实数的运算及大小比较
沪科版七年级数学下册《实数的运算及大小比较》评课稿
沪科版七年级数学下册《实数的运算及大小比较》评课稿一、教材解析1. 教材概述《实数的运算及大小比较》是沪科版七年级数学下册的一章内容。
本章主要介绍了实数及其运算的基本概念和方法,同时涉及实数的大小比较。
2. 教材内容本章主要包括以下内容:1.实数的定义与分类:介绍实数的概念以及整数、有理数和无理数的分类。
2.实数的绝对值:讲解实数的绝对值的概念,以及绝对值与数轴上的位置的关系。
3.实数的加法和减法运算:详细介绍实数的加法和减法运算规则,并且通过例题展示了运算的方法和技巧。
4.实数的乘法和除法运算:探讨实数的乘法和除法运算规则,并通过实例演示了运算的过程和方法。
5.实数大小的比较:介绍了实数大小比较的方法,包括相等、不等以及在数轴上的位置关系。
二、教学设计1. 教学目标本章的教学目标主要包括:1.了解实数的定义和分类,能够准确区分整数、有理数和无理数。
2.掌握实数的绝对值的概念和计算方法。
3.掌握实数的加法和减法运算规则,能够熟练运用。
4.掌握实数的乘法和除法运算规则,能够熟练运用。
5.能够正确使用实数大小比较的方法,能够在数轴上标定实数的位置。
2. 教学内容与方法本章的内容主要是实数的运算及大小比较,因此在教学过程中应重点围绕以下几个方面展开:1.通过教材示例引入,引发学生对实数的兴趣,并加深对实数概念的理解。
2.通过整合和归纳,帮助学生系统掌握实数的分类、绝对值、加法和减法运算、乘法和除法运算等。
3.培养学生的分析和解决问题的能力,培养学生的逻辑思维和推理能力。
4.结合实生活例展示实数计算的实际应用场景,增强学生对实数运算的认知。
3. 教学步骤为了更好地完成本章的教学目标,可以采用以下教学步骤:步骤一:导入与概念引入通过呈现一些实际问题的实例,让学生对实数的运算及大小比较有初步的了解,激发学生学习的兴趣。
步骤二:绝对值与数轴介绍实数的绝对值的定义与概念,并详细讲解绝对值与数轴上的位置关系。
通过练习题让学生熟练运用绝对值的计算方法。
第一章数与式第2讲 实数的运算及大小比较
014
×( - 0.125)2
015
=
×( - 0.125)
2 015
=8
2 014
×( - 0.125)
2 014
×
( - 0.125) = [8×( - 0.125)]2
014
×( - 0.125) = 1×( - 0.125) =
19.已知 x,y 是实数,且满足(x+4) +|y-5|=0, 则(x+y)
(3)近似估算法(利用有理数估算无理数的大小范围 ); (4)中间值法;(5)平方法;(6)倒数法.
考点四
实数非负性的应用
若 n 个非负数的和为 0,则这 n 个非负数同时为 0. 如|a|+b2+ c=0,则 a=b=c=0.
温馨提示:
实数中三种重要的非负数形式:|a|≥ 0,b2≥ 0, c≥0c≥0,其中 a,b,c 可以表示一个字母,也 可以表示一个代数式.
方法总结: 实数混合运算的一般顺序为先乘方、开方,再乘 除,最后加减;同级运算,从左到右进行;如有括号, 先做括号内的运算.
1.比较-3,1,-2的大小,正确的是( A A.-3<-2<1 C.1<-2<-3 ∴-3<-2<1.故选A. B.-2<-3<1 D. 1<-3<-2
)
解析:∵|-3|>|-2|,∴-3<-2.
解析:由非负数和的性质,可得 x-1=0,y+3 =0,解得 x=1,y=-3.∴x+y=1-3=-2.故选 A.
11. 如图, 数轴上 A, B 两点表示的数分别为 2和 5.1,则 A,B 两点之间表示整数的点共有( C )
A.6 个
B.5 个
C.4 个
D.3 个
解析: ∵1< 2 < 2, ∴ 2 和 5.1 之间的整数有 2,3,4,5 共 4 个.故选 C.
