:优先考虑应用动能定理的典型问题(1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题.(3)变力做功的问题.(4)含有F、l、m、v、W、E k等物理量的力学问题.1、解析(1)小滑块由C运动到A,由动能定理得mgL sin 37°-μmgs=0 (2分)解得μ=24 35(1分)(2)设在斜面上,拉力作用的距离为x,小滑块由A运动到C,由动能定理得Fs-μmgs+Fx-mgL sin 37°=0(2分)F f=mgh+m v 22h=2×10×0.02+2×(210)220.02N=2 020 N解法二全程列式:全过程都有重力做功,进入沙中又有阻力做功.所以W总=mg(H+h)-F f h由动能定理得:mg(H+h)-F f h=0-0故:F f=mg(H+h)h=2×10×(2+0.02)0.02N=2020 N.3、如图所示装置由AB、BC、CD三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB、CD段是光滑的,水平轨道BC的长度s=5 m,轨道CD足够长且倾角θ=37°,A、D两点离轨道BC的高度分别为h1=4.30 m、h2=1.35 m.现让质量为m的小滑块自A点由静止释放.已知小滑块与轨道BC间的动摩擦因数μ=0.5,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8,求:(1)小滑块第一次到达D点时的速度大小;(2)小滑块第一次与第二次通过C点的时间间隔.答案(1)3 m/s(2)2 s解析(1)物块从A→B→C→D过程中,由动能定理得mg(h1-h2)-μmgs=12m v D2-0,解得:v D=3 m/s(2)小物块从A→B→C过程中,有mgh1-μmgs=12m v2 C解得:v C=6 m/s小物块沿CD段上滑的加速度a=g sin θ=6 m/s2小物块沿CD段上滑到最高点的时间t1=v Ca=1 s小物块从最高点滑回C点的时间t2=t1=1 s 故t=t1+t2=2 s4、如图所示,粗糙水平地面AB与半径R=0.4 m 的光滑半圆轨道BCD相连接,且在同一竖直平面内,O是BCD的圆心,BOD在同一竖直线上.质量m=2 kg的小物块在9 N的水平恒力F的作用下,从A点由静止开始做匀加速直线运动.已知AB=5 m,小物块与水平地面间的动摩擦因数为μ=0.2.当小物块运动到B点时撤去力F.取重力加速度g=10 m/s2.求:(1)小物块到达B点时速度的大小;(2)小物块运动到D点时,轨道对小物块作用力的大小;(3)小物块离开D点落到水平地面上的点与B 点之间的距离.答案(1)5 m/s(2)25 N(3)1.2 m解析(1)从A到B,根据动能定理有(F-μmg)x AB=12m v2 B得v B = 2(F -μmg )x AB m=5 m/s (2)从B 到D ,根据动能定理有-mg ·2R =12m v 2D -12m v 2B 得v D =v 2B -4Rg =3 m/s在D 点,根据牛顿运动定律有F N +mg =m v 2D R得F N =m v 2D R -mg =25 N(3)由D 点到落点小物块做平抛运动,在竖直方向上有2R =12gt 2 得t = 4R g = 4×0.410s =0.4 s 水平地面上落点与B 点之间的距离为x =v D t =3×0.4 m =1.2 m5、水上滑梯可简化成如图所示的模型:倾角为θ=37°的倾斜滑道AB和水平滑道BC平滑连接,起点A距水面的高度H=7.0 m,BC的长度d=2.0 m,端点C距水面的高度h=1.0 m.一质量m=50 kg的运动员从滑道起点A无初速度地自由滑下,运动员与AB、BC间的动摩擦因数均为μ=0.1.(取重力加速度g=10 m/s2,cos 37°=0.8,sin 37°=0.6,运动员在运动过程中可视为质点)(1)求运动员沿AB下滑时加速度的大小a;(2)求运动员从A滑到C的过程中克服摩擦力所做的功W和到达C点时速度的大小v C;(3)保持水平滑道端点在同一水平线上,调节水平滑道高度h和长度d到图中B′C′位置时,运动员从滑梯平抛到水面的水平位移最大,求此时滑道B ′C ′距水面的高度h ′. 