人教版八年级数学上册整式乘法

合集下载

人教版八年级上册数学整式的乘除全章课件

人教版八年级上册数学整式的乘除全章课件
17个10 =1017
3个10
通过观察可以发现1014、 103这两个因数是同底数 幂的形式,所以我们把 像1014×103的运算叫做
同底数幂的乘法 .
请同学们先根据自己的理解,解答下列各题. 103 ×102 =(10×10×10)×(10×10) = 10( 5 ) 23 ×22 =(2×2×2)×(2×2)=2×2×2×2×2 =2( 5 )
2.计算:(1)23×24×25
(2)y · y2 · y3
【解析】(1)23×24×25=23+4+5=212 (2)y · y2 · y3 = y1+2+3=y6
3.计算:(-a)2×a4
【解析】原式 = a2×a4 =a6
(-2)3×22 原式 = -23 ×22
= -25
当底数互为相反数时, 先化为同底数形式.
(an)3·(bm)3·b3=a9b15 a3n ·b3m·b3=a9b15 a3n ·b3m+3=a9b15 3n=9,3m+3=15
n=3,m=4.
通过本课时的学习,需要我们掌握:
积的乘方法则 (ab)n =anbn (n为正整数) 积的乘方等于把积的每个因式分别乘方,再把 所得的幂相乘.
通过本课时的学习,需要我们掌握: 1.am·an =am+n(m、n都是正整数) 2.am·an·ap = am+n+p (m、n、p都是正整数)
14.1.2 幂的乘方
1.经历探索幂的乘方运算性质的过程,进一步体会幂 的意义,发展推理能力和有条理的表达能力. 2.了解幂的乘方的运算性质,并能解决一些实际问题.
【解析】xm·x2m= x3m =2 x9m =(x3m)3 = 23 =8 6.若a3n=3,求(a3n)4的值.

人教版数学八年级上册15.1.3《整式的乘法》说课稿

人教版数学八年级上册15.1.3《整式的乘法》说课稿

人教版数学八年级上册15.1.3《整式的乘法》说课稿一. 教材分析《人教版数学八年级上册》第15.1.3节《整式的乘法》是初中数学中非常重要的一部分,主要介绍了整式乘法的基本概念和运算法则。

这部分内容是学生学习更高级数学知识的基础,也是解决实际问题的重要工具。

本节课的内容包括整式乘法的定义、运算规则以及具体的计算方法。

通过本节课的学习,学生应该能够理解和掌握整式乘法的基本概念和运算法则,并能够运用到实际问题中。

二. 学情分析在八年级的学生中,他们已经学习了整式的基本概念和运算法则,对代数知识有一定的了解。

然而,对于整式乘法这样的高级运算,他们可能还存在一些困难和模糊的地方。

因此,在教学过程中,我们需要关注学生的知识基础,针对他们的薄弱环节进行有针对性的教学。

同时,学生对于实际问题的解决能力也需要进一步的培养和提高。

三. 说教学目标本节课的教学目标包括以下三个方面:1.知识与技能:学生能够理解整式乘法的定义和运算法则,能够熟练地进行整式乘法的计算。

2.过程与方法:学生能够通过自主学习和合作交流,掌握整式乘法的基本方法,并能够将这些方法应用到实际问题中。

3.情感态度与价值观:学生能够培养对数学的兴趣和自信心,养成良好的学习习惯和团队合作精神。

四. 说教学重难点本节课的重难点是整式乘法的运算法则和具体的计算方法。

学生需要理解并掌握整式乘法的规则,并能够灵活运用到实际问题中。

在教学过程中,我们需要针对这些重难点进行详细的讲解和辅导,帮助学生理解和掌握。

五. 说教学方法与手段在教学过程中,我们将采用多种教学方法和手段,以提高学生的学习效果和兴趣。

1.引导式教学:通过提问和引导,激发学生的思考和探究欲望,培养他们的自主学习能力。

2.合作学习:学生进行小组讨论和合作交流,让他们在互动中学习和提高。

3.实例讲解:通过具体的例题讲解,让学生理解和掌握整式乘法的计算方法。

4.练习与反馈:通过布置练习题和及时的反馈,帮助学生巩固知识,提高解题能力。

人教八年级数学上册整式的乘法

人教八年级数学上册整式的乘法

新知探究
零指数幂的示例:
指数为0
(- 2)0 1
底数是-2
结果为1
指数为0
1000 1
底数是100
结果为1
新知探究
拓展:a0 =1 (a≠0)的推导过程: 当 m=n 时,am ÷an=am-n =a0 , 因为 m=n , 所以am ÷an =1 . 则 a0 =1 .
随堂练习 1
计算下列式子: (1) (-xy)13÷(-xy)8 ;
法则:一般地,单项式与多项式相乘,就是单项式去乘多项式的每一项,再把 所得的积相加. 式子表示:p(a+b+c)=pa+pb+pc(p,a,b,c都是单项式).
多项式中的每一项都包括它前面的符号,根据去括号的法则,积的符 号由单项式的符号与多项式的符号共同决定.
新知探究
单项式与多项式相乘的步骤: (1) 利用乘法分配律,转化为单项式乘以单项式; (2) 将单项式与单项式相乘的结果相加.
新知探究
重点:(1) 对于三个或三个以上的单项式相乘,单项式乘法法则同样适用; (2) 单项式乘以单项式,若有乘方、乘法混合运算,应按“先乘方再乘法”的运 算顺序进行; (3) 单项式乘以单项式的结果仍然是单项式,对于幂的底数是多项式形式的, 应将其作为一个整体进行运算.
新知探究 知识点2 单项式乘多项式法则
新知探究
同底数幂的除法的示例:
指数相减
x9 x6 x96 x3
底数不变
新知探究 知识点2 零指数幂
性质:任何不等于0的数的零次幂都等于1. 符号表示:a0=1(a≠0).
(1) 零指数幂中的底数可以是单项式,也可以是多项式,但不可以是0; (2) 因为 a=0 时,a0 无意义,所以 a0 有意义的条件是 a≠0,常据此确定底数中所 含字母的取值范围.

人教版八年级数学上册课件:14章 整式的乘法与因式分解--知识点复习 (共53张PPT)

人教版八年级数学上册课件:14章   整式的乘法与因式分解--知识点复习 (共53张PPT)

A.(6a3+3a2)÷
1 2
a=12a2+6a
B.(6a3-4a2+2a)÷2a=3a2-2a
C.(9a7-3a3)÷(﹣
1 3
a3)=﹣27a4+9
C.( 14a2+a)÷(﹣12a)=﹣12 a-2
5.一个多项式与﹣2x2的积为﹣2x5+4x3﹣x2,则这个多项式

.
6.计算:⑴
(9x2y-6xy2)÷3xy;
2.已知M= a-1,N=a2- a(a为任意实数),则M,N的
大小关系为( A ) A. M<N B. M=N C. M>N D.不能确定
3.若x2+y2+ =2x+y,则y-x= .
3、am﹣n=am ÷ an(a≠0,m,n都
是正整数,并且m>n).
10
知识点一:幂的运算性质
巩固练习
1.(易错题)若(1-x)1-3x=1,则x的取值有( C )个.
A.0 B.1 C.2 D.3 4
2.若3x=4,9y=7,则3x-2y的值为 7 . 3.已知am=3,an=2,则a2m-n的值为 4.5 .
为( B ) A M<N
B M>N
C M=N D.不能确定
10.计算:(1)(x+1)(x+4); (2)(y-5)(y-6); (3)(m-3)(m+4)
(x+p)(x+q)
18
知识点二:整式的运算
知识回顾
单项式的除法法则: 系数、同底数幂分别相除 只在被除式里含有的字母
19Βιβλιοθήκη 知识点二:整式的运算2
重点难点
重点:运用整式的乘法法则和除法法则进行运算;因式分 解. 难点:应用整式的乘法和因式分解决问题.