七年级数学下册《实数的运算及大小比较》优秀教学案例
三、教学策略
(一)情景创设
为了让学生更好地理解实数的运算及大小比较,我将采用情景创设的教学策略。通过设计贴近学生生活的具体情境,让学生在情境中感受数学知识的应用,从而提高他们的学习兴趣和积极性。
1.创设购物情境:如在超市购物时,如何比较不同商品的价格,如何计算购买多件商品的总价等,让学生在实际操作中掌握实数的运算及大小比较。
四、教学内容与过程
(一)导入新课
1.通过回顾上一节课学习的有理数的运算及大小比较,为学生引入实数的概念作铺垫。
2.提问:“我们已经学习了有理数的运算及大小比较,那么有理数可以涵盖所有的数吗?还有没有其他的数?”引导学生思考实数的概念。
3.利用数轴上的点表示有理数,进而引出无理数的存在,从而导入实数的定义。
2.创设长度比较情境:如比较两条绳子、两本书的长度,让学生在实际测量中学会实数的大小比较。
3.创设故事情境:通过讲述数学家发现无理数的故事,引导学生了解实数的起源,激发他们对数学知识的探索欲望。
(二)问题导向
问题导向教学策略是引导学生主动探究、发现问题、解决问题的有效方法。我将设计一系列具有启发性的问题,引导学生深入探讨实数的运算及大小比较。
4.布置一篇学习心得,让学生反思本节课的学习过程,总结自己的收获和不足。
五、案例亮点
1.情境教学法的巧妙运用
本教学案例充分运用情境教学法,将抽象的实数概念与生活实例相结合,让学生在实际情境中感受数学知识的应用。这种教学方法不仅激发了学生的学习兴趣,还提高了他们的实践操作能力。
2.问题驱动的探究式学习
(四)反思与评价
反思与评价是教学过程中的重要环节,有助于学生巩固知识、提高能力。在本章节的教学中,我将注重以下几个方面:
实数的大小比较与运算规则
实数的大小比较与运算规则实数是数学中的一种数,它包括了有理数和无理数。
实数的大小比较与运算规则是数学中重要的基础知识之一。
本文将介绍实数的大小比较规则和运算规则,帮助读者更好地理解实数的性质。
一、实数的大小比较规则在实数中,我们可以通过以下几种方法来比较它们的大小:1. 相等比较:对于任意两个实数a和b,如果它们满足a=b,则称a 和b相等。
2. 大于比较:对于任意两个实数a和b,如果a>b,则称a大于b。
3. 小于比较:对于任意两个实数a和b,如果a<b,则称a小于b。
4. 大于等于比较:对于任意两个实数a和b,如果a≥b,则称a大于等于b。
5. 小于等于比较:对于任意两个实数a和b,如果a≤b,则称a小于等于b。
需要注意的是,在进行实数的大小比较时,我们需要根据实数的性质,考虑不同的情况进行判断。
比如在考虑正数、负数和零的大小比较时,需要注意它们的特殊性质。
二、实数的运算规则在实数中,常见的运算规则包括加法、减法、乘法和除法。
下面分别介绍这些运算规则:1. 加法规则:对于任意两个实数a和b,它们的和记作a+b。
加法满足以下性质:- 交换律:a+b=b+a,即实数的加法满足交换律。
- 结合律:(a+b)+c=a+(b+c),即实数的加法满足结合律。
- 存在零元素:存在一个实数0,使得a+0=a,对于任意实数a,与0相加得到的结果是不变的。
- 存在相反元素:对于任意实数a,存在一个实数-b,使得a+(-b)=0,即加上相反数后的结果是零。
2. 减法规则:对于任意两个实数a和b,它们的差记作a-b。
减法可以转化为加法运算,即a-b=a+(-b)。
3. 乘法规则:对于任意两个实数a和b,它们的积记作a*b。
乘法满足以下性质:- 交换律:a*b=b*a,即实数的乘法满足交换律。
- 结合律:(a*b)*c=a*(b*c),即实数的乘法满足结合律。
- 存在单位元素:存在一个实数1,使得a*1=a,对于任意实数a,与1相乘得到的结果是不变的。
实数的大小比较与运算
6、用“ ☆ ”定义一种新运算:对于任意 有理数 a 和 b,规定 a☆b=ab2+2ab+a. (1) 求(−2) ☆3 的值;
1 a 1 (2) 若( ☆3) ☆ ( )=8,求 a 的 2 2 值;
1 ( x ) ☆3=n(其中 x 为有 (3) 若 2☆x=m, 4
理数),试比较 m,n 的大小.
