动能定理在多过程问题中的应用(含解析)
动能定理在多过程运动中的应用
![动能定理在多过程运动中的应用](https://img.taocdn.com/s3/m/8f2a80cc7cd184254a353505.png)
《创新设计》65页 例3
《创新设计》65页 例3
练习1:如图所示,物体在离斜面底端5m处由静 止开始下滑,然后滑上由小圆弧与斜面连接的 水平面,若物体与斜面及水平面间的动摩擦因 数均为0.4,斜面倾角为37°。求物体能在水平 面上滑行的距离。(sin 37°=0.6,cos 37° =0.8)
《分层训练》125页 第1题
练习2:如图所示,假设在某次比赛中他从10m 高处的跳台跳下,设水的平均阻力约为其体重 的3倍,在粗略估算中,把运动员当作质点处 理,为了保证运动员的人身安全,池水深度至
少为C.7 m
B.3 m D.1 m
mg(H + h) - fh = 0 - 0
速下滑,到达C端时速度刚好为零。求物体与BC 段间的动摩擦因数μ。
l
A
WG Wf Ek 0
B
mg l sin mg cos 2l 0 C α
3
3 tan
2
《分层训练》125页 第4题
应用动能定理解题的一般步骤
1、确定研究对象及运动过程 2、分析物体受力情况,明确各个力做的功 3、明确初状态和末状态的动能 4、根据动能定理列方程求解。
第3课时
动能定理在多过程运动中的应用
动能定理
合力做 的功
末态的动能
W
=
1 2
mv22
-
1 2
mv12
初态的 动能
例1:一质量为m=1 kg的物体静止在粗糙的水 平面上,已知接触面动摩擦因数μ=0.1,现用 水平外力F=2N拉其运动了5 m后,立即撤去 水平外力F,求其还能滑多远?(g取10 m/s2)
小结
动能定理在多过程往复运动中的应用
![动能定理在多过程往复运动中的应用](https://img.taocdn.com/s3/m/27fc4d629a6648d7c1c708a1284ac850ad020463.png)
动能定理在多过程往复运动中的应用运用动能定理解题时无需考虑中间过程的细节,只需考虑全过程中合外力做功的情况,以及初、末状态的动能,所以对于往复运动问题全过程运用动能定理比较简单.1.在含有摩擦力的多过程往复运动过程中,注意两种力做功的区别:(1)重力做功只与初、末位置有关,而与路径无关;(2)滑动摩擦力(或全部阻力)做功与路径有关,克服摩擦力(或全部阻力)做的功W=F f·s(s 为路程).2.由于动能定理解题的优越性,求多过程往复运动问题中的路程,一般应用动能定理.【题型1】如图所示,装置由AB、BC、CD三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB、CD段是光滑的,水平轨道BC的长度d = 5 m,轨道CD足够长且倾角θ = 37°,A、D两点离轨道BC的高度分别为h1 = 4.30 m、h2 = 1.35 m。
现让质量为m 的小滑块(可视为质点)自A点由静止释放。
已知小滑块与轨道BC间的动摩擦因数μ= 0.5,重力加速度g取10 m/s2。
求:(1)小滑块第一次到达D点时的速度大小;(2)小滑块第一次与第二次通过C点的时间间隔;(3)小滑块最终停止的位置距B点的距离。
【题型2】某游乐场的滑梯可以简化为如图所示竖直面内的ABCD轨道,AB为长L=6 m、倾角α=37°的斜轨道,BC为水平轨道,CD为半径R=15 m、圆心角β=37°的圆弧轨道,轨道AB段粗糙,其余各段均光滑.一小孩(可视为质点)从A点以初速度v0=2 3 m/s沿轨道下滑,运动到D点时的速度恰好为零(不计经过B点时的能量损失).已知该小孩的质量m=30 kg,取sin 37°=0.6,cos 37°=0.8,g=10 m/s2,不计空气阻力,设最大静摩擦力等于滑动摩擦力,求:(1)该小孩第一次经过圆弧轨道C点时,对圆弧轨道的压力;(2)该小孩与AB段的动摩擦因数;(3)该小孩在轨道AB上运动的总路程s.【题型3】如图所示,斜面的倾角为θ,质量为m 的滑块与挡板P 的距离为x 0,滑块以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力。
动能定理在多过程问题中的应用-(含答案)
![动能定理在多过程问题中的应用-(含答案)](https://img.taocdn.com/s3/m/c688221858f5f61fb6366647.png)
动能定理在多过程问题中的应用-(含答案)动能定理在多过程问题中的应用模型特征:优先考虑应用动能定理的典型问题(1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题.(3)变力做功的问题.(4)含有F、l、m、v、W、E k等物理量的力学问题.1、解析(1)小滑块由C运动到A,由动能定理得mgL sin 37°-μmgs=0 (2分)解得μ=24 35(1分)(2)设在斜面上,拉力作用的距离为x,小滑块由A运动到C,由动能定理得Fs-μmgs+Fx-mgL sin 37°=0(2分)F f=mgh+m v 22h=2×10×0.02+2×(210)220.02N=2 020 N解法二全程列式:全过程都有重力做功,进入沙中又有阻力做功.所以W总=mg(H+h)-F f h由动能定理得:mg(H+h)-F f h=0-0故:F f=mg(H+h)h=2×10×(2+0.02)0.02N=2020 N.3、如图所示装置由AB、BC、CD三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB、CD段是光滑的,水平轨道BC的长度s=5 m,轨道CD足够长且倾角θ=37°,A、D两点离轨道BC的高度分别为h1=4.30 m、h2=1.35 m.现让质量为m的小滑块自A点由静止释放.已知小滑块与轨道BC间的动摩擦因数μ=0.5,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8,求:(1)小滑块第一次到达D点时的速度大小;(2)小滑块第一次与第二次通过C点的时间间隔.答案(1)3 m/s(2)2 s解析(1)物块从A→B→C→D过程中,由动能定理得mg(h1-h2)-μmgs=12m v D2-0,解得:v D=3 m/s(2)小物块从A→B→C过程中,有mgh1-μmgs=12m v2 C解得:v C=6 m/s小物块沿CD段上滑的加速度a=g sin θ=6 m/s2小物块沿CD段上滑到最高点的时间t1=v Ca=1 s小物块从最高点滑回C点的时间t2=t1=1 s 故t=t1+t2=2 s4、如图所示,粗糙水平地面AB与半径R=0.4 m 的光滑半圆轨道BCD相连接,且在同一竖直平面内,O是BCD的圆心,BOD在同一竖直线上.质量m=2 kg的小物块在9 N的水平恒力F的作用下,从A点由静止开始做匀加速直线运动.已知AB=5 m,小物块与水平地面间的动摩擦因数为μ=0.2.当小物块运动到B点时撤去力F.取重力加速度g=10 m/s2.求:(1)小物块到达B点时速度的大小;(2)小物块运动到D点时,轨道对小物块作用力的大小;(3)小物块离开D点落到水平地面上的点与B 点之间的距离.答案(1)5 m/s(2)25 N(3)1.2 m解析(1)从A到B,根据动能定理有(F-μmg)x AB=12m v2 B得v B = 2(F -μmg )x AB m=5 m/s (2)从B 到D ,根据动能定理有-mg ·2R =12m v 2D -12m v 2B 得v D =v 2B -4Rg =3 m/s在D 点,根据牛顿运动定律有F N +mg =m v 2D R得F N =m v 2D R -mg =25 N(3)由D 点到落点小物块做平抛运动,在竖直方向上有2R =12gt 2 得t = 4R g = 4×0.410s =0.4 s 水平地面上落点与B 点之间的距离为x =v D t =3×0.4 m =1.2 m5、水上滑梯可简化成如图所示的模型:倾角为θ=37°的倾斜滑道AB和水平滑道BC平滑连接,起点A距水面的高度H=7.0 m,BC的长度d=2.0 m,端点C距水面的高度h=1.0 m.一质量m=50 kg的运动员从滑道起点A无初速度地自由滑下,运动员与AB、BC间的动摩擦因数均为μ=0.1.(取重力加速度g=10 m/s2,cos 37°=0.8,sin 37°=0.6,运动员在运动过程中可视为质点)(1)求运动员沿AB下滑时加速度的大小a;(2)求运动员从A滑到C的过程中克服摩擦力所做的功W和到达C点时速度的大小v C;(3)保持水平滑道端点在同一水平线上,调节水平滑道高度h和长度d到图中B′C′位置时,运动员从滑梯平抛到水面的水平位移最大,求此时滑道B ′C ′距水面的高度h ′. 答案 (1)5.2 m /s 2 (2)500 J 10 m/s (3)3 m 解析 (1)运动员沿AB 下滑时,受力情况如图所示F f =μF N =μmg cos θ根据牛顿第二定律:mg sin θ-μmg cos θ=ma得运动员沿AB 下滑时加速度的大小为: a =g sin θ-μg cos θ=5.2 m/s 2(2)运动员从A 滑到C 的过程中,克服摩擦力做的功为:W =μmg cos θ·H -h sin θ+μmgd =μmg [d +(H -h )cot θ]=10μmg =500 J ,mg (H -h )-W =12m v 2C -0解得运动员滑到C 点时速度的大小v C =10 m/s(3)在从C ′点滑出至落到水面的过程中,运动员做平抛运动的时间为t ,h ′=12gt 2,t = 2h ′g下滑过程中克服摩擦力做功保持不变,W =500 J根据动能定理得:mg (H -h ′)-W =12m v 2-0,v =2g (H -1-h ′)运动员在水平方向的位移:x =v t =2g (H -1-h ′) 2h ′g=4(H -1-h ′)h ′当h′=H-12=3 m时,水平位移最大.。
动能定理的应用二:多过程问题
![动能定理的应用二:多过程问题](https://img.taocdn.com/s3/m/ff6f5a9551e79b8968022623.png)
0S 0v P 动能定理的应用二:多过程问题 学习目标:1. 进一步理解动能定理。
2. 会用动能定理解决多过程问题。