人教版八年级数学上册 第12讲 整式的乘法 讲义

人教版八年级数学上册 第12讲 整式的乘法  讲义

第12讲 整式的乘法知识点梳理:复习回顾:整式的加减:同类项,合并同类项新课要点:(1)同底数幂的乘法:底数不变,指数相加。

n m n m aa a +=⋅(m 、n 都是正整数) 注意公式逆用。

(2)幂的乘方:底数不变,指数相乘。

mn n m aa =)((m 、n 都是正整数) 注意公式逆用。

(3)积的乘方:n n nb a ab =)((n 是正整数) 注意公式逆用。

(4)整式的乘法:①单项式和单项式相乘:把它们的系数、相同的字母分别相乘,对于只在一个单项式出现的字母,则连同它的指数一起作为积的一个因式。

例如:)3(2322bc a ab -⋅=3336c b a - ②单项式与多项式相乘,先用单项式去乘多项式的每一项,再把所得的积相加。

即mb ma b a m +=+)( ③多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积再相加。

即nb na mb ma b a n m +++=++))((经典例题例1.(1)-x 3·x 5 (2)x m ·x 3m+1 (3)2×24×23(4)31++••m m m a a a (5)n m m m m a a a a 321⋅⋅例2.计算:例3.计算:(5)()()4234242a a a aa ⋅⋅++- (6)()()()2323337235x x x x x ⋅-+⋅ 例4.计算:(3)()()152n a b a +-- (4)()()()232236ab a c ab c --⋅(5)()()24231x x x -⋅+- (6)221232ab ab ab ⎛⎫-⋅ ⎪⎝⎭ (7)()22221252a ab b a a b ab ⎛⎫-⋅+-- ⎪⎝⎭(8)()()32x y x y +- (9)()()22m n m n +- (10)2)2(b a +例5.若20x y +=,则代数式3342()x xy x y y +++的值为 。

人教版八年级上册数学第14章 整式的乘法与因式分解 单项式与多项式相乘

人教版八年级上册数学第14章 整式的乘法与因式分解 单项式与多项式相乘

答案显示
1.单项式与多项式相乘,就是用单项式去乘多项式的__每_一__项_____,
再把所得的积___相_加_______;其实质是将单项式与多项式相乘
单项式
单项式
转化为_________与_________相乘.
2.(2019·青岛)计算(-2m)2·(-m·m2+3m3)的结果是( A ) A.8m5 B.-8m5 C.8m6 D.-4m4+12m5
16.(1)先化简,再求值:3(2x+1)+2(3-x),其中 x=-1.
解:原式=6x+3+6-2x=4x+9. 当 x=-1 时,原式=4x+9=4×(-1)+9=-4+9=5.
(2)已知实数 a,b,c 满足|a-b-3|+(b+1)2+|c-1|=0,求 (-3ab)·(a2c-6b2c)的值. 解:由题意得 a-b-3=0,b+1=0,c-1=0, 解得 a=2,b=-1,c=1. 故(-3ab)·(a2c-6b2c)=-3a3bc+18ab3c=-3×23×(-1)×1+ 18×2×(-1)3×1=24-36=-12.
解法三(分割求和法):连接 BG,则 S 阴影部分=S△BDG+S△BGF+S△DGF =12a(a-b)+12b2+12b(a-b)=12a2-12ab+12b2+12ab-12b2=12a2.
明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=
-12xy2+6x2y+■,■的地方被墨水弄污了.你认为■处应为
(A )
A.3xy
B.(-3xy)
C.(-1)
D.1
8.要使 x(x+a)+3x-2b=x2+5x+4 成立,则 a,b 的值分别为
(C )
A.-2,-2 B.2,2
C.2,-2

人教版八年级数学上册14.1整式的乘法(多项式乘以多项式)教案

人教版八年级数学上册14.1整式的乘法(多项式乘以多项式)教案
3.培养学生的空间想象与抽象能力:引导学生将实际问题抽象为多项式乘法模型,并能运用所学知识解决实际问题,提高学生的数学建模能力。
4.培养学生的合作交流能力:在小组讨论与合作学习中,培养学生与人沟通、协作解决问题的能力,增强团队意识。
本章节核心素养目标紧密围绕新教材要求,注重培养学生的逻辑思维、运算能力、空间想象与抽象能力以及合作交流能力,为学生未来的数学学习和全面发展奠定基础。
(2)强调分配律的重要性,如(a+b) * c = a*c + b*c,确保学生能够将这个原理应用到多项式乘法中。
(3)通过实际例题,如计算(x^2 + 3x + 2) * (x + 1),让学生掌握如何从简单的乘法步骤过渡到复杂的整式乘法运算。
2.教学难点
-核心难点:多项式乘法中的项与项之间的正确配对与合并。
-难点内容:
-理解和掌握如何将一个多项式的每一项分别与另一个多项式的每一项相乘。
-在多项式乘法过程中,避免漏乘或重复计算。
-处理含有多项式的乘法中的符号问题。
举例解释:
(1)难点在于如何指导学生将多项式(a+b+c)与(d+e)相乘时,正确配对每一项,即a*d, a*e, b*d, b*e, c*d, c*e,并确保所有可能的组合都被考虑到。
首先,同学们在理解多项式乘法法则时,普遍存在对分配律掌握不够熟练的现象。在讲解例题时,我尽量通过生动的语言和实际操作,让学生明白每一项是如何相乘的,但仍有部分同学在具体操作时出现错误。针对这一点,我考虑在下一节课开始前,增加一些关于分配律的小练习,帮助同学们巩固这一概念。
其次,在教学难点部分,如何正确配对和合并多项式的项,对同学们来说是一个挑战。在小组讨论和实验操作中,我发现有的同学在处理具体问题时,容易漏掉某些项或者重复计算。为了帮助同学们克服这一困难,我尝试通过举例和对比分析,引导他们找出规律。在今后的教学中,我会继续关注这部分内容,采用更多形式的教学方法,让同学们更好地掌握这个难点。

人教版八年级数学上册第十四章整式的乘法与因式分解小结与复习教学课件

人教版八年级数学上册第十四章整式的乘法与因式分解小结与复习教学课件
∴420>1510.
考点二 整式的运算
例3 计算:[x(x2y2-xy)-y(x2-x3y)] ÷3x2y,其中x=1,y=3.
解析:在计算整式的加、减、乘、除、乘方的运算中,一要注意运算顺序;二要熟练
正确地运用运算法则.
解:原式=(x3y2-x2y-x2y+x3y2) ÷3x2y
=(2x3y2-2x2y) ÷3x2y
例6 把多项式2x2-8分解因式,结果正确的是( C )
A.2(x2-8)
B.2(x-2)2
C.2(x+2)(x-2) D.2x(x- )
4 x
归纳总结
因式分解是把一个多项式化成几个整式的积的形式,它与整式乘法互为逆 运算,因式分解时,一般要先提公因式,再用公式法分解,因式分解要求 分解到每一个因式都不能再分解为止.
3.(1)已知3m=6,9n=2,求3m+2n,32m-4n的值. (2)比较大小:420与1510. 解:(1)∵3m=6,9n=2, ∴3m+2n=3m·32n=3m·(32)n=3m·9n=6×2=12. 32m-4n=32m÷34n=(3m)2÷(32n)2=(3m)2÷(9n)2=62÷22=9. (2) ∵420=(42)10=1610, ∵1610>1510,
=a2-(b-3)2=a2-b2+6b-9. (3)原式=[(3x-2y)(3x+2y)]2
=(9x2-4y2)2=81x4-72x2y2+16y4
11.用简便方法计算
(1)2002-400×199+1992; (2)999×1 001. 解:(1)原式=(200-199)2=1;
(2) 原式=(1000-1)(1000+1) =10002-1 =999999.