7、阅读材料:求1+2+22+23+24+…+22 013的 值. 解:设S=1+2+22+23+24+…+22 012+22 013, 将等式两边同时乘以2,得 2S=2+22+23+24+25+…+22 013+22 014. 将下式减去上式,得2S-S=22 014-1. 即S=22 014-1. 即1+2+22+23+24+…+22 013=22 014-1.
4、实数中的数字规律问题
观察下列各式: 13=12 13+23=32 13+23+33=62 13+23+33+43=102 … 2 3 3 3 3 55 猜a,b,c为有理数, 且满足a=8-b,c2=ab-16 求证:a=b=4,且c=0.
a >1⇔a>b; a=1⇔a=b; b b
其他方法
考点3:实数的运算 (1)运算形式:加、减、乘、除、
乘方、开方。
(2)运算律:交换律、结合律、分配律 (3)运算顺序:从左到右、
从高到低、
从小到大。 (4)0整数(负整数)指数幂的运算
补充习题: 1、如果a<0,b>0,a+b<0,那么下列各式中 大小关系正确的是 ( ) A、a<-b<b<-a B、a<-b<-a<b C、-b<a<b<-a D、-b<a<-a<b 2、在下列各数中,最大的数是 ( A.1.00×10﹣9 B.9.99×10﹣8 C.1.002×10﹣8 D.9.999×10﹣7 )
2014年中考复习第2讲 实数的运算及大小比较
3
a,b, c, d 按由小到大的顺序排列正确的是( A. c< a< d< b C. a< c< d< b
0
A )
B. b<d<a< c D. b< c<a<d
2
解析:∵ a= 2 = 1, b= (- 3) = 9, c= - 9< 0, 1 -1 d= ( ) = 2, ∴ c< a< d< b.故选 A. 2
B
)
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
2.-2 ×(-2) +2 的结果是( B A.18 C.0 B.-30 D.34
3
2
)
解析: - 23×(- 2)2+ 2=- 8×4+ 2=- 32+ 2= -30,故选 B.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
3. 下列计算正确的是 ( A. - 27= 3 1 -1 C. ( ) =- 2 2 3
考点训练
宇轩图书
解析:根据题意,得 m=- 2+2,∴m-1=- 2 + 2- 1=- 2 + 1< 0, m+ 6=- 2 + 2+ 6=- 2 + 8≠0.∴|m-1|+ (m+6) =1-m+1=2-m=2-(- 2 +2)=2+ 2-2= 2.故选 C.
考点一 实数的大小比较 例 1 (2013· 湛江)下列各数中,最小的数是( ) 1 A.1 B. 2 C.0 D.-1 1 【点拨】∵-1<0< <1,∴最小的数是-1. 2 故选 D. 【答案】 D
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点二 实数非负性的应用 例2 (2013· 永州)已知(x-y+3)2+ 2x+y=0, ) C.1 D.5
实数的大小比较与运算规律
实数的大小比较与运算规律引言实数是数学中的一种基本概念,它包括有理数和无理数。
实数的大小比较和运算规律是数学中的重要内容,它们在实际问题中具有广泛的应用。
本文将探讨实数的大小比较和运算规律。
一、实数的大小比较在实数中,比较两个实数的大小可以分为以下几种情况:1.对于两个有理数,可以利用它们的大小关系,即比较较为熟悉:–若两个有理数具有相同的符号,比较绝对值的大小即可;–若两个有理数的符号不同,负数较小,正数较大。
2.对于两个无理数:–若一个无理数为负数,另一个无理数为正数,负数较小,正数较大;–若两个无理数的符号相同,可以转化为比较它们的大小关系,即比较它们的绝对值大小。
3.当有理数与无理数进行比较时,可以将无理数近似为有理数,并比较它们的大小。
需要注意的是,实数集合是一个无穷集合,其中包含了无数个有理数和无理数,因此在实数中也存在着无法比较大小的实数。
二、实数的运算规律实数的运算规律是实数运算中的基本准则,主要包括加法、减法、乘法和除法。
1.实数的加法:–加法满足交换律,即实数的加法是可交换的;–实数的加法满足结合律,即对于任意实数a、b和c,有(a+b)+c=a+(b+c);–存在一个唯一的实数0,使得对于任意实数a,有a+0=0+a=a。
2.实数的减法:–减法是加法的逆运算,即对于任意实数a,有a+(-a)=0。