答案 (1)5.2 m /s 2 (2)500 J 10 m/s (3)3 m 解析 (1)运动员沿AB 下滑时,受力情况如图所示F f =μF N =μmg cos θ根据牛顿第二定律:mg sin θ-μmg cos θ=ma得运动员沿AB 下滑时加速度的大小为: a =g sin θ-μg cos θ=5.2 m/s 2(2)运动员从A 滑到C 的过程中,克服摩擦力做的功为:W =μmg cos θ·H -h sin θ+μmgd =μmg [d +(H -h )cot θ]=10μmg =500 J ,mg (H -h )-W =12m v 2C -0解得运动员滑到C 点时速度的大小v C =10 m/s(3)在从C ′点滑出至落到水面的过程中,运动员做平抛运动的时间为t ,h ′=12gt 2,t = 2h ′g下滑过程中克服摩擦力做功保持不变,W =500 J根据动能定理得:mg (H -h ′)-W =12m v 2-0,v =2g (H -1-h ′)运动员在水平方向的位移:x =v t =2g (H -1-h ′) 2h ′g=4(H -1-h ′)h ′当h′=H-12=3 m时,水平位移最大.。
动能定理的应用二:多过程问题

0S 0v P 动能定理的应用二:多过程问题 学习目标:1. 进一步理解动能定理。
2. 会用动能定理解决多过程问题。
学习重点:理解动能定理解决问题的思路和步骤。
学习难点:学生能力培养导学过程:一、利用动能定理解题的方法和步骤1、明确 和 ;2、分析物体的 ,明确各力 ,并计算 ;3、明确物体在研究过程中的 、 动能,并计算 ;4、由动能定理列方程求解。
二、应用动能定理巧解多过程问题。
物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,如能对整个过程利用动能定理列式则使问题简化。
多过程问题有的力并不是一直都在做功,在计算总功的时候要注意区别对待。
三、例题分析例1、一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处相对开始运动处的水平距离为S ,如图,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.例2、如图所示,斜面的倾角为θ,质量为m 的物体距挡板P 距离为S 0,以初速度v 0沿斜面上滑。
物体与斜面的动摩擦因数为μ,物体所受摩擦力小于物体沿斜面的下滑力。
若物体每次与挡板相碰均无机械能损失,求物体通过的路程是多大?例3、如图, AB 、CD 为两个对称斜面,其上部都足够长,下部分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R=2.0 m.一个质量为2 kg 的物体在离弧底E 高度为h=3.0 m 处,以初速度v 0=4 m/s 沿斜面运动,物体与两斜面的动摩擦因数均为μ=0.2.求物体在两斜面上(不包括圆弧部分)运动的总路程.例4. 如图,一个质量为0.6kg 的小球以某一初速度从P 点水平抛出,恰好从光滑圆弧ABC 的A 点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失)。
已知圆弧的半径R=0.3m ,θ=600,小球到达A 点时的速度v =4 m/s ,取g =10 m/s 2,求:(1)小球做平抛运动的初速度v 0 ;(2)P 点与A 点的水平距离和竖直高度;(3)小球到达圆弧最高点C 时对轨道的压力。
动能定理应用典型例题及解析

动能定理应用典型例题及解析
动能定理是经典力学中非常重要的一个定理,它描述了物体的动能与物体所受力的关系。
动能定理的数学表达式是:$K = \frac{1}{2}mv^2$,其中,$K$表示物体的动能,$m$表示物体的质量,$v$表示物体的速度。
下面是一个应用动能定理的典型例题及解析:
【例题】一个质量为 $m$ 的物体在 $t=0$ 时刻从高为 $h$ 的平台上自由落下,其速度在落地瞬间达到最大值 $v$。
假设空气阻力可以忽略不计,求物体与地面接触瞬间物体的动能。
【解析】由于物体自由落下,因此只受到重力的作用,根据牛顿第二定律,物体的加速度为 $g$,即 $a=g$。
根据匀加速直线运动的公式,可以得到物体从高为 $h$ 的平台上落到地面所需的时间为$t=\sqrt{\frac{2h}{g}}$,物体在落地瞬间的速度为$v=\sqrt{2gh}$。
根据动能定理,物体在落地瞬间的动能为:
$K = \frac{1}{2}mv^2 = \frac{1}{2}m(2gh) = mgh$
因此,物体与地面接触瞬间物体的动能为 $mgh$。
以上就是一个简单的应用动能定理的例题及解析。
动能定理是物理学中一个非常重要的定理,涉及到许多不同的物理问题,需要我们在学习时认真掌握并多做练习。
动能定理在多过程问题中的妙用

JIAOXUE GUANLI YU JIAOYU YANJIU202178No.6 2021摘要:在力学研究中,动能定理是非常重要的原理之一,它主要反映的是物体两个状态的动能变化与其合力所做功的量值关系。
鉴于现阶段浙江高中物理学考卷中部分题是考查学生对动能定理的掌握情况,所以其重要性不言而喻。
文章试图通过分析在多过程问题中动能定理的妙用,来帮助更多学生学会分析多过程问题,从而使其体会动能定理在多过程问题中的妙用。
关键词:动能定理 多过程问题 妙用动能定理在多过程问题中的妙用张远庆(浙江省德清县第三中学 313201)高中阶段的物理课程中,动能定理是非常重要的内容,同时在高考试题中很多题的解答都需要运用到动能定理。
可以说,动能定理不仅是一个单独的知识点,事实上还能够作为一种解题工具,用来帮助学生更轻松、简便地解答一些物理题。
借助动能定理,可以直接考虑物体的运动始末状态,使得整个解题步骤变得更加简单化,从而帮助学生有效地缩短解题的时间。
然而,在实际解题过程中,许多学生很少应用到动能定理,没有将动能定理的解题价值有效发挥出来。
因此,本文以多过程问题为研究对象,研究探讨如何妙用动能定理来解答这类型问题,以供参考。
一、动能定理概述1.动能定理概念及公式动能定理的概念:物体动能的变化等于合外力对物体所做的功。
动能定理公式:W 合=E k 2(物体末动能)-E (物体初动能)=1mv 22-12mv 21。
其中W 合表示外力对物体所做的总功,外力对于物体所做的功的代数之和=物体动能的增量,W 合=W 1+W 2……(代数之和),也可以将物理的外力合成,将合外力F 合求出,再借助W 合=F 合s cos θ予以计算。
2.关于动能定理的理解当物体拥有一定的速度后,会产生一种能量,即动能。
在不平衡外力的作用下,物体如果改变了自身的速率,那么其动能也会发生相应变化。
物体受力而产生的功算得上标量,而由于外力做功才会使得动能发生一定变化,那么类同其他功,动能一样是一个标量。
动能定理及应用方法

动能定理及应用方法动能定理是物理学中的一个重要定理,它描述了物体的动能与物体所受力的关系。
动能定理的表达形式可以用以下公式表示:W = ΔKE = KE_f - KE_i其中,W代表物体所受的净外力所做的功,ΔKE表示物体动能的变化量,KE_f 表示最终的动能,KE_i表示初始的动能。
动能定理的本质是能量守恒的体现,即物体所受的外力所做的功等于物体动能的变化量。
根据动能定理,我们可以推导出许多实际问题的解决方法。
下面我将介绍动能定理的应用方法。
1. 物体在匀速直线运动过程中的动能定理应用在匀速直线运动过程中,物体的动能不发生改变。
根据动能定理可知,净外力所做的功等于零。
因此,可以通过计算净外力所做的功,来求解物体的平均力和物体所受的外力。
2. 物体在自由落体过程中的动能定理应用在自由落体过程中,物体的初始速度为零,最终速度为v,根据动能定理可以求解物体所受的重力和所做的功。
例如,当一个物体从高处自由下落时,我们可以利用动能定理来计算它在下落过程中的最终速度和落地时的动能。
3. 物体在斜面上滑动过程中的动能定理应用当物体在斜面上滑动时,重力分解成平行于斜面的分力和垂直于斜面的分力。
根据动能定理,我们可以求解物体所受的合外力、动能的变化量以及最终速度。
特别地,当斜面的摩擦系数已知时,可以通过动能定理求解出物体所受的摩擦力。
4. 物体碰撞过程中的动能定理应用在物体碰撞过程中,动能定理可以用来计算碰撞前后物体的动能变化量。
例如,当两个物体发生弹性碰撞时,可以利用动能定理来计算碰撞前后物体的动能变化量,并由此判断碰撞的性质。
5. 动能定理在机械能守恒问题中的应用当物体只受保守力的作用,且机械能守恒时,动能定理可以与势能定理相结合,用来解决问题。
例如,在弹簧振子的运动中,可以利用动能定理和势能定理来计算振子在弹簧势能和动能之间的转化。
总之,动能定理在解决各种实际问题时起到了重要的作用。
通过运用动能定理,我们可以计算物体所受的外力、物体的运动状态以及能量的转化等。
高中物理:巧用动能定理求解多过程问题