人教版数学八年级上册 14.1.4 整式的乘法

人教版数学八年级上册   14.1.4 整式的乘法

14.1.4 整式的乘法第1课时单项式与单项式、多项式相乘1.探索并了解单项式与单项式、单项式与多项式相乘的法则,并运用它们进行计算.2.设置实际情境,引导学生参与探索公式.3.让学生主动参与探究,形成独立思考、勇于探究的习惯.【教学重点】单项式与单项式、单项式与多项式乘法法则的应用.【教学难点】两个法则的探究.一、情境导入,初步认识引导学生复习幂的运算性质,并解答下列问题.【教学说明】主要由学生口述幂的乘法运算性质、公式及上述问题的答案,对学生暴露出的问题予以纠正,为后续学习打下基础.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1光的速度约为3×105km/s,太阳光照射到地球上需要的时间大约是5×102s,试求地球与太阳的距离约是多少千米?【分析】由题意可列式为(3×105)×(5×102),这个算式可引导学生运用乘法交换律和结合律求出,即(3×5)×(105×102)=15×107=1.5×108,即地球与太阳的距离约为1.5×108km.【教学说明】要求学生认真分析体会上述计算过程,感受其中的思路与依据,再将上式中的数换成字母,如(a×105)×(b×103),ab2×3ab等,依据同样的方式经小组为单位探求结果,并发掘一般性规律,同伴间交流并互相完善.【归纳总结】单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.问题2解答下列问题.(3)何叶的步长为a米,她量得家里的卧室长15步,宽14步,问这间卧室的面积有多少平方米?(4)下面的计算对不对?如果不对,怎样改正?问题3三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a,b,c.求这个月内销售这种商品的总收入.【分析】这个问题的思路有两个:方法一先求三家连锁店的总销量,再求总收入,即总收入为m(a+b+c)元.方法二先分别求三家连锁店的收入,再求它们的和,即总收入为(ma+mb+mc)元.由于两种方法只是思考的角度不同,求的是同一个量,故必有m(a+b+c)=ma+mb+mc.引导学生联想乘法分配律及上述等式总结归纳,得出自己的结论.【归纳总结】单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.例1计算:【教学说明】1.凡是在单项式里出现过的字母,结果里应全都有,不能漏掉;2.单项式中含有的多项式因式把它看作一个整体参加计算.例2计算下列各题.【教学说明】计算时,符号的确定是关键,可把单项式前和多项式各项前的“+”或“-”号看作性质符号,把单项式乘以多项式的结果用“+”连接,最后写成省略加号的代数和.三、运用新知,深化理解计算下列各题.【教学说明】1.本题是混合运算题,计算顺序仍是先乘除、后加减,先去括号等.混合运算的结果有同类项的需合并,从而得到最简结果.2.单项式与多项式的每一项都要相乘,不能漏乘、多乘.3.在确定积的每一项的符号时一定要小心.四、师生互动,课堂小结1.梳理本节所学内容,巩固单项式乘以单项式,单项式乘以多项式的法则.2.互相交流运用法则计算时要注意的事项.1.布置作业:从教材“习题14.1”中选取部分题.2.完成练习册中本课时的练习.本课时教学宜由学生根据已有知识(如乘法分配律法则等)自主推导出单项式乘法,单项式与多项式相乘的法则,充分体现学生课堂上的主体作用,再结合具体问题的解答,由学生间互相交流,体会法则计算的本质,以便灵活应用于解题之中.第2课时多项式与多项式相乘1.理解并掌握多项式乘以多项式的法则.2.类比前面的方法,自主探索多项式与多项式乘法法则.3.在探究过程中,形成独立思考,主动求知的习惯.【教学重点】多项式乘法法则的应用.【教学难点】多项式与多项式相乘法则的推导.一、情境导入,初步认识1.回忆单项式乘以多项式法则,并计算:(1)3a(5a-2b);(2)(x-3y)·(-6x).【思考】有一算式(a+b)(x+y),假设把(x+y)看作一个整体m,则上式变为(a+b)m,此时与上述习题类型相同么?你有何想法?第3课时同底数幂的除法1.掌握同底数幂的除法法则并用于计算.2.经历探索同底数幂的除法的运算法则的过程,理解运算算理.3.经历探索过程,获得成功感和积累数学经验.【教学重点】同底数幂的除法法则的运用.【教学难点】根据乘、除互为逆运算推出同底数幂的除法法则.一、情境导入,初步认识1.回忆同底数幂乘法法则,并填空:(2)依题(1)的结果,并结合乘除法互为逆运算,填空:(3)观察题(2)中的每一个等式,以小组为单位讨论,找出这些等式的共同特点,并互相交流归纳.【教学说明】教师讲课前,先让学生完成“自主预习”.2.师生共同归纳结论:同底数幂相除,底数不变,指数相减.即a m÷a n=a m-n(a≠0,m,n都是正整数,且m>n).提醒:底数可以是一个数,也可以是单项式或多项式;当三个或三个以上同底数幂相除时,也具有这个性质.二、思考探究,获取新知例1计算下列各题:【分析】(2)的解答可根据乘方的性质先确定商的性质符号,即(-a)8÷(-a)5=-a8÷a5;(3)与(2)有区别.其中(-a)5与-a5的意义不同,隐含了(-m)2=m2,(-m)3=-m3的关系式;(4)的底数是多项式,也适用同底数幂的除法法则.例2计算下列各题:【分析】同底数幂的除法法则也适用于底数是单项式的情形,当底数不相同时,应先设法转化为同底数幂,再应用法则.【教学说明】在学生理解例题后,教师提出零指数幂的定义与意义.即任何不等于0的数的0次幂都等于1.即a0=1(a≠0).例3已知2×5m=5×2m,求m的值.【分析】将等式化为方程的形式,利用a0=1的性质解答.例4计算下列各题:【分析】解答本题的关键是遵循运算顺序,避免错算.【教学说明】不要出现-a21÷a6÷a6=-a21÷1=-a21这样的错误.【分析】本题可逆用幂的有关性质,将结论中的代数式转化为含有已知条件的代数式进行求解,即要求32m-4n+1的值,则应把已知条件转化为以3为底的幂的形式,如9n=(32)n=32n.三、运用新知,深化理解1.下面的计算对不对?如果不对,应当怎样改正?2.计算下列各题.3.计算下列各题.【教学说明】安排上述三题是为了帮助学生深化理解同底数幂的除法运算,题可师生共同评析.题2,3教师可指派学生到黑板上演算,然后全班订正,让学生加深印象,达成共识.四、师生互动,课堂小结谈谈本节课获得了哪些知识和解决问题的方法.【教学说明】这节课利用除法的意义及乘、除互逆的运算,揭示了同底数幂的除法的运算规律.并能运用运算法则解决简单的计算问题,积累了一定的数学经验.1.布置作业:从教材“习题14.1”中选取部分题.2.完成练习册中本课时的练习.本课时教学重点在指导学生由同底数幂乘法法则推导出同底数幂除法法则,并类比已有知识由学生自主归纳总结出运用法则计算时应注意的问题,在学生充分认识法则的本质后,指导学生解决一定基础的具体问题,学生间互相查漏补缺,教师适时指点评价,帮助学生把知识转化为解决问题的能力,实际教学中,教师尽量多营造学生自主探究,自已解决问题的氛围.问题为了扩大街心花园的绿地面积,把一块长a米,宽p米的长方形绿地加长b米,加宽q米(如图).你能用几种方法求出扩大后的绿地面积?方法一这块花园现在长(a+b)米,宽(p+q)米,故面积为(p+q)(a+b)米2.方法二这块花园现在是由四小块组成,面积分别为ap米2,aq米2,bp米2,bq米2,故面积为(ap+aq+bp+bq)米2.由此可推知:(a+b)(p+q)=ap+aq+bp+bq.即多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.要求学生讨论这个公式的特点,并探讨如何应用于计算中.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知例1计算下列各题.(1)(3a+2b)(4a-5b);(2)(x-1)(x+1)(x2+1);(3)(a+b)(a-2b)-(a+2b)(a-b);(4)5x(x2+2x+1)-(2x+3)(x-5).【教学说明】多项式乘以多项式时须把一个多项式中的每一项乘以另一多项式中的每一项,刚开始时要严格按照法则写出全部过程,要注意:(1)每一项的符号不能弄错;(2)不能漏乘任何一项.例2计算下列各题.(1)(x+2)(x+3);(2)(x-4)(x+1);(3)(y+4)(y-2);(4)(y-5)(y-3).求得结果后,与同伴一起观察,探寻其中的特征和规律,并交流.【教学说明】根据上述结果,可得(x+p)(x+q)=x2+(p+q)x+pq,这个公式可作为特别结论应用.回答下列问题:(1)(x+4)(x+3)=_________;(2)(x-1)(x+2)=_________;(3)(x-5)(x-6)=_________;(4)(x-5)(x-5)=_________.例3解方程:(x-2)(x2-6x-9)=x(x-5)(x-3).【分析】先应用多项式乘法法则进行化简,再解方程.例4先化简,再求值:(x+2y)(2x+y)-(3x-y)(x+2y),其中x=9,y=1 2 .【教学说明】本例的实质是多项式乘以多项式法则的应用.例5已知(x2+px+8)(x2-3x+q)的展开式中不含x2,x3项,试求p,q的值.【分析】先按多项式乘以多项式的法则展开,再合并同类项,欲使展开式中不含x2,x3项,就是x2项和x3项的系数为0,通过解方程组可求出p,q的值.因为展开式中不含x2,x3项,解之得p=3,q=1.【教学说明】一个多项式中可能含有很多字母,在解答问题时,一般把要求的字母当作已知数看待,合并同类项时,这些字母应看成单项式的系数.三、运用新知,深化理解甲、乙两人共同计算一道整式乘法:(2x+a)·(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中x 的系数,得到的结果为2x2-9x+10.(1)你能知道式子中a、b的值各是多少?(2)请你计算出这道整式乘法的正确结果.【分析】甲抄错了a的符号,即甲的计算式为:(2x-a)(3x+b)=6x2-(3a-2b)x-ab,对比得到的结果可得:-(3a-2b)=11;①乙漏抄了第二个多项式x的系数,即乙的计算式为:(2x+a)(x+b)=2x2+(a+2b)x+ab,对比得到的结果可得:a+2b=-9.②由①、②两式即可得出a、b的值.【教学说明】此题综合性较强,教师可先让学生自行思考,寻求解题思路,然后教师引领学生去理解题意,师生共同完成解答.【答案】(2x-a)(3x+b)=6x2-(3a-2b)x-ab=6x2+11x-10;(2x+a)(x+b)=2x2+(a+2b)x+ab=2x2-9x+10;所以-(3a-2b)=11,且a+2b=-9,解得a=-5,b=-2.所以(2x-5)(3x-2)=6x2-19x+10.四、师生互动,课堂小结师生共同交流本节所学知识及收获.1.布置作业:从教材“习题14.1”中选取部分题.2.完成练习册中本课时的练习.本课时教学时可先利用几何图形的方式验证多项式乘法法则的正确性,形成直观感受;再把公式中的(m+n)整体看作一个单项式,利用单项式与多项式相乘法则,进一步推证多项式乘法法则,从中让学生体验转化的数学思想,课堂上引导学生解决一些具体的数学问题,帮助学生巩固对法则的理解认识.第4课时整式的除法1.经历探索单项式除以单项式,多项式与单项式相除的运算法则的过程,会进行单项式,多项式与单项式的除法运算.2.探究单项式与单项式、多项式与单项式相除的算理,发展有条理的表达与思考能力.3.从探索单项式除以单项式的运算法则的过程中,获取成功的体验,积累研究数学问题的经验.【教学重点】整式除法法则的应用.【教学难点】整式除法法则的探究.一、情境导入,初步认识1.(1)计算:2xy·(-3x2y2)=____,ab2·a=________.(2)根据(1)的结果,并由乘、除法互为逆运算填空:-6x3y3÷2xy=______.a2b2÷ab2=________.(3)仿照(1)(2)的形式,要求学生再举几个例子,并从中总结规律.【教学说明】教师讲课前,先让学生完成“自主预习”.2.师生共同表述这些式子所共有的特征:(1)都是单项式除以单项式.(2)运算结果都是把系数、同底数幂分别相除后作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(3)单项式相除是在同底数幂的除法基础上进行的.3.提出单项式除以单项式的法则.例1计算:【分析】本题直接利用单项式除以单项式法则计算.计算时,要弄清两个单项式的系数各是什么,哪些是同底数幂,哪些是只在一个单项式里出现的字母,此外还要特别注意系数的符号.二、思考探究,获取新知由学生列举几个单项式乘以多项式的计算题,并求出结果,并根据乘、除法互逆,把整式乘法转化为多项式除以单项式的计算题,并写出结果.再观察特征,总结规律.【归纳总结】多项式除以单项式,先把多项式的每一项除以这个单项式,再把所得的商相加.即(am+bm)÷m=am÷m+bm÷m=a+b.例2计算:【分析】本题利用多项式除以单项式法则计算;(2)题中,把(a+b)看成一个整体,那么此式也可以看作是多项式除以单项式.例3计算:【分析】此题是整式加减乘除混合运算,解题时要注意运算顺序,先乘方,再乘除,最后加减,有括号先算括号里的.三、运用新知,深化理解1.计算:2.计算:3.化简求值.【教学说明】题1是有关单项式除以单项式的训练,题2是有关多项式除以单项式的训练,此两题可让学生自由训练,加强新知理解;题3是整式的乘法,除法的综合计算,教师着重指导学生如何正确地运用公式快速、准确地计算.四、师生互动,课堂小结集体交流本节知识点和解题方法,教师点评.1.布置作业:从教材“习题14.1”中选取部分题.2.完成练习册中本课时的练习.本课时的主要任务是完成单项式除以单项式法则的推导,进而将多项式除以单项式转化为单项式除以单项式,根据学生已有的认知水平,教师可鼓励学生自主探究整式的除法法则,并在小组间交流各自体会后由教师总结,最后学生在教师的指点下完成一定的训练,以确保能真正理解并应用法则.。