3.实数的乘法:–乘法满足交换律,即实数的乘法是可交换的;–实数的乘法满足结合律,即对于任意实数a、b和c,有(a\b)\c=a\(b\c);–存在一个唯一的实数1,使得对于任意实数a,有a\1=1\a=a。
4.实数的除法:–除法是乘法的逆运算,即对于任意实数a(a≠0),有a/a=1。
需要注意的是,在实数集合中,除法存在限制条件,即被除数不能为零,否则除法无法进行。
三、实数大小比较和运算规律的应用实数的大小比较和运算规律在实际生活和科学研究中具有广泛的应用,例如:•财务核算:在财务核算中,需要对资金的收入和支出进行比较和运算,实数的大小比较和运算规律为财务工作者提供了基本准则。
湘教版数学八年级上册3.3《实数的运算和大小比较》说课稿1
湘教版数学八年级上册3.3《实数的运算和大小比较》说课稿1一. 教材分析湘教版数学八年级上册3.3《实数的运算和大小比较》这一节的内容,是在学生已经掌握了实数的概念、性质以及实数运算的基础知识上进行讲解的。
本节内容主要介绍了实数的运算和大小比较,包括实数的加减乘除运算、乘方运算以及实数的大小比较方法。
这部分内容是实数学习的重要部分,也是学生进一步学习函数、方程等数学知识的基础。
二. 学情分析学生在学习这一节内容之前,已经掌握了实数的基本概念和性质,具备了一定的实数运算能力。
但是,学生在实数的运算和大小比较方面,可能会存在以下问题:1.对实数运算的规则理解不深,容易在运算过程中出现错误。
2.对实数的大小比较方法理解不透,容易在比较过程中出现困惑。
3.学生在实数的运算和大小比较方面可能存在思维定势,需要引导和突破。
三. 说教学目标1.知识与技能目标:使学生掌握实数的运算规则和大小比较方法,能够正确进行实数的运算和大小比较。
2.过程与方法目标:通过自主学习、合作交流等方法,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:实数的运算规则和大小比较方法。
2.教学难点:实数运算中的异号相乘、乘方运算以及实数大小比较的灵活运用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生主动探索、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具,辅助学生理解和掌握实数的运算和大小比较。
六. 说教学过程1.导入新课:通过复习实数的基本概念和性质,引出实数的运算和大小比较。
2.自主学习:让学生自主探究实数的运算规则和大小比较方法,教师提供必要的引导和帮助。
3.合作交流:学生分组讨论,分享各自的学习成果,互相解答疑惑。
4.教师讲解:教师针对学生的学习情况,讲解实数运算和大小比较的重点、难点内容。
实数的大小比较及运算
实数的大小比较及运算实数是数学中的一个重要概念,它包括有理数和无理数两大类。
在数学运算中,实数的大小比较及运算是最基础的部分之一,对于学生来说,掌握实数的大小比较及运算是非常重要的。
本文将从实数的大小比较和基本运算两个方面进行详细介绍。
一、实数的大小比较1. 正数和负数的比较正数是大于零的实数,负数是小于零的实数。
在实数中,正数大于负数。
例如,1比-1要大,2比-2要大。
当然,绝对值较大的负数,比绝对值较小的正数要小。
比如,-5比3要小。
2. 零和正数、负数的比较零是实数中最小的数,比任何正数都要小,但是大于任何负数。
如0比1要小,0比-1要大。
3. 实数的比较运算规则(1)同号相乘为正,异号相乘为负。
(2)同号相加为正,异号相加为负。
(3)绝对值较大的数,在同号运算时,结果的绝对值较大;在异号运算时,结果的绝对值较小。
二、实数的基本运算1. 实数的加法实数的加法满足交换律、结合律和分配律等基本性质。
例如,a+b=b+a,(a+b)+c=a+(b+c),a(b+c)=ab+ac。
2. 实数的减法实数的减法可以转化为加法运算,即a-b=a+(-b)。
减法满足减法的交换律:a-b≠b-a。
3. 实数的乘法实数的乘法满足交换律、结合律和分配律等基本性质。
例如,ab=ba,a(bc)=(ab)c,a(b+c)=ab+ac。
4. 实数的除法实数的除法定义为a÷b=a×(1/b),其中b≠0。
除法满足除法的性质:a÷b≠b÷a。
5. 实数的乘方与开方实数的乘方定义为a的n次方是指n个a相乘,即an=a×a×…×a。
实数的开方是乘方的逆运算,即对于实数a,若b是满足b^n=a的实数,则b叫做a的n次方根。
通过以上详细介绍,相信大家对实数的大小比较及运算有了更深入的了解。