动能定理揭示了物体外力的总功与其动能变化间的关系。
可表示为W=E k2-E k1=△E k,在所研究的问题中,如果物体受外力作用而运动状态变化时,巧妙运用动能定理,往往能使解决问题的途径简捷明快,事半功倍。
例1.质量m=1.5kg的物块(可视为质点)在水平恒力F作用下,从水平面上A点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=2.0 s停在B点,已知A、B两点的距离x=5.0 m,物块与水平面间的动摩擦因数μ=0.20,求恒力F多大?(g=10m/s2)解析:设撤去力F前、后物体的位移分别为x1、x2物块受到的滑动摩擦力为F f=μmg=0.2×1.5×10N=3N.撤去力F后物块的加速度大小为最后2s内,物体的位移为故力F作用的位移x1=x-x2=1.0m对物块运动的全过程应用动能定理:得本题应用牛顿第二定律也可求解,但比较繁琐,应用动能定理求解则简捷得多,求解时一定要注意两个力作用的位移是不同的。
例2.如图1所示,一物体质量m=2kg,从倾角θ=37°的斜面上的A点以初速度v0=3m/s下滑,A点距弹簧上的挡板位置B的距离AB=4 m,当物体到达B后,将弹簧压缩到C点,最大压缩量BC=0.2 m,然后物体又被弹簧弹上去,弹到最高位置D点,D点距A点为AD=3 m,求物体跟斜面间的动摩擦因数.(g=10m/s2,弹簧及挡板质量不计)解析:在该题中,物体的运动过程分成了几个阶段,若用牛顿运动定律解决,要分几个过程来处理,考虑到全过程始末状态动能都是零,用动能定理解决就方便多了。
对A→B→C→D全过程,由动能定律得:F f=μmgcosθ两式联立得:当物体运动是由几个物理过程组成,又不需要研究过程的中间状态时,可以把几个物理过程看做一个整体来研究,从而避免每个运动过程的具体细节,大大简化运算。
例3.如图2所示,在一个固定盒子里有一个质量为m的滑块,它与盒子底面的动摩擦因数为μ开始滑块在盒子中央以足够大的初速度v0向右运动,与盒子两壁碰撞若干次后速度减为零,若盒子长为L,滑块与盒壁碰撞没有能量损失,求整个过程中物体与两壁碰撞的次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理在多过程问题中的应用类型一动能定理在多过程问题中的应用1.运用动能定理解决多过程问题,有两种思路:(1)可分段应用动能定理求解;(2)全过程应用动能定理:所求解的问题不涉及中间的速度时,全过程应用动能定理求解更简便.2.全过程列式时,涉及重力、弹簧弹力、大小恒定的阻力或摩擦力做功时,要注意它们的特点.(1)重力、弹簧弹力做功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力做功的数值等于力的大小与路程的乘积.例1(2016·浙江10月选考·20)如图甲所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图乙所示的模型.倾角为45°的直轨道AB、半径R=10 m的光滑竖直圆轨道和倾角为37°的直轨道EF,分别通过水平光滑衔接轨道BC、C′E平滑连接,另有水平减速直轨道FG与EF平滑连接,EG间的水平距离l=40 m.现有质量m=500 kg的过山车,从高h=40 m处的A点由静止下滑,经BCDC′EF最终停在G点.过山车与轨道AB、EF 间的动摩擦因数均为μ1=0.2,与减速直轨道FG间的动摩擦因数μ2=0.75.过山车可视为质点,运动中不脱离轨道,g取10 m/s2.求:(1)过山车运动至圆轨道最低点C时的速度大小;(2)过山车运动至圆轨道最高点D时对轨道的作用力大小;(3)减速直轨道FG的长度x.(已知sin 37°=0.6,cos 37°=0.8)【答案】(1)810 m/s(2)7×103 N(3)30 m【解析】(1)设过山车在C点的速度大小为v C,由动能定理得mgh-μ1mg cos 45°·hsin 45°=12m v C2代入数据得v C=810 m/s(2)设过山车在D点速度大小为v D,由动能定理得mg (h -2R )-μ1mg cos 45°·h sin 45°=12m v D 2F +mg =m v D 2R,解得F =7×103 N由牛顿第三定律知,过山车在D 点对轨道的作用力大小为7×103 N (3)全程应用动能定理mg [h -(l -x )tan 37°]-μ1mg cos 45°·hsin 45°-μ1mg cos 37°·l -xcos 37°-μ2mgx =0解得x =30 m.