学习重点:理解动能定理解决问题的思路和步骤。
学习难点:学生能力培养导学过程:一、利用动能定理解题的方法和步骤1、明确 和 ;2、分析物体的 ,明确各力 ,并计算 ;3、明确物体在研究过程中的 、 动能,并计算 ;4、由动能定理列方程求解。
二、应用动能定理巧解多过程问题。
物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,如能对整个过程利用动能定理列式则使问题简化。
多过程问题有的力并不是一直都在做功,在计算总功的时候要注意区别对待。
三、例题分析例1、一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处相对开始运动处的水平距离为S ,如图,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.例2、如图所示,斜面的倾角为θ,质量为m 的物体距挡板P 距离为S 0,以初速度v 0沿斜面上滑。
物体与斜面的动摩擦因数为μ,物体所受摩擦力小于物体沿斜面的下滑力。
若物体每次与挡板相碰均无机械能损失,求物体通过的路程是多大?例3、如图, AB 、CD 为两个对称斜面,其上部都足够长,下部分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R=2.0 m.一个质量为2 kg 的物体在离弧底E 高度为h=3.0 m 处,以初速度v 0=4 m/s 沿斜面运动,物体与两斜面的动摩擦因数均为μ=0.2.求物体在两斜面上(不包括圆弧部分)运动的总路程.例4. 如图,一个质量为0.6kg 的小球以某一初速度从P 点水平抛出,恰好从光滑圆弧ABC 的A 点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失)。
已知圆弧的半径R=0.3m ,θ=600,小球到达A 点时的速度v =4 m/s ,取g =10 m/s 2,求:(1)小球做平抛运动的初速度v 0 ;(2)P 点与A 点的水平距离和竖直高度;(3)小球到达圆弧最高点C 时对轨道的压力。
动能定理应用典型例题及解析
![动能定理应用典型例题及解析](https://img.taocdn.com/s3/m/ba89e7f088eb172ded630b1c59eef8c75fbf958b.png)
动能定理应用典型例题及解析
动能定理是经典力学中非常重要的一个定理,它描述了物体的动能与物体所受力的关系。
动能定理的数学表达式是:$K = \frac{1}{2}mv^2$,其中,$K$表示物体的动能,$m$表示物体的质量,$v$表示物体的速度。
下面是一个应用动能定理的典型例题及解析:
【例题】一个质量为 $m$ 的物体在 $t=0$ 时刻从高为 $h$ 的平台上自由落下,其速度在落地瞬间达到最大值 $v$。
假设空气阻力可以忽略不计,求物体与地面接触瞬间物体的动能。
【解析】由于物体自由落下,因此只受到重力的作用,根据牛顿第二定律,物体的加速度为 $g$,即 $a=g$。
根据匀加速直线运动的公式,可以得到物体从高为 $h$ 的平台上落到地面所需的时间为$t=\sqrt{\frac{2h}{g}}$,物体在落地瞬间的速度为$v=\sqrt{2gh}$。
根据动能定理,物体在落地瞬间的动能为:
$K = \frac{1}{2}mv^2 = \frac{1}{2}m(2gh) = mgh$
因此,物体与地面接触瞬间物体的动能为 $mgh$。
以上就是一个简单的应用动能定理的例题及解析。
动能定理是物理学中一个非常重要的定理,涉及到许多不同的物理问题,需要我们在学习时认真掌握并多做练习。
动能定理在多过程问题中的妙用
![动能定理在多过程问题中的妙用](https://img.taocdn.com/s3/m/b841e5366ad97f192279168884868762caaebb27.png)
JIAOXUE GUANLI YU JIAOYU YANJIU202178No.6 2021摘要:在力学研究中,动能定理是非常重要的原理之一,它主要反映的是物体两个状态的动能变化与其合力所做功的量值关系。
鉴于现阶段浙江高中物理学考卷中部分题是考查学生对动能定理的掌握情况,所以其重要性不言而喻。
文章试图通过分析在多过程问题中动能定理的妙用,来帮助更多学生学会分析多过程问题,从而使其体会动能定理在多过程问题中的妙用。
关键词:动能定理 多过程问题 妙用动能定理在多过程问题中的妙用张远庆(浙江省德清县第三中学 313201)高中阶段的物理课程中,动能定理是非常重要的内容,同时在高考试题中很多题的解答都需要运用到动能定理。
可以说,动能定理不仅是一个单独的知识点,事实上还能够作为一种解题工具,用来帮助学生更轻松、简便地解答一些物理题。
借助动能定理,可以直接考虑物体的运动始末状态,使得整个解题步骤变得更加简单化,从而帮助学生有效地缩短解题的时间。
然而,在实际解题过程中,许多学生很少应用到动能定理,没有将动能定理的解题价值有效发挥出来。
因此,本文以多过程问题为研究对象,研究探讨如何妙用动能定理来解答这类型问题,以供参考。
一、动能定理概述1.动能定理概念及公式动能定理的概念:物体动能的变化等于合外力对物体所做的功。
动能定理公式:W 合=E k 2(物体末动能)-E (物体初动能)=1mv 22-12mv 21。
其中W 合表示外力对物体所做的总功,外力对于物体所做的功的代数之和=物体动能的增量,W 合=W 1+W 2……(代数之和),也可以将物理的外力合成,将合外力F 合求出,再借助W 合=F 合s cos θ予以计算。
2.关于动能定理的理解当物体拥有一定的速度后,会产生一种能量,即动能。
在不平衡外力的作用下,物体如果改变了自身的速率,那么其动能也会发生相应变化。
物体受力而产生的功算得上标量,而由于外力做功才会使得动能发生一定变化,那么类同其他功,动能一样是一个标量。
动能定理及应用方法
![动能定理及应用方法](https://img.taocdn.com/s3/m/7d96c14d53ea551810a6f524ccbff121dd36c59d.png)
动能定理及应用方法动能定理是物理学中的一个重要定理,它描述了物体的动能与物体所受力的关系。
动能定理的表达形式可以用以下公式表示:W = ΔKE = KE_f - KE_i其中,W代表物体所受的净外力所做的功,ΔKE表示物体动能的变化量,KE_f 表示最终的动能,KE_i表示初始的动能。
动能定理的本质是能量守恒的体现,即物体所受的外力所做的功等于物体动能的变化量。
根据动能定理,我们可以推导出许多实际问题的解决方法。
下面我将介绍动能定理的应用方法。
1. 物体在匀速直线运动过程中的动能定理应用在匀速直线运动过程中,物体的动能不发生改变。
根据动能定理可知,净外力所做的功等于零。
因此,可以通过计算净外力所做的功,来求解物体的平均力和物体所受的外力。
2. 物体在自由落体过程中的动能定理应用在自由落体过程中,物体的初始速度为零,最终速度为v,根据动能定理可以求解物体所受的重力和所做的功。
例如,当一个物体从高处自由下落时,我们可以利用动能定理来计算它在下落过程中的最终速度和落地时的动能。
3. 物体在斜面上滑动过程中的动能定理应用当物体在斜面上滑动时,重力分解成平行于斜面的分力和垂直于斜面的分力。
根据动能定理,我们可以求解物体所受的合外力、动能的变化量以及最终速度。
特别地,当斜面的摩擦系数已知时,可以通过动能定理求解出物体所受的摩擦力。
4. 物体碰撞过程中的动能定理应用在物体碰撞过程中,动能定理可以用来计算碰撞前后物体的动能变化量。
例如,当两个物体发生弹性碰撞时,可以利用动能定理来计算碰撞前后物体的动能变化量,并由此判断碰撞的性质。
5. 动能定理在机械能守恒问题中的应用当物体只受保守力的作用,且机械能守恒时,动能定理可以与势能定理相结合,用来解决问题。
例如,在弹簧振子的运动中,可以利用动能定理和势能定理来计算振子在弹簧势能和动能之间的转化。
总之,动能定理在解决各种实际问题时起到了重要的作用。
通过运用动能定理,我们可以计算物体所受的外力、物体的运动状态以及能量的转化等。
高中物理:巧用动能定理求解多过程问题
![高中物理:巧用动能定理求解多过程问题](https://img.taocdn.com/s3/m/6165ba64e53a580217fcfe5b.png)
动能定理揭示了物体外力的总功与其动能变化间的关系。
可表示为W=E k2-E k1=△E k,在所研究的问题中,如果物体受外力作用而运动状态变化时,巧妙运用动能定理,往往能使解决问题的途径简捷明快,事半功倍。
例1.质量m=1.5kg的物块(可视为质点)在水平恒力F作用下,从水平面上A点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=2.0 s停在B点,已知A、B两点的距离x=5.0 m,物块与水平面间的动摩擦因数μ=0.20,求恒力F多大?(g=10m/s2)解析:设撤去力F前、后物体的位移分别为x1、x2物块受到的滑动摩擦力为F f=μmg=0.2×1.5×10N=3N.撤去力F后物块的加速度大小为最后2s内,物体的位移为故力F作用的位移x1=x-x2=1.0m对物块运动的全过程应用动能定理:得本题应用牛顿第二定律也可求解,但比较繁琐,应用动能定理求解则简捷得多,求解时一定要注意两个力作用的位移是不同的。
例2.如图1所示,一物体质量m=2kg,从倾角θ=37°的斜面上的A点以初速度v0=3m/s下滑,A点距弹簧上的挡板位置B的距离AB=4 m,当物体到达B后,将弹簧压缩到C点,最大压缩量BC=0.2 m,然后物体又被弹簧弹上去,弹到最高位置D点,D点距A点为AD=3 m,求物体跟斜面间的动摩擦因数.(g=10m/s2,弹簧及挡板质量不计)解析:在该题中,物体的运动过程分成了几个阶段,若用牛顿运动定律解决,要分几个过程来处理,考虑到全过程始末状态动能都是零,用动能定理解决就方便多了。
对A→B→C→D全过程,由动能定律得:F f=μmgcosθ两式联立得:当物体运动是由几个物理过程组成,又不需要研究过程的中间状态时,可以把几个物理过程看做一个整体来研究,从而避免每个运动过程的具体细节,大大简化运算。