掌握实数的大小比较及运算是数学学习的基础,也是解决实际问题的重要方法。
在日常学习中多加练习,相信你会掌握实数的大小比较及运算,取得更好的学习成绩。
初中数学 实数的大小关系有哪些
初中数学实数的大小关系有哪些实数的大小关系是指对于任意给定的两个实数,我们可以比较它们的大小。
在数学中,实数的大小关系可以通过比较运算符(>、<、≥、≤、=)来表示。
下面我们将详细介绍实数的大小关系以及其相关性质。
1. 实数的大小关系:-大于(>):如果一个实数a 大于另一个实数b,则记作a > b。
这表示a 比b 更大。
-小于(<):如果一个实数a 小于另一个实数b,则记作a < b。
这表示a 比b 更小。
-大于等于(≥):如果一个实数a 大于等于另一个实数b,则记作a ≥ b。
这表示a 不小于b。
-小于等于(≤):如果一个实数a 小于等于另一个实数b,则记作a ≤ b。
这表示a 不大于b。
-等于(=):如果一个实数a 等于另一个实数b,则记作a = b。
这表示a 和b 相等。
2. 实数的大小关系的性质:实数的大小关系具有以下性质:-反对称性:如果a > b,则不成立b > a。
即,如果一个实数大于另一个实数,则后者不大于前者。
-传递性:如果a > b,且b > c,则a > c。
即,如果一个实数大于另一个实数,而后者又大于第三个实数,则第一个实数一定大于第三个实数。
-对称性:如果a > b,则b < a。
即,如果一个实数大于另一个实数,则后者小于前者。
-三角不等式:对于任意实数a、b 和c,有|a + b| ≤ |a| + |b|。
即,两个实数的绝对值之和不大于它们的绝对值的和。
-加法性质:对于任意实数a、b 和c,如果a > b,则a + c > b + c。
即,如果一个实数大于另一个实数,则它们分别加上同一个实数后的大小关系保持不变。
-乘法性质:对于任意正实数a、b 和c,如果a > b,则a × c > b × c。
即,如果一个正实数大于另一个实数,则它们分别乘以同一个正实数后的大小关系保持不变。
实数的大小比较与运算
tan45°=⑩___1_____;tan60°=⑪____3____第5页Βιβλιοθήκη 运算常见数 的开方
法则 4=⑫____2____, 9=⑬___3_____, 12=⑭__2___3_____, 16=⑮____4____, 18=⑯____3__2____, 25=⑰____5____, 3 8=⑱___2_____,3 -27=⑲___-__3_____
②
=-241.
③
第 14 页
☞ 错因分析
错误的步骤是___①__②_____,任何数的零指数幂都是 1 而不是 0;负整数指数幂中, 指数的正负与结果的正负无关,-122 的底数是-12.
【正解】原式=-9+1--1122+4 =-9+1-4+4 =-8.
第 15 页
2.(2018·张家界)计算:( 3-1)0+(-1)-2-4sin60°+ 12. 解:原式=1+1-4× 23+2 3
第4页
运算
法则
-1 的奇数次幂为-1;
-1 的奇 -1 的偶数次幂为 1;
偶指数幂 如(-1)2 019=④___-__1_____,
(-1)2 018=⑤___1_____
1
2
sin30°=cos60°=⑥____2____;sin45°=cos45°=⑦____2____;
特殊角的
3
3
三角函数值 cos30°=sin60°=⑧___2_____;tan30°=⑨____3____;
平方 对任意正实数 a, b,有:a2>b⇔a> b(适用于含有根式的数的 比较法 大小比较或二次根式的估值)
第2页
作差法 作商法
设 a,b 是两个任意实数,则 a-b>0⇔a>b,a-b<0⇔a<b,a -b=0⇔a=b 设 a,b 是两个任意正实数,则ab>1⇔a>b,ab<1⇔a<b,ab=1⇔a =b
第2课 实数的运算及大小比较
第2课 实数的运算及大小比较一、课标要求1、理解有理数的运算律,能运用运算律简化运算2、能运用有理数的运算解决简单的问题二、知识要点1、实数的运算①有理数的运算法则②运算律③实数的运算顺序2、实数的大小比较3、比较实数大小的常用方法三、考点(型)精讲考点一:实数的运算例1、(2011,苏州)12()2⨯-的结果是 A .-4 B .-1 C .14- D .32分析:利用有理数运算法则,直接得出结果数。
例2、(2011连云港,17,6)计算:(1)2×(-5)+23-3÷12. 分析:根据有理数运算法则运算得出结果。