人教八年级数学上册课件《整式的乘法》精品课件

人教八年级数学上册课件《整式的乘法》精品课件
版权所有 盗版必究
知识巩固
2.若x2y3<0,化简:−2xy·|− 12x5(−y)7|。
解:∵x2y3<0, ∴x>0,y<0或x<0,y<0,
当x>0,y<0时,原式=-2xy×(- 12x5y7)=x6y8;
当x<0,y<0时,原式=-2xy× 12x5y7=-x6y8; 版权所有
盗版必究
新课学习
新课学习
(a+b)(p+q)
看成一个整体,即变为 单项式与多项式相乘。
a(p+q)+b(p+q) 单项式与多项式相乘运算法 则。
ap+aq+bp+bq
版权所有 盗版必究
新课学习
多项式与多项式相乘运算法则 (a+b)(p+q)=ap+aq+bp+bq 多项式与多项式相乘:先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加。
版权所有 盗版必究
新课学习
例2:计算 (1)(-4x2) ·(3x+1) (2)(23 ab2-2ab) ·(12ab) (1)解:原式=(-4x2) ·(3x)+(-4x2) ·1 =(-4×3) (x2 ·x)+(-4x2) =-12x3-4x2 (2)解:原式=23 ab2·12ab +(-2ab) · 12ab
2m+2=4 3m+2n+2=9,解方程组即可得到答案。
版权所有 盗版必究
典题精讲
解:∵ 14(x2y3)m·(2xyn+1)2 =x2m+2y3m+2n+2=x4y9, ∴2m+2=4;3m+2n+2=9, 解得m=1;n=2。 故m的值是1,n的值是2。