例3.如图2所示,在一个固定盒子里有一个质量为m的滑块,它与盒子底面的动摩擦因数为μ开始滑块在盒子中央以足够大的初速度v0向右运动,与盒子两壁碰撞若干次后速度减为零,若盒子长为L,滑块与盒壁碰撞没有能量损失,求整个过程中物体与两壁碰撞的次数。
动能定理应用(多过程问题)
![动能定理应用(多过程问题)](https://img.taocdn.com/s3/m/7966575ea0116c175e0e4895.png)
动能定理的应用2012.05.10高一物理组多过程问题:(例1二选一)例1如图所示,一质量为2 kg的铅球从离地面2 m高处自由下落,陷入沙坑中2 cm深处.求沙子对铅球的平均阻力.(g=10 m/s2).例1、如图所示,质量为m的钢珠从高出地面h处由静止自由下落(不计空气阻力),落到地面进入沙坑s停止,求:钢珠在沙坑中克服阻力做功W f练习1、质量为m的物体静止在水平桌面上,它与桌面之间的动摩擦因数为μ,物体在水平力F作用下开始运动,发生位移S1时撤去力F,问物体还能运动多远.对比两种解题思路发现:多过程时可以分段求解,也可以全过程求解,全过程求解要简单些。
注意:多过程问题有的力并不是都在做功,如上述的阻力,在计算总功的时候要注意区别对待。
例2、如图所示,一个质量为m的小球自高h处由静止落下,与水平面发生多次碰撞后,最后静止在水平面上,若小球在空中运动时,受到的阻力恒为小球重的110,小球与水平面碰撞时不损失能量,则小球在停止运动这前的运动过程中所通过的总路程为多少?练习2、如图所示,动摩擦因数为μ的粗糙水平面两端连接倾角分别为α、β的两个光滑斜面,一质量为m的小物块在左边斜面上由静止释放,经粗糙水平面后又冲上右侧斜面,则到物块停止运动时,物块在粗糙水平面上经过的路程共为多少?例3、一个质量为m的物体,从倾角为θ,高为h的斜面上端A点由静止开始下滑,最后停在水平面上B点,若物体与斜面及水平面的动摩擦因数均为μ,求物体能在水平面上滑行多远?(假设从斜面到水平面速度大小不变)练习3、如图所示,AB是四分之一圆周的弧形轨道,半径为R=1m,BC是水平轨道,圆弧轨道和水平轨道在B点相切。
现有质量为m=0.5kg的物体P,由弧形轨道顶端A点从静止开始下滑,物体P与水平轨道之间动摩擦因数μ=0.2,AB段粗糙,物体滑到C点刚好停止,且s=3m,求在轨道AB段摩擦阻力对物体P所做的功;例4、如图所示,光滑的水平面AB与光滑的半圆形轨道相接触,直径BC竖直,圆轨道半径为R一个质量为m的物体放在A处,AB=2R,物体在水平恒力F的作用下由静止开始运动,当物体运动到B点时撤去水平外力之后,物体恰好AB CsRPshABCABθh从圆轨道的定点C 水平抛出,求水平力F.巩固练习:1. 如图所示,BC 是一条平直轨道,C 点距B 点的距离为s = 3.0m ;AB 是一条竖直平面内的圆形轨道,轨道长为1/4圆周,其中A 比B 高h=80cm 。
高中物理动能定理的运用归纳与总结
![高中物理动能定理的运用归纳与总结](https://img.taocdn.com/s3/m/9d54e1043169a4517723a33e.png)
一、整过程运用动能定理 (一)水平面问题1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( )A. 0B. 8JC. 16JD. 32J2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )【解析】对物块整个过程用动能定理得:()000=+-s s umg Fs解得:s=10m3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?【解析】对车头,脱钩后的全过程用动能定理得:201)(21)(V m M gS m M k FL --=--对车尾,脱钩后用动能定理得:20221mV kmgS -=-而21S S S -=∆,由于原来列车是匀速前进的,所以F=kMg由以上方程解得mM MLS -=∆。
(二)竖直面问题(重力、摩擦力和阻力) 1、人从地面上,以一定的初速度0v 将一个质量为m 的物体竖直向上抛出,上升的最大高度为h ,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( )A. 2021mvB. fh mgh -C. fhmgh mv -+2021 D. fh mgh +S 2S 1LV 0V 02、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。
【解析】钢球从开始自由下落到落入沙中停止为研究过程 根据动能定理w 总=△E K 可得: W G +W f =0-0①重力做功W G =G (H+h )② 阻力做功W f =-fh ③由①②③解得:f=(1+hH )(三)斜面问题1、如图所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度V 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【解析】设其经过和总路程为L ,对全过程,由动能定理得:200210cos sin mv L ng mgS -=-αμα 得αμαcos 21sin mgS 200mg mv L +=2、一块木块以s m v /100=初速度沿平行斜面方向冲上一段长L=5m ,倾角为︒=30α的斜面,见图所示木块与斜面间的动摩擦因数2.0=μ,求木块冲出斜面后落地时的速率(空气阻力不计,2/10s m g =)。
《利用动能定理分析变力做功和多过程问题》解题技巧
![《利用动能定理分析变力做功和多过程问题》解题技巧](https://img.taocdn.com/s3/m/ebb8665e51e79b8969022693.png)
《利用动能定理分析变力做功和多过程问题》解题技巧一、利用动能定理求变力做功1.动能定理不仅适用于求恒力做的功,也适用于求变力做的功,同时因为不涉及变力作用的过程分析,应用非常方便.2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和几个恒力作用时,可以用动能定理间接求变力做的功,即W变+W其他=ΔE k.如图1所示,质量为m的小球由静止自由下落d后,沿竖直面内的固定轨道ABC运动,AB是半径为d的14光滑圆弧轨道,BC是直径为d的粗糙半圆弧轨道(B是轨道的最低点).小球恰能通过圆弧轨道的最高点C.重力加速度为g,求:图1(1)小球运动到B处时对轨道的压力大小(可认为此时小球处在轨道AB上);(2)小球在BC运动过程中,摩擦力对小球做的功.答案(1)5mg(2)-34 mgd解析(1)小球由静止运动到B点的过程,由动能定理得2mgd=12mv2,在B点,由牛顿第二定律得F N-mg=m v2 d,得:F N=5mg根据牛顿第三定律:小球在B处对轨道的压力大小FN′=F N=5mg;(2)小球恰能通过C点,则mg=mv2Cd2.小球从B运动到C的过程:-mgd+W f=12mvC2-12mv2,得Wf=-34mgd.针对训练1 如图2所示,有一半径为r=0.5 m的粗糙半圆轨道,A与圆心O等高,有一质量为m=0.2 kg的物块(可视为质点),从A点静止滑下,滑至最低点B时的速度为v=1 m/s,取g=10 m/s2,下列说法正确的是( )图2A.物块过B点时,对轨道的压力大小是0.4 NB.物块过B点时,对轨道的压力大小是2.0 NC.A到B的过程中,克服摩擦力做的功为0.9 JD.A到B的过程中,克服摩擦力做的功为0.1 J答案 C解析在B点由牛顿第二定律可知F N-mg=m v2r,解得:F N=2.4 N,由牛顿第三定律可知物块对轨道的压力大小为2.4 N,故A、B均错误;A到B的过程,由动能定理得mgr+W f=12mv2-0,解得Wf=-0.9 J,故克服摩擦力做功为0.9 J,故C正确,D错误.二、利用动能定理分析多过程问题一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.(1)分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.(2)全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单,更方便.注意:当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移.计算总功时,应计算整个过程中出现过的各力做功的代数和.如图3所示,右端连有一个光滑弧形槽的水平桌面AB长L=1.5 m,一个质量为m=0.5 kg的木块在F=1.5 N的水平拉力作用下,从桌面上的A端由静止开始向右运动,木块到达B端时撤去拉力F,木块与水平桌面间的动摩擦因数μ=0.2,取g=10 m/s2.求:图3(1)木块沿弧形槽上升的最大高度(木块未离开弧形槽);(2)木块沿弧形槽滑回B端后,在水平桌面上滑行的最大距离.答案(1)0.15 m (2)0.75 m解析(1)设木块沿弧形槽上升的最大高度为h,木块在最高点时的速度为零.从木块开始运动到沿弧形槽上升到最大高度处,由动能定理得:FL-FfL-mgh=0其中F f=μF N=μmg=0.2×0.5×10 N=1.0 N所以h=FL-FfLmg=(1.5-1.0)×1.50.5×10m=0.15 m(2)设木块离开B点后,在水平桌面上滑行的最大距离为x,由动能定理得:mgh-Ffx=0所以x=mghFf=0.5×10×0.151.0m=0.75 m.针对训练2 图4中ABCD是一条长轨道,其中AB段是倾角为θ的斜面,CD段是水平的,BC段是与AB段和CD段都相切的一小段圆弧,其长度可以略去不计.一质量为m的小滑块在A点从静止释放,沿轨道滑下,最后停在D点,A 点和D点的位置如图4所示,现用一沿轨道方向的力推滑块,使它缓缓地由D点回到A点,设滑块与轨道间的动摩擦因数为μ,重力加速度为g,则推力对滑块做的功等于( )图4A.mghB.2mghC.μmg(s+hsin θ) D.