考点二:实数的大小比较例3、当1a 0<<时,比较21a a a、和的大小 分析:实数的大小比较方法有:(1)整数大于0,负数小于0;(2)利用数轴;(3)差值比较法;(4)商值比较法;(5)倒数法;(6)取特殊值法;(7)计算器比较法等。
考点三:实数与数轴例4、(杨浦区初三数学基础测试卷,2,4)已知实数a 、b 在数轴上的位置如图所示,则下列等式成立的是 ( ) (A)a b a b +=+; (B)a b a b +=-; (C)11b b +=+; (D)11a a +=+ 考点4、探索实数中的规律例5、观察式子:),7151(21751),5131(21531),311(21311-=⨯-=⨯-=⨯……. 由此计算:+⨯+⨯+⨯751531311…=⨯+201120091_____________.四、真题演练一、选择题1. (2011 广东省茂名市) 对于实数a 、b ,给出以下三个判断:( )①若b a =,则 b a =.O a②若b a <,则 b a <.③若b a-=,则 22)(b a =-.其中正确的判断的个数是 A .3 B .2 C .1 D .02. (2011 河南省) 下列各式计算正确的是( )A .()101132-⎛⎫--=- ⎪⎝⎭ B 235=C .224246a a a += D .()326a a = 3. (2011 湖北省襄阳市) x y ,为实数,且110x y +-=,则2011x y ⎛⎫ ⎪⎝⎭的值是( )A .0 B.1 C .1- D.2011- 4. (2011 云南省玉溪市) 下列说法正确的是( )A .a 2·a 3 = a 6B .222532a a a -=C .01a =D .1(2)2-=-二、填空题5. (2011 辽宁省沈阳市) 计算225(1)-=___________.6. (2011 内蒙古鄂尔多斯市) 若x 、y 为实数,且2(2)30x y -+=,则x y =_____________. 7. (2011 山西省) 11826sin 45--=_______.8. (2011 贵州省遵义市) x 、y 320x y +-=,则x y += .三、计算题9. (2010 江苏省宿迁市) 计算:01)2π(3)31(5---+--.10. (2010 江苏省苏州市) 计算:0124.3⎛⎫- ⎪⎝⎭11. (2011 江苏省镇江市) 计算:31sin 4582-+°;12. (2011 浙江省绍兴市) 计算:8-02)(-π+︒45cos 2+14-;13. (2011 浙江省温州市) 计算:20(2)(2011)12-+--;.14. (2011 浙江省金华市) 计算:()0185cos45π----1+42.15. (2011江苏扬州)(1)30)2(4)2011(23-÷+---“真题演练”答案1、C2、D3、C4、B5.46.97.128.-19. 原式==5-3-1=110. 原式=2+2-1=311. 原式=22222+=2.12. 原式2121224+⨯+ 3=32.413. 原式=20(2)(2011)124123523-+-+-=-14. 原式=1-12×22-1+4×22=1-2-1+22= 2 15. 原式=)8(4123-÷+-=21123--=0。
实数的运算及大小比较详解
温馨提示
1.注意零指数、负整数指数幂的意义,遇到绝对值一般要先去掉绝对值符号再进行计 算.
2.三个重要的非负数a(a≥0)、|a|、a2.
现在是3页\一共有23页\编辑于星期六
(1)(2011·新疆)将(- 5)0、(- 3)3、(-cos30°)-2 这三个实数按从
小到大的顺序排列,正确的顺序是( )
A.(- 3)3<(- 5)0<(-cos30°)-2
B.(-cos30°)-2<(- 5)0<(- 3)3
C.(- 5)0<(- 3)3<(-cos30°)-2
D.(-cos30°)-2<(- 3)3<(- 5)0
(2)(2010·毕节)若|m-3|+(n+2)2=0,则 m+2n 的值为( )
A.加法交换律
B.加法结合律
C.乘法结合律
D.分配律
【解析】注意已知条件“避免通分”.
【答案】D
15.(2012 中考预测题)下列运算正确的是( )
A. 9=±3
B.|-3|=-3
C.- 9=-3
D.-32=9
【解析】 9=3,A 错;|-3|=3,B 错;-32=-9,D 错.
【答案】C
现在是18页\一共有23页\编辑于星期六
现在是19页\一共有23页\编辑于星期六
18.(2010·日照)计算:sin30°-|-2|=________.