变式训练1 (动能定理在多过程问题中的应用)(2020·河南信阳市罗山高三一模)如图甲所示,一倾角为37°,长L =3.75 m 的斜面AB 上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B 处,C 为圆弧轨道的最高点.t =0时刻有一质量m =1 kg 的物块沿斜面上滑,其在斜面上运动的v -t 图象如图乙所示.已知圆轨道的半径R =0.5 m .(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C 点时对轨道的压力的大小F N ;(3)试通过计算分析是否可能存在物块以一定的初速度从A 点滑上轨道,通过C 点后恰好能落在A 点.如果能,请计算出物块从A 点滑出的初速度大小;如果不能请说明理由. 【答案】(1)0.5 (2)4 N (3)见解析【解析】(1)由题图乙可知物块上滑时的加速度大小为a =10 m/s 2① 根据牛顿第二定律有:mg sin 37°+μmg cos 37°=ma ② 由①②联立解得μ=0.5③(2)设物块到达C 点时的速度大小为v C ,由动能定理得: -mg (L sin 37°+R +R cos 37°)-μmgL cos 37°=12m v C 2-12m v 02④在C 点,根据牛顿第二定律有:mg +F N ′=m v C 2R ⑤联立③④⑤解得:F N ′=4 N ⑥根据牛顿第三定律得:F N =F N ′=4 N ⑦ 物块在C 点时对轨道的压力大小为4 N(3)设物块以初速度v 1上滑,最后恰好落到A 点 物块从C 到A ,做平抛运动,竖直方向:L sin 37°+R (1+cos 37°)=12gt 2⑧水平方向:L cos 37°-R sin 37°=v C ′t ⑨ 解得v C ′=977 m/s>gR = 5 m/s ,⑩所以物块能通过C 点落到A 点 物块从A 到C ,由动能定理得:-mg (L sin 37°+1.8R )-μmgL cos 37°=12m v C ′2-12m v 12⑪联立解得:v 1=21837m/s ⑫ 类型二 动能定理在往复运动问题中的应用在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.求解这类问题时若运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出.由于动能定理只涉及物体的初、末状态而不计运动过程的细节,此类问题多涉及滑动摩擦力,或其他阻力做功,其做功的特点与路程有关,求路程对应的是摩擦力做功,所以用动能定理分析这类问题可使解题过程简化.例2 如图所示,竖直面内有一粗糙斜面AB ,BCD 部分是一个光滑的圆弧面,C 为圆弧的最低点,AB 正好是圆弧在B 点的切线,圆心O 与A 、D 点在同一高度,θ=37°,圆弧面的半径R =3.6 m ,一滑块质量m =5 kg ,与AB 斜面间的动摩擦因数μ=0.45,将滑块从A 点由静止释放(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2).求在此后的运动过程中:(1)滑块在AB 段上运动的总路程;(2)在滑块运动过程中,C 点受到的压力的最大值和最小值. 【答案】(1)8 m (2)102 N 70 N【解析】 (1)由题意可知斜面AB 与水平面的夹角为θ=37°, 知mg sin θ>μmg cos θ,故滑块最终不会停留在斜面上, 由于滑块在AB 段受摩擦力作用,则滑块做往复运动的高度将越来越低,最终以B 点为最高点在光滑的圆弧面上往复运动. 设滑块在AB 段上运动的总路程为s ,滑块在AB 段上所受摩擦力大小F f =μF N =μmg cos θ, 从A 点出发到最终以B 点为最高点做往复运动, 由动能定理得mgR cos θ-F f s =0,解得s =Rμ=8 m.(2)滑块第一次过C 点时,速度最大,设为v 1,分析受力知此时滑块所受轨道支持力最大,设为F max ,从A 到C 的过程,由动能定理得mgR -F f l AB =12m v 12-0,斜面AB 的长度l AB =Rtan θ,由牛顿第二定律得F max -mg =m v 12R ,解得F max =102 N.