μmg(s+h cos θ)答案 B解析滑块由A点运动至D点,设克服摩擦力做功为W AD,由动能定理得mgh -W AD=0,即W AD=mgh…①,滑块从D点回到A点,由于是缓慢推,说明动能变化量为零,设克服摩擦力做功为W DA,由动能定理知当滑块从D点被推回A点有WF-mgh-W DA=0…②,由A点运动至D点,克服摩擦力做的功为W AD=μmg cosθ·hsin θ+μmgs…③,从D→A的过程克服摩擦力做的功为W DA=μmg cosθ·hsin θ+μmgs…④,③④联立得W AD=W DA…⑤,①②⑤联立得W F=2mgh,故A、C、D错误,B正确.三、动能定理在平抛、圆周运动中的应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:①可提供支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min=0.②不可提供支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min=gR.如图5所示,一可以看成质点的质量m=2 kg的小球以初速度v0沿光滑的水平桌面飞出后,恰好从A点沿切线方向进入圆弧轨道,BC为圆弧竖直直径,其中B为轨道的最低点,C为最高点且与水平桌面等高,圆弧AB对应的圆心角θ=53°,轨道半径R=0.5 m.已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g取10 m/s2.图5(1)求小球的初速度v0的大小;(2)若小球恰好能通过最高点C,求在圆弧轨道上摩擦力对小球做的功.答案(1)3 m/s (2)-4 J解析(1)在A点由平抛运动规律得:v A =vcos 53°=53v小球由桌面到A点的过程中,由动能定理得mg(R+R cos θ)=12mvA2-12mv2联立得:v0=3 m/s;(2)若小球恰好能通过最高点C,在最高点C处有mg=mv 2CR,小球从桌面运动到C点的过程中,由动能定理得W f=12mvC2-12mv2代入数据解得W f=-4 J.四、动能定理在多过程往复运动中的应用某游乐场的滑梯可以简化为如图6所示竖直面内的ABCD轨道,AB为长L=6 m、倾角α=37°的斜轨道,BC为水平轨道,CD为半径R=15 m、圆心角β=37°的圆弧轨道,轨道AB段粗糙,其余各段均光滑.一小孩(可视为质点)从A点以初速度v0=2 3 m/s下滑,沿轨道运动到D点时的速度恰好为零(不计经过B点时的能量损失).已知该小孩的质量m=30 kg,sin 37°=0.6,cos 37°=0.8,取g=10 m/s2,不计空气阻力,设最大静摩擦力等于滑动摩擦力,求:图6(1)该小孩第一次经过圆弧轨道C点时,对圆弧轨道的压力;(2)该小孩与AB段间的动摩擦因数;(3)该小孩在轨道AB上运动的总路程s.答案(1)420 N,方向向下(2)0.25 (3)21 m解析(1)由C到D速度减为0,由动能定理可得-mg(R-R cos β)=0-12mvC2,vC=215 m/s在C点,由牛顿第二定律得F N-mg=m v 2CR,可得:F N=420 N根据牛顿第三定律,小孩第一次经过圆弧轨道C点时,对圆弧轨道的压力为420 N,方向向下(2)小孩从A运动到D的过程中,由动能定理得:mgL sin α-μmgL cos α-mgR(1-cos β)=0-12 mv2可得:μ=0.25(3)在AB斜轨道上,μmg cos α<mg sin α,小孩不能静止在斜轨道上,则小孩从A点以初速度v0滑下,最后静止在BC轨道B处,由动能定理:mgL sin α-μmgs cos α=0-12mv2,解得s=21 m.1.在有摩擦力做功的往复运动过程中,注意两种力做功的区别:(1)重力做功只与初、末位置有关,而与路径无关;(2)滑动摩擦力(或全部阻力)做功与路径有关,克服摩擦力(或全部阻力)做的功W=F f s(s为路程).2.由于动能定理解题的优越性,求多过程往复运动问题中的路程,一般应用动能定理.【课堂同步练习】1.(用动能定理求变力做功)如图7所示为一水平的转台,半径为R,一质量为m的滑块放在转台的边缘,已知滑块与转台间的动摩擦因数为μ,且最大静摩擦力等于滑动摩擦力,重力加速度为g.若转台的转速由零逐渐增大,当滑块在转台上刚好发生相对滑动时,转台对滑块所做的功为( )图7A.12μmgR B.2πmgRC.2μmgRD.0答案 A解析滑块即将开始滑动时,最大静摩擦力(等于滑动摩擦力)提供向心力,有μmg=mv2R,根据动能定理有W f=12mv2,解得Wf=12μmgR,A正确.2.(利用动能定理分析多过程问题)如图8所示,AB为四分之一圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R.一质量为m的物体,与两个轨道间的动摩擦因数都为μ,它由轨道顶端A从静止开始下滑,恰好运动到C 处停止,不计空气阻力,重力加速度为g,那么物体在AB段克服摩擦力所做的功为( )图8A.12μmgR B.12mgRC.mgRD.(1-μ)mgR答案 D解析设物体在AB段克服摩擦力所做的功为W AB,对物体从A到C的全过程,由动能定理得mgR-W AB-μmgR=0,故W AB=mgR-μmgR=(1-μ)mgR.3.(动能定理在平抛、圆周运动中的应用)如图9所示,一长L=0.45 m、不可伸长的轻绳上端悬挂于M点,下端系一质量m=1.0 kg的小球,CDE是一竖直固定的圆弧形轨道,半径R=0.50 m,OC与竖直方向的夹角θ=60°,现将小球拉到A点(保持绳绷直且水平)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后,从圆弧轨道的C点沿切线方向进入轨道,刚好能到达圆弧轨道的最高点E,重力加速度g取10 m/s2,求:图9(1)小球到B点时的速度大小;(2)轻绳所受的最大拉力大小;(3)小球在圆弧轨道上运动时克服阻力做的功.答案(1)3 m/s (2)30 N (3)8 J解析(1)小球从A到B的过程,由动能定理得mgL=12mv12,解得v1=3 m/s(2)小球在B点时,由牛顿第二定律得F-mg=m v21L,解得F=30 N,由牛顿第三定律可知,轻绳所受最大拉力大小为30 N(3)小球从B到C做平抛运动,从C点沿切线进入圆弧轨道,由平抛运动规律可得小球在C点的速度大小v2=v 1cos θ,解得v2=6 m/s小球刚好能到达E点,则mg=m v23R,解得v3= 5 m/s小球从C点到E点,由动能定理得-mg(R+R cos θ)-W f=12mv32-12mv22,解得W f=8 J.4.(利用动能定理分析多过程往复运动问题)如图10所示,ABCD为一竖直平面内的轨道,其中BC水平,A点比BC高出10 m,BC长1 m,AB和CD轨道光滑.一质量为1 kg的物体,从A点以4 m/s的速度沿轨道开始运动,经过BC后滑到高出C点10.3 m的D点时速度为0.求:(g取10 m/s2)图10(1)物体与BC轨道间的动摩擦因数;(2)物体第5次经过B点时的速度大小(结果可用根式表示);(3)物体最后停止的位置(距B点多少米).答案(1)0.5 (2)411 m/s (3)距B点0.4 m解析(1)由A到D,由动能定理得-mg(h-H)-μmgs BC=0-12 mv12解得μ=0.5(2)物体第5次经过B点时,物体在BC上滑动了4次,由动能定理得mgH-μmg·4sBC =12mv22-12mv12,解得v2=411 m/s(3)分析整个过程,由动能定理得mgH-μmgs=0-12 mv12解得s=21.6 m所以物体在轨道上来回运动了10次后,还有1.6 m,故最后停止的位置与B 点的距离为2 m-1.6 m=0.4 m.【课后强化训练】一、选择题1.一人用力踢质量为100 g的皮球,使球由静止以20 m/s的速度飞出.假定人踢球瞬间对球的平均作用力是200 N,球在水平方向运动了20 m停止.则人对球所做的功为( )A.20 JB.2 000 JC.500 JD.4 000 J答案 A解析根据题意可知,球的初状态速度为零,末状态速度为20 m/s,由动能定理可知W=12mv2-0=12×0.1×202 J=20 J,故选A.2.质量为m的物体以初速度v0沿水平面向左开始运动,起始点A与一轻弹簧O端相距s,如图1所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x,重力加速度为g,则从开始碰撞到弹簧被压缩至最短(弹簧始终在弹性限度内),物体克服弹簧弹力所做的功为( )图1A.12mv2-μmg(s+x) B.12mv2-μmgxC.μmgsD.μmg(s+x) 答案 A解析由动能定理得-W-μmg(s+x)=0-12mv2,W=12mv2-μmg(s+x),A正确,B、C、D错误.3.在离水平地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到水平地面时速度为v,用g表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( )A.mgh-12mv2-12mv2 B.12mv2-12mv2-mghC.mgh+12mv2-12mv2 D.mgh+12mv2-12mv2答案 C解析对物块从刚抛出到落地的过程,由动能定理可得:mgh-Wf克=12mv2-12mv2解得:W f克=mgh+12mv2-12mv2.4.一质量为m的小球,用长为l的轻绳悬挂于O点,小球在水平拉力F作用下,从平衡位置P点缓慢地移动到Q点,如图2所示,重力加速度为g,则拉力F所做的功为( )图2A.mgl cos θB.mgl(1-cos θ)C.Fl cos θD.Fl sin θ答案 B解析小球缓慢移动,时时处于平衡状态,由平衡条件可知,F=mg tan θ,随着θ的增大,F也在增大,是一个变化的力,不能直接用功的公式求它所做的功,所以这道题要考虑用动能定理求解.由于小球缓慢移动,动能保持不变,由动能定理得:-mgl(1-cos θ)+W=0,所以W=mgl(1-cos θ),B正确,A、C、D错误.5.如图3所示,一木块沿竖直放置的粗糙曲面从高处滑下,当它滑过A点的速度大小为5 m/s时,滑到B点的速度大小也为5 m/s.若使它滑过A点的速度大小变为7 m/s,则它滑到B点的速度大小( )图3A.大于7 m/sB.等于7 m/sC.小于7 m/sD.无法确定答案 C解析第一次从A点到B点的过程中:mgh-W f1=ΔE k=0,W f1=mgh第二次速度增大,木块对轨道的压力增大,W f2>W f1,故mgh-W f2<0,木块在B 点的动能小于在A点的动能,C正确.6.