人教版数学八年级上册 整式的乘法(第1课时)

人教版数学八年级上册   整式的乘法(第1课时)

=abc7.
根据以上计算,想一想如何计算单项式乘以单项式?
探究新知
单项式与单项式的乘法法则
单项式与单项式相乘,把它们的系数、
同底数幂分别相乘,对于只在一个单项式里
含有的字母,则连同它的指数作为积的一个
因式.
探究新知
素养考点 1 单项式乘以单项式法则的应用单项式相乘的结果
仍是单项式.
例1 计算:
(1)(–5a2b)(–3a);
(2)不要出现漏乘现象
(3)运算要有顺序:先乘方,再乘除,最后加减
(4)对于混合运算,注意最后应合并同类项
有乘方运算,先算乘方,再算单项式相乘.
探究新知
素养考点 2 利用单项式乘法的法则求字母的值
例2 已知–2x3m+1y2n与7xn–6y–3–m的积与x4y是同类项,
求m2+n的值.
解:∵–2x3m+1y2n与7xn–6y–3–m的积与x4y是同类项,
2n 3 m 1,

3m 1 n 6 4,
14.1
14.1.4
整式的乘法
整式的乘法(第1课时)
导入新知
1.幂的运算性质有哪几条?
同底数幂的乘法法则:am·an=am+n ( m、n都是正整数).
幂的乘方法则:(am)n=amn ( m、n都是正整数).




积的乘方法则:(ab)n=anbn ( m、n都是正整数).
2.计算:(1)x2 ·x3 ·x4= x9
如果把它看成一个大长方形,那么它的长为________,
p(a+b+c)
面积可表示为_________.
探究新知
a
b

八年级数学人教版上册第14章整式的乘除与因式分解14.1.4整式的乘法(第1课时图文详解)

八年级数学人教版上册第14章整式的乘除与因式分解14.1.4整式的乘法(第1课时图文详解)

八年级上册第14章整式的乘除与因式分解
1.下列计算中,正确的是( B )
A.2a3·3a2=6a6
B.4x3·2x5=8x8
C.2x·2x5=4x5
D.5x3·4x4=9x7
2.下列运算正确的是( D )
A.x2·x3=x6
B.x2+x2=2x4
C.(-2x)2=-4x2
D.(-2x2)(-3x3)=6x5
八年级上册第14章整式的乘除与因式分解
第14章 整式的乘除与因式分解
八年级上册
八年级上册第14章整式的乘除与因式分解
14.1.4 整式的乘法
第1课时
八年级上册第14章整式的乘除与因式分解
1.探索并了解单项式与单项式、单项式与多项式相乘的法则, 并运用它们进行运算. 2.让学生主动参与到探索过程中去,逐步形成独立思考、主 动探索的习惯,培养思维的批判性、严密性和初步解决问题 的能力.
八年级上册第14章整式的乘除与因式分解
2.填空:
a4 26
(1)6 2
a9 28
9 x2 y4 4
1
八年级上册第14章整式的乘除与因式分解
光的速度约为3×105千米/秒,太阳光照射到地球上需 要的时间大约是5×102秒,你知道地球与太阳的距离约是 多少千米吗? 分析:距离=速度×时间,即(3×105)×(5×102); 怎样计算(3×105)×(5×102)? 地球与太阳的距离约是: (3×105)×(5×102)=(3 ×5)×(105×102) =15×107=1.5×108(千米)
八年级上册第14章整式的乘除与因式分解
2.单项式与多项式相乘的法则: 单项式与多项式相乘,只要将单项式分别乘以多 项式的每一项,再将所得的积相加即可.

人教版八年级数学上册14.1.4:整式的乘法

人教版八年级数学上册14.1.4:整式的乘法

例 比较式子
与 则连同它的指数作为积的一个因式.
的同类项,求m,n的值.
(1)
(2)
你能尝试归纳单项式乘法法则吗?
运算律:乘法交换律、乘法结合律

的值为___________.
4 y 2xy2
怎样计算

相同字母,同底数幂相乘
4 2 x y y (1)归纳出单项式乘单项式乘法法则和运算步骤;
计算:
23 25 ___2_3__5 __2_8_____
a3 a4 ___a_3_4___a_7_______
2xy 2 ____2_2_x_2 _y2___4_x_2 y_2__
m2 3 _____1_3_m__2 _3____m_6____
光的速度约是 3105 km/s,太阳光照射到地球 需要的时间约是 5 102 s .
整式的乘法(第一课时)
复习
am an ____a_m__n____ (m,n都是正整数)
同底数幂相乘,底数不变,指数相加.
am n _____a_m_n____(m,n都是正整数)
幂的乘方,底数不变,指数相乘.
abn ______a_nb_n___ (n为正整数)
积的乘方,等于把积的每一个因式分别乘方, 再把所得的幂相乘.
nm
44
单项式乘单项式法则同样适用
(2)明确了单项式乘单项式运算依据;
(5)提高运算正确率.
则 m n 的值为___________. (1)归纳出单项式乘单项式乘法法则和运算步骤;
上面的运算中,我们运用的运算律和运算性质是什么?
所含字母相同,相同字母的指数也相同
练习 下面的计算对不对?如果不对,请改正
合并系数,

新人教版数学八年级上册《整式的乘法》教学课件

新人教版数学八年级上册《整式的乘法》教学课件
注意:(1) 零指数幂中的底数可以是单项式,也可
以是多项式,但不可以是0;
(2) 因为 a=0 时,a0 无意义,所以 a0 有意义的条件
是 a≠0,常据此确定底数中所含字母的取值范围.
示例2:
指数为0
(- 2) 1
指数为0
100 1
0
0
结果为1
底数是-2
结果为1
底数是100
新知探究 跟踪训练
即 x3=x3+2x+4.
所以2x+4=0,解得x=-2.
3.若 32∙92m+1÷27m+1=81,求m的值.
分析:考虑将除数和被除数化成同底数幂的形式,
再运用同底数幂除法法则进行计算.
解:因为32∙92m+1÷27m+1=81,
32∙92m+1÷27m+1=32∙34m+2÷33m+3 =34m+4÷33m法则:
先用一个多项式的每一项乘另一个多项式的每一项,
再把所得的积相加.
式子表示:(a+b)(p+q)=ap+aq+bp+bq(a,b,p,q分别
是单项式).
学习目标
1.了解并掌握同底数幂的除法的运算法则.
2.掌握同底数幂的除法的运算法则的推导以及零指数
幂的意义.
课堂导入
前面我们已经学习了整式的加法、减法、乘法运算.在
整式运算中,有时还会遇到两个整式相除的情况.由于
除法是乘法的逆运算,因此我们可以利用整式的乘法
来讨论整式的除法.
课堂导入
一个数码相机的相机照片文件大小是210KB,一个存
储量为220KB的U盘能存储多少张这样数码照片呢?你