【解析】sin30°-|-2|=12-2=-32.
3 【答案】-2
19.(2010 中考变式题)若 x、y 为实数,且|x+2|+ y-3=0,则(x+ y)2 011 的值为________.
实数的大小比较以及运算乐乐学堂
实数的大小比较以及运算乐乐学堂实数是数学中一类重要的数值,它包括所有的有理数和无理数。
在数学运算中,实数的大小比较和运算是非常基本且重要的操作。
本文将详细介绍实数的大小比较和四则运算等内容。
首先,我们来讨论实数的大小比较。
在实数集合中,我们可以通过不等式来比较两个实数的大小。
实数的大小关系可以分为三种情况:大于、小于和等于。
1.大于(>):如果实数a的值大于实数b的值,我们可以表示为a > b。
例如,2大于1,我们可以写作2 > 1。
2.小于(<):如果实数a的值小于实数b的值,我们可以表示为a < b。
例如,1小于2,我们可以写作1 < 2。
3.等于(=):如果实数a的值等于实数b的值,我们可以表示为a = b。
例如,2等于2,我们可以写作2 = 2。
需要注意的是,实数的大小比较并不仅仅适用于整数和有理数,也可以适用于无理数。
无论是有理数还是无理数,都可以通过大小比较来确定它们的相对大小。
接下来,我们来讨论实数的四则运算,包括加法、减法、乘法和除法。
1.加法:实数的加法是指将两个实数相加,得到一个新的实数。
例如,对于实数a和b,它们的和c可以表示为c = a + b。
例如,1加上2等于3,我们可以写作1 + 2 = 3。
2.减法:实数的减法是指从一个实数中减去另一个实数,得到一个新的实数。
例如,对于实数a和b,它们的差c可以表示为c = a - b。
例如,2减去1等于1,我们可以写作2 - 1 = 1。
3.乘法:实数的乘法是指将两个实数相乘,得到一个新的实数。
例如,对于实数a和b,它们的积c可以表示为c = a * b。
例如,2乘以3等于6,我们可以写作2 * 3 = 6。
4.除法:实数的除法是指将一个实数除以另一个实数,得到一个新的实数。
例如,对于实数a和b(其中b不为0),它们的商c可以表示为c = a / b。
例如,6除以2等于3,我们可以写作6 / 2 = 3。
中考数学复习《实数的运算及大小比较》
1
1
.
4
2.化简: - 3.140 2 - 2 2 - 8 3 1 .
2
3.计算:
3
-1
2019-
0
- 6tan30
1
1
3
64.
2
4.计算:1
2
1 6
1 12
.
1
nn
1
.
方
法
总
结
1.对于涉及到乘方、零指数幂、负整数指数幂、 特殊角三角函数值、二次根式的运算,应先将每 部分正确化简,再按实数的运算法则求得结果;
2.对于规律性试题,应先找出规律后再计算.
类型2 实数大小的比较
例2 下列实数 :3,0 ,-3,4.25,- 2 2 ,其中 最小的实数是( B )
A. 0
B. -3
C. 3
D. - 2 2
解析:先比正负,因为是选最小的实数,因此再 比两个负数的平方.-3,- 2 2的平方分别是9和8, 所以-3最小.
计算:2 sin 60 3 3 20 1 1 .
2
解: 2 sin 60 3 3 20 1 1 .
2 2 3 3- 3 1-2
2
=2.
练 一练
1.计算:
-
4
-
20190
-
2
sin
30
因此,㏒1001000=
㏒1010³ ㏒1010²
方
法
总
结
读懂概念或法则,并将其正确应用到所求问题, 是解决新概念问题的关键.
巩固提升
实数的运算及大小比较
2)有理数减法法则 减去一个数, 等于加上这个数的相反数. 即
a-b=a+(-b)
例:分别求出数轴上两点间的距离: ①表示2的点与表示-7的点; ②表示-3的点与表示-1的点。
解:①︱2-(-7)︱=︱2+7︱=︱9︱=9 ②︱-3-(-1)︱=︱-3+1︱=︱-2︱=2
3)有理数的乘法法则
两数相乘,同号得正,异号得负, 并把绝对值相乘; 任何数同0相乘,都得0. ① 几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个 时,积为正. ② 几个数相乘,有一个因数为0, 积就为0.
①除以一个数等于乘上这个数的倒数; 即
a÷b=a×
1 b
(b≠0)
② 两数相除,同号得正,异号得负, 并把绝对值相除; 0除以任何一个不等于0的数,都 得0.