质量为m的小球被系在轻绳一端,在竖直平面内做半径为R的圆周运动,如图4所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是( )图4A.14mgR B.13mgRC.12mgR D.mgR答案 C解析小球通过最低点时,设绳的张力为F T,则F T -mg=mv21R,即6mg=mv21R①小球恰好通过最高点,绳子拉力为零,则有mg=m v2 2R②小球从最低点运动到最高点的过程中,由动能定理得-mg·2R-W f=12mv22-12mv12③由①②③式解得W f=12mgR,选C.7.一质量为2 kg的物体静止在水平桌面上,在水平拉力F的作用下,沿水平方向运动2 s后撤去外力,其v-t图像如图5所示,下列说法正确的是( )图5A.在0~2 s内,合外力做的功为4 JB.在0~2 s内,合外力做的功为8 JC.在0~6 s内,摩擦力做的功为-8 JD.在0~6 s内,摩擦力做的功为-4 J答案 A8.如图6所示,一薄木板斜放在高度一定的平台和水平地板上,其顶端与平台相平,末端置于地板的P处,并与地板平滑连接.将一可看成质点的滑块自木板顶端无初速度释放,沿木板下滑,接着在地板上滑动,最终停在Q处.滑块和木板及地板之间的动摩擦因数相同.现将木板截短一半,仍按上述方式放在该平台和水平地板上,再次将滑块自木板顶端无初速度释放(设滑块在木板和地面接触处平滑过渡),则滑块最终将停在( )图6A.P处B.P、Q之间C.Q处D.Q的右侧答案 C9.(多选)如图7所示为一滑草场.某条滑道由上、下两段高均为h,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m的载人滑草车从坡顶由静止开始下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,重力加速度为g,sin 37°=0.6,cos 37°=0.8).则( )图7A.动摩擦因数μ=6 7B.载人滑草车最大速度为2gh 7C.载人滑草车克服摩擦力做功为mghD.载人滑草车在下段滑道上的加速度大小为3 5 g答案AB解析根据动能定理有2mgh-W f=0,即2mgh-μmg cos 45°·hsin 45°-μmg cos 37°·hsin 37°=0,得动摩擦因数μ=67,则A项正确,C项错误;载人滑草车在上、下两段的加速度分别为a1=g(sin 45°-μcos 45°)=214g,a 2=g(sin 37°-μcos 37°)=-335g,则载人滑草车在上、下两段滑道上分别做加速运动和减速运动,因此在上段滑道底端时达到最大速度v,由动能定理得:mgh-μmg cos 45°hsin 45°=12mv2,得v=27gh,故B项正确,D项错误.二、非选择题10.如图8所示,光滑水平面AB与一半圆形轨道在B点平滑连接,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C点,不计空气阻力,重力加速度为g.求:图8(1)弹簧弹力对物块做的功;(2)物块从B到C克服阻力所做的功;(3)物块离开C点后,再落回到水平面上时的动能.答案(1)3mgR(2)12mgR(3)52mgR解析(1)物块从开始运动到B点,由动能定理得W=12 mvB2在B点由牛顿第二定律得7mg-mg=m v 2 B R解得W=3mgR(2)物块从B到C由动能定理得-2mgR+W′=12mvC2-12mvB2物块在C点时mg=m v 2 C R解得W′=-12mgR,即物块从B到C克服阻力做功为12mgR.(3)物块从C点平抛到水平面的过程中,由动能定理得2mgR=E k-12mvC2,解得Ek=52mgR.11.如图9甲所示,半径R=0.9 m的光滑半圆形轨道BC固定于竖直平面内,最低点B与水平面相切.水平面上有一质量为m=2 kg的物块从A点以某一初速度向右运动,并恰能通过半圆形轨道的最高点C,物块与水平面间的动摩擦因数为μ,且μ随离A点的距离L按图乙所示规律变化,A、B两点间距离L=1.9 m,g 取10 m/s2,求:图9(1)物块经过最高点C时的速度大小;(2)物块经过半圆形轨道最低点B时对轨道压力的大小;(3)物块在A点时的初速度大小.答案(1)3 m/s (2)120 N (3)8 m/s解析(1)物块恰好通过C点,由牛顿第二定律可得mg=m v 2 C R解得v C=3 m/s(2)物块从B点到C点,由动能定理可得-mg·2R=12mvC2-12mvB2解得v B=3 5 m/s在B点由牛顿第二定律可得F N -mg=mv 2BR,解得F N=120 N.由牛顿第三定律可知物块通过B点时对轨道压力的大小为120 N (3)由题图乙可知摩擦力对物块做的功为W f =-12×(0.25+0.75)×1.9mg=-19 J物块从A到B,由动能定理得W f=12mvB2-12mvA2解得v A=8 m/s.12.如图10所示,光滑斜面AB的倾角θ=53°,BC为水平面,BC长度l BC=1.1 m,CD为光滑的14圆弧,半径R=0.6 m.一个质量m=2 kg的物体,从斜面上A点由静止开始下滑,物体与水平面BC间的动摩擦因数μ=0.2,轨道在B、C两点平滑连接.当物体到达D点时,继续竖直向上运动,最高点距离D点的高度h=0.2 m.不计空气阻力,sin 53°=0.8,cos 53°=0.6,g取10 m/s2.求:图10(1)物体运动到C点时的速度大小v C;(2)A点距离水平面的高度H;(3)物体最终停止的位置到C点的距离s.答案(1)4 m/s (2)1.02 m (3)0.4 m解析(1)物体由C点运动到最高点,根据动能定理得:-mg(h+R)=0-12 mvC2代入数据解得:v C=4 m/s(2)物体由A点运动到C点,根据动能定理得:mgH-μmglBC =12mvC2-0代入数据解得:H=1.02 m(3)从物体开始下滑到最终停止,根据动能定理得:mgH-μmgs1=0代入数据,解得s1=5.1 m由于s1=4l BC+0.7 m所以物体最终停止的位置到C点的距离为:s=0.4 m.【强化训练二】1.如图1所示是一种常见的圆桌,桌面中间嵌一半径为r=1.5 m、可绕中心轴转动的圆盘,桌面与圆盘面在同一水平面内且两者间缝隙可不考虑.已知桌面离地高度为h=0.8 m,将一可视为质点的小碟子放置在圆盘边缘,若缓慢增大圆盘的角速度,碟子将从圆盘上甩出并滑上桌面,再从桌面飞出,落地点与桌面飞出点的水平距离是0.4 m.已知碟子质量m=0.1 kg,碟子与圆盘间的最大静摩擦力F fmax=0.6 N,g取10 m/s2,求:(不计空气阻力)图1(1)碟子从桌面飞出时的速度大小;(2)碟子在桌面上运动时,桌面摩擦力对它做的功;(3)若碟子与桌面间的动摩擦因数为μ=0.225,要使碟子不滑出桌面,则桌面半径至少是多少?答案(1)1 m/s (2)-0.4 J (3)2.5 m解析(1)根据平抛运动规律:h=12gt2,x=vt,得v=x g2h=1 m/s(2)碟子从圆盘上甩出时的速度为v0,则F fmax=m v2r,即v0=3 m/s由动能定理得:W f=12mv2-12mv2,代入数据得:Wf=-0.4 J(3)当碟子滑到桌面边缘时速度恰好减为零,对应的桌子半径取最小值. 设碟子在桌子上滑动的位移为x′,根据动能定理:-μmgx′=0-12 mv2代入数据得:x′=2 m由几何知识可得桌子半径的最小值为:R=r2+x′2=2.5 m.2.如图2所示为一遥控电动赛车(可视为质点)和它的运动轨道示意图.假设在某次演示中,赛车从A位置由静止开始运动,经2 s后关闭电动机,赛车继续前进至B点后水平飞出,赛车能从C点无碰撞地进入竖直平面内的圆形光滑轨道,D点和E点分别为圆形轨道的最高点和最低点.已知赛车在水平轨道AB段运动时受到的恒定阻力为0.4 N ,赛车质量为0.4 kg ,通电时赛车电动机的输出功率恒为2 W ,B 、C 两点间高度差为0.45 m ,C 与圆心O 的连线和竖直方向的夹角α=37°,空气阻力忽略不计, sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2,求:图2(1)赛车通过C 点时的速度大小; (2)赛道AB 的长度;(3)要使赛车能通过圆轨道最高点D 后回到水平赛道EG ,其半径需要满足什么条件?答案 (1)5 m/s (2)2 m (3)0<R ≤2546m 解析 (1)赛车在BC 间做平抛运动,则竖直方向v y =2gh =3 m/s 由图可知:v C =v ysin 37°=5 m/s(2)由(1)可知B 点速度v 0=v C cos 37°=4 m/s 则根据动能定理:Pt -F f l AB =12mv 02,解得l AB =2 m(3)当赛车恰好通过最高点D 时,有:mg =m v 2DR从C 到D ,由动能定理可知:-mgR (1+cos 37°)=12mv D 2-12mv C 2,解得R =2546m所以轨道半径0<R ≤2546m. 3.如图3所示,位于竖直平面内的光滑轨道由四分之一圆弧轨道ab 和抛物线轨道bc 组成,圆弧轨道半径Oa 水平,b 点为抛物线轨道顶点.已知b 点距c 点的高度h =2 m ,水平距离s = 2 m.重力加速度g 取10 m/s 2.图3(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若小环套在b 点,因微小扰动而由静止开始滑下,求小环到达c 点时速度的水平分量的大小.答案 (1)0.25 m (2)2103m/s 解析 (1)小球在bc 段轨道运动时,与轨道之间无相互作用力,说明小环下落到b 点时的速度可使得小环做平抛运动的轨迹与轨道bc 重合,有s =v b t ,h =gt 22在ab 段轨道下滑过程中,根据动能定理可得mgR =mv 2b 2,联立解得R =0.25 m(2)小环在bc 段轨道下滑过程中,初速度为零,只有重力做功,根据动能定理可得mgh =mv 2c2,因为小环滑到c 点时速度与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角,设该夹角为θ,则根据平抛运动规律可知sin θ=v b v 2b +2gh,根据运动的合成与分解可得sin θ=v 水平v c,联立可得v 水平=2103m/s.4.