【精品讲义】人教版 八年级数学(上) 专题14.1 整式的乘法(知识点+例题+练习题)含答案

【精品讲义】人教版 八年级数学(上) 专题14.1  整式的乘法(知识点+例题+练习题)含答案

第十四章 整式的乘法与因式分解14.1 整式的乘法一、同底数幂的乘法一般地,对于任意底数a 与任意正整数m ,n ,a m ·a n =()m aa a a ⋅⋅⋅个·()n aa a a ⋅⋅⋅个=()m n aa a a +⋅⋅⋅个=m n a +.语言叙述:同底数幂相乘,底数不变,指数__________.【拓展】1.同底数幂的乘法法则的推广:三个或三个以上同底数幂相乘,法则也适用.m n p a a a ⋅⋅⋅=m n pa +++(m ,n ,…,p 都是正整数).2.同底数幂的乘法法则的逆用:a m +n =a m ·a n (m ,n 都是正整数). 二、幂的乘方1.幂的乘方的意义:幂的乘方是指几个相同的幂相乘,如(a 5)3是三个a 5相乘,读作a 的五次幂的三次方,(a m )n 是n 个a m 相乘,读作a 的m 次幂的n 次方. 2.幂的乘方法则:一般地,对于任意底数a 与任意正整数m ,n ,()=mn mm n m m m m m mmn n a a a a a a a +++=⋅⋅⋅=个个.语言叙述:幂的乘方,底数不变,指数__________.【拓展】1.幂的乘方的法则可推广为[()]m n p mnpa a =(m ,n ,p 都是正整数).2.幂的乘方法则的逆用:()()mn m n n m a a a ==(m ,n 都是正整数). 三、积的乘方1.积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(ab )3,(ab )n 等.3()()()()ab ab ab ab =⋅⋅(积的乘方的意义)=(a ·a ·a )·(b ·b ·b )(乘法交换律、结合律)=a 3b 3.2.积的乘方法则:一般地,对于任意底数a ,b 与任意正整数n ,()()()()=n n nn an bn ab ab ab ab ab a a a b b b a b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅个个个.因此,我们有()nn nab a b =.语言叙述:积的乘方,等于把积的每一个因式分别__________,再把所得的幂相乘. 四、单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别__________,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.1.只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏. 2.单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用. 3.单项式乘单项式的结果仍然是单项式.【注意】1.积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值. 2.相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算. 五、单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积__________.用式子表示:m (a +b +c )=ma +mb +mc (m ,a ,b ,c 都是单项式).【注意】1.单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.2.计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号. 3.对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果. 六、多项式与多项式相乘1.法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积__________.2.多项式与多项式相乘时,要按一定的顺序进行.例如(m +n )(a +b +c ),可先用第一个多项式中的每一项与第二个多项式相乘,得m (a +b +c )与n (a +b +c ),再用单项式乘多项式的法则展开,即 (m +n )(a +b +c )=m (a +b +c )+n (a +b +c )=ma +mb +mc +na +nb +nc . 【注意】1.运用多项式乘法法则时,必须做到不重不漏.2.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 七、同底数幂的除法 同底数幂的除法法则:一般地,我们有m n m n a a a -÷=(a ≠0,m ,n 都是正整数,并且m >n ). 语言叙述:同底数幂相除,底数不变,指数__________.【拓展】1.同底数幂的除法法则的推广:当三个或三个以上同底数幂相除时,也具有这一性质,例如:m n p m n p a a a a --÷÷=(a ≠0,m ,n ,p 都是正整数,并且m >n +p ). 2.同底数幂的除法法则的逆用:m n m n a a a -=÷(a ≠0,m ,n 都是正整数,并且m >n ). 八、零指数幂的性质 零指数幂的性质:同底数幂相除,如果被除式的指数等于除式的指数,例如a m ÷a m ,根据除法的意义可知所得的商为1.另一方面,如果依照同底数幂的除法来计算,又有a m ÷a m =a m -m =a 0. 于是规定:a 0=1(a ≠0).语言叙述:任何不等于0的数的0次幂都等于__________. 【注意】1.底数a 不等于0,若a =0,则零的零次幂没有意义. 2.底数a 可以是不为零的单顶式或多项式,如50=1,(x 2+y 2+1)0=1等. 3.a 0=1中,a ≠0是极易忽略的问题,也易误认为a 0=0. 九、单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别__________作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式. 【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性. 十、多项式除以单项式多项式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商__________.【注意】1.多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.2.多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项. 3.多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.一、相加 二、相乘 三、乘方四、相乘五、相加六、相加七、相减八、1九、相除十、相加1.同底数幂的乘法(1)同底数幂的乘法法则只有在底数相同时才能使用. (2)单个字母或数字可以看成指数为1的幂.(3)底数不一定只是一个数或一个字母,也可以是单项式或多项式.计算m 2·m 6的结果是A .m 12B .2m 8C .2m 12D .m 8【答案】D【解析】m 2·m 6=m 2+6=m 8,故选D .计算-(a -b )3(b -a )2的结果为A .-(b -a )5B .-(b +a )5C .(a -b )5D .(b -a)5【答案】D【解析】-(a-b )3(b -a )2=(b -a )3(b -a )2=(b -a )5,故选D .2.幂的乘方与积的乘方(1)每个因式都要乘方,不能漏掉任何一个因式.(2)要注意系数应连同它的符号一起乘方,尤其是当系数是-1时,不可忽略.计算24()a 的结果是A .28aB .4aC .6aD .8a【答案】D【解析】24()a =248a a ⨯=,故选D .下列等式错误的是A .(2mn )2=4m 2n 2B .(-2mn )2=4m 2n 2C .(2m 2n 2)3=8m 6n 6D .(-2m 2n 2)3=-8m 5n 5【答案】D【解析】A .(2mn )2=4m 2n 2,该选项正确; B .(-2mn )2=4m 2n 2,该选项正确; C .(2m 2n 2)3=8m 6n 6,该选项正确;D .(-2m 2n 2)3=-8m 6n 6,该选项错误.故选D .3.整式的乘法(1)单顶式与单顶式相乘,系数是带分数的一定要化成假分数,还应注意混合运算的运算顺序:先乘方,再乘法,最后加减.有同类顶的一定要合并同类顶.(2)单顶式与多顶式相乘的计算方法,实质是利用分配律将其转化为单项式乘单项式.计算:3x 2·5x 3的结果为A .3x 6B .15x 6C .5x 5D .15x 5【答案】D【解析】直接利用单项式乘以单项式运算法则,得3x 2·5x 3=15x 5.故选D .下列各式计算正确的是A .2x (3x -2)=5x 2-4xB .(2y +3x )(3x -2y )=9x 2-4y 2C .(x +2)2=x 2+2x +4D .(x +2)(2x -1)=2x 2+5x -2【答案】B【解析】A 、2x (3x -2)=6x 2-4x ,故本选项错误; B 、(2y +3x )(3x -2y )=9x 2-4y 2,故本选项正确; C 、(x +2)2=x 2+4x +4,故本选项错误;D 、(x +2)(2x -1)=2x 2+3x -2,故本选项错误.故选B .4.同底数幂的除法多顶式除以单项式可转化为单项式除以单顶式的和,计算时应注意逐项相除,不要漏项,并且要注意符号的变化,最后的结果通常要按某一字母升幂或降幂的顺序排列.计算2x 2÷x 3的结果是 A .xB .2xC .x -1D .2x -1【答案】D【解析】因为2x 2÷x 3=2x -1,故选D .计算:4333a b a b ÷的结果是 A .aB .3aC .abD .2a b【答案】A【解析】因为43334333a b a b a b a --÷==.故选A .