滑块以B 为最高点做往复运动的过程中过C 点时,速度最小,设为v 2,此时滑块所受轨道支持力最小,设为F min ,从B 到C , 由动能定理得mgR (1-cos θ)=12m v 22-0,由牛顿第二定律得F min -mg =m v 22R ,解得F min =70 N ,根据牛顿第三定律可知C 点受到的压力最大值为102 N ,最小值为70 N.变式训练2 (动能定理在往复运动中的应用)(2020·浙江高三开学考试)如图所示,有一圆弧形的槽ABC ,槽底B 放在水平地面上,槽的两侧A 、C 与光滑斜坡aa ′、bb ′分别相切,相切处a 、b 位于同一水平面内,距水平地面高度为h .一质量为m 的小物块从斜坡aa ′上距水平面ab 的高度为2h 处沿斜坡自由滑下,并自a 处进入槽内,到达b 处后沿斜坡bb ′向上滑行,到达的最高处距水平面ab 的高度为h ,若槽内的动摩擦因数处处相同,不考虑空气阻力,且重力加速度为g ,则( )A .小物块第一次从a 处运动到b 处的过程中克服摩擦力做功mghB .小物块第一次经过B 点时的动能等于2.5mghC .小物块第二次运动到a 处时速度为零D .经过足够长的时间后,小物块最终一定停在B 处 【答案】 A【解析】在第一次运动过程中,小物块克服摩擦力做功,根据动能定理可知mgh -W f =0-0,解得W f =mgh ,故A 正确;因为小物块从右侧到最低点的过程中对轨道的压力较大,所受的摩擦力较大,所以小物块从右侧到最低点的过程中克服摩擦力做的功W f1>12W f =12mgh ,设小物块第1次通过最低点的速度为v ,从自由滑下到最低点的过程,由动能定理得3mgh -W f1=E k -0,解得E k <2.5mgh ,故B 错误;由于在AC 段,小物块与轨道间有摩擦力,故小物块在某一位置的速度大小要减小,故与轨道间的摩擦力减小,第二次在AC 段运动时克服摩擦力做功比第一次要少,故第二次到达a (A )点时,有一定的速度,故C 错误;由于在AC 段存在摩擦力,故小物块在B 点两侧某一位置可能处于静止状态,故D 错误. 故选A 。
变式训练3 (动能定理在往复运动中的应用)(2019·河南郑州一中模拟)如图所示,ABCD 为一竖直平面内的轨道,其中BC 水平,A 点比BC 高出H =10 m ,BC 长为l =1 m ,AB 和CD 轨道光滑.一质量为m =1 kg 的物体,从A 点以v 1=4 m/s 的速度开始运动,经过BC 后滑到高出C 点h =10.3 m 的D 点时速度为零,求:(取g =10 m/s 2)(1)物体与BC 轨道间的动摩擦因数; (2)物体第5次经过B 点时的速度大小; (3)物体最后停止的位置(距B 点). 【答案】 (1)0.5 (2)13.3 m/s (3)0.4 m【解析】(1)分析从A 点到D 点的过程,由动能定理得 -mg (h -H )-μmgl =0-12m v 12,解得μ=0.5.(2)设物体第5次经过B 点时的速度为v 2,在此过程中物体在BC 上滑动了4次,由动能定理得mgH -μmg ·4l =12m v 22-12m v 12,解得v 2=411 m/s ≈13.3 m/s.(3)设物体运动的全过程在水平面上通过的路程为s , 由动能定理得mgH -μmgs =0-12m v 12,解得s =21.6 m.所以物体在轨道上来回滑动了10次后,还有1.6 m , 故距B 点的距离s ′=2 m -1.6 m =0.4 m .跟 踪 训 练1.(2021·海南高三月考)如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 水平,其长度d =0.50 m ,盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停止的地点到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .0【答案】D【解析】 小物块从A 点出发到最后停下来,设小物块在BC 面上运动的总路程为s ,整个过程由动能定理有:mgh -μmgs =0,所以小物块在BC 面上运动的总路程为s =h μ=0.30.1 m =3 m ,而d =0.5 m ,刚好3个来回,所以最终停在B 点,即距离B 点为0 m . 故选D 。