某校科技兴趣小组设计了如图4所示的赛车轨道,轨道由水平直轨道AB 、圆轨道BCD(B点与D点在同一水平面上但不重合)、水平直轨道DE、圆弧轨道EP 和管道式圆弧轨道PF组成,整个轨道处在同一竖直面内,AB段粗糙,其他轨道均光滑,EO2和FO3均沿竖直方向,且EO2=FO3=R2.已知R1=0.5 m,R2=1.2 m,θ=60°.一遥控电动赛车(可视为质点)质量m=1 kg,其电动机额定输出功率P =10 W,静止放在A点.通电后,赛车开始向B点运动,t0=5 s后关闭电源,赛车继续运动,到达B点时速度v B=5 m/s.g=10 m/s2,求:图4(1)赛车运动到C点时的速度大小及其对轨道的压力大小;(2)赛车在AB段克服阻力所做的功;(3)要使赛车沿轨道运动到达F点水平飞出,且对管道F处的上壁无压力,赛车的通电时间应满足的条件.(假定赛车关闭电源时仍处于AB轨道上.管道上下壁间距比小车自身高度略大)答案(1) 5 m/s 0 (2)37.5 J (3)5 s≤t≤5.55 s解析(1)从B→C过程根据动能定理:-mg·2R1=12mvC2-12mvB2解得:v C= 5 m/s在C点根据牛顿第二定律:mg+F N=m v 2 C R1解得:F N=0根据牛顿第三定律得F N′=F N=0(2)A→B过程,设赛车克服阻力所做的功为W f根据动能定理:Pt0-W f=12 mvB2解得:W f=37.5 J(3)若t0=5 s时关闭电源,B→F过程:-mg·2R2(1-cos θ)=12mvF2-12mvB2解得:v F=1 m/s可知,在恰好能过C点的临界情况下,赛车到达F点时速度为1 m/s而要使赛车在F点对管道上壁无压力并从F点水平飞出,在F点的速度应满足0<v F≤gR2=2 3 m/s综合上述可得1 m/s≤v F≤2 3 m/sA→F过程:Pt-Wf -mg·2R2(1-cos θ)=12mvF2解得:5 s≤t≤5.55 s5.如图5所示,在竖直平面内,长为L、倾角θ=37°的粗糙斜面AB下端与半径R=1 m的光滑圆弧轨道BCDE平滑相接于B点,C点是轨迹最低点,D点与圆心O等高.现有一质量m=0.1 kg的小物体从斜面AB上端的A点无初速度下滑,恰能到达圆弧轨道的D点.若物体与斜面之间的动摩擦因数μ=0.25,不计空气阻力,g取10 m/s2,sin 37°=0.6,cos 37°=0.8,求:图5(1)斜面AB的长度L;(2)物体第一次通过C点时的速度大小v C1;(3)物体经过C点时,轨道对它的最小支持力F Nmin;(4)物体在粗糙斜面AB上滑行的总路程s总.答案(1)2 m (2)2 5 m/s (3)1.4 N (4)6 m解析(1)A到D过程,根据动能定理有mg(L sin θ-R cos θ)-μmgL cos θ=0解得:L=2 m;(2)物体从A到第一次通过C点过程,根据动能定理有mg (L sin θ+R -R cos θ)-μmgL cos θ=12mv C 12 解得:v C 1=2 5 m/s ;(3)物体经过C 点,轨道对它有最小支持力时,它将在B 点所处高度以下运动,所以有:mg (R -R cos θ)=12mv min 2根据牛顿第二定律有:F Nmin -mg =m v min 2R ,解得F Nmin =1.4 N ;(4)根据动能定理有:mgL sin θ-μmgs 总cos θ=0 解得s 总=6 m.。
动能定理求解多过程问题(解析版)
![动能定理求解多过程问题(解析版)](https://img.taocdn.com/s3/m/e5588335f705cc1754270956.png)
动能定理求解多过程问题1. 由于多过程问题的受力情况、运动情况比较复杂,从动力学的角度分析往往比较复杂,利用动能定理分析此类问题,是从总体上把握研究对象运动状态的变化,并不需要从细节上了解。
2.运用动能定理解决问题时,有两种思路:一种是全过程列式,另一种是分段列式。
3.全过程列式时,涉及重力、弹簧弹力、大小恒定的阻力或摩擦力做功时,要注意运用它们的特点:(1) 重力、弹簧弹力做功取决于物体的初、末位置,与路径无关。
(2) 大小恒定的阻力或摩擦力做功等于力的大小与路程的乘积。
4. 利用动能定理求解多过程问题的基本思路(1) 弄清物体的运动由哪些过程组成。
(2) 分析每个过程中物体的受力情况。
(3) 各个力做功有何特点,对动能的变化有无影响。
(4) 从总体上把握全过程,写出总功表达式,找出初、末状态的动能。
(5) 对所研究的全过程运用动能定理列方程。
【典例1】如图所示,AB、CD 为两个对称斜面,其上部足够长,下部B、C 分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R为 2.0 m,一个物体在离弧底E高度为h=3.0 m 处,以初速度v =4.0 m/s 沿斜面运动,若物体与两斜面间的动摩擦因数均为0.02,则物体在两斜面上(不包括圆弧部分)一共对全过程应用动能定理得12mgh-R(1-cos 60 )°-μmgcsos 60 =°0-2mv2,解得s=280 m。
【典例2】如图所示,质量m=6.0 kg 的滑块(可视为质点),在F=60 N的水平拉力作用下从A点由静止开始运动,一段时间后撤去拉力F,当滑块由平台边缘 B 点飞出后,恰能从水平地面上的 C 点沿切线方向落入竖直圆弧轨道CDE,并从轨道边缘 E 点竖直向上飞出,经过0.4 s后落回E点。
已知A、B 间的距离L =2.3 m,滑块与平台间的动摩擦因数μ=0.5,平台离地面高度h=0.8 m,B、C 两点间水平距离x=1.2 m,圆弧轨道半径R=1.0 m。
应用动能定理解决多过程问题
![应用动能定理解决多过程问题](https://img.taocdn.com/s3/m/a2b70aee58fb770bf68a55c6.png)
应用动能定理解决多过程问题江苏省射阳中学 赵海明 (224300)E ―mail:动能定理是高中物理的一个重要定理,也是高考中的一个热点。
对于每一个高中生来说,在物理的学习中,都必须能灵活地运用动能定理。
在高考中,经常会出现复杂的多过程问题,下面就通过例题谈谈如何应用动能定理解决多过程问题。
例1、如图所示,物体从高为h 的斜面体的顶端A 由静止开始滑下,滑到水平面上的B 点停止,A 到B 的水平距离为S ,已知:斜面体和水平面都由同种材料制成。
求:物体与接触面间的动摩擦因数解析:设物体质量为m ,斜面长为l ,物体与接触面间的动摩擦因数为μ ,斜面与水平面间的 夹角为θ,滑到C 点的速度为V ,法一:分段列式法物体从A 滑到C ,根据动能定理有: 物体从C 滑到B,根据动能定理得: 联立上式解得: 法二:全程列式法物体从A 滑到B,根据动能定理得:联立解得: 点评:对于本题物体的运动经历了两个过程:先匀加速运动,接着匀减速运动。
应用动能定理可以分段分析,也可以对全过程分析;分段分析法比较直观、容易理解,而对全程进行分析能够使问题变得简捷,提高解题效率。
例2、如图所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度V 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?解析: 滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底21cos 2cos DC mgh mgl mv l S μθθ-==212CB mgS mv μ-=-h S μ=cos 0cos CB CB mgh mgl mgS l S Sμθμθ--=+=h Sμ=端。
在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功。
2025高考物理总复习动能定理在多过程问题中的应用
![2025高考物理总复习动能定理在多过程问题中的应用](https://img.taocdn.com/s3/m/2e288460366baf1ffc4ffe4733687e21ae45ff6c.png)
课时精练
1.木块在水平恒力F的作用下,沿水平路面由静止出发前进了L,随即撤
去此恒力,木块沿原方向又前进了3L才停下来,设木块运动全过程中地
面情况相同,则摩擦力的大小Ff和木块所获得的最大动能Ek分别为
A.Ff=F2 C.Ff=F3
Ek=F2L Ek=2F3 L
B.Ff=F2
√D.Ff=F4
Ek=FL Ek=3F4 L
弹簧压缩至D点。已知光滑圆弧轨道的半径为R=0.45 m,水平轨道BC长
为0.4 m,与滑块间的动摩擦因数为μ=0.2,光滑斜面CD部分长为0.6 m,
不计空气阻力,弹簧始终处于弹
性限度内,重力加速度大小为g=
10 m/s2。求:
1234567
(1)滑块第一次经过圆弧轨道上的B点时,圆弧轨道对滑块的支持力大小; 答案 60 N
1234567
3.如图所示,一个小球以速度v1从底端B出发沿粗糙的
1 4
圆周向上运动,
恰好到达顶端A,克服摩擦力做功W1;现将小球从
A由静止释放,小球运动到最低点B时,速度为v2,
克服摩擦力做功为W2,则
√A.v1>v2,W1>W2
B.v1=v2,W1<W2
C.v1>v2,W1<W2
D.v1<v2,W1=W2
mgHBD=12mvD2-12mvB2
联立解得 vB= gR,HBD=0
内侧,
考点一 动能定理在多过程问题中的应用
(3)小物块在A点的初速度大小。 答案 3gR
小物块从A到B的过程中,根据动能定理有 -μmgs=12mvB2-12mvA2 s=π·2R,解得 vA= 3gR。
返回
< 考点二 >
7动能定理多过程问题
![7动能定理多过程问题](https://img.taocdn.com/s3/m/420967ffa98271fe910ef99e.png)
应用动能定理求解多过程问题考点规律分析(1)应用动能定理求解多过程问题的两种方法物体的运动过程可分为几个运动性质不同的阶段(如加速、减速的阶段)时,可以分段分析应用动能定理,也可以对全过程整体分析应用动能定理,但当题目不涉及中间量时,选择全过程整体分析应用动能定理会更简单、更方便。
(2)全过程应用动能定理时的注意事项①当物体的运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移。