计算:22(1510)(5)x y xy xy --÷-的结果是A .32x y -+B .32x y +C .32x -+D .32x --【答案】B【解析】因为2221111121(1510)(5)3232x y xy xy xyx y x y ------÷-=+=+.故选B .5.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来.先化简,再求值:2[()(4)8]2x y y x y x x -+--÷,其中8x =,2018y =.【解析】原式222(248)2x xy y xy y x x =-++--÷2(28)2x xy x x =+-÷142x y =+-. 当8x =,2018y =时,原式182018420182=⨯+-=.1.计算3(2)a -的结果是 A .38a -B .36a -C .36aD .38a2.下列计算正确的是 A .77x x x ÷=B .224(3)9x x -=-C .3362x x x ⋅=D .326()x x =3.如果2(2)(6)x x x px q +-=++,则p 、q 的值为 A .4p =-,12q =- B .4p =,12q =- C .8p =-,12q =-D .8p =,12q =4.已知30x y +-=,则22y x ⋅的值是 A .6B .6-C .18D .85.计算3n ·(-9)·3n +2的结果是 A .-33n -2B .-3n +4C .-32n +4D .-3n +66.计算223(2)(3)m m m m -⋅-⋅+的结果是 A .8m 5B .–8m 5C .8m 6D .–4m 4+12m 57.若32144m nx y x y x ÷=,则m ,n 的值是 A .6m =,1n = B .5m =,1n = C .5m =,0n =D .6m =,0n =8.计算(-x )2x 3的结果等于__________. 9.(23a a a ⋅⋅)³=__________.10.3119(1.210)(2.510)(410)⨯⨯⨯=__________. 11.计算:(a 2b 3-a 2b 2)÷(ab )2=__________.12.若1221253()()m n n m a b a b a b ++-= ,则m +n 的值为__________. 13.计算:(1)21(2)()3(1)3x y xy x -⋅-+⋅-; (2)23(293)4(21)a a a a a -+--. (3)(21x 4y 3–35x 3y 2+7x 2y 2)÷(–7x 2y ).14.先化简,再求值:(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2; (2)243()()m m m -⋅-⋅-,其中m =2-.15.“三角”表示3xyz ,“方框”表示-4a b d c .求×的值.16.下列运算正确的是A .326a a a ⨯=B .842a a a ÷=C .3(1)33a a --=-D .32911()39a a =17.计算5642333312(3)2a b c a b c a b c ÷-÷,其结果正确的是A .2-B .0C .1D .218.计算:(7)(6)(2)(1)x x x x +---+=__________. 19.如果1()()5x q x ++展开式中不含x 项,则q =__________. 20.已知:2x =3,2y =6,2z =12,试确定x ,y ,z 之间的关系.21.在一次测试中,甲、乙两同学计算同一道整式乘法:(2x +a )(3x +b ),由于甲抄错了第一个多项式中的符号,得到的结果为6x 2+11x -10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x 2-9x +10. (1)试求出式子中a ,b 的值;(2)请你计算出这道整式乘法的正确结果.22.(2019•镇江)下列计算正确的是A .236a a a ⋅=B .734a a a ÷=C .358()a a =D .22()ab ab =23.(2019•泸州)计算233a a ⋅的结果是A .54aB .64aC .53aD .63a24.(2019•柳州)计算:2(1)x x -=A .31x -B .3x x -C .3x x +D .2x x -25.(2019•天津)计算5x x ⋅的结果等于__________. 26.(2019•绥化)计算:324()m m -÷=__________. 27.(2019•乐山)若392m n ==,则23m n +=__________. 28.(2019•武汉)计算:2324(2)x x x -⋅. 29.(2019•南京)计算:22()()x y x xy y +-+.1.【答案】A【解析】33(2)8a a -=-,故选A . 2.【答案】D【解析】A 、76x x x ÷=,故此选项错误; B 、224(3)9x x =-,故此选项错误; C 、336x x x ⋅=,故此选项错误; D 、326()x x =,故此选项正确, 故选D . 3.【答案】A【解析】已知等式整理得:x 2-4x -12=x 2+px +q ,可得p =-4,q =-12,故选A .4.【答案】D【解析】∵x +y -3=0,∴x +y =3,∴2y ·2x =2x +y =23=8.故选D .5.【答案】C【解析】3n ·(-9)·3n +2=-3n ·32·3n +2=-32n +4,故选C .6.【答案】A【解析】原式=4m 2·2m 3=8m 5,故选A .7.【答案】B 【解析】因为33121444m n m n x y x y x y x --÷==,所以32m -=,10n -=,5m =,1n =,故选B . 8.【答案】x 5【解析】根据积的乘方以及同底数幂的乘法法则可得:(-x )2x 3=x 2·x 3=x 5.故答案为:x 5. 9.【答案】a 18【解析】(23a a a ⋅⋅)³=(6a )³=a 18.故答案为:a 18. 10.【答案】241.210⨯【解析】原式=1.2×103×(2.5×1011)×(4×109)=12×1023=1.2×1024.故答案为:1.2×1024. 11.【答案】1b -【解析】(a 2b 3-a 2b 2)÷(ab )2=(a 2b 3-a 2b 2)÷a 2b 2=a 2b 3÷a 2b 2-a 2b 2÷a 2b 2=1b -.故答案为:1b -. 12.【答案】2【解析】(a m +1b n +2)(a 2n –1b 2m )=a m +1+2n –1·b n +2+2m =a m +2n ·b n +2m +2=a 5b 3, ∴25223m n n m +=++=⎧⎨⎩, 两式相加,得3m +3n =6,解得m +n =2,故答案为:2.13.【解析】(1)原式=2x 2y +3xy -x 2y=x 2y +3xy .(2)原式=6a 3-27a 2+9a -8a 2+4a=6a 3-35a 2+13a .(3)原式=21x 4y 3÷(–7x 2y )–35x 3y ÷(–7x 2y )+7x 2y 2÷(–7x 2y )=–3x 2y 2+5xy –y .14.【解析】(1)原式=x 2-x +2x 2+2x -6x 2+17x -5=(x 2+2x 2-6x 2)+(-x +2x +17x )-5=-3x 2+18x -5.当x =2时,原式=19.(2)原式=-m 2·m 4·(-m 3)=m 2·m 4·m 3=m 9.当m =-2时,则原式=(-2)9=-512.15.【解析】由题意得×=(3mn ·3)×(–4n 2m 5) =[]526333(4)()()36m m n n m n ⨯⨯-⋅⋅⋅=-.16.【答案】C【解析】A 、2326a a a ⨯=,故本选项错误;B 、844a a a ÷=,故本选项错误;C 、()3133a a --=-,正确;D 、32611()39a a =,故本选项错误, 故选C .17.【答案】A【解析】因为5642333352363341312(3)222a b c a b c a b c ab c ------÷-÷=-=-,故选A . 18.【答案】2x -40【解析】原式=(x 2+x -42)-(x 2-x -2)=2x -40.故答案为:2x -40.19.【答案】15- 【解析】1()()5x q x ++=211()55x q x q +++,由于展开式中不含x 的项,∴105q +=,∴15q =-.故答案为:15-.20.【解析】因为2x =3,所以2y =6=2×3=2×2x =2x +1, 2z =12=2×6=2×2y =2y +1.所以y =x +1,z =y +1.两式相减,得y -z =x -y ,所以x +z =2y .21.【解析】(1)由题意得:(2x -a )(3x +b )=6x 2+(2b -3a )x -ab ,(2x +a )(x +b )=2x 2+(a +2b )x +ab , 所以2b -3a =11①,a +2b =-9②,由②得2b =-9-a ,代入①得-9-a -3a =11,所以a =-5,2b =-4,b =-2.(2)由(1)得(2x +a )(3x +b )=(2x -5)(3x -2)=6x 2-19x +10.22.【答案】B【解析】A 、a 2·a 3=a 5,故此选项错误;B 、a 7÷a 3=a 4,正确;C 、(a 3)5=a 15,故此选项错误;D 、(ab )2=a 2b 2,故此选项错误,故选B .23.【答案】C【解析】23533a a a ⋅=,故选C .24.【答案】B【解析】23(1)x x x x -=-,故选B .25.【答案】6x【解析】56⋅=x x x ,故答案为:6x .26.【答案】2m【解析】原式64642m m m m ÷-===,故答案为:m 2.27.【答案】4【解析】∵23=9=32=m n n ,∴2233339224+=⨯=⨯=⨯=m n m n m n ,故答案为:4.28.【解析】2324(2)x x x -⋅=668x x -67x =.29.【解析】22()()x y x xy y +-+322223x x y xy x y xy y =-++-+ 33x y =+.。