5)有理数的乘方
即a· a· a·· · ·· a=
ห้องสมุดไป่ตู้n 个
①求n个相同因数的积的运算,叫做乘方。
a
n
幂
a
n
指数
底数
②正数的任何次幂都是正数; 负数的奇次幂是负数, 负数的偶次幂是正数.
2.运算顺序
1)有括号,先算括号里面的; 2)先算乘方,再算乘除,
最后算加减;
3)对只含乘除,或只含加减的 运算,应从左往右运算。
3.有理数的运算律 1)加法交换律
a+b=b+a ab=ba
(ab)c=a(bc)
2)加法结合律(a+b)+c=a+(b+c) 3)乘法交换律
4)乘法结合律 5)分 配 律
牢牢记住 的近似值,直接计算比较
人教版数学九年级上册第3课时实数的运算及大小比较(PPT版)-课件
1的大小关系表示正确的是( A )
A. a<1<-a
B. a<-a<1
C. 1<-a<a
D. -a<a<1
4.如图,数轴上有A,B,C,D四个点,其中所对的
数的绝对值最大的点是( D ) A. 点A B. 点B C. 点C
D. 点D
基础点 2 实数运算 1.常考运算及法则 (1)加减乘除运算
,
关键在于比较a、b
提分必练
12.|-3|=__3_,-|- 3 |=_- __3 __,|2- 3 |=__2__- __3__ ,|- 3 -2|=__2_+___3__,-|2+ 3 |=_-_2_-__3___.
(7)常用的开方: 4 =2, 8 =④__2 __2__, 9 =3,1 2 =2 3 , 1 8 =3 2 ,3 8 =2,3 27 =⑤____3__; (8)锐角三角函数值:
=_-_53______________(计算加减)
失分点 1
实数运算中去绝对值时的符号变化 1
计算:( 2 )-1+(2018- 5 )0-|1- 3 |+2tan30°
【自主解答】解:原式 = 2 + 1 - ( 3 - 1 ) + 2 3
3
= 3 - 3 + 1+ 2 3 3
=4- 3பைடு நூலகம்3
【名师提醒】①去绝对值符号时,先添上小括号,计算 时尽量不要跳步计算;②括号前为负号,去括号时,括号 内每一项均要改变符号.
温馨提示:点击完成练习册word习题
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
2. 实数的运算与大小比较
导学互动教案课题实数的运算与大小比较讲课人时间教学目标知识与能力通过练习和检测,能熟练准确进行实数的运算,会比较实数的大小。
过程与方法态度、情感、价值观教学重点能熟练准确进行实数的运算,会比较实数的大小教学难点能熟练准确进行实数的运算,会比较实数的大小教学方法导学互动教学准备教学过程提纲导学激趣导入出示导纲一、实数的运算1.实数的运算种类有:加法、减法、乘法、除法、、六种,其中减法转化为运算,除法、乘方都转化为运算。
2. 数的乘方=na,其中a叫做,n叫做 .3. =a(其中a 0 且a是)=-pa(其中a 0)4. 实数运算先算,再算,最后算;如果有括号,先算里面的,同一级运算按照从到的顺序依次进行.二、实数的大小比较1.数轴上两个点表示的数,的点表示的数总比的点表示的数大.2.正数 0,负数 0,正数负数;两个负数比较大小,绝对值大的绝对值小的.3.实数大小比较的特殊方法⑴设a、b是任意两个数,若a-b>0,则a b;若a-b=0,则a b,若a-b<0,则a b;⑵平方法⑶商比较法:已知a>0、b>0,若ba>1,则a b;若ba=1,则a b;若ba<1,则a b;⑷近似估算法⑸找中间值法4.n个非负数的和为0,则这n个非负数同时为0.自学设疑自学导纲,标出存有疑惑的地方合作小组交流小组内对导纲中的问题或自己的疑问一起交流讨论互动展示评价1,3,5,7组展示,2,4,6组评价质疑解难导学归纳学生归纳教师引导拓展训练教师编题学生编题一、中考真题练习1.比较大小:-6 -8.(填“<”、“=”或“>”)2.3(1)-等于()A.-1 B.1 C.-3 D.33.计算3×(-2) 的结果是A.5 B.-5 C.6 D.-6二、学生编题板书设计实数的运算与大小比较一、二、三、四、演板:演板:演板:演板:课后作业教学反思。