计算总功时,应计算整个过程中出现过的各力做功的代数和。
②研究初、末动能时,只需关注初、末状态,不必关心运动过程的细节。
典型例题例 如图所示,物体在离斜面底端5 m 处由静止开始下滑,然后滑到由小圆弧连接的水平面上,若物体与斜面及水平面的动摩擦因数均为0.4,斜面倾角为37°。
求物体能在水平面上滑行多远。
[规范解答] 解法一:(分段法)对物体在斜面上和水平面上时受力分析,如图甲、乙所示。
物体下滑阶段F N1=mg cos37°,故F f1=μF N1=μmg cos37°。
由动能定理得mg sin37°·x 1-μmg cos37°·x 1=12m v 21-0①在水平面上运动过程中,F f2=μF N2=μmg由动能定理,得-μmgx 2=0-12m v 21 ②由①②两式可得x2=sin37°-μcos37°μx1=0.6-0.4×0.80.4×5 m=3.5 m。
解法二:(全程法)物体受力分析同解法一。
物体运动的全过程中,初、末状态的速度均为零,对全过程应用动能定理有mg sin37°·x1-μmg cos37°·x1-μmgx2=0-0得x2=sin37°-μcos37°μx1=0.6-0.4×0.80.4×5 m=3.5 m。
第六章 微专题39 动能定理在多过程、往复运动问题中的应用
![第六章 微专题39 动能定理在多过程、往复运动问题中的应用](https://img.taocdn.com/s3/m/aeb69c5126d3240c844769eae009581b6bd9bda9.png)
微专题39动能定理在多过程、往复运动问题中的应用1.运用动能定理解决多过程问题时,有两种思路:一种是全过程列式,另一种是分段列式.2.全过程列式时,涉及重力、弹簧弹力、大小恒定的阻力或摩擦力做功时,要注意运用它们的做功特点.1.如图所示,在竖直平面内有一“V”形槽,其底部BC是一段圆弧,两侧都与光滑斜槽相切,相切处B、C位于同一水平面上.一小物体从右侧斜槽上距BC平面高度为2h的A处由静止开始下滑,经圆弧槽再滑上左侧斜槽,最高能到达距BC所在水平面高度为h的D处,接着小物体再向下滑回,若不考虑空气阻力,则()A.小物体恰好滑回到B处时速度为零B.小物体尚未滑回到B处时速度已变为零C.小物体能滑回到B处之上,但最高点要比D处低D.小物体最终一定会停止在圆弧槽的最低点答案 C解析小物体从A处运动到D处的过程中,克服摩擦力所做的功为W f1=mgh,小物体从D 处开始运动的过程,因为速度比从A向D运动的速度小,则小物体对圆弧槽的压力比从A 向D运动时的压力小,克服摩擦力所做的功W f2<mgh,所以小物体能滑回到B处之上,但最高点要比D处低,故C正确,A、B错误;因为小物体与圆弧槽间的动摩擦因数未知,所以小物体可能停在圆弧槽上的任何地方,故D错误.2.(2023·四川省检测)2022年北京冬奥会冰壶比赛中运动员在本垒把冰壶沿水平冰面以初速度v0推出滑向营垒.冰壶在冰面上自由滑行时冰壶和冰面间的动摩擦因数为μ,若队友在其滑行前方摩擦冰面,冰壶和冰面间的动摩擦因数变为0.9μ,重力加速度取g.求:(1)冰壶自由滑行前进的距离为多大;(2)在第(1)问中冰壶停下时离营垒边沿距离为x0,为保证冰壶能进入营垒,则队友最晚应于冰壶运动到多远时开始摩擦冰壶前方的冰面.答案(1)v022μg(2)v022μg-9x0解析(1)让冰壶在冰面上自由滑行时有-μmg =ma 10-v 02=2a 1x解得x =v 022μg(2)设队友最晚应于冰壶运动到s 时开始摩擦冰壶前方的冰面,则全程由动能定理得:-μmgs -0.9μmg (x +x 0-s )=0-12m v 02 解得s =v 022μg-9x 0 3.(2023·福建省模拟)如图所示,一半径R =0.4 m 的光滑竖直半圆轨道与水平面相切于c 点,一质量m =1 kg 可视为质点的小物块静止于水平面a 点,现用一水平恒力F 向左拉物块,经过t =3 s 时间到达b 点的速度大小v b =6 m/s ,此时撤去F ,小物块继续向前滑行经c 点进入光滑竖直圆轨道,且恰能经过竖直轨道最高点d .已知小物块与水平面间的动摩擦因数μ=0.4,重力加速度g 取10 m/s 2,求:(1)水平恒力F 的大小;(2)b 、c 间的距离L .答案 (1)6 N (2)2 m解析 (1)从a 到b 过程中有F -F f =ma ,v b =at小物块所受摩擦力F f =μmg联立代入数据得F =6 N(2)小物块恰能经过轨道最高点,在d 点由牛顿第二定律有mg =m v 2R解得v =gR =2 m/s从c 点到d 点由动能定理有-mg ·2R =12m v 2-12m v c 2 解得v c =2 5 m/s从b 到c 由动能定理有-μmgL =12m v c 2-12m v b 2 解得b 、c 间的距离L =2 m4.(2023·浙江省模拟)某游乐场的滑梯可以简化为如图所示竖直面内的ABCD 轨道,AB 为长L =6 m 、倾角α=37°的斜轨,BC 为水平轨道,CD 为半径R =15 m 、圆心角β=37°的圆弧,轨道AB 段粗糙其余各段均光滑.一小孩(可视为质点)从A 点以初速度v 0=2 3 m/s 下滑,沿轨道运动到D 点时的速度恰好为零(不计经过B 点时的能量损失).已知该小孩的质量m =30 kg ,取sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2,不计空气阻力,设最大静摩擦力等于滑动摩擦力.求:(1)该小孩第一次经过圆弧C 点时,对圆弧轨道的压力F N ;(2)该小孩在轨道AB 上第一次从A 下滑到B 的时间t ;(3)若将AB 段轨道改为圆弧形状(图中虚线部分,轨道材质不变),试定性说明题设条件下小孩在轨道上游玩时是否会冲出D 点而发生危险?答案 (1)420 N ,方向向下 (2)15-32s (3)见解析 解析 (1)由C 到D 速度减为0,由动能定理可得-mg (R -R cos β)=0-12m v C 2 解得v C =215 m/s在C 点,由牛顿第二定律得F N C -mg =m v C 2R解得F N C =420 N根据牛顿第三定律,小孩对轨道的压力大小为F N = F N C =420 N ,方向向下;(2)小孩从A 运动到D 的过程中,有mgL sin α-μmgL cos α-mgR (1-cos β)=0-12m v 02 可得μ=0.25在AB 上运动的加速度大小a =mg sin α-μmg cos αm=4 m/s 2 根据v B =v C =v 0+at代入数据解得t =15-32s(3)若将AB 段轨道改为圆弧形状,摩擦力做功会增加,速度减小更快,小孩到达不了D 点,所以小孩在轨道上游玩时不会冲出D 点而发生危险.5.如图所示,在竖直平面内,长为L 、倾角θ=37°的粗糙斜面AB 下端与半径R =1 m 的光滑圆弧轨道BCDE 平滑相接于B 点,C 点是轨道最低点,D 点与圆心O 等高.现有一质量m =0.1 kg 的小物体从斜面AB 上端的A 点无初速度下滑,恰能到达圆弧轨道的D 点.若物体与斜面之间的动摩擦因数μ=0.25,不计空气阻力,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,求:(1)斜面AB 的长度L ;(2)物体第一次通过C 点时的速度大小v C 1;(3)物体经过C 点时,轨道对它的最小支持力F Nmin ;(4)物体在粗糙斜面AB 上滑行的总路程s 总.答案 (1)2 m (2)2 5 m/s (3)1.4 N (4)6 m解析 (1)A 到D 过程,根据动能定理有mg (L sin θ-R cos θ)-μmgL cos θ=0解得:L =2 m.(2)物体从A 到第一次通过C 点过程,根据动能定理有mg (L sin θ+R -R cos θ)-μmgL cos θ=12m v C 12 解得:v C 1=2 5 m/s ;(3)物体经过C 点,轨道对它有最小支持力时,它将在B 点所处高度以下运动,所以有:mg (R -R cos θ)=12m v min 2 根据牛顿第二定律有:F Nmin -mg =m v min 2R, 解得F Nmin =1.4 N ;(4)根据动能定理有:mgL sin θ-μmgs 总cos θ=0解得s 总=6 m .。
动能定理在多过程中的应用qiu
![动能定理在多过程中的应用qiu](https://img.taocdn.com/s3/m/b8fe226d443610661ed9ad51f01dc281e43a564e.png)
1. 确定研究对象. 2. 确定物体的运功过程.
3. 要对物体进行正确受力分析(包括重力),明确各 力的做功大小及正负情况.(有些力在运动过程中不是始终
,因而在考虑外力做功时,必须根据不同情况分别对待).
4. 明确物体在运动过程中的初状态动能和末状态的动 能.
5. 列出动能定理的方程 ,及其它必要的解题方程进行 求解.
多过程问题
(多过程构成部件)
1、匀速直线运动、 匀变速直线运动模型
2、平抛运动、类平 抛运动模型
3、圆周运动模型
多过程问题
C
F A
OR B
(力学典型多过程问题)
B
D
多过程问题
(由直线运动组成)
例1.如图所示 一物体质量m=1Kg,在沿斜面向上的恒 力F=15N作用下,由静止从底端沿斜面向上做匀加速 直线运动,上滑L0=2.5m,物体速度达到V0=5m/s,此 时撤去F,斜面足够长,且倾角θ=370,不计空气阻力(g =10 m/s2,sin370=0.6,cos370=0.8)。求: (1)物体与斜面间动摩擦因数; (2)物体回到出发点时的速度。
θ
多过程问题
(直线运动+曲线运动)
例2 如图传送带A、B之间的距离为L =3.2 m,与水平面间夹 角 θ = 370,传送带沿顺时针方向转动,速度恒为v =2 m/s, 在上端A点无初速放置一个质量为m=1kg、大小可视为质点 的金属块,它与传送带的动摩擦因数为μ = 0.5,金属块滑 离传送带后,经过弯道,沿半径R = 0.4 m的光滑圆轨道做 圆周运动,刚好能通过最高点E,已知B、D两点的竖直高度 差为h = 0.5m (取g=10m/s2) . 求: (1)金属块经过B点时的速度 (2)金属块在BCD弯道上克服摩擦力做的功.