人教版八年级数学上册《整式的乘法》精品课件

人教版八年级数学上册《整式的乘法》精品课件
=13a2b3-a2b2
典题精讲
3、已知ab2=-1,求(-ab)(a2b5-ab3-b)的值。
分析:原式利用单项式乘以多项式法则计算,变形 后将已知等式代入计算即可求出值。 解:∵ab2=-1, ∴原式=-a3b6+a2b4+ab2 =-(ab2)3+(ab2)2+ab2 =1+1-1 =1。
知识巩固
典题精讲
解:∵(x+2)(x2-ax-b) =x3+(2-a)x2+(-b-2a)x-2b, 又∵不含x2、x项, ∴2-a=0,-b-2a=0, 解得a=2,b=-4,∴2a2-3b=8+12=20。
典题精讲
5、试说明代数式(2x+3)(3x+2)-6x(x+3)+5x+10 的值与x无关。 分析:根据多项式与多项式相乘的法则,化简之后, 判断是否含有x。
拓展提升
解析:(1)由题意得, (a-3)(b+3)-ab=48, 3a-3b=57, a-b=19; (2)∵a-b=19, ∴(a-b)2=361, 即a2-2ab+b2=361,又a2+b2=5261, ∴ab=2450, 答:原长方形场地的面积是2450平方米.
谢谢观看!
新课学习
注意事项: 1.系数相乘,注意符号; 2.只在一个单项式里单独含有的字母,要连同它的指数作为 积的因式,防止遗漏; 3.若某一单项式是乘方的形式时,要先乘方,再算乘法; 4.单项式乘以单项式的结果仍然是一个单项式,结果要把系 数写在字母因式的前面。
新课学习
例1 计算: (1)(-5a2b)(-3a);
拓展提升
解:
①原式=[(-1)×2×(- 35)](x·x2·x)(y2·y3·y)·z

人教版八年级数学上册1414整式的乘法时

人教版八年级数学上册1414整式的乘法时

(3) (-a)10÷(-a)7; -a3
(4) (xy)5÷(xy)3. x2y2
3.下面的计算对不对?如果不对,应当怎样改正?
(1) x6÷x2=x3; x4 (2) 64÷64=6; 1
(3)a3÷a=a3; a2 (4)(-c)4÷(-c)2=-c2. (-c)2=c2
练习:
(1) a5÷a4.a2 (2) (- x)7÷x2
(4) b2m+2÷b2 = b2m+2 – 2 = b2m .
注意 最后结果中幂的形式应是最简的.
① 幂的指数、底数都应是最简的;②底数中系数不能为负;
② 幂的底数是积的形式时,要再用一次(ab)n=an bn.
例2计算 (1)a5÷a4·a2
(2)(-x)7÷x2 (3)(ab)5÷(ab)2 (4)(a+b)6÷(a+b)4
(1) 713 77 ; (2) (ab)2 (ab)4; (3) (x)3 (x)0 (x)2 (4).(ax2 ) (ax2 )2 (ax2 )4
实践与创新
am÷an=am-n, 则am-n=am÷an
❖思维延伸
已知:xa=4,xb=9,求(1)x a-b;(2)x 3a-2b
解: 当xa=4,xb=9时, (1)xa-b=xa÷xb=4÷9= 4
9
(2)x3a-2b=x3a÷x2b=(xa)3÷(xb)2
这种思维 叫做逆向
思维!
=43÷92= 64
81
练习
1.填空:
(1)a5•( a2)=a7;
(2) m3•( m5) =m8;
(3) x3•x5•( x4) =x12 ; 2.计算:
(1) x7÷x5; x2
(4) (-6)3( (-6)2 ) = (-6)5. (2) m8÷m8; 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
人教版八年级数学考试试卷
(考试时限:45分钟 范围:整式的乘法)
一、选择题(每题3分,共30分)
1.下列计算正确的是( )
A. 4
324a a ⋅=6a 8 B. a 4+a 4=a 8 C. a 4.a 4=2a 4 D. (a 4)4=a 8 2.下列式子可用平方差公式计算的式子是( )
A. ))((a b b a --
B. )1)(1(-+-x x
C. ))((b a b a +---
D. )1)(1(+--x x 3.()()22a ax x a x ++-的计算结果是( )
A .3232a ax x -+
B .33a x -
C .3232a x a x -+
D .322322a a ax x -++
4. 已知a = 355 b = 444 c = 533 则有( )
A .a < b < c
B .c < b < a
C .a < c < b
D .c < a < b
5. 设A b a b a +-=+22)()( ,则=A ( )
A. ab 3-
B. ab 2
C. ab 4
D. ab 4- 6. 已知)(
3522=+=-=+y x xy y x ,则,
(A )25 (B )25- (C )19 (D )19- 7. =⋅-n m a a 5)(( )
(A )m a +-5 (B )m a +5 (C ) n m a +5 (D )n m a +-5
8. 一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的
边长为( )
(A )6cm (B )5cm (C )8cm (D )7cm 12. 下列计算正确的是( )
A 、222)2)(2(y x y x y x -=+-
B 、229)3)(3(y x y x y x -=+-
C 、1625)54)(54(2+=---n n n
D 、22))((m n n m n m -=+---
10. 已知===+b a b a 2310953则,,
( ) (A)50 (B)-5 (C)15 (D)b a +27 家长记录:____________________________________________________
___________________________________
二、填空(每题3分,共30分)
11.)32)(32(n m n m -+=___________ 12.2)2(n m -=_______________________
13. =--2)2
3
32(y x _________
14. (2x -1)(3x+2)= __________
15. ___________)102(23=⨯________
16. 223)2()41
()2(ac abc c -⋅-⋅=
17. 若x 286434=⨯,则x = 18. 当n 为奇数时,=-+-22)()(n n a a _____ 19. 已知51
=+
x x ,那么221x x
+=____ 20.如果()()6311=-+++b a b a ,那么b a +的值为________________.
三、计算与化简(每题4分,共28分)
21.)4)(2)(222y x y x y x -+-( 22 2)23
31(2y x --
23. (3)(7)(2)(5)a a a a ----- 24 22)52()52(--+x x
25.22)2()2(b a b a -+ 26.)2)(2(c b a c b a -++-
27.19922-1991×1993
四、解答题(每小题6分,共12分)
28 解不等式 1)32)(34()1)(1()13(2-+->-+--x x x x x
29. 已知4,1022=+=+y x y x , 求xy 及y x -的值
五、附加题(每题5分,共10分)
30. 计算:
2
2220042004
200420021
20042003++
31 已知)1)(1(),12)(12(,02222+-++=+-++=≠x x x x N x x x x M x ,
比较M 与N 的大小。

相关文档
最新文档