高中物理精品课件:动能定理解决多过程问题
![高中物理精品课件:动能定理解决多过程问题](https://img.taocdn.com/s3/m/fc49371ea9956bec0975f46527d3240c8547a15c.png)
[解析] (1)物块上滑过程中受拉力、摩擦力、重力、支持力的作用,先做 加速运动后做减速运动,则有 FN=mgcos 37°
f=μFN F-f-mgsin 37°=ma 当加速度为零时,速度最大,此时 F=f+mgsin 37°=10 N 由图乙可得出 F=20-10x 则 F=10 N 时,可得出 x=1 m 由动能定理可得 WF+Wf+WG=12mvm2-0
(1)若s=1 m,两物块刚过C点时对轨道的压力大小; (2)若两物块能冲上半圆形轨道,且不脱离轨道,s应满足什么条件。
[解析] (1)设物块经过 C 点时速度为 vC,物块受到轨道支持力为 FNC,由 动能定理得:-2μmgs=12×2mvC2-12×2mv2,又 FNC-2mg=2mvRC2,代入解 得 FNC=500 N,由牛顿第三定律知,物块对轨道压力大小也为 500 N。
解析:(1)由于滑块与软钢锭间无摩擦,所以软钢锭在平台上滑过距离 L 时,滑 块脱离软钢锭后做自由落体运动,最大加速度:a=g。 (2)对软钢锭,由动能定理得:-W=0-12Mv2 解得:W=12Mv2。 (3)滑块脱离软钢锭后做自由下落到平台的时间与软钢锭在平台最后滑动 L 的 时间相同,设为 t。滑块离开软钢锭到软钢锭静止过程,软钢锭做匀减速直线 运动,则:μMg=Ma 由位移公式得:L=12at2
D.物块从B运动到C,因摩擦产生的热量为7.2 J
类型(二) 多过程曲线运动问题 [典例] (2022·山西太原质检)如图所示,质量均为m=4 kg的两个小物块A、B(均可 视为质点)放置在水平地面上,竖直平面内半径R=0.4 m的光滑半圆形轨道与水平地面相 切于C,弹簧左端固定。移动物块A压缩弹簧到某一位置(弹簧在弹性限度内),由静止释 放物块A,物块A离开弹簧后与物块B碰撞并粘在一起以共同速度v=5 m/s向右运动,运 动过程中经过一段长为s,动摩擦因数μ=0.2的水平面后,冲上半圆轨道,除s段外的其 他水平面摩擦力不计。求:(g取10 m/s2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理在多过程问题中的应用类型一动能定理在多过程问题中的应用1.运用动能定理解决多过程问题,有两种思路:(1)可分段应用动能定理求解;(2)全过程应用动能定理:所求解的问题不涉及中间的速度时,全过程应用动能定理求解更简便.2.全过程列式时,涉及重力、弹簧弹力、大小恒定的阻力或摩擦力做功时,要注意它们的特点.(1)重力、弹簧弹力做功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力做功的数值等于力的大小与路程的乘积.例1(2016·浙江10月选考·20)如图甲所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图乙所示的模型.倾角为45°的直轨道AB、半径R=10 m的光滑竖直圆轨道和倾角为37°的直轨道EF,分别通过水平光滑衔接轨道BC、C′E平滑连接,另有水平减速直轨道FG与EF平滑连接,EG间的水平距离l=40 m.现有质量m=500 kg的过山车,从高h=40 m处的A点由静止下滑,经BCDC′EF最终停在G点.过山车与轨道AB、EF 间的动摩擦因数均为μ1=0.2,与减速直轨道FG间的动摩擦因数μ2=0.75.过山车可视为质点,运动中不脱离轨道,g取10 m/s2.求:(1)过山车运动至圆轨道最低点C时的速度大小;(2)过山车运动至圆轨道最高点D时对轨道的作用力大小;(3)减速直轨道FG的长度x.(已知sin 37°=0.6,cos 37°=0.8)【答案】(1)810 m/s(2)7×103 N(3)30 m【解析】(1)设过山车在C点的速度大小为v C,由动能定理得mgh-μ1mg cos 45°·hsin 45°=12m v C2代入数据得v C=810 m/s(2)设过山车在D点速度大小为v D,由动能定理得mg (h -2R )-μ1mg cos 45°·h sin 45°=12m v D 2F +mg =m v D 2R,解得F =7×103 N由牛顿第三定律知,过山车在D 点对轨道的作用力大小为7×103 N (3)全程应用动能定理mg [h -(l -x )tan 37°]-μ1mg cos 45°·hsin 45°-μ1mg cos 37°·l -xcos 37°-μ2mgx =0解得x =30 m.变式训练1 (动能定理在多过程问题中的应用)(2020·河南信阳市罗山高三一模)如图甲所示,一倾角为37°,长L =3.75 m 的斜面AB 上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B 处,C 为圆弧轨道的最高点.t =0时刻有一质量m =1 kg 的物块沿斜面上滑,其在斜面上运动的v -t 图象如图乙所示.已知圆轨道的半径R =0.5 m .(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C 点时对轨道的压力的大小F N ;(3)试通过计算分析是否可能存在物块以一定的初速度从A 点滑上轨道,通过C 点后恰好能落在A 点.如果能,请计算出物块从A 点滑出的初速度大小;如果不能请说明理由. 【答案】(1)0.5 (2)4 N (3)见解析【解析】(1)由题图乙可知物块上滑时的加速度大小为a =10 m/s 2① 根据牛顿第二定律有:mg sin 37°+μmg cos 37°=ma ② 由①②联立解得μ=0.5③(2)设物块到达C 点时的速度大小为v C ,由动能定理得: -mg (L sin 37°+R +R cos 37°)-μmgL cos 37°=12m v C 2-12m v 02④在C 点,根据牛顿第二定律有:mg +F N ′=m v C 2R ⑤联立③④⑤解得:F N ′=4 N ⑥根据牛顿第三定律得:F N =F N ′=4 N ⑦ 物块在C 点时对轨道的压力大小为4 N(3)设物块以初速度v 1上滑,最后恰好落到A 点 物块从C 到A ,做平抛运动,竖直方向:L sin 37°+R (1+cos 37°)=12gt 2⑧水平方向:L cos 37°-R sin 37°=v C ′t ⑨ 解得v C ′=977 m/s>gR = 5 m/s ,⑩所以物块能通过C 点落到A 点 物块从A 到C ,由动能定理得:-mg (L sin 37°+1.8R )-μmgL cos 37°=12m v C ′2-12m v 12⑪联立解得:v 1=21837m/s ⑫ 类型二 动能定理在往复运动问题中的应用在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.求解这类问题时若运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出.由于动能定理只涉及物体的初、末状态而不计运动过程的细节,此类问题多涉及滑动摩擦力,或其他阻力做功,其做功的特点与路程有关,求路程对应的是摩擦力做功,所以用动能定理分析这类问题可使解题过程简化.例2 如图所示,竖直面内有一粗糙斜面AB ,BCD 部分是一个光滑的圆弧面,C 为圆弧的最低点,AB 正好是圆弧在B 点的切线,圆心O 与A 、D 点在同一高度,θ=37°,圆弧面的半径R =3.6 m ,一滑块质量m =5 kg ,与AB 斜面间的动摩擦因数μ=0.45,将滑块从A 点由静止释放(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2).求在此后的运动过程中:(1)滑块在AB 段上运动的总路程;(2)在滑块运动过程中,C 点受到的压力的最大值和最小值. 【答案】(1)8 m (2)102 N 70 N【解析】 (1)由题意可知斜面AB 与水平面的夹角为θ=37°, 知mg sin θ>μmg cos θ,故滑块最终不会停留在斜面上, 由于滑块在AB 段受摩擦力作用,则滑块做往复运动的高度将越来越低,最终以B 点为最高点在光滑的圆弧面上往复运动. 设滑块在AB 段上运动的总路程为s ,滑块在AB 段上所受摩擦力大小F f =μF N =μmg cos θ, 从A 点出发到最终以B 点为最高点做往复运动, 由动能定理得mgR cos θ-F f s =0,解得s =Rμ=8 m.(2)滑块第一次过C 点时,速度最大,设为v 1,分析受力知此时滑块所受轨道支持力最大,设为F max ,从A 到C 的过程,由动能定理得mgR -F f l AB =12m v 12-0,斜面AB 的长度l AB =Rtan θ,由牛顿第二定律得F max -mg =m v 12R ,解得F max =102 N.滑块以B 为最高点做往复运动的过程中过C 点时,速度最小,设为v 2,此时滑块所受轨道支持力最小,设为F min ,从B 到C , 由动能定理得mgR (1-cos θ)=12m v 22-0,由牛顿第二定律得F min -mg =m v 22R ,解得F min =70 N ,根据牛顿第三定律可知C 点受到的压力最大值为102 N ,最小值为70 N.变式训练2 (动能定理在往复运动中的应用)(2020·浙江高三开学考试)如图所示,有一圆弧形的槽ABC ,槽底B 放在水平地面上,槽的两侧A 、C 与光滑斜坡aa ′、bb ′分别相切,相切处a 、b 位于同一水平面内,距水平地面高度为h .一质量为m 的小物块从斜坡aa ′上距水平面ab 的高度为2h 处沿斜坡自由滑下,并自a 处进入槽内,到达b 处后沿斜坡bb ′向上滑行,到达的最高处距水平面ab 的高度为h ,若槽内的动摩擦因数处处相同,不考虑空气阻力,且重力加速度为g ,则( )A .小物块第一次从a 处运动到b 处的过程中克服摩擦力做功mghB .小物块第一次经过B 点时的动能等于2.5mghC .小物块第二次运动到a 处时速度为零D .经过足够长的时间后,小物块最终一定停在B 处 【答案】 A【解析】在第一次运动过程中,小物块克服摩擦力做功,根据动能定理可知mgh -W f =0-0,解得W f =mgh ,故A 正确;因为小物块从右侧到最低点的过程中对轨道的压力较大,所受的摩擦力较大,所以小物块从右侧到最低点的过程中克服摩擦力做的功W f1>12W f =12mgh ,设小物块第1次通过最低点的速度为v ,从自由滑下到最低点的过程,由动能定理得3mgh -W f1=E k -0,解得E k <2.5mgh ,故B 错误;由于在AC 段,小物块与轨道间有摩擦力,故小物块在某一位置的速度大小要减小,故与轨道间的摩擦力减小,第二次在AC 段运动时克服摩擦力做功比第一次要少,故第二次到达a (A )点时,有一定的速度,故C 错误;由于在AC 段存在摩擦力,故小物块在B 点两侧某一位置可能处于静止状态,故D 错误. 故选A 。
变式训练3 (动能定理在往复运动中的应用)(2019·河南郑州一中模拟)如图所示,ABCD 为一竖直平面内的轨道,其中BC 水平,A 点比BC 高出H =10 m ,BC 长为l =1 m ,AB 和CD 轨道光滑.一质量为m =1 kg 的物体,从A 点以v 1=4 m/s 的速度开始运动,经过BC 后滑到高出C 点h =10.3 m 的D 点时速度为零,求:(取g =10 m/s 2)(1)物体与BC 轨道间的动摩擦因数; (2)物体第5次经过B 点时的速度大小; (3)物体最后停止的位置(距B 点). 【答案】 (1)0.5 (2)13.3 m/s (3)0.4 m【解析】(1)分析从A 点到D 点的过程,由动能定理得 -mg (h -H )-μmgl =0-12m v 12,解得μ=0.5.(2)设物体第5次经过B 点时的速度为v 2,在此过程中物体在BC 上滑动了4次,由动能定理得mgH -μmg ·4l =12m v 22-12m v 12,解得v 2=411 m/s ≈13.3 m/s.(3)设物体运动的全过程在水平面上通过的路程为s , 由动能定理得mgH -μmgs =0-12m v 12,解得s =21.6 m.所以物体在轨道上来回滑动了10次后,还有1.6 m , 故距B 点的距离s ′=2 m -1.6 m =0.4 m .跟 踪 训 练1.(2021·海南高三月考)如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 水平,其长度d =0.50 m ,盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停止的地点到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .0【答案】D【解析】 小物块从A 点出发到最后停下来,设小物块在BC 面上运动的总路程为s ,整个过程由动能定理有:mgh -μmgs =0,所以小物块在BC 面上运动的总路程为s =h μ=0.30.1 m =3 m ,而d =0.5 m ,刚好3个来回,所以最终停在B 点,即距离B 点为0